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Abstract— We consider a heuristic Bayesian algorithm as
a model of human decision making in multi-armed bandit
problems with Gaussian rewards. We derive a novel upper
bound on the Gaussian inverse cumulative distribution function
and use it to show that the algorithm achieves logarithmic
regret. We extend the algorithm to allow for stochastic decision
making using Boltzmann action selection with a dynamic
temperature parameter and provide a feedback rule for tuning
the temperature parameter such that the stochastic algorithm
achieves logarithmic regret. The stochastic algorithm encodes
many of the observed features of human decision making.

I. INTRODUCTION

The multi-armed bandit problem has been extensively
studied in the machine learning and controls community [3],
[4], [6], [9]. It is a canonical model of decision making under
uncertainty where the explore-exploit tradeoff is central. At
each of a sequence of times, the decision maker chooses
one among finite options (arms), with uncertain associated
rewards, aiming to maximize accumulated reward over the
whole sequence. When the decision maker chooses the
most rewarding among known options, the strategy is called
exploitation, and when the decision maker chooses a poorly
known but potentially revealing option, the strategy is called
exploration. Good strategies balance exploration to reduce
uncertainty and exploitation to accumulate high reward.

In the controls literature, the multi-armed bandit problem
is a model problem for adaptive control [2], [9] and has been
applied to a variety of problems, including multi-agent task
assignment [11] and channel allocation for networks [1].

The performance of algorithms solving the multi-armed
bandit problem can be characterized in terms of regret, which
is the accumulated difference between the highest available
reward and the expected reward of the algorithm. Lai and
Robbins [10] proved that any algorithm solving the multi-
armed bandit problem must incur regret that grows loga-
rithmically with time, and they provided an algorithm that
asymptotically achieves that bound. Since then, a significant
line of research has focused on providing algorithms that
uniformly achieve the Lai-Robbins bound.

One such class of algorithms is the so-called Upper
Confidence Bound (UCB) algorithms, first introduced by
Auer et al. [3]. For each decision time t, these algorithms
compute a heuristic value for each option i which provides
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an upper bound for the expected reward to be gained by
selecting that option:

Qti = µti + Cti , (1)

where µti is the expected reward and Cti is a measure
of uncertainty in the reward of option i at time t. The
algorithm’s decision at time t is to pick the option i that
maximizes Qti.

UCB1, the main algorithm introduced in [3], is designed
for the case where rewards are drawn from a distribution
with bounded support. In this case, Auer et al. proved that
UCB1 achieves logarithmic regret. They also considered the
case where rewards are drawn from a Gaussian distribution
with unknown variance and introduced an algorithm they call
UCB1-Normal to solve it. They analyzed the performance
of UCB1-Normal and showed that it achieves logarithmic
regret, but their proof relies on several conjectures about
Student and χ2 random variables that they only verify
numerically. Liu and Zhao [12] studied multi-armed bandit
problems where the rewards are drawn from a light-tailed dis-
tribution, which includes Gaussian distributions with known
variance as a special case. For such light-tailed rewards, they
extended UCB1 to achieve logarithmic regret. UCB1 and its
variants rely on frequentist estimators, and therefore cannot
incorporate prior knowledge about the rewards.

Recent work in neuroscience [15] showed that human
decision making in multi-armed bandit problems is consistent
with a stochastic heuristic similar to (1). In the present
paper we construct an algorithmic model of human decision
making that formalizes the connection between the heuris-
tics used by humans and the UCB algorithms. Our model
uses stochastic decision making and Bayesian estimators to
incorporate prior knowledge about the rewards.

In the present work, we provide a Bayesian algorithm for
the Gaussian multi-armed bandit problem and prove that it
achieves logarithmic regret in certain cases. The algorithm
is derived by applying the ideas in [7] to the case of bandits
with Gaussian rewards, and adding a noise model to the
decision process. Rather than following the analysis in [7],
our analysis follows Auer et al. [3] and facilitates extensions
to the case of stochastic decision making as well as to the
case of the multi-armed bandit with transition costs and
the graphical multi-armed bandit, considered in [14]. We
make use of a novel upper bound on the inverse cumulative
distribution function for the standard Gaussian distribution,
which we present in Theorem 1. The bound is tighter than
the one used by Liu and Zhao [12], and allows us to achieve
a smaller leading factor in the case of Gaussian rewards.



The contributions of this paper are threefold. First, we
provide a deterministic Bayesian algorithm that provably
achieves uniform logarithmic regret in the case of Gaussian
bandits. Second, we show how to extend this algorithm to
employ stochastic policies while still achieving logarithmic
regret. Third, we show how the stochastic algorithm can be
used as a model of human decision making in multi-armed
bandit problems.

The remainder of the paper is organized as follows. In
Section II we describe the multi-armed bandit problem. In
Section III we review the algorithm of [7] and apply it to
the case of Gaussian bandits. In Section IV we analyze the
finite-time properties of the model and prove that it achieves
logarithmic regret in the case of deterministic decision mak-
ing. We extend the model to the case of stochastic decision
making using Boltzmann action selection with a dynamic
temperature parameter and provide a feedback rule that tunes
the temperature parameter such that the model again achieves
logarithmic regret. Finally, we conclude in Section V.

II. GAUSSIAN BANDITS PROBLEM

Consider a set of N options, termed arms in analogy with
the lever of a slot machine. A single-levered slot machine is
termed a one-armed bandit, so the case of N > 1 options is
often called a multi-armed bandit. In the multi-armed bandit
problem, the decision-making agent must choose, at each of
a sequence of times, one among N arms. Each arm i has an
associated mean reward mi, which is unknown to the agent
and remains fixed for the duration of the problem.

The agent collects rewards by choosing arm it at each
time t = 1, 2, . . . , T and receiving reward rt, which is the
mean reward associated with the arm plus Gaussian noise:
rt ∼ N (mit , σr). The noise variance σr is assumed known,
e.g. from previous observations or known characteristics of
the reward generation process.

The agent’s objective is to maximize cumulative expected
reward by choosing a sequence of arms {it}:

max
{it}

J, J = E

[
T∑
t=1

rt

]
=

T∑
t=1

mit . (2)

In this context exploitation refers to picking arm it which
appears to have the highest mean at time t, and exploration
refers to picking any other arm.

Equivalently, defining mi∗ = maximi and Rt = mi∗ −
mit as the expected regret at time t, the objective can be
formulated as minimizing the cumulative expected regret

JR =

T∑
t=1

Rt =

N∑
i=1

∆iE
[
nTi
]
,

where nTi is the cumulative number of times arm i has been
chosen up to time T and ∆i = mi∗ − mi is the expected
regret due to picking arm i instead of arm i∗.

A. Bound on optimal performance

Lai and Robbins [10] showed that any algorithm solving
the multi-armed bandit problem must choose suboptimal

arms at a rate that is at least logarithmic in time:

E
[
nTi
]
≥
(

1

D(pi||pi∗)
+ o(1)

)
log T, (3)

where o(1) → 0 as T → +∞ and D(pi||pi∗) :=∫
pi(r) log pi(r)

pi∗ (r)dr is the Kullback-Liebler divergence be-
tween the reward density pi of any suboptimal arm and the
reward density pi∗ of the optimal arm. The bound on E

[
nTi
]

implies a bound on cumulative regret JR, showing that it
must grow at least logarithmically with time.

In the present case where ri ∼ N (mi, σr), the Kullback-
Liebler divergence is equal to

D(pi||pi∗) =
∆2
i

2σ2
r

, (4)

so the bound is

E
[
nTi
]
≥
(

2σ2
r

∆2
i

+ o(1)

)
log T. (5)

The intuition is that for a fixed value of σr, a suboptimal
arm i with higher ∆i is easier to identify since it yields a
lower average reward. Conversely, for a fixed value of ∆i,
higher values of σr mean that the observed rewards are more
variable, making it more difficult to distinguish the optimal
arm i∗ from the suboptimal ones.

B. Bayes-UCB

For every probability distribution f(x) with associated
cumulative distribution function (cdf) F (x), the quantile
function F−1(p) inverts the cdf to provide an upper bound
for the value of the random variable X ∼ f(x):

Pr
[
X ≤ F−1(p)

]
= p. (6)

In this sense, F−1(p) is an upper confidence bound, an upper
bound that holds with probability, or confidence level, p. The
authors of [7] considered the multi-armed bandit problem
from a Bayesian perspective and suggested using F−1(p) of
the posterior reward distribution as the heuristic function (1).
The intuition is that Qi = F−1(p) gives a bound such that
Pr [mi > Qi] = 1 − p, so that if p < 1 is large, then 1 − p
is small and it is unlikely that the true mean reward for arm
i is higher than the bound.

In order to be increasingly sure of choosing the optimal
arm as time goes on, the algorithm in [7] sets p = 1 − αt
as a function of time with αt = 1/(t(log T )c), so that 1− p
is of order 1/t. The authors term the resulting algorithm
Bayes-UCB, and in the case that the rewards are Bernoulli
distributed they proved that with c ≥ 5 Bayes-UCB achieves
the bound (3).

III. THE UPPER CREDIBLE LIMIT ALGORITHM

We apply Bayes-UCB to the case of bandits with Gaussian
rewards of known variance σ2

r and term the resulting algo-
rithm the Upper Credible Limit algorithm, or UCL. We then
consider an extension of UCL to a stochastic policy by using
Boltzmann action selection and term the resulting algorithm
stochastic UCL.



A. Inference algorithm

We begin by assuming that the agent’s prior distribution
of m (i.e. the agent’s initial beliefs about the mean reward
values m and their covariance Σ) is multivariate Gaussian
with mean µ0 and covariance Σ0:

m ∼ N (µ0,Σ0),

where µ0 ∈ RN and Σ0 ∈ RN×N is a positive-definite
matrix. Note that this does not assume that the rewards
are truly described by these statistics, simply that these
are the agent’s initial beliefs, informed perhaps by previous
measurements of the mean value and covariance.

With this prior, the posterior distribution is also Gaussian,
so the Bayesian optimal inference algorithm is linear and can
be written down as follows. At each time t, the agent selects
arm it and receives a reward rt. Recall that nti is defined
as the number of times the agent has selected arm i up to
time t, and let m̄t

i be the empirical mean reward observed
for arm i. Let nt and m̄t be the corresponding vectors with
components nti, m̄

t
i, respectively.

Then the belief state (µt,Σt) updates as follows:

Λt =
diag(nt)

σ2
r

+ Λ0, Σt = Λ−1
t (7)

µt = µ0 + Σt
diag(nt)

σ2
r

(m̄t − µ0), (8)

where Λt = Σ−1
t is the precision matrix. As noted above,

this assumes that the sampling noise σr is known, e.g. from
previous observations or known sensor characteristics.

The above holds for general Σ0 > 0, but for simplicity
of exposition we will specialize in the following to the case
where Σ0 = σ2

0I , so the agent believes the mean rewards to
be independent. In this case the belief state update equations
simplify to

Var(mt
i|m̄t

i) =
(
σti
)2

=
σ2
r

δ2 + nti

E
[
mt
i|m̄t

i

]
= µti =

δ2µ0
i + ntim̄

t
i

δ2 + nti
,

where δ2 = σ2
r/σ

2
0 .

B. Quantile function

With the assumption of independence made above, the
posterior distribution of the mean mi at time t is

mt
i ∼ N

(
µti,

σ2
r

δ2 + nti

)
,

so the (1− α)th quantile of the distribution is given by

F−1(1− α) = µti +
σr√
δ2 + nti

Φ−1(1− α), (9)

where Φ−1(p) is the inverse of the cdf of the normal
distribution, also known as the probit function.

C. Decision heuristic

In the case of deterministic decision making, the decision
at time t is given by maximizing the heuristic:

it = arg max
i
Qti, (10)

where the heuristic function is defined by the quantile (9),

Qti = µti +
σr√
δ2 + nti

Φ−1(1− αt), (11)

with αt = 1/Kt and K > 1 is a constant.
We extend the algorithm to the case of stochastic decision

making using Boltzmann action selection, as is used in
simulated annealing [13], [8]. The choice of arm is made
stochastically using a Boltzmann distribution with tempera-
ture υt, so the probability Pit of picking arm i at time t is
given by

Pit =
exp(Qti/υt)∑N
j=1 exp(Qtj/υt)

.

In the case υt → 0+ this scheme reduces to the deterministic
scheme (10), and as υt increases the probability of selecting
any other arm increases. In this way, Boltzmann selection
generalizes the maximum operation and is sometimes known
as the soft maximum (or softmax) rule.

In the context of simulated annealing, the choice of υt is
known as a cooling schedule. In their classic work, Mitra et
al. [13] showed that good cooling schedules for simulated
annealing take the form

υt =
ν

log t
,

so we study cooling schedules of this form. We choose ν
using a feedback rule on the values of the heuristic function
Qti and define the cooling schedule as

υt =
∆QtminD

2 log t
, (12)

where ∆Qtmin = mini 6=j |Qti − Qtj | is the minimum gap
between the heuristic function value for any two pairs of
arms and D > 0 is a constant. We define ∞−∞ = 0, so
that ∆Qtmin = 0 if two arms have infinite heuristic values,
and define 0/0 = 1.

Much of the bandits literature considers only deterministic
maximization rules; for example, Bayes-UCB, as presented
in [7], is a deterministic decision rule. However, several
authors have considered stochastic decision rules in adver-
sarial contexts, where it is advantageous to avoid making
predictable decisions. See Chapter 3 of the recent review [4]
and references therein.

D. Application to human decision making

Human decision making in multi-armed bandit problems
is well modeled by a heuristic similar to that of UCL (11)
and humans are sensitive to the parameters of the problem
[15]. In particular, both the uncertainty measure and the level
of decision noise increase with problem horizon T .

Stochastic UCL can be used to model human decision
making. By choosing the parameters K and D as increasing
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Fig. 1. Depiction of the normal quantile function Φ−1(1−α) (solid line)
and the bounds (13) and (14) (dashed lines).

functions of the horizon T , the stochastic UCL algorithm
presented here captures the effect of the horizon and other
important features of human decision making in multi-armed
bandit problems, as studied in more detail in [14].

IV. REGRET ANALYSIS

In this section we first consider UCL and bound its cumu-
lative expected regret. We show the bound is logarithmic
in horizon length T with proportionality constant within
a constant factor of the best possible bound 2σ2

r/∆
2
i (cf.

(5)). We then consider the case of stochastic UCL where
the cooling schedule follows (12) and show that the regret
is again bounded by a logarithmic function of the horizon
length T .

A. Deterministic decision making

Before analyzing the regret of our model in the case of
deterministic decision making, we state the following bounds
on the values of the normal quantile function Φ−1(1− α).

Theorem 1 (Bounds on the Gaussian inverse cdf): The
following bounds hold when α < 1/

√
2π and β ≥ 1.02:

Φ−1(1− α) < β
√
− log(−(2πα2) log(2πα2)) (13)

Φ−1(1− α) >
√
− log(2πα2(1− log(2πα2))). (14)

Fan [5] posed these bounds (without the factor β in (13)) as
conjectures without proof. In fact, the factor β is necessary
to get a correct upper bound, as we prove in the Appendix.
See Figure 1 for a visual depiction of the bounds.

Turning to the regret analysis of the UCL algorithm, we
consider the case of an uninformative prior, i.e., σ2

0 → +∞.
In the case of an uninformative prior and setting K =

√
2πe,

the following performance bound holds with β = 1.02:
Theorem 2 (Regret for deterministic decision making):

Let β = 1.02. The expected number of draws of any
sub-optimal arm i is bounded by

E
[
nTi
]
≤
(8β2σ2

r

∆2
i

+
2√
2πe

)
log T

+
4β2σ2

r

∆2
i

(1− log 2− log log T ) + 1 +
2√
2πe

.

Proof: In the spirit of [3], we bound nTi as follows:

nTi =

T∑
t=1

1(it = i)

≤
T∑
t=1

1
(
Qti > Qti∗

)
≤ η +

T∑
t=1

1
(
Qti > Qti∗ , n

(t−1)
i ≥ η

)
,

where η is some positive integer and 1(x) is the indicator
function, with 1(x) = 1 if x is a true statement and 0
otherwise.

At time t, the agent picks arm i over i∗ only if

Qti∗ ≤ Qti.

This is true when at least one of the following holds:

µti∗ ≤ mi∗ − Cti∗ (15)
µti ≥ mi + Cti (16)

mi∗ < mi + 2Cti (17)

where Cti = σr√
δ2+nt

i

Φ−1(1−αt). Otherwise, if none of the

equations (15)-(17) holds,

Qti∗ = µti∗ + Cti∗ > mi∗ ≥ mi + 2Cti > µti + Cti = Qti,

and arm i∗ is picked over arm i at time t.
We proceed by analyzing the probability that Equations

(15) and (16) hold. Note that the empirical mean m̄t
i is a

normal random variable with mean mi and variance σ2
r/n

t
i,

so, conditional on nti, µ
t
i is a normal random variable

distributed as

µti ∼ N
(
δ2µ0

i + ntimi

δ2 + nti
,

ntiσ
2
r

(δ2 + nti)
2

)
.

Equation (15) holds if

mi∗ ≥ µti∗ +
σr√
δ2 + nti

Φ−1(1− αt)

⇐⇒ mi∗ − µti∗ ≥
σr√
δ2 + nti

Φ−1(1− αt)

⇐⇒ z ≤ −

√
nti∗ + δ2

nti∗
Φ−1(1− αt) +

δ2

σr

∆mi∗√
nti∗

,

where z ∼ N (0, 1) is a standard normal random variable and
∆mi∗ = mi∗ − µ0

i∗ . For an uninformative prior δ2 → 0+,
and consequently Equation (15) holds if and only if z ≤
−Φ(1− αt). Therefore, for an uninformative prior,

P(Equation (15) holds) = αt =
1

Kt
=

1√
2πet

.

Similarly, Equation (16) holds if

mi ≤ µti −
σr√
δ2 + nti

Φ−1(1− αt)

⇐⇒ µti −mi ≥
σr√
δ2 + nti

Φ−1(1− αt)

⇐⇒ z ≥

√
nti + δ2

nti
Φ−1(1− αt) +

δ2

σr

∆mi√
nti
,



where z ∼ N (0, 1) is a standard normal random variable
and ∆mi = mi − µ0

i . The analogous argument to that for
the above case shows that, for an uninformative prior,

P(Equation (16) holds) = αt =
1

Kt
=

1√
2πet

.

Equation (17) holds if

mi∗ < mi +
2σr√
δ2 + nti

Φ−1(1− αt)

⇐⇒ ∆i <
2σr√
δ2 + nti

Φ−1(1− αt)

⇐⇒ ∆2
i

4β2σ2
r

(δ2 + nti) < − log(−2πα2
t log(2πα2

t )) (18)

=⇒ ∆2
i

4β2σ2
r

(δ2 + nti) < 1 + 2 log T − log 2− log log T

where ∆i = mi∗ − mi and the inequality (18) follows
from the bound (13). Therefore, for an uninformative prior,
inequality (17) never holds if

nti ≥
4β2σ2

r

∆2
i

(1 + 2 log T − log 2− log log T ).

With η = d 4β2σ2
r

∆2
i

(1 + 2 log T − log 2− log log T )e, we get

E
[
nTi
]
≤ η +

T∑
t=1

P(Qti > Qti∗ , n
(t−1)
i ≥ η)

= η +

T∑
t=1

P(Equation (15) holds, n(t−1)
i ≥ η)

+

T∑
t=1

P(Equation (16) holds, n(t−1)
i ≥ η)

<
4β2σ2

r

∆2
i

(1 + 2 log T − log 2− log log T )

+ 1 +
2√
2πe

T∑
t=1

1

t
.

The sum can be bounded by the integral

T∑
t=1

1

t
≤ 1 +

∫ T

1

1

t
dt = 1 + log T,

yielding the desired bound

E
[
nTi
]
≤
(8β2σ2

r

∆2
i

+
2√
2πe

)
log T

+
4β2σ2

r

∆2
i

(1− log 2− log log T ) + 1 +
2√
2πe

.

Thus, we have shown that in the case of deterministic
decision making, the model achieves logarithmic regret uni-
formly in T with a constant which agrees with the best
possible one (5) up to a constant factor. As the following
section shows, the analysis extends to the case of stochastic
decision making in a straightforward way.

B. Stochastic decision making

In the case where υt is defined by (12), a similar analysis
holds. Again considering the case of an uninformative prior
and setting the parameters K =

√
2πe and D = 1, the

following performance bound holds.
Theorem 3 (Regret for stochastic decision making): The

expected number of draws of a suboptimal arm i satisfies

E
[
nTi
]
≤
(8β2σ2

r

∆2
i

+
2√
2πe

)
log T +

π2

6

+
4β2σ2

r

∆2
i

(1− log 2− log log T ) + 1 +
2√
2πe

.

Proof: See Appendix.
Note that the bound on regret of the stochastic decision-

making algorithm only differs from that of the deterministic
decision-making algorithm by a constant equal to π2/6.
Therefore, by using the dynamic feedback rule (12) in the
cooling schedule, the algorithm only pays a small perfor-
mance penalty for the use of a stochastic maximization
in the decision step. Human decision making is inherently
stochastic. While it is unlikely humans are using this specific
form of feedback rule, Theorem 3 shows that a stochastic
decision rule can achieve near-optimal performance.

V. CONCLUSION

In conclusion, we propose the UCL algorithm for multi-
armed Gaussian bandit problems, and we analyze its per-
formance in terms of expected regret. We show that, using
an uninformative prior, it achieves logarithmic regret. We
extend the algorithm to incorporate stochastic policies using
Boltzmann action selection and develop a feedback law to
dynamically tune the temperature parameter of the selection
rule such that the stochastic algorithm achieves logarithmic
regret. As shown further in [14], with appropriate choices
of parameter values, stochastic UCL is a model for human
decision making in multi-armed bandit problems.

APPENDIX

Proof: [Proof of Theorem 1] Since the cdf for the
standard normal random variable is a continuous and mono-
tonically increasing function, it suffices to show that

Φ(β
√
− log(−2πα2 log(2πα2))) + α− 1 ≥ 0, (19)

for each α ∈ (0, 1). Equation (19) can be equivalently written
as f(x) ≥ 0, where x = 2πα2 and f is defined by

f(x) = Φ(β
√
− log(−x log(x)))) +

√
x√
2π
− 1.

Note that limx→0+ f(x) = 0 and limx→1− f(x) = 1/
√

2π.
Therefore, to establish the theorem, it suffices to establish
that f is a monotonically increasing function. It follows that

g(x) := 2
√

2πf ′(x) =
1√
x

+
β(−x log(x))β

2/2−1(1 + log(x))√
− log(−x log(x))

.

Note that limx→0+ g(x) = +∞ and limx→1− g(x) = 1.
Therefore, to establish that f is monotonically increasing, it



suffices to show that g is non-negative for x ∈ (0, 1). This
is the case if the following inequality holds:

g(x) =
1√
x

+
β(−x log(x))β

2/2−1(1 + log(x))√
− log(−x log(x))

≥ 0,

which holds if

− log(−x log(x)) ≥ β2x(1 + log(x))2(−x log(x))β
2−2

= β2x(1 + 2 log(x) + (log(x))2)

× (−x log(x))β
2−2.

Letting t = − log(x), the above inequality is transformed to

− log(te−t) ≥ β2e−t(1− 2t+ t2)(te−t)β
2−2,

which holds if

− log t ≥ β2tβ
2−2(1− 2t+ t2)e−(β2−1)t − t,

which is true if

inf
t∈[1,∞)

− log t

t
≥ max
t∈[1,∞)

β2tβ
2−3(1− 2t+ t2)e−(β2−1)t− 1.

(20)
The extrema can be calculated analytically, so we have

inf
t∈[1,∞)

− log t

t
= −1

e
≈ −0.3679

for the left hand side and

max
t∈[1,∞)

β2tβ
2−3(1− 2t+ t2)e−(β2−1)t − 1 ≈ −0.3729

for the right hand side of (20), so (20) holds.
Therefore, g(x) is non-negative for x ∈ (0, 1), f(x) is a

monotonically increasing function, and the theorem holds.

Proof: [Proof of Theorem 3] We begin by bounding
E[nTi ] as follows

E
[
nTi
]

=

T∑
t=1

E [Pit] ≤ η +

T∑
t=1

E
[
Pit1

(
nti ≥ η

)]
, (21)

where η is a positive integer. Now, decompose E [Pit] as

E[Pit] = E
[
Pit|Qti ≤ Qti∗

]
P(Qti ≤ Qti∗)

+ E
[
Pit|Qti > Qti∗

]
P(Qti > Qti∗)

≤ E
[
Pit|Qti ≤ Qti∗

]
+ P(Qti > Qti∗). (22)

The probability Pit can itself be bounded as

Pit =
exp(Qti/υt)∑N
j=1 exp(Qtj/υt)

≤ exp(Qti/υt)

exp(Qti∗/υt)
. (23)

Substituting the expression for the cooling schedule in in-
equality (23), we obtain

Pit ≤ exp

(
−2(Qti∗ −Qti)

∆Qtmin

log t

)
= t
−

2(Qt
i∗−Qt

i)

∆Qt
min . (24)

Since ∆Qtmin ≥ 0, with equality only if two arms have
identical heuristic values, conditioned on Qti∗ ≥ Qti the
exponent on t can take the following magnitudes:

|Qti∗ −Qti|
∆Qtmin

=


0
0 = 1, if Qti∗ = Qti,

+∞, if Qti∗ 6= Qti and ∆Qtmin = 0,

x, if ∆Qtmin 6= 0,

where x ∈ [1,+∞). The sign of the exponent is determined
by the sign of Qti∗ −Qti.

Once each arm has been picked once, the probability of
ties between any pair of the Qis is zero, i.e., ∆Qtmin = 0 is
zero. Consequently, it follows from inequality (22) that

T∑
t=1

E[Pit|Qti∗ ≥ Qti] ≤
T∑
t=1

1

t2
≤ π2

6
.

It follows from inequality (24) that
T∑
i=1

E[Pit] ≤
π2

6
+

T∑
i=1

P(Qti > Qti∗)

≤ π2

6
+
(8β2σ2

r

∆2
i

+
2√
2πe

)
log T

+
4β2σ2

r

∆2
i

(1− log 2− log log T ) + 1 +
2√
2πe

,

where the last inequality follows from Theorem 2.

REFERENCES

[1] J. Ai and A.A. Abouzeid. Opportunistic spectrum access based on
a constrained multi-armed bandit formulation. J. of Communications
and Networks, 11(2):134–147, 2009.

[2] M. Asawa and D. Teneketzis. Multi-armed bandits with switching
penalties. IEEE Trans. on Automatic Control, 41(3):328–348, 1996.

[3] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the
multiarmed bandit problem. Machine Learning, 47(2):235–256, 2002.

[4] S. Bubeck and N. Cesa-Bianchi. Regret analysis of stochastic and
nonstochastic multi-armed bandit problems. Foundations and Trends
in Machine Learning, 5(1):1–122, 2012.

[5] P. Fan. New inequalities of Mill’s ratio and its application to the
inverse Q-function approximation. arXiv:1212.4899, 2012.

[6] J. Gittins, K. Glazebrook, and R. Weber. Multi-armed Bandit Alloca-
tion Indices. Wiley, 2011.
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