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Bistability and Resurgent Epidemics in
Reinfection Models
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Abstract—Spreading processes that propagate through
local interactions have been studied in multiple fields (e.g.,
epidemiology, complex networks, social sciences) using
the susceptible-infected-recovered (SIR) and susceptible-
infected-susceptible (SIS) frameworks. SIR assumes indi-
viduals acquire full immunity to the infection after recovery,
while SIS assumes individuals acquire no immunity after
recovery. However, in many spreading processes individ-
uals may acquire only partial immunity to the infection or
may become more susceptible to reinfection after recov-
ery. We study a model for reinfection called Susceptible-
Infected-Recovered-Infected (SIRI). The SIRI model gener-
alizes the SIS and SIR models and allows for study of
systems in which the susceptibility of agents changes irre-
versibly after first exposure to the infection. We show that
when the rate of reinfection is higher than the rate of pri-
mary infection, the SIRI model exhibits bistability with a
small difference in the initial fraction of infected individu-
als determining whether the infection dies out or spreads
through the population. We find this critical value and show
that when the infection does not die out there is a resur-
gent epidemic in which the number of infected individuals
decays initially and remains at a low level for an arbitrar-
ily long period of time before rapidly increasing toward
an endemic equilibrium in which the fraction of infected
individuals is non-zero.

Index Terms—Nonlinear systems, contagion dynamics,
compartmental systems.

I. INTRODUCTION

EPIDEMIOLOGICAL models [1] have been widely stud-
ied and successfully applied in many settings, including

mobile networks [2], rumor spreading [3], and even viral video
dynamics [4]. These compartmental models typically describe
how the group sizes of different types of individuals evolve
over time. The main appeal for these models is their high ana-
lytic tractability, which makes them a powerful framework for
studying transient and steady-state system behaviors.

These models are also central to the understanding of con-
tagious processes [5]–[7] and to the development of control
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and optimal resource allocation strategies that seek to inhibit
or promote the spread of the process [8]–[10].

Two of the most successful and well-studied epidemiolog-
ical models are the SIS and SIR models. In the SIS model
individuals can be either susceptible or infected. Susceptible
individuals become infected through contact with already
infected individuals, and return to the susceptible state after
recovering from the infection. The SIR model is similar to
the SIS model except for the fact that recovered individuals
acquire full immunity to the infection, meaning they cannot
become infected again.

While the SIS (no immunity) and the SIR (full immunity)
models have been extensively used and studied, they do not
address many of the applicable real-world situations in which
the susceptibility of individuals to primary infections is dif-
ferent from the susceptibility to secondary infections (i.e.,
reinfections). For instance, in the case of infectious diseases,
a lower probability of reinfection corresponds to the devel-
opment of partial immunity in which primary infections are
more likely than secondary infections, such as in the case of
influenza [11]. Alternatively, a higher probability of reinfec-
tion might correspond to a compromised immune system in
which secondary infections are more likely, such as in the case
of tuberculosis in particular populations [12].

In the spread of social behaviors, past experiences may lead
to differences between primary and secondary infections. A
lower probability of reinfection could be the result of a neg-
ative experience that reduces the propensity of an individual
to further engage in the behavior, while a higher probabil-
ity of reinfection could result from a positive experience that
increases the propensity of an individual to engage in the
behavior.

In this letter we study the role of susceptibility to reinfec-
tions by considering the spread of a contagious process using
the SIRI (Susceptible-Infected-Recovered-Infected) model in
which the rate of primary infections is different from the rate
of secondary infections. The SIRI model contains the SIS
and SIR models as special cases and allows for the study of
systems in which individuals become more or less susceptible
to the infection after first exposure.

In the theoretical biology literature reinfection models have
been used to study the role of partial immunity and wan-
ing immunity across populations [13], while in the physics
community spatial reinfection models have garnered attention
due to their critical behavior connecting directed percolation
and dynamic percolation [14]. A Markovian SIRI model on
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arbitrary networks is studied in [15], and it is shown through
numerical simulations on random networks that the model
exhibits bistability in which a low number of initially infected
individuals leads to an infection-free steady-state while a much
larger number of initially infected individuals leads to an
endemic steady-state. We have found no other work in the
literature that examines this bistability. In this letter we for-
malize the observation of [15] in the case of a well-mixed
population by proving new results on the critical initial con-
dition below which the infection dies out and above which
solutions reach an endemic equilibrium.

Our contribution in this letter is a rigorous analysis of the
SIRI model dynamics over its entire phase space. We identify
and prove conditions for each of four different dynamical
regimes exhibited by the SIRI model: infection-free, endemic,
epidemic, and bistable. As far as we know this is the first such
analysis of its kind. We prove that the bistability phenomenon
occurs when secondary infections are more likely than primary
infections. We prove that when the bistability condition leads
to an endemic steady-state, the system exhibits a resurgent
epidemic in which the number of infected individuals initially
decreases before ramping up after an arbitrarily long delay.

This letter is organized as follows. Section II introduces
the SIRI model. In Section III we analyze the dynamics
of the SIRI model over the entire phase space and prove
conditions for the four dynamical regimes. In Section IV
we study the bistable regime in more detail and introduce
the concept of a resurgent epidemic with an arbitrarily long
delay. We provide closing remarks and discuss future work in
Section V.

II. MODEL DESCRIPTION

Consider a large population in which an individual can
be in any of the following three states: susceptible (S),
infected (I), or recovered (R). Susceptible and recovered indi-
viduals become infected through contact with already infected
individuals at respective rates β ≥ 0 and β̂ ≥ 0, while infected
individuals recover at a fixed rate δ ≥ 0:

S+ I
β−→ I + I

β̂←−R+ I

I
δ−→R (1)

By assuming that interactions between any two individuals
occur with the same probability (i.e., under homogeneous
mixing conditions), we can model the system dynamics as

ẋS = −βxSxI

ẋI = βxSxI + β̂xRxI − δxI

ẋR = −β̂xRxI + δxI, (2)

where xS, xI , and xR represent the fractions of population
that belong to the susceptible, infected, and recovered states,
respectively. Note that xS + xI + xR = 1, and this constraint is
preserved under (2).

Table I shows the special cases of the SIRI model. Setting
β̂ = 0 reduces the SIRI model to the SIR model, while setting
β̂ = β and redefining xS as xS + xR reduces the SIRI model
to the SIS model. In between the SIR (full immunity) and the
SIS (no immunity) models, the rate of secondary infections

TABLE I
SPECIAL CASES OF THE SIRI MODEL

is larger than zero but lower than the rate of primary infec-
tions (0 < β̂ < β), and we say that recovered individuals
have developed partial immunity to the infection, i.e., they are
less likely to become reinfected. For example, in the spread of
rumors, partial immunity might represent the scenario wherein
individuals become less likely to spread new rumors, possi-
bly due to negative consequences of an initially spread rumor.
When the rate of secondary infections is larger than that of pri-
mary infections (β < β̂ <∞), recovered individuals become
reinfected more easily, and we say that recovered individuals
have developed compromised immunity to the infection. In the
example, this could represent the scenario wherein individuals
become more willing to spread new rumors, possibly due to
benefits from spreading a previous rumor. In the limit β̂ →∞,
the rate of recovery is negligible compared to the rate of rein-
fection, and the SIRI model approximates the SI model where
infected individuals can never recover. An exact equivalence
with the SI model can be achieved by setting the recovery rate
δ to zero and redefining xS as xS + xR. This could represent
the scenario wherein individuals cannot stop spreading rumors
once they hear a rumor.

III. MODEL ANALYSIS

A. Epidemic Analysis

Here we derive conditions on model parameters that guaran-
tee an epidemic, i.e., growth in number of infected individuals
for a small initial number of infected individuals.

The dynamics for xI in (2) can be written as

ẋI = δ((R0xS + R1xR)− 1)xI = δ(R(xS, xR)− 1)xI (3)

where R0 � β/δ, R1 � β̂/δ, and R(xS, xR) � R0xS + R1xR.
The infection decays when R < 1, grows when R > 1, and
neither grows nor decays when R = 1.

If R0 > 1, a small fraction of initially infected individuals
can spread the infection in a population with no recovered
individuals (xR = 0). To see this, consider the dynamics for
xI around a point where xR = 0 and xI ≈ 0:

ẋI = (β − δ)xI = δ(R0 − 1)xI . (4)

Similarly, if R1 > 1 a small fraction of initially infected
individuals can spread the infection in a population with no
susceptible individuals (xS = 0). To see this, consider the
dynamics for xI around a point where xR ≈ 1 and xI ≈ 0:

ẋI = (β̂ − δ)xI = δ(R1 − 1)xI . (5)

We can investigate the effect of introducing a small fraction
of infected individuals in a population with both susceptible
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and recovered individuals by looking at the linearized dynam-
ics of xI around an infection-free point xS = 1 − x̄R, xI = 0,
and xR = x̄R,

ẋI = δ(R0 + (R1 − R0)x̄R − 1)xI . (6)

For initial conditions where x̄R = 0, by (4) the initial infection
spreads if R0 > 1. If all individuals become infected, i.e.,
x̄R = 1, by (5) the infection spreads through the recovered
population if R1 > 1.

When 0 < x̄R < 1, the infection spreads if R0 + (R1 −
R0)x̄R > 1. So, if R0 > R1, i.e., β > β̂, as in the case of par-
tial immunity, the effective spreading power of the infection
decreases with the fraction of recovered individuals x̄R. That
is, recovered individuals are less prone to the infection than
susceptible individuals, which makes it harder for the infec-
tion to spread. And if R0 < R1, i.e., β < β̂, as in the case
of compromised immunity, recovered individuals are likely to
become reinfected and facilitate the spread of the infection
through the population.

B. Equilibrium Points and Stability Analysis

The dynamics of the SIRI model (2) evolve on the 2-simplex
�2 � {(xS, xI, xR) ∈ [0, 1]3|xS + xI + xR = 1}, and the
corresponding reduced dynamics can be expressed as

ẋS = −βxSxI

ẋI = (β̂ − δ)xI + (β − β̂)xSxI − β̂x2
I . (7)

This reduced model (7) has one continuum of equilibria and
an isolated equilibrium point:

1) Infection-Free Equilibria (IFE): xS = x∗S, xI = 0,
2) Endemic Equilibrium (EE): xS = 0, xI = 1− δ/β̂.

The IFE is a continuum of equilibria corresponding to the
boundary of �2 where xI = 0 and x∗S ∈ [0, 1], while the EE
corresponds to the case in which every individual is either in
the infected or recovered state. The SIRI model does not have
an equilibrium point where all three states S, I, and R coexist.

We now show how the steady-state solution x∗S at a point in
the IFE depends on the initial conditions.

Theorem 1: The fraction of susceptible individuals x∗s at a
point in the IFE is given by the implicit equation(

x∗S
xS0

)R1/R0
(

xI0 + xS0 − R1 − 1

R1

)
− x∗S +

R1 − 1

R1
= 0,

where xI0 and xS0 are the initial fractions of infected and
susceptible individuals, respectively.

Proof: Dividing the two equations in (7) we get an expres-
sion for dxI/dxS:

dxI

dxS
= (β̂ − β)

β
− β̂ − δ

βxS
+ β̂xI

βxS

with solution

xI = −xS + β̂ − δ

β̂
+ kxβ̂/β

S (8)

where the value of k can be found by setting t = 0, yielding

xI + xS − (β̂ − δ)/β̂

xβ̂/β

S

= xI0 + xS0 − (β̂ − δ)/β̂

xβ̂/β

S0

. (9)

In the limit t→∞, xI(∞) = 0. Simplifying and making the
substitution x∗S = xS(∞) we get the implicit equation

(
x∗S
xS0

)β̂/β
(

xI0 + xS0 − β̂ − δ

β̂

)
− x∗S +

β̂ − δ

β̂
= 0.

Substituting R1 = β̂/δ completes the proof.
Corollary 1: Given an initial condition xI = xI0, xS = 1−

xI0, where 0 < xI0 < 1, the fraction of susceptible individuals
x∗s at the IFE is given by the implicit equation

1

R1

(
x∗s

1− xI0

)R1/R0

− x∗s +
R1 − 1

R1
= 0. (10)

Proof: The proof follows by setting xS0 = 1 − xI0 in
Theorem 1.

Before we state the main theorem of this letter, we define
the quantity M � (1−R1)/(R0−R1) which we use throughout
the rest of this section.

Theorem 2 (Behavioral Regimes of SIRI): Given an initial
condition xI = xI0, xS = 1− xI0, where 0 < xI0 < 1, the SIRI
model (7) exhibits four different dynamical behaviors:

1) Infection-Free: If R0 < 1 and R1 < 1, then all solu-
tions reach a point in the IFE as t→∞, and xI decays
monotonically to zero.

2) Endemic: If R0 > 1 and R1 > 1, then all solutions reach
the EE as t→∞.

3) Epidemic: If R0 > 1 and R1 ≤ 1, then all solutions
reach a point in the IFE as t→∞ and, at equilibrium,
x∗S < M. For initial conditions where xI0 ≥ (β − δ)/β,
xI decays monotonically to zero. While for initial con-
ditions where xI0 < (β − δ)/β, xI grows initially and
reaches a maximum value:

xmax
I = R0 − R1

R1(R
R0
0 (1− xI0)R1)1/(R0−R1)

+ R1 − 1

R1
,

before decaying to zero as t→∞.
4) Bistable: If R0 ≤ 1, R1 > 1, then xI decays initially.

Moreover, there is a critical initial fraction of infected
individuals

xIC = 1−M(R0M)
− R0

R1 . (11)

Solutions with initial condition xI0 < xIC reach a point
in the IFE as t → ∞ and xI decays monotonically to
zero. Solutions with initial conditions xI0 > xIC reach
the EE as t→∞.

Before proving Theorem 2, we prove three lemmas.
Lemma 1: The EE is an equilibrium point of (7) if and only

if R1 ≥ 1. Moreover, the EE is locally stable.
Proof: To show necessity, note that at the EE we have xI =

1− δ/β̂ = 1− 1/R1 which is nonnegative only if R1 ≥ 1.
Sufficiency follows from the fact that xI = 1−1/R1, xs = 0

and xR = 1− xI is an equilibrium point of (7).
The Jacobian of (7) around the EE is given by

J =
[ −β(β̂ − δ)/β̂ 0
(β − β̂)(β̂ − δ)/β̂ −(β̂ − δ)

]

which is Hurwitz if R1 > 1.



PAGLIARA et al.: BISTABILITY AND RESURGENT EPIDEMICS IN REINFECTION MODELS 293

The following lemma shows that in the epidemic and
bistable regimes, the IFE contains both locally stable and
unstable equilibrium points.

Lemma 2: The following holds true for the IFE:
1) If R0 < 1 and R1 < 1, then all points in the IFE are

locally stable.
2) If R0 > 1 and R1 > 1, then all points in the IFE are

unstable.
3) If R0 > 1 and R1 ≤ 1, points in the IFE with x∗S < M

are locally stable and points with x∗S > M are unstable.
4) If R0 ≤ 1 and R1 > 1, points in the IFE with x∗S > M

are locally stable and points with x∗S < M are unstable.
Proof: The Jacobian for the linearized system about xI = 0,

xS = x∗S is

J =
[

0 −βx∗S
0 (β − β̂)x∗S + β̂ − δ

]
(12)

The zero eigenvalue has eigenvector [1, 0]T corresponding to
the invariant subspace xI = 0. The second eigenvalue Ja =
(β − β̂)x∗s + (β̂ − δ) determines the local stability of points in
the IFE.

To prove 1, assume R0 < 1 and R1 < 1. If R0 > R1,
then β > β̂ and Ja < 0 for any 0 ≤ x∗S ≤ 1 and all points
in the IFE are locally stable. If R0 < R1 then β < β̂ and
max Ja = β − δ < 0 and all points in the IFE are locally
stable.

To prove 2, assume R0 > 1 and R1 > 1. If R0 > R1, Ja > 0
for any 0 ≤ x∗S ≤ 1 and all points in the IFE are unstable. If
R0 < R1 then max Ja = β − δ > 0 and all points in the IFE
are unstable.

To prove 3, assume R0 > 1 and R1 ≤ 1. It follows that
Ja < 0 if 0 < x∗S < M and Ja > 0 if M < x∗S < 1, which is
equivalent to 3.

To prove 4, assume R0 ≤ 1 and R1 > 1. It follows that
Ja < 0 if M < x∗S < 1 and Ja > 0 if 0 < x∗S < M, which is
equivalent to 4.

We rule out the existence of periodic orbits in the SIRI
model as this has the implication that any solution starting on
�2 must end at either a point in the IFE or the EE.

Lemma 3: The SIRI model does not exhibit non-trivial
periodic orbits on �2.

Proof: We rule out the existence of periodic orbits by con-
tradiction. Suppose there is a periodic solution of (7) on �2.
Then xS(t) = xS(t′) for some t′ > t. Since xS is nonincreasing
in �2, this implies that ẋS ≡ 0 on [t, t′] which holds if and
only if xIxS ≡ 0 on [t, t′].

If xI = 0 at any time t̄ ∈ [t, t′], then the system is at a point
in the IFE at time t̄. Then xI ≡ 0 on [t̄, t′] and the solution
is not a non-trivial periodic orbit. If xS ≡ 0 on [t, t′], then
xR = 1 − xI and the dynamics of (7) can be reduced to a
single first order ODE. Because periodic orbits cannot take
place in a first order system, we have a contradiction.

Proof of Theorem 2: Assume R0 < 1 and R1 < 1. By
Lemma 2 the IFE are the only equilibria of the system and by
Lemma 3 there are no periodic solutions. These two statements
imply that all solutions reach a point in the IFE as t→∞. To
show that all solutions xI are monotonically decreasing, note

that R < 1 for any xS, xI ∈ [0, 1]. From (3) it follows that
ẋI < 0 for xI = 0. This completes the proof for 1.

Assume R0 > 1 and R1 > 1. By Lemmas 2 and 1 all
points in the IFE are unstable and the EE is locally stable.
By Lemma 3 there are no periodic solutions. These state-
ments imply that all solutions reach the EE as t → ∞. This
completes the proof for 2.

Assume R0 > 1 and R1 ≤ 1. Following the same argument
as in the proof of 1, all solutions reach a point in the IFE as
t → ∞. From Lemma 2, equilibrium points in the IFE for
which x∗S > M are unstable. Therefore solutions reach points
in the IFE where x∗S < M.

At the initial condition xI = xI0, xS = 1 − xI0, with
0 < xI0 < 1, the initial rate of change of xI by (7)
is ((β − δ)− βxI0)xI0. It follows that xI grows initially if
xI0 < (β − δ)/β and decays initially if xI0 > (β − δ)/β.

Points along the solution where ẋI = 0 belong to the xI-
nullcline and satisfy R = 1 if xI = 0. Since all solutions reach
a point in the IFE, solutions that grow initially must reach a
maximum value xmax

I where R = 1. Since solutions cannot
intersect, this implies that solutions that decay initially do not
change sign and continue to decay monotonically until they
reach a point in the IFE.

By setting ẋI = 0 in (7), we can express xmax
S (i.e., the

maximum value xS) in terms of xmax
I as

xmax
S = δ + β̂(xmax

I − 1)

β − β̂
. (13)

Then substituting (13) into (9) and simplifying, we get

xmax
I = R0 − R1

R1(R
R0
0 (1− xI0)R1)1/(R0−R1)

+ R1 − 1

R1
. (14)

This completes the proof for 3.
Assume R0 ≤ 1, R1 > 1. It follows that at the initial con-

dition ẋI < 0 for any 0 < xI0 ≤ 1 and xI decays initially.
A necessary condition for the solution to reach a point in the
IFE is for the fraction of susceptible individuals at steady-state
x∗S to satisfy the implicit equation (10) and for the IFE point
(x∗S, 0) to be locally stable.

By Lemma 2 any point in the IFE with x∗S < M is unsta-
ble. Therefore we require x∗S > M. Solving (10) for xI0

shows that the necessary condition is satisfied if xI0 < xIC �
1−M(R0M)−R0/R1 . Thus, xI0 < xIC is a necessary condition
for the solution to reach a point in the IFE.

To prove sufficiency, we show that ẋI does not change
sign when xI0 < xIC and therefore solutions with xI0 < xIC
decrease monotonically.

If ẋI changes sign, then xI has a minimum value where
R = 1. To be a valid minimum of xI ∈ [0, 1], we require a
minimum value xmin

I ∈ [0, 1]. If xmin
I = 0, then we must have

R = 1 at (x∗S, 0). This condition is satisfied when x∗S = M, or
equivalently when xI0 = xIC. Thus, any solution with xI0 < xIC
cannot have xmin

I > 0 and xI → 0 monotonically as t→∞.
From the discussion above, it follows that a necessary and

sufficient condition for the solution not to reach a point in
the IFE is xI0 > xIC. Due to the invariance of �2 and the
impossibility of periodic orbits, this implies that xI0 > xIC is
a necessary and sufficient condition for solutions to reach the
EE. This completes the proof.
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Fig. 1. The four different behavioral regimes of the SIRI model plotted
on �2. The four plots are arranged in the R0, R1 parameter space to
illustrate the four corresponding regimes.

Figure 1 summarizes the results of Theorem 2. In each quad-
rant of the R0, R1 parameter space, we show a simulation of
the corresponding dynamics on �2. The bottom boundary of
�2 represents the IFE. The solid blue and dashed red lines
correspond to locally stable and unstable points in the IFE,
respectively. The thinner black lines are example trajectories.
We show two trajectories in the bistable case corresponding
to a trajectory with xI0 = 0.15 that reaches a point in the IFE
and a trajectory with xI0 = 0.3 that reaches the EE.

Remark 1: The transient dynamics in the infection-free and
endemic regimes depend on the ratio R0/R1. When R0/R1 > 1
recovered individuals inhibit the spread of the infection, lead-
ing to concave trajectories in �2. In contrast, when R0/R1 < 1,
recovered individuals facilitate the spread, leading to convex
trajectories in �2.

IV. RESURGENT EPIDEMICS

In this section we study the bistable regime in more detail
and show that when the initial condition is above the critical
value solutions exhibit a resurgent epidemic in which the infec-
tion initially decreases before increasing after an arbitrarily
long period of time.

Theorem 3 (Resurgent Epidemic): Consider a solution in
the bistable regime with initial condition xIC < xI0 < 1 such
that the solution reaches the EE as t→∞. For that solution,
the fraction of infected individuals decreases initially, reaches
a minimum value

xmin
I = R0 − R1

R1(R
R0
0 (1− xI0)R1)1/(R0−R1)

+ R1 − 1

R1
,

and then increases until it reaches the EE.
Proof: Assume R0 < 1, R1 > 1, and xI0 > xIC. From (4)

we get that the initial fraction of infected individuals decays
exponentially while from result 4 of Theorem 2 we get that
the solution reaches the EE as t→∞.

Fig. 2. Resurgent epidemic for β = 0.5, δ = 1, β̂ = 1.5, and
xI0 = 0.207.

Similar to the analysis for xmax
I in the epidemic case, any

minimum of xI must satisfy R = 1. This is only satisfied
along the portion of the xI-nullcline between the points (M, 0),
which separates the IFE into locally stable and unstable sets,
and (R1−1

R1
, 0), which corresponds to the EE. We refer to this

portion of the xI-nullcline as �.
To show that all trajectories reach a minimum, note that if

a trajectory passes through a point in �, that point will corre-
spond to xmin

I , the minimum value of xI along the trajectory.
Solving (9) for xI0 we get

xI0 = 1− Q(R0Q)−R0/R1 (15)

where Q = (1+ R1(xI − 1))/(R0 − R1).
Setting xI = 0 in (15) yields a lower bound on the initial

condition xI0 that results in a trajectory with a minimum value
xmin

I ∈ [0, 1], while setting xI = (R1 − 1)/R1 in (15) yields
an upper bound on the initial condition xI0 that results in a
trajectory with a minimum xmin

I ∈ [0, 1].
When xI = 0, Q = M and we get xI0 = xIC, that is, we

recover (11), the critical value for bistability. When xI = (R1−
1)/R1, Q = 0 and xI0 = 1. This shows that any solution with
xIC < xI0 < 1 achieves a minimum value xmin

I ∈ [0, 1].
Finally, note that the same analysis used to find (14) is valid

in the bistable case, except that the resulting equation describes
the minimum value xmin

I .
Figure 2 shows a simulation that exhibits resurgent epi-

demics with β = 0.5, δ = 1, and β̂ = 1.5. The initial fraction
of infected individuals xI0 was set to 0.207. The infection
decays at first, reaching a value close to zero after 20 time
units. The infection stays close to zero for over 350 time units
before increasing towards an endemic state where xI = 0.33.

The time it takes before the resurgent epidemic is observed
depends on the difference between the initial condition xI0 and
the critical value xIC. If xI0 is close to xIC then the minimum
value xmin

I will be close to zero and the rate of growth of xI will
be very slow, leading to long time periods where the infection
appears to be under control before the epidemic resurges.

To study this phenomenon in more detail, we define the time
to resurgence tRS as the time it takes xI to decay from xI0 to the
minimum value xmin

I . Figure 3 shows tRS versus xI0 > xIC for
the same parameters as in Figure 2. As the difference xI0−xIC
goes to zero, tRS goes to infinity.
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Fig. 3. Numerical simulations (solid) and lower bound in Theorem 4
(dashed) for time to resurgence tRS versus initial condition xI0 for β =
0.5, δ = 1, β̂ = 1.5. The dotted line shows the critical initial condition
xIC = 0.206.

Theorem 4 (Time to Resurgence): Consider a solution in the
bistable regime that exhibits a resurgent epidemic. The time
to resurgence tRS � tmin − t0 satisfies the lower bound

tRS ≥ log xI0 − log xmin
I

δ − β
,

where t0 is the initial time and tmin is the time at which
xI = xmin

I . Moreover, tRS →∞ as xI0 − xIC → 0+.
Proof: Recall that close to the initial condition, the dynamics

of xI are given by (4) with solution xI(t) = xI0e(β−δ)t, where
β − δ < 0. Setting xI = xmin

I and solving for t, we find the
time td it takes (4) to decay from xI0 to xmin

I :

td = log xmin
I − log xI0

β − δ
. (16)

Along the solution, xI(t) ≥ xI0e−(δ−β)t, which implies tRS ≥
td. In the limit xI0 → xIC, log xmin

I →−∞ and td →∞.

V. CONCLUSION AND FUTURE DIRECTIONS

We have studied the SIRI model for reinfection. We prove
that the model has four different behavioral regimes deter-
mined by the values R0 and R1 that describe the susceptibility
of individuals to primary and secondary infections. When both
R0 and R1 are below or above the critical value of 1, the SIRI
model behaves like the SIS model: if R0 ≤ 1 and R1 ≤ 1 the
infection dies out, and if R0 > 1 and R1 > 1 the infection
spreads. When R0 > 1 and R1 ≤ 1, the SIRI model behaves
qualitatively like the SIR model and the infection spreads
initially in an epidemic that reaches a maximum number of
infected individuals before dying out. Finally, when R0 ≤ 1
and R1 > 1, the model displays bistability in which initial
conditions below a critical value lead to an infection-free equi-
librium while initial conditions above the critical value lead to
the infection spreading through the population. We prove that,
in the latter case, solutions exhibit a resurgent epidemic in
which the infection decreases at first and reaches a minimum
value before rapidly increasing after a long delay.

Possible extensions of the SIRI model include an SIRS-
like model in which recovering individuals pass through an
additional stage with full immunity before transitioning to the
recovered state at a fixed rate.

Our results have implications for spreading processes
where individuals adapt after first exposure. Common control

strategies focus on preventative measures that seek to minimize
the number of exposed individuals. However, the resurgent
epidemic phenomenon shows that if reinfections are more
likely than primary infections, these control strategies might
fail at preventing the spread of the process. More effective
control strategies should complement prevention of infection
with post-exposure treatment and reinfection prevention.

Our results hold under the restrictive assumption of homoge-
neous interactions. Although in most cases individuals tend to
interact in a non-homogeneous manner with other individuals
in the population, our assumption provides invaluable intu-
ition into the dynamics, and the analytical tractability of the
model has allowed us to obtain rigorous results. The SIS and
SIR models have been successfully adapted to network topolo-
gies [5], [16], [17]. In ongoing work we are designing and
analyzing SIRI dynamics on networks.
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[17] A. Khanafer, T. Başar, and B. Gharesifard, “Stability of epidemic models
over directed graphs: A positive systems approach,” Automatica, vol. 74,
pp. 126–134, Dec. 2016.

https://dx.doi.org/10.1109/TCNS.2017.2706138


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZapfChancery-MediumItalic
    /ZapfDingBats
    /ZapfDingbatsITCbyBT-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


