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Abstract

This dissertation examines the role of feedback and agent level adaptations in the

emergence of collective behavior in multi-agent systems that is robust to perturba-

tions and flexible in response to different environmental conditions. In particular, we

consider systems with agents that stochastically interact with one another and with

their environment, and study how adaptations at the agent level in response to these

interactions lead to the emergence of complex group behavior that evolves in time.

Motivated by the remarkable collective behaviors of animal groups, we study the

regulation of foraging in harvester ants. We use field experiments and mathematical

modeling to examine how interactions between incoming foragers carrying food and

available foragers inside the nest yield foraging rates that are robust to uncertainty

and responsive to temperature and humidity across minute-to-hour timescales. We

show that feedback from outgoing foragers returning to the nest generates stable

colony foraging rates and propose that foragers modify their susceptibility to inter-

actions after they become exposed to the environment to explain how the foraging

rates adjust to temperature and humidity.

We then examine the role of reinfection and changes in susceptibility in contagion

processes that propagate through local interactions. We study a model for reinfec-

tion called Susceptible-Infected-Recovered-Infected (SIRI) in which the susceptibility

of individuals changes irreversibly after a first exposure to the infection. We show

that in both well-mixed and network topologies, the transient and steady-state group

dynamics are characterized by two critical system parameters that capture the sensi-

tivity of the group to stimulus before and after the adjustments in susceptibility. We

obtain analytical results that yield exact predictions on the effect of network structure

and individual behavior on group outcomes.

Our results suggest that agent level adaptations in susceptibility, in combination

with feedback across different timescales, are a general principle for robust and flex-
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ible collective behavior. This presents mechanisms and opportunities for the study,

design, and control of multi-agent systems with cohesive group behaviors that adapt

to different conditions.
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Part I

Robust and Flexible Collective

Behavior in Dynamic Multi-Agent

Systems with Interactions
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Chapter 1

Introduction

Systems comprising large numbers of individuals that operate without central control,

rely on complex patterns of interactions to coherently perform as a group. Individuals

within the group interact with each other and their environment, generating group

outcomes that feed back to the individuals and shape future interactions. The col-

lective behavior that emerges from these dynamics allows the group to perform tasks

beyond the physical and cognitive capabilities of the individuals [1–9].

A great number of biological systems consist of groups of relatively simple indi-

viduals that achieve remarkable collective behavior. Flocks of birds and schools of

fish display mesmerizing and robust collective motion that increases the likelihood

of survival for individuals in the presence of predators [1, 10–12]. Bacteria regulate

gene expression in response to fluctuations in cell-population density, leading to vir-

ulence, antibiotic production, motility, and biofilm formation [13]. Ant, termite, and

bee colonies effortlessly divide labor and make decisions as a collective in order to

structure and organize their societies, allowing them to thrive in diverse and extreme

environments [4, 14–17]. In all of these cases, individuals take actions based on lim-

ited local information regarding the state of the group and the environment. These
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actions result in fast and accurate group behaviors that are robust to perturbations

and flexible to changes in environmental conditions [15,18].

Engineered multi-agent systems, such as computer networks, transportation sys-

tems, robotic groups, financial systems, and power grids, also exhibit collective be-

havior. However, unlike the case of biological systems, engineered systems often

manage an inherent trade-off between robustness and flexibility. System parame-

ters are optimized for performance according to narrow design specifications. When

environmental conditions, system structure, or system inputs change in unforeseen

ways, large sensitivities in system parameters can lead to considerable, and some-

times, catastrophic deviations in behavior, such as in the case of cascading failures in

power grids [19] and financial markets [20].

Engineering collective behavior that is as robust and flexible as neuronal networks

that operate throughout learning-related changes in synapse number and strength [21,

22], or fire ants that form living rafts to survive during floods [23], remains an elusive

goal. Understanding the mechanisms that allow biological systems to perform com-

plex collective behavior is a crucial first step in the development of new design and

control methodologies for engineered multi-agent systems that exhibit some of the

remarkable properties of their natural counterparts [24]. Translating knowledge of

robust and flexible biological collective behavior into engineered multi-agent systems

requires abstracting away from the complexities of natural swarms and focusing on

the development of general principles that allow groups to respond to changes in their

environment in a cohesive manner [24,25].

A general characteristic of both biological and engineered multi-agent systems

is the spread of information via local interactions. In most cases, individuals receive

information about the state of their neighbors and use it to change their own state [26–

29]. Commonly, it is assumed that the susceptibility of individuals to their neighbors

is fixed, i.e., information from a particular neighbor always has the same effect on the
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receiving individual. However, in many realistic scenarios, individuals modify their

susceptibility in response to the full history of interactions and the state of their local

environment. These adaptive changes in susceptibility at the level of the individual

introduce a slow feedback on the group dynamics, leading to smooth changes in group

behavior over time.

In this dissertation, we examine how adaptations in susceptibility at the level of

the individual, in response to interactions with other individuals or the environment,

can lead to the emergence of complex collective behaviors that adjust over time in

response to different environmental conditions. Through a combination of field ob-

servations and mathematical analysis, we provide general principles for robust and

flexible collective behavior. To this end, we derive analytically tractable dynamic

models with a small number of critical parameters that capture the underlying mech-

anisms that allow animal groups to adjust and regulate collective behavior in response

to environmental changes without central control.

Our models are nonlinear. The nonlinearities allows us to capture the complex re-

lationship between individual and group level dynamics. This presents both challenges

and opportunities for the design of engineered multi-agent systems. Nonlinearities

complicate design and analysis as high-dimensional nonlinear systems are generally

more difficult to analyze than high-dimensional linear systems [30]. However, non-

linearities can be exploited to achieve rich collective behaviors in groups of relatively

simple individuals with limited actuation, sensory, and processing capabilities [24,31].

Our main source of inspiration is the robust and flexible collective behavior of ant

colonies. In particular, we are motivated by field observations of foraging activity in

red harvester ants.
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1.1 Regulation of Foraging in Harvester Ants

Red harvester ants live in the deserts of the Southwestern United States, where they

collect seeds that have been scattered by wind and flooding. Colonies obtain water

by metabolizing the fat in seeds they collect. Foragers outside the nest lose water

through desiccation due to the hot and dry environmental conditions [32, 33]. The

colony therefore faces a trade-off in which it must spend water in order to obtain

water. To balance this trade-off, colonies must regulate the number of active foragers

outside the nest on a minute-to-minute and hour-to-hour basis in response to both

food availability and environmental conditions. If the colony is to survive, it must be

able to display collective foraging behavior that is both robust to noise and flexible

in response to changing environments.

Harvester ant colonies are highly decentralized systems with limited communica-

tion capabilities. Foragers communicate through chemical cues in the form of antennal

interactions that provide limited information on the state of the group and the envi-

ronment. To balance the foraging trade-off, the colony must implement simple rules

for individuals that lead to high-performing decentralized feedback control.

Research has shown that the rate at which foragers leave the nest depends on the

rate of antennal interactions between foragers in the entrance chamber and incoming

foragers carrying food [34–38]. The higher the rate of interactions, the higher the

likelihood that the ant will be activated to leave the nest to forage [37]. Since foragers

remain outside the nest until they find a seed, the rate of successful incoming foragers

is positively correlated with food availability [39]. Available foragers waiting inside

the nest can therefore acquire noisy information on the foraging conditions through

the rate of interactions and use it to inform their decision to remain inside the nest

or leave the nest to forage [40]. However, it is not understood how, and if, these
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interactions help to regulate colony foraging rates across long timescales or in different

environmental conditions.

How colonies respond to day-to-day changes in environmental conditions affects

their reproductive success [41]. Colonies that forage less in hot and dry conditions

tend to have higher reproductive success than colonies that display less variation

in foraging rates across different environmental conditions [41]. Foraging behavior

appears to be a heritable trait from parent to offspring colonies. [42]. This suggests

that understanding the mechanisms that allow colonies to adjust foraging behavior

in different environmental conditions could provide insight into how differences in

foraging behavior across colonies at the level of the individual lead to differences in

success between colonies.

In Chapter 2 we provide background material. In Chapter 3 we study the regu-

lation of foraging in red harvester ants through field observations and mathematical

modeling. We summarize three years of field observations of foraging activity col-

lected for different colonies on different days over hour-long timescales. We derive a

model with a small number of parameters that provides an explanation for the range

of observed behaviors. Our model suggests that adaptations in forager susceptibility

to interactions, in response to a first exposure to the environmental conditions outside

the nest, can account for the observed foraging behavior under different environmental

conditions. In addition, the model suggests that differences in susceptibility among

colonies, in response to temperature and humidity, can produce the observed variation

among colonies in the regulation of foraging. The study summarized in Chapter 3 has

been published and appears as Pagliara, Gordon, and Leonard [43]. The paper can

be found in Chapter 8 of Part II of this dissertation. The study was done in collab-

oration with Stanford University biologist Deborah Gordon and my advisor Naomi

Leonard.
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1.2 Contagion Processes

A contagion process1 is any process in which a signal diffuses through a population.

The signal may correspond to a physical event, such as a chemical reaction spread-

ing through a batch of reactants [44, 45] or an infectious disease spreading through

a community [46, 47]. Or, the signal may correspond to information, such as memes

spreading on a social network [48,49] or social behaviors spreading through the pub-

lic [50–53].

Models for contagion processes commonly consider individuals with a discrete

state that can take on a fixed number of values (e.g., active/inactive, suscepti-

ble/infected/recovered) [29, 44, 54]. One or more of these values correspond to a

“contagious” or “infected” state. Individuals follow mutual-interaction rules that

dictate how they transition between states with the defining rule being that individ-

uals in the contagious state can “infect” their neighbors.

In general, contagion processes fall into two classes depending on the number of

exposures required for individuals to become infected: simple contagion and complex

contagion (see [55] and references therein). In a simple contagion process, pairwise

interactions between individuals are independent of each other, and a susceptible

individual becomes infected (with a given probability) after a single interaction with

an infected individual. In a complex contagion process, susceptible individuals require

multiple interactions with infected individuals in order to become infected. The

spread of infectious diseases is a common example of a simple contagion [46, 47].

The process through which the rate of interactions activates red harvester ants to

forage (see Section 1.1) is an example of a complex contagion.

1Contagion processes are also called spreading, epidemic or infectious processes. The latter two
alternatives have a strong connotation to epidemiology, and we therefore prefer to use contagion
process (we avoid using the term spreading process for consistency). We use the word epidemic in
later chapters to describe the collective behavior in which there is a rapid increase in the number of
infected individuals in a population.
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Complex contagion is usually considered a better model for the spread of ideas and

memes across populations as it takes into account how individual behavior is generally

affected by the behaviors of all of its neighbors. However, experimental observations

of social networks show that there is a large variation between individuals in the

number of interactions required before infection [56], suggesting that both simple and

complex contagion play a role in the spread of information and social behaviors [55].

Motivated by the ant foraging model presented in Chapter 3, in Chapters 4 and 5,

we investigate the role of adaptations in susceptibility in the spread of contagion pro-

cess across populations. To do this, we study an epidemiological model for reinfection

in which the susceptibility of individuals change after a first exposure to the infection.

The work summarized in Chapter 4, which focuses on the well-mixed population

setting, has been published and appears as Pagliara, Dey, and Leonard [57]. The

paper can be found in Chapter 9 of Part II of this dissertation. The investigation was

done in collaboration with Biswadip Dey and my advisor Naomi Leonard. The work

summarized in Chapter 5, which focuses on the networked setting, is in preparation

for submission and appears as [58]. The paper can be found in Chapter 10 of Part

II of this dissertation. The investigation was done in collaboration with my advisor

Naomi Leonard.

1.2.1 Epidemiological Models in Well Mixed Settings

Epidemiological models2 are simple contagion models that characterize the spread

of infectious diseases across populations and have been a fundamental tool in the

detection, prevention, therapy, and control of the spread of infectious diseases across

populations [46, 47,59–62].3

2Epidemiological models are also called epidemic models, but we do not use this name to avoid
confusion with the collective behavior in which there is a rapid increase in the number of infected
individuals in a population.

3The first reported epidemiological model corresponds to the work of Bernoulli, published in
1760 [59], but it was not until the work of Kermack and McKendrick in 1927 [60] that the field of
mathematical epidemiology as we know it truly started.

8



At a fundamental level, the dynamics of infectious diseases are described by

stochastic reaction-diffusion processes in which individuals can belong to one of a

number of discrete states called compartments (e.g., susceptible, infected, recovered).

Two standard assumptions are made at this point. First, that the number of indi-

viduals in the system is very large and, second, that interactions between any two

individuals are equally likely (this is where the name well-mixed comes from). The dy-

namics of the probability distribution of the numbers of individuals in each component

are then described by the master equation [63] for the resulting Markov process [64].

The master equation is generally analytically intractable. Well-mixed models are ob-

tained by keeping the leading order term in the van Kampen expansion [63] which

provides mean-field equations that describe how the numbers of individuals in each

compartment change with time [44] (see [65] for an example).

The set of rules dictating how individuals move between compartments is repre-

sented in well-mixed models by reaction rates in the form of scalar system parameters

that usually multiply quadratic terms in the state variables.4

Well-mixed epidemiological models are special cases of compartmental models [44,

61]. The compartmental modeling framework blends high analytic tractability with

flexibility, making it a common choice for modeling a wide range of contagion processes

beyond epidemiological ones, including chemical reaction networks [45,66], collective

foraging [67], and collective decision-making [65].

Much of the work on epidemiological models has been dedicated to three particular

models [46, 47]:5

1. Susceptible-Infected (SI)

S+I
β

I+I
4This is analogous to using the law of mass action in Chemical Reaction Network Theory, which

states that the rate of a chemical reaction is directly proportional to the product of the activities or
concentrations of the reactants [66].

5Here we use diagrams usually used in Chemical Reaction Network Theory to describe the set of
rules describing how individuals move between compartments

9



2. Susceptible-Infected-Susceptible (SIS)

S+I
β

I+I I
δ

S

3. Susceptible-Infected-Recovered (SIR)

S+I
β

I+I I
δ

R

where β is the global infection rate and δ is the global recovery rate.

In the SI model, susceptible individuals become infected through contact with

infected individuals. The SIS model allows infected individuals to become susceptible

again after recovering from the infection. In the SIR model, recovered individuals

acquire immunity to the infection and cannot become infected again.

In addition to these models, there exist a few important variations that add or

modify compartments to include relevant aspects of the infection that are not con-

sidered in the SI, SIS, and SIR models [46, 47]. The SEIR and SEIS models contain

a temporary exposed compartment representing the incubation, or latent, period of

the infection. The MSEIR model contains an additional temporary immune compart-

ment, while the MSEIRS allows individuals to temporarily recover before becoming

newly susceptible. The immune M and exposed E states are usually not included as

they do not directly affect the susceptible-infected interaction [47].

For many of these models, there exists a critical threshold called the basic reproduc-

tion number R0, defined as the average number of susceptible individuals that a single

infected individual infects [47, 62, 68, 69]. In the SIS model, the basic reproduction

number determines whether the fraction of infected individuals monotonically decays

to zero with time (R0 = β/δ ≤ 1), or reaches an endemic state (R0 > 1) in which

there are always infected individuals. In the SIR model with a small initial fraction of

infected individuals, the basic reproduction number determines whether the fraction

of infected individuals monotonically decays to zero with time (R0 = β/δ ≤ 1), or
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exhibits an epidemic in which the fraction of infected individuals monotonically grows

to a maximum value before monotonically decaying to zero with time (R0 > 1).

In Chapter 4 we study the Susceptible-Infected-Recovered-Infected model (SIRI):

S+I
β

I+I
β̂

R+I

I
δ

R

in which recovered individuals can become reinfected through interactions with in-

fected individuals at the reinfection rate β̂. The SIRI model contains the SI, SIS,

and SIR models as special cases and can also be specialized to models in which the

susceptibility of all individuals decreases to a nonzero rate after a first exposure to

the infection (i.e., partial immunity) or increases after a first exposure to the infection

(i.e., compromised immunity). We show that the transient and steady-state behavior

of solutions in the SIRI model can be characterized by two reproduction numbers,

R0 = β/δ and R1 = β̂/δ.

1.2.2 Epidemiological Models in Networks

Well-mixed epidemiological models provide group-level predictions of the number of

individuals expected to belong to each compartment at any time. These predictions

rely on assumptions that ignore important properties of the systems they model, such

as the finite numbers of individuals in the group and the topology in which individuals

interact. The topological structure is particularly important as it describes the set

of allowed interactions within the group, affecting how processes and information

flow through the population and, therefore, how individual-level behavior connects to

group behavior [29, 70,71].

Networks provide a natural framework for the description of contagion processes in

structured populations [29]. Nodes in a network are represented by a random variable

11



Xj(t) ∈ C, where C is the set of q compartments in the model, and transitions between

compartments are assumed to be Poisson processes with fixed rates. Nodes can

represent individuals or subpopulations with edges representing connections between

individuals or connections between subpopulations, respectively [72,73].6

Contagion processes in network topologies are naturally described by Markov pro-

cesses [72,74]. Although the Markov approach is exact, these models suffer from three

main drawbacks [72]. First, the number of states in the system grows exponentially

with the number of nodes in the network. For example, in an epidemiological model

with q compartments and a network with N nodes in which each node represents

an individual, there are qN possible states. This limits the analysis to very small

groups. Second, the structure of the associated infinitesimal generator is not partic-

ularly amenable to analysis. Third, every Markov process has an absorbing state,

corresponding to an infection-free state. Thus, the Markov model is not useful in

understanding stationary endemic behaviors in which the infection might take an in-

finite time to die out [75]. For these reasons, contagion processes in networks are

usually modeled through mean-field reductions of the Markov process.

There are two main mean-field approaches commonly used to model contagion

processes in networks [72]. The first approach, called the individual-based mean-field

approach (IBMF), assumes that the state of every node is statistically independent

from the state of its nearest neighbors (i.e., E[XjXk] = E[Xj]E[Xk]) yielding dynamic

equations for every node that describe the probability pΩ
j of node j belonging to

compartment Ω ∈ C [69,75–79]. The IBMF approach significantly reduces the number

of states: from qN to qN . Moreover, IBMF retains the exact network structure of

the system, allowing for a close examination of the role of network structure in the

spread or eradication of the contagion process, making it the preferred approach

6Models that consider subpopulations are usually referred to as metapopulation models. These
models commonly assume that the number of individuals in each subpopulation remains fixed for
all time but that subpopulations may affect each other.
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for researchers attempting to develop control methodologies [73, 74, 80]. In many

cases, the IBMF approach yields solutions that critically depend on the spectral

properties of the network, similar to the basic reproduction number in well-mixed

models [75, 78, 79, 81]. This connection becomes evident through the next generation

matrix method [82], a general approach to computing basic reproduction numbers in

epidemiological models. If solutions in an IBMF model converge to an infection-free

equilibrium, then the stochastic Markov model reaches the infection-free absorbing

state in sublinear time with respect to the size of the network in expectation [74].

The second approach, called the degree-based mean-field approach (DBMF), as-

sumes that all nodes of degree d are statistically equivalent, yielding dynamic equa-

tions for every degree class that describe the probability pΩ
d of a node with degree d

belonging to Ω ∈ C [83,84]. Unlike the IBMF, the DBMF does not retain exact infor-

mation on the network topology, but contains a statistical description of the network

in a mean-field sense. Because of this, DBMF is particularly useful when working

with complex networks in which the exact structure of the network is unknown but

in which statistical properties of the network are known [72]. The DMBF approach

appears to be preferred by physicists and complex networks researchers. Solutions in

DBMF models usually depend on the statistical properties of the network, making

it a stronger framework for the study of time-varying networks that retain certain

statistical properties through time.

All well-mixed epidemiological models, e.g., SI, SIS, SIR, have analogue network

versions. Models may assume global infection and recovery rates that apply to all

individuals in the network, or different infection and recovery rates for each individual.

In Chapter 5 we study the SIRI model in network topologies through the IBMF

approach. We consider heterogeneities in the recovery rate across individuals and het-

erogeneities in the infection and reinfection rates across directed pairs of individuals.
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We show that the transient and steady-state behaviors of solutions are characterized

by two scalar parameters that depend on the spectral properties of the network.

1.3 Outline and Contributions

The work presented in this dissertation is motivated by our desire to understand re-

silient collective behavior in biological systems and to develop simply parameterized

dynamic models for multi-agent systems that exhibit robust and flexible collective

behaviors. To this end, we performed three years of field observations of foraging

desert harvester ants, and used the data in the derivation of a dynamic model for

foraging that demonstrates how simple adaptations in susceptibility in response to

interactions with other individuals and the environment can lead to complex collective

behaviors that are robust to uncertainty and responsive to environmental conditions

across different timescales. We then generalized these principles and applied them to

epidemiological models, obtaining rigorous results on how models with simple adap-

tations in susceptibility display complex transient and steady-state group behaviors

that depend on initial conditions and communication topology. These models present

opportunities for the design of multi-agent systems that exhibit robust and flexible

collective behaviors which are controlled by a small number of critical parameters.

This dissertation consists of two parts, with Part II (Chapters 7 to 10) containing

work that has been published or that is in preparation to be submitted.

Part I is divided into six chapters. In Chapter 2 we review some of the math-

ematical concepts and theories used throughout this dissertation. In Chapter 3 we

describe the regulation of the foraging problem in desert harvester ants and summa-

rize the results from Chapter 8, in which we construct a model that explains within

colony variation in day-to-day rates and between colonies variation in rates on the

same day. We highlight the role of a critical scalar parameter, which we call volatility,

14



that controls transient and stationary characteristics of the colony foraging rate. The

volatility parameter is analogous to the average forager susceptibility to interactions.

We present a simple mechanism based on changes in volatility that adjusts group

behavior in response to environmental conditions. In Chapter 4 we apply general

principles for robust and flexible collective behavior, obtained in Chapters 3 and 8, to

the study of contagion processes in well-mixed settings. We study the SIRI epidemio-

logical model for reinfection and summarize results from Chapter 9. We highlight the

role of critical system parameters that are analogous to the volatility parameter in the

ant foraging model. These parameters control transient and steady-state dynamics.

We show that for certain values of these critical parameters, the dynamics exhibit

bistability in initial conditions and a resurgent epidemic in which solutions rapidly

decay at first and remain close to zero for an arbitrarily long length of time before

rapidly increasing. In Chapter 5 we study the SIRI model on network topologies and

summarize the results from Chapter 10. We extend results obtained in Chapters 4

and 9 to networks and investigate the effects of network structure and heterogeneity

(between individuals in how they adapt in response to interactions) on group dynam-

ics. Finally, in Chapter 6 we summarize the main contributions from each chapter

and discuss possible future directions of inquiry.
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Chapter 2

Background

In this chapter we give a brief introduction to some of the mathematical tools used

throughout this dissertation. Each of the areas we touch on is the subject of a vast

number of books and research papers. We focus on a selected number of key ideas

and tools that are used in later chapters, and refer readers interested in a more

comprehensive introduction to the referenced citations within each section.

In Section 2.1 we provide a short overview of basic concepts in dynamical systems

theory. In Section 2.2 we discuss local bifurcations in continuous dynamical systems,

and in Section 2.3 we introduce the concept of a bifurcation without parameters,

with an emphasis on the transcritical bifurcation without parameters which appears in

Chapter 4. In Section 2.4 we discuss excitability dynamics and examine the dynamics

of the FitzHugh-Nagumo model which is prominently used in Chapter 3. Section 2.5

focuses on key concepts and results from Queueing Theory which are also used in

Chapter 3. Finally, in Sections 2.6 and 2.7 we introduce notation, concepts, and

results on graph theory and Metzler matrices, both of which are prominently used in

Chapter 5.

Basic Notation: Throughout this dissertation we use the symbol R to denote

the set of all real numbers and N to denote the set of natural numbers. We denote
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matrices in capital letters (e.g., M ∈ RN×N) and vectors in boldface lowercase letters

(e.g., v ∈ RN). We denote the j-th element of v ∈ RN as vj, and the (j, k)-th element

of M ∈ RN×N as mjk. We define 0 ∈ RN as the zero vector, 1 ∈ RN as the vector

with every element 1, and ej, j = 1, . . . , N as the standard basis vectors (ejk = 1 for

k = j and ejk = 0 for k 6= j). We define 0̄ ∈ RN×N as the zero square matrix, and

I ∈ RN×N as the identity matrix. We let diag(v) ∈ RN×N be the diagonal matrix

with entries given by the elements of v ∈ RN . For any vectors x,y ∈ RN , we write

x� y if xj > yj for all j, x � y if xj ≥ yj for all j, but x 6= y, and x � y if xj ≥ yj

for all j. Similarly, for any two matrices M,Q ∈ RN×N we write M � Q if mjk > qjk,

M � Q if mjk ≥ qjk, for any j, k, but M 6= Q, and M � Q if mjk ≥ qjk for any j, k. A

square matrix M is Hurwitz (stable) if all its eigenvalues have negative real part, and

it is unstable if at least one of its eigenvalues has positive real part. We denote the

spectrum of a square matrix M as λ(M) = {λ1, λ2, . . . , λN} and its spectral radius

by ρ(M) = max {|λj|
∣∣λj ∈ λ(M)}.

2.1 Dynamical Systems Theory

A dynamical system is an abstract mathematical object that defines how a set of

variables, which define the state of a system, change over time. Dynamical systems

are used to study both physical and non-physical systems and are usually represented

via sets of coupled ordinary differential equations (ODEs). The theory and set of tools

available to study dynamical systems is vast (see for example [30, 85, 86]). Here, we

focus on introducing key concepts related to the stability of stationary solutions of

ODE systems which will be used throughout the remaining chapters.
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2.1.1 Equilibria and Stability

Consider an autonomous system of ODEs

ẋ = f(x); x ∈ RN , (2.1)

where the vector field f : RN → RN is smooth.

A nullcline of (2.1) is a curve in RN described by setting fi = 0 for i ∈ {1, . . . , N}.

An equilibrium of (2.1) is a solution x∗ that satisfies f(x∗) = 0. That is, an equilibrium

corresponds to the point at which all nullclines intersect.

Definition 2.1.1 (Stability [87]). The equilibrium point x∗ of (2.1) is

• stable if, for each ε > 0, there is δ = δ(ε) > 0 such that

‖x(0)− x∗‖< δ =⇒ ‖x(t)− x∗‖< ε, ∀ t ≥ 0,

• unstable if it is not stable,

• asymptotically stable if it is stable and δ can be chosen such that

‖x(0)− x∗‖< δ =⇒ lim
t→∞

x(t) = 0.

2.1.2 Linear Systems

If (2.1) is a linear system f(x) = Ax where A ∈ RN×N is a matrix with constant

coefficients, then, if A is non-singular, (2.1) has a unique isolated equilibrium at

the origin x∗ = 0. If A is singular, (2.1) has an infinite number of non-isolated

equilibria. The eigenspaces of A are invariant to the dynamics, meaning that any

solution that starts on one of these spaces remains in the space for all time. The

eigenspace of the linear system is usually divided into stable Es, unstable Eu, and
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center Ec subspaces, where each space corresponds to the union of the eigenspaces

associated with eigenvalues with negative, positive, and zero real part, respectively.

Solutions that lie on Es decay at an exponential rate to the origin as t → ∞, while

solutions that lie on Eu decay at an exponential rate to the origin as t→ −∞. The

behavior of solutions that lie on Ec is unknown without additional details. However,

if Ec has dimension N , then solutions either remain constant (zero eigenvalues) or

oscillate at a constant amplitude (purely imaginary eigenvalues). It follows that if

all eigenvalues of A have negative real part, solutions converge to the origin at an

exponential rate and we say the origin is exponentially asymptotically stable. If A

has at least one eigenvalue with positive real part, the origin is unstable. For a

linear system, asymptotic stability implies exponential stability. Throughout this

dissertation, we use the term “stable” to refer to an asymptotically stable point in

situations where the context is clear.

2.1.3 Nonlinear Systems

Unlike linear systems, nonlinear systems can have multiple isolated equilibria. If (2.1)

is nonlinear, its linearization at an equilibrium x = x∗ is given by

˙̄x = Dxf(x∗)x̄, x̄ ∈ RN , (2.2)

where x̄ = x− x∗ and Dxf = {∂fj/∂xk} ∈ RN×N is the Jacobian derivative of f(x)

with respect to x. If every eigenvalue of Dxf(x∗) has positive or negative real part,

we say the equilibrium x∗ is hyperbolic.

The Hartman-Grobman Theorem [30] states that, near a hyperbolic equilibrium,

the nonlinear system (2.1) is locally topologically equivalent to its linearization (2.2).

This implies that a hyperbolic equilibrium x∗ of (2.1) is exponentially asymptoti-

cally stable if all eigenvalues of Dxf(x∗) are negative and unstable if Dxf(x∗) has at
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least one eigenvalues with positive real part. If Dxf(x∗) has a zero or purely imagi-

nary eigenvalue, the stability of the origin in the linearization (2.2) does not provide

information on the stability of x∗ in the nonlinear system (2.1).

For any hyperbolic equilibrium x∗ of (2.1), the Stable Manifold Theorem [30]

states that there exist stable and unstable manifolds Ws and Wu of the same dimen-

sion as the subspaces Es and Eu of the linearized system (2.2), which are invariant

to the dynamics and tangent to Es and Eu at x∗. Solutions that lie on Ws go to x∗

as t→∞, while solutions that lie on Wu go to x∗ as t→ −∞.

For any non-hyperbolic equilibrium of (2.1) where (2.2) has n+, n−, and n0 eigen-

values with positive, negative, and zero real part, respectively, the Center Manifold

Theorem [30] states that, in addition to unique stable and unstable manifolds, there

exists a non-unique center manifoldWc with dimension n0, which is tangent to Ec at

x∗. Moreover, by the Reduction Principle [88], the nonlinear system (2.1) near the

non-hyperbolic equilibrium x∗ is locally topologically equivalent to the system

ẋc = fc(xc); xc ∈ Rn0 , (2.3)

ẋs = −xs; xs ∈ Rn− , (2.4)

ẋu = xu; xu ∈ Rn+ (2.5)

where (2.3) is the restriction of (2.1) to its center manifold. Note that (2.3), (2.4),

and (2.5) are uncoupled, and that the dynamics of (2.4) and (2.5) look like the

equations of a standard saddle. Therefore, the Reduction Principle can be restated

as follows [88]:

Near a non-hyperbolic equilibrium, the system (2.1) is locally topologically

equivalent to the suspension of its restriction to the center manifold by

the standard saddle.
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If n+ = 0, then all solutions that start at a point not in the center manifold,

converge to the center manifold as t → ∞. In this case, we say the center manifold

Wc is attractive.

2.1.4 Non-isolated Equilibria

Consider systems in RN with an n-dimensional (n ≤ N) manifold of equilibria M,

such as systems with a line (n = 1) or a plane (n = 2) of equilibria. Let nc be the

number of eigenvalues with zero real part in the linearization at an arbitrary point in

M (2.2). Then, nc ≥ n with n eigenvalues corresponding to the n-dimensional space

tangent toM. The remaining N −n eigenvalues are the transverse eigenvalues of the

system corresponding to the N − n dimensional space transverse to M.

If all transverse eigenvalues of (2.2) at x∗ ∈ M have negative or real part, i.e.,

n = nc, we say M is normally hyperbolic at x∗. If M is normally hyperbolic at

x∗, then M is a center manifold of x∗ with trivial dynamics (i.e., (2.3) is given by

ẋc = 0). By the Reduction Principle, x∗ is locally stable if all transverse eigenvalues

of (2.2) at x∗ have negative real part and unstable if one or more of the transverse

eigenvalues have positive real part. IfM is normally hyperbolic at every point, then

we say M is normally hyperbolic.1

If M is not normally hyperbolic at a point x∗, i.e, nc > n, then x∗ is unstable

if one or more transverse eigenvalues of (2.2) at x∗ have positive real part. If all

transverse eigenvalues have negative real part, then the stability of x∗ depends on the

dynamics on the nc-dimensional center manifold (2.3).

1Normally hyperbolic manifolds of equilibria are a special case of normally hyperbolic invariant
manifolds (NHIM). The topological equivalence of the linearization extends to compact NHIM, such
as limit cycles (see for example Theorem 4.1 in [89]).
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2.1.5 Invariant Sets Besides Equilibria

In addition to isolated and non-isolated equilibria, nonlinear systems may have other

invariant sets, including periodic orbit solutions x(t) where

x(t) = x(t+ T ), 0 < T <∞ (2.6)

for all t. These periodic orbits also have stable and unstable manifolds. A limit

cycle is an isolated periodic orbit. Limit cycles can be stable, unstable or half-stable

(attractive on either the inside or outside of the orbit and repelling on the other side).

A nonlinear system may also have solutions that connect one or more equilibria. A

solution x(t) connecting two equilibria such that x(t) reaches one of the equilibria as

t→∞ and reaches the other as t→ −∞ is called a heteroclinic orbit. A solution x(t)

connecting an equilibrium to itself such that x(t) reaches the equilibrium as t → ∞

and t→ −∞ is called a homoclinic orbit.

2.2 Bifurcations

Consider an autonomous system of ODEs of the form

ẋ = f(x, µ); x ∈ RN , µ ∈ RK (2.7)

where the vector field f : RN×RK → RN is smooth and depends on the K-dimensional

parameter µ. We say that a bifurcation with bifurcation value µ0 occurs if the dynam-

ics of (2.7) with µ = µ0 are not topologically equivalent to the dynamics of (2.7) with

µ = µ1, where µ1 is arbitrarily close to µ0. In other words, a bifurcation takes place

when any arbitrarily small perturbation to the parameter at the bifurcation value

results in a system with qualitatively different dynamics. Examples of qualitative
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changes include changes to the number or stability of equilibria, periodic orbits, or

other invariant sets.

Bifurcations are usually divided into two principal classes: local bifurcations and

global bifurcations. Here we limit our scope to local bifurcations, which can be

detected and analysed through changes in the local stability properties of equilibria,

periodic orbits or other invariant sets.

By the Implicit Function Theorem, the equilibria of (2.7) are described by smooth

functions of µ. This holds for any point that is sufficiently far away from those points

at which Dxf(x∗, µ) has a zero eigenvalue. The graph of each of these functions is a

branch of equilibria of (2.7). A bifurcation point (x∗, µ0) corresponds to an equilibrium

where Dxf(x∗, µ0) has a zero eigenvalue. This is the point in the (x, µ) product space

at which branches of equilibria meet.

The codimension of a bifurcation is the smallest dimension of a parameter space

which contains the bifurcation in a persistent way [30]. For example, if K = 1,

µ ∈ R and any resulting bifurcation that happens as µ varies is a codimension-one

bifurcation.

The study of bifurcations in higher-dimensional systems relies on model reduc-

tions, such as the Center Manifold Theorem (described in Section 2.1), and change

of coordinates that map the bifurcation problem to the study of lower-dimensional

normal forms (see [30,88] for additional details on center manifolds and for an intro-

duction to normal forms).

Bifurcation can be studied via the extended system

ẋ = f(x, µ),

µ̇ = 0, (2.8)

23



where every equilibrium x∗ of (2.7) is now a K-dimensional manifold of equilibria

Mx∗ = {(x∗, µ) ∈ (RN ,RK)|f(x∗, µ) = 0}. The local stability of points in Mx∗ can

be investigated in a similar manner to the stability of points in a manifold of equilibria

(see Section 2.1).

The Shoshitaishvili Reduction Principle [90] (see also [88]) extends the Reduction

Principle and states that the dynamics of (2.8) near a non-hyperbolic equilibrium

are topologically equivalent to the suspension of its restriction to the center manifold

by the standard saddle, and that the homeomorphism which realizes the equivalence

does not change the parameters in the system. In other words, the Shoshitaishvili

Reduction Principle extends the Reduction Principle to systems with parameters

by stating that the events near the bifurcation parameter value, that change the

qualitative behavior of the nonlinear system (2.8), occur on the center manifold Wc

and are captured by the nc-dimensional system (2.3).

Bifurcations are usually illustrated through the use of bifurcation diagrams which

show the different branches, along with their stability in a subset of the (x, µ) product

space (i.e., the phase space of the extended system (2.8)). Since the µ dynamics

in (2.8) are trivial, each solution in this space with µ constant forms an invariant

manifold of (2.8) that crosses the µ-axes orthogonally. We say that the manifold

RN+K is foliated by the leaves µ = c ∈ RK , where each leaf corresponds to an

invariant manifold with µ constant.

We now briefly describe the four main codimension-one bifurcations (i.e., µ ∈ R),

their normal forms, and the transversality conditions that describe them (see Theo-

rems 3.4.1 and 3.4.2 in [30]):

• A saddle-node bifurcation has normal form x = µ − x2. For µ < 0 the system

has no equilibria, while for µ > 0 the system has a stable equilibrium x =
√
µ

and an unstable equilibrium x = −√µ. At µ = 0, the stable and unstable
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equilibria collide and disappear. A system with a saddle-node bifurcation at

(x∗, µ0) satisfies the following three conditions:

(SN1) Dxf(x∗, µ0) has a zero eigenvalue with algebraic multiplicity one and

with left and right eigenvectors wT and v, respectively, and all other

eigenvalues of Dxf(x∗, µ0) have positive or negative real part.

(SN2) wT
(
∂f/∂µ

)
(x∗, µ0) 6= 0.

(SN3) wT
(
D2
xf(x∗, µ0)

)
(v,v) 6= 0.

• A transcritical bifurcation has normal form x = µx − x2. For µ < 0, x = 0

is a stable equilibrium and x = µ is an unstable equilibrium. For µ > 0,

x = 0 is unstable and x = µ is stable. The branches intersect and change

stability at x = 0. A system with a transcritical bifurcation at (x∗, µ0) satisfies

conditions (SN1), (SN3), and

(T2) wT
(
∂2f/∂µ∂x

)
(v)(x∗, µ0) 6= 0.

• A pitchfork bifurcation has normal form x = µx−x3. For µ < 0, x = 0 is a stable

equilibrium. For µ > 0, x = 0 is unstable and the system has two additional

stable equilibria at x = ±µ. All branches intersect at x = 0. A one-dimensional

system ẋ = f(x, µ), has a pitchfork bifurcation at x = x∗,µ = µ0 if it satisfies

conditions2:

(PF1) (∂f/∂x)(x∗, µ0) = 0.

(PF2) (∂f/∂µ)(x∗, µ0) 6= 0.

(PF3)
(
∂3f/∂x3

)
(x∗, µ0) 6= 0.

Condition (SN1) describes the bifurcation point and the requirement that, in

the extended system (2.8), the branch described by x∗ loses normal hyperbolicity at

2Conditions for the pitchfork bifurcation in general N -dimensional systems can be described using
singularity theory, which is beyond the scope of this dissertation. We refer the reader to [91] for
details.
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Figure 2.1: Bifurcation diagrams. A. Supercritical saddle-node. B. Transcritical. C.
Supercritical pitchfork.

the bifurcation point (x∗, µ0). Condition (SN2) controls the nondegeneracy of the

behavior with respect to µ. Condition (SN3) controls the dominant effect of the

quadratic nonlinear term in the normal form. Condition (T2) sets the eigenvalue to

cross zero with non-vanishing speed as µ increases. The pitchfork transversality condi-

tions (PF1) and (PF2) are equal to conditions (SN1) and (SN2) for a one-dimensional

system. Condition (PF3) controls the dominant effect of the cubic nonlinear term in

the normal form.

Figure (2.1) shows the saddle-node, transcritical, and pitchfork bifurcation dia-

grams. We denote the stable branches as solid blue lines and the unstable branches

as dashed red lines. The dark gray curves represent solutions of the extended system.

Note that the extended phase space (x, µ) is foliated by the leaves µ = c ∈ R, which

are orthogonal to the µ-axis.

In addition to changes in the number and stability of equilibria, a codimension-one

bifurcation can lead to changes in the number and stability of periodic orbits.

• A Hopf bifurcation is a codimension-one bifurcation with normal form

ẋ1 = µx1 − x2 + σx1(x2
1 + x2

2)

ẋ2 = x1 + µx2 + σx2(x2
1 + x2

2). (2.9)
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where σ = ±1. The only equilibrium of (2.7) is the origin with eigenvalues

λ1,2 = µ± i; the origin is an asymptotically stable spiral for µ < 0 and unstable

for µ > 0. In polar coordinates (2.9) becomes

ṙ = r(µ+ σr2)

θ̇ = 1. (2.10)

From (2.10) we see that, besides the equilibrium at the origin (r = 0), there is

a limit cycle (an isolated periodic solution) with radius r =
√
−µ/σ and period

2π. For σ = −1, (2.9) has a stable limit cycle that exists for µ > 0 and has

radius
√
µ. This is a supercritical Hopf bifurcation. If σ = +1 , the origin

of (2.9) has an unstable limit cycle that exists for µ < 0. This is a subcritical

Hopf bifurcation. A system exhibits a Hopf bifurcation at (x∗, µ0) if it satisfies

the following two conditions:

(H1) Dxf(x∗, µ0) has a pair of purely imaginary eigenvalues λ(µ0) and

λ̄(µ0), each with algebraic multiplicity one, and all other eigenvalues of

Dxf(x∗, µ0) have positive or negative real part.

(H2) d
dµ

(
Reλ(µ)

)
|µ=µ0 6= 0.

Similarly to the other bifurcations, condition (H1) describes the bifurcation point

and the requirement that, in the extended system (2.8), the branch described by

x∗ loses normal hyperbolicity at the bifurcation point (x∗, µ0), and condition (H2)

describes the condition for the eigenvalues crossing zero transversally as µ increases.

Figure 2.2 shows the bifurcation diagram for the supercritical and subcritical Hopf

bifurcations. In each panel, we denote the stable branch with solid blue lines, the

unstable branch with red dashed lines, and the limit cycle with violet circles. The

gray translucent planes orthogonal to the µ-axis correspond to the leaves µ = ±2.

The dark gray curves show solutions on these invariant planes.
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Figure 2.2: Hopf bifurcation diagrams. A. Supercritical. B. Subcritical.

In Chapter 3 we make use of the FitzHugh-Nagumo model, a nonlinear model

that exhibits subcritical and supercritical Hopf bifurcations. In Chapters 4 and 5

we study the SIRI epidemiological model in well-mixed and network settings and

show that when the infection and reinfection rate are equal, the dynamics exhibit a

transcritical bifurcation.
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2.3 Bifurcations Without Parameters

Consider an autonomous system of ODEs in RN of the form

ẏ = g(y, z); y ∈ RN−n

ż = h(y, z); z ∈ Rn (2.11)

where g : RN−n × Rn 7→ RN−n and h : RN−n × Rn 7→ Rn are smooth. Sup-

pose further that there is an n-dimensional manifold of equilibria M = {(0, z) ∈

(RN−n,Rn)|g(0, z) = 0,h(0, z) = 0}.

Suppose h(y, z) = 0 for all y ∈ RN−n and all z ∈ Rn. Then, the study of (2.11)

reduces to the study of the (N − n)-dimensional system ẏ = g(y, z), where z plays

the role of an n-dimensional parameter and where the manifold of equilibria M cor-

responds to the equilibrium y∗ = 0.

Assume the stability of y∗ changes with the value of z through a bifurcation at

(y∗, z∗). Then, we can study the resulting bifurcation through the “extended” system

ẏ = g(y, z),

ż = h(y, z) = 0. (2.12)

In the (y, z) space, the equilibrium y∗ = 0 appears as the manifold of equilibria M,

with stable and unstable regions separated by the bifurcation point (y∗, z∗) ∈ M.

Solutions of (2.12) with z constant foliate the (y, z) space. This is the classical

bifurcation setup described in Section 2.2.

The theory of bifurcations without parameters studies the dynamics of systems of

the form (2.11) when h(y, z) 6= 0, near the point (y∗, z∗). In this case, solutions with
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z constant no longer foliate the (y, z) space. Instead, the dynamics in the (y, z) space

become considerably more complex.

To better understand the dynamics of (2.11) near (y∗, z∗), consider the Jacobian

of (2.11) evaluated at an arbitrary point (y∗, z) ∈M,

JM(y∗, z) =

Dyg(y∗, z) Dzg(y∗, z)

Dyh(y∗, z) Dzh(y∗, z)

 =

Dyg(y∗, z) 0̄

Dyh(y∗, z) 0̄

 . (2.13)

The Jacobian JM(y∗, z) has at least n zero eigenvalues corresponding to the n

dimensions in phase space tangent toM, with the remaining N −n transverse eigen-

values corresponding to the eigenvalues of Dyg(y∗, z).

At the point (y∗, z∗), the spectrum of Dyg(y∗, z∗) intersects the imaginary axis. If

there is only one eigenvalue on the imaginary axis, the eigenvalue is zero and this then

implies that M loses normal hyperbolicity at (y∗, z∗). Loss of normal hyperbolicity

is a degeneracy that generalizes that of a classical bifurcation in which one of the

eigenvalues becomes zero at the bifurcation point. The dynamics near points at which

M loses normal hyperbolicity lead to what Stefan Liebscher and his collaborators call

a bifurcation without parameters [86].

Similar to the case of classical bifurcations, bifurcations without parameters can

be studied by reducing the system dynamics to normal forms. The codimension

of a bifurcation without parameters refers to the dimensionality of the manifold of

equilibria (i.e., n). For example, if n = 1 in (2.11), the system has a line of equilibria

with a codimension-one bifurcation without parameters at any isolated points on

the z-axis at which the line of equilibria loses normal hyperbolicity. Similarly, if

n = 2 in (2.11), then the system has a plane of equilibria. Points at which the

plane of equilibria loses normal hyperbolicity generically form curves, giving rise to a

codimension-two bifurcation without parameters.
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Here, we provide a brief description of the two types of codimension-one bifurca-

tion without parameters that we encounter in Chapter 4, their normal forms, and the

transversality conditions that control the bifurcation in a system of the form (2.11)

with y, z ∈ R. We refer the reader to [86] for additional details and for a more exhaus-

tive list of codimension-one and codimension-two bifurcations without parameters.

A transcritical bifurcation without parameters has normal form

ẏ = yz (2.14)

ż = y.

The system has a line of equilibria (0, z). Points on the line are stable if z < 0 and

unstable if z > 0. Trajectories near the bifurcation point (0, 0) form parabolas tangent

to the line of equilibria at the origin. Moreover, the direction of the flow is reversed

on opposite sides of the equilibrium line. A system with a transcritical bifurcation

without parameters at (y∗, z∗) satisfies the following conditions (see Theorem 4.1

in [86]):

(TBWP1) g(y∗, z) = 0 and h(y∗, z) = 0.

(TBWP2)
(
∂g/∂y

)
(y∗, z∗) = 0.

(TBWP3)
(
∂2g/∂z∂y

)
(y∗, z∗) 6= 0.

(TBWP4)
(
∂h/∂y

)
(y∗, z∗) 6= 0.

Condition (TBWP1) states that there exists a manifold of equilibria. Condi-

tion (TBWP2) describes the loss of normal hyperbolicity at the bifurcation point

(y∗, z∗) due to the transverse eigenvalue crossing zero. Condition (TBWP3) states

that transverse eigenvalue crosses zero transversally with non-vanishing speed. Fi-

nally, condition (TBWP4) controls the nondegeneracy of the Jacobian (2.13).
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Figure (2.3) compares the classical transcritical bifurcation diagram of the system

ẏ = µy to the phase space for the normal form of the transcritical bifurcation with-

out parameters. In both cases, we denote the stable region of the line of equilibria

as a solid blue line and the unstable region as a red dashed line. The black arrows

correspond to trajectories of the system. The bifurcation diagram for ẏ = µy (Fig-

ure 2.3A) shows how the line of equilibria y = 0 in the extended space (y, µ) is stable

for µ < 0 and unstable for µ > 0. In this case, the extended space is foliated by the

leaves µ = c ∈ R. Compare this to the transcritical bifurcation without parameters

(Figure 2.3B), in which the state z controls the stability of the line of equilibria y = 0.

Solutions now drift to the right due to the nontrivial dynamics of z. The stable and

unstable manifolds of the bifurcation point at the origin are represented with solid

green and magenta lines, respectively. In the upper half-plane, the stable manifold

of the bifurcation point separates the phase space into a region containing solutions

that reach a point in the line of equilibria, and a region with solutions that move

away from the line of equilibria. In the lower half-plane solutions form manifolds of

heteroclinic orbits connecting unstable with stable points in the line of equilibria.

When the system (2.11) depends on parameters, there can be both a classical

bifurcation and a bifurcation without parameters.

A transcritical bifurcation without parameters with drift singularity has normal

form (see Chapter 8.1 in [86]):

ẏ = yz (2.15)

ż = −ay2 + byz + µy

where a, b 6= 0 and µ are scalar parameters. The system has a line of equilibria (0, z)

and an isolated equilibrium at (µ/a, 0). Points on the line of equilibria are stable

if z < 0 and unstable if z > 0, while the isolated equilibrium is unstable if µ < 0
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Figure 2.3: A. Bifurcation diagram for ẏ = µy. B. Transcritical bifurcation without
parameters phase space.

and stable if µ > 0. For µ 6= 0, trajectories near the bifurcation point (0, 0) form

parabolas tangent to the line of equilibria at the origin. A system with a transcritical

bifurcation without parameters with singular drift satisfies (TBWP1)–(TBWP3) for

all µ and

(TBWP5) At µ = 0, condition (TBWP4) fails,
(
∂h/∂y

)
(y∗, z∗, 0) = 0.

(TBWP6)
(
∂h/∂µ∂y

)
(y∗, z∗) 6= 0.

Conditions (TBWP5) and (TBWP6) are analogous to conditions (SN1) and (T2)

for the classical transcritical bifurcation that describe how the isolated equilibrium

loses stability as µ crosses zero. The parameters a and b in (2.15) correspond to the

determinant and the trace of the linearization around the equilibrium, and determine

the type of trajectories near the equilibrium, i.e., the equilibrium could be a saddle,

node, or spiral.

Figure (2.4) shows the transcritical bifurcation without parameters with drift sin-

gularity when the isolated equilibrium is a node. We represent the isolated equilib-

rium as a solid circle when the equilibrium is stable and as an empty circle when the
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Figure 2.4: Transcritical bifurcation without parameters with bifurcating node drift
singularity. A. µ < 0. B. µ = 0. C. µ > 0. For all panels, we set parameters in (2.15)
to a = 1 and b = −2.5.

equilibrium is unstable or degenerate. We illustrate solutions that flow in the stable

manifold of the bifurcation point (y = 0 and z = 0) as green solid curves and solutions

that flow in the unstable manifold of the bifurcation point as magenta solid curves.

For µ < 0, the node lies in the lower half of the plane and is unstable (Figure 2.4A).

All trajectories in the upper half of the plane reach a point in the line of equilibria

y = 0. For µ = 0, the node lies at y = 0 (Figure 2.4B). For µ > 0, the node lies in

the upper half of the plane and is stable (Figure 2.4C). Trajectories below the stable

manifold of the origin reach a point in the line of equilibria while trajectories above

the stable manifold of the origin reach the stable node. Note that when µ 6= 0, the

flow close to the origin resembles the transcritical bifurcation without parameters (see

Figure 2.3B).

In Chapter 4, we study the SIRI epidemiological model in well-mixed settings

and show that the dynamics of the model can be explained through a transcritical

bifurcation without parameters with node drift singularity. In Chapter 5, we study the

SIRI model in network topologies and discuss how the dynamics of the model extend

the idea of a transcritical bifurcation without parameters with node drift singularity

to higher-dimensional systems.
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2.4 Excitability Dynamics

Consider a nonlinear dynamical system of the form (2.7) in which one of the pa-

rameters µi = I for some i ∈ {1, 2, . . . , K} represents the input to the system. We

say the system is excitable if there exists a threshold value of I, IT , such that: 1)

subthreshold input perturbations (i.e., short-lived inputs where I < IT ) lead to small

responses away from a nominal resting state, and 2) suprathreshold perturbations

(i.e., short-lived inputs where I > IT ) lead to responses that are much larger than the

perturbation that elicited it. In an excitable system, the system eventually returns

to the same nominal state after responding to a suprathreshold perturbation.

Excitability is a nonlinear phenomena that has been observed in different physical

and natural systems across fields, including neural systems, cardiovascular tissue,

gene regulatory circuits, lasers, and chemical reactions, to mention a few [92–96].

In each of these cases, the system has a stable resting state that attracts solutions

when I is at its nominal value I0, e.g, I0 = 0. In Figure 2.5 we illustrate how, in an

excitable system, subthreshold perturbations (light gray) marginally shift the state

of the system away from the resting state, eliciting a small transient response as the

system returns to rest. In contrast, for suprathreshold perturbations (dark gray),

the system exhibits a large excursion in phase space, usually visible as a “spike” in

the time-series of one of the state variables called the output variable, consisting of

an excited and recovery phase before returning to rest. We make use of an excitable

system called the FitzHugh-Nagumo system in Chapter 3 to model the response of a

group of forager ants inside the ants’ nest entrance chamber in response to interactions

with incoming foragers carrying food. We explore the FitzHugh-Nagumo dynamics

in more detail in Section 2.4.1.

From a dynamical systems point of view, there are a number of different mech-

anisms, associated with bifurcations, which can result in a nonlinear system with
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A B

Figure 2.5: Excitability dynamics. A. Small input perturbations (light gray) lead to
small amplitude responses in phase space, while large input perturbations (dark gray)
lead to trajectories that follow a large amplitude orbit before returning to rest. B.
The small amplitude response appears as a small transient in the time-series of the
output variable while the large orbits appear as a “spike” consisting of an excited
phase and a recovery phase.

excitability. In many cases, the study of excitability is restricted to two dimen-

sional models to facilitate analysis. In these planar models, excitability is commonly

achieved by the introduction of a fast positive feedback that is responsible for a rapid

initial response in the output variable and a slower time-scale negative feedback re-

sponsible for bringing the system back to rest [97, 98].

Planar excitability can be understood and studied geometrically. Short-lasting

large amplitude responses can be understood as the system having one or more large

amplitude orbits in phase space that starts and ends near either a stable equilibrium or

a small amplitude limit cycle representing the resting state. In most cases, the input

parameter I is a bifurcation parameter and, for values of I larger than a bifurcation

value IT , the system has a stable limit cycle that leads to periodic behavior and to

sequences of “spikes” in the time-series of the output variable. If the spiking frequency

of the system increases continuously with I, the system is said to be of Class I [98,99].

A Class I system can generate arbitrarily low spiking frequencies which allows it to

integrate the input strength of a step input. If the spiking frequency is more or less
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constant across the range of valid suprathreshold values of I, the system is said to be

of Class II [98,99]. A Class II system exhibits resonance when the input is a periodic

perturbation of a specified frequency.

Class I and Class II excitable systems are characterized by the type of bifurcation

that the system undergoes as I increases [98,100,101]. In a Class I excitable system,

there exists a stable equilibrium that disappears via a saddle-node on invariant circle

bifurcation (SNIC) (see [98] for details), whereas in a Class II excitable system, there

exists a stable equilibrium that loses stability via a subcritical or supercritical Hopf

bifurcation.3 In the remainder of this Section we describe the FitzHugh-Nagumo

model, a Class II excitable system which is a key component in the model we develop

and analyze in Chapter 3.

2.4.1 FitzHugh-Nagumo Model

The FitzHugh-Nagumo model [103, 104] is a two-dimensional reduction of the

Hodgkin-Huxley model [92] for neuronal excitability. The model was developed

to capture the essential geometry required for excitability in a small-dimensional

system. The dynamics of the FitzHugh-Nagumo model are given by [105]

ẋ1 = x1 −
x3

1

3
− a− x2 + I (2.16)

ẋ2 = ε(x1 − bx2),

where x1 represents the neuronal cell membrane voltage, x2 is a recovery variable,

0 < ε� 1 is the time separation constant, and a, b are parameters. The x1-nullcline

is cubic, while the x2-nullcline is linear. This leads to the nullclines having one, two,

or three intersections depending on the values of the parameters. For the rest of the

3The classification of excitability based on only the SNIC and the Hopf bifurcations is not a
comprehensive description of all the mechanisms that can give rise to excitable behavior. We refer
the reader to [98,102] for a more expansive discussion of the topic.
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Section we assume 0 < a ≤ 1 and 0 < b < 1 which restrict the nullclines of (2.16)

to intersect at a single point corresponding to the unique equilibrium x∗ = (x∗1, x
∗
2)

where

x∗2 =
x∗1
b
,

x∗1
3

3
+

(1− b)x∗1
b

+ a = I. (2.17)

As I increases, the cubic x1-nullcline shifts upwards, changing the location of the equi-

librium. This single equilibrium point together with the I dependent cubic nullcline

are sufficient to generate excitability.

The linearization of (2.16) at (x∗1, x
∗
2) is given by

J =

1− x∗12 −1

ε −bε

 (2.18)

and has eigenvalues

λ1,2 =
(1− x∗12 − bε)±

√
(1− x∗12 − bε)2 − 4ε(1 + bx∗1

2 − b)
2

. (2.19)

For I = 0, it follows that λ1,2 < 0; the equilibrium is a stable node. The equilibrium

loses stability at x∗1 = ±
√

1− bε. Inserting this value into (2.17) gives the expression

for the bifurcation values

I1,2 = a∓
(

(1− bε)
3

3/2

+
1− b
b

√
1− bε

)
, (2.20)

at which λ1,2 = ±iω where ω2 = 4ε(1− b2ε). The first solution I1 correspond to the

bifurcation point at which x∗ loses stability while the second solution I2 corresponds

to a second bifurcation point at which x∗ regains stability.

As the input I increases from zero past point I1, the dynamics (2.16) go through a

complex bifurcation stage within a very small range of I values in which a supercritical

saddle-node of limit cycles and a subcritical Hopf bifurcation result in the equilibrium
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losing stability, and the appearance of a stable limit cycle (see [106] and references

within for details). This stable limit cycle remains for a large range of values of I

until the point I2 > I1 at which dynamics experience the reverse process in which a

subcritical saddle-node bifurcation of limit cycles and a supercritical Hopf bifurcation

lead to the equilibrium point gaining stability and the disappearance of the limit cycle.

Thus, as I varies, the FitzHugh-Nagumo model (2.16) exhibits three states: resting

(I < I1), oscillatory (I1 < I < I2), and saturated (I > I2) (see Figure 2.6). The

resting and saturated states are topologically equivalent.

How this complex bifurcation structure gives rise to excitability can be better

understood by studying the geometry of the system. It can be shown that the bi-

furcation points I1 and I2 approximately correspond to the values of I at which the

linear nullcline intersects the cubic nullcline at the valley or the crest of the cubic

nullcline (see solid orange curves in Figure 2.6). These points divide the cubic null-

cline into left, center, and right branches. When the linear nullcline intersects the

cubic nullcline at a point in the middle branch, x∗ is unstable. If the linear nullcline

intersects the cubic nullcline at a point on the right or left branches, then x∗ is sta-

ble. This geometry results in small input perturbations leading to trajectories that

remain within the region of attraction of the stable equilibrium point, and in larger

input perturbations leading to trajectories that cross the middle branch of the cubic

nullcline and take a long path in phase space before returning to x∗ (Fig. 2.6A and

D). The difference in the response to small and large input perturbations is the result

of a soft threshold in which the cubic nullcline acts as a “quasi-threshold” through a

canard trajectory, where there is a very fast transition within an exponentially small

range of a I values [106,107].
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Figure 2.6: Fitzhugh-Nagumo dynamics with a = 0.9, b = 0.8, and ε = 0.05. The
bifurcation values I1 ≈ 0.34 and I2 ≈ 1.46 denote the input values at which the model
transitions to a new state. Orange lines represent the system nullclines. A and D.
Resting state (I = 0) phase space and x1 time-series. B and E. Oscillatory state
(I = 0.9) phase space and x1 time-series. C and F. Saturated state (I = 2) phase
space and x1 time-series.

2.5 Queueing Theory

A queueing system describes the process through which customers arrive for service,

wait for service if no servers are available, and leave the system after being served.

The aim of queueing theory is to develop mathematical models that can predict the

lengths of queues and waiting times in queueing systems. Although queueing theory

was developed with the intention of helping businesses make better decisions about

the resources needed to provide a service, queueing theory results apply to any system

that can be thought of as a queueing system. In Chapter 3 we use queueing theory

to describe how harvester ants forage for seeds outside the nest.

Formally, a queueing system is characterized by the following six descriptors [108]:
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1. Arrival pattern of customers: probability distribution describing the times

between successive customers arrivals (interarrival times).

2. Service pattern of servers: probability distribution describing customer ser-

vice times.

3. Queue discipline: mechanism through which customers are selected for service

when a queue has formed.

4. System capacity: maximum possible length of the queue.

5. Number of service channels: number of servers that can provide service to

customers.

6. Number of service stages: number of service stages that a single customer

has to go through before service is completed.

A queueing system is usually described in Kendall notation [109], which consists

of a series of symbols and slashes of the form A/B/X/Y/Z where A indicates the

interarrival-time distribution, B indicates the service time distribution, X the num-

ber of servers, Y the system capacity, and Z the queue discipline. It is common to

describe queueing systems with only the first three descriptors. In these cases, it is as-

sumed that Y =∞ and Z = FCFS, where FCFS denotes the first-come-first-served

queueing discipline. For example an M/G/5 queue has exponential interarrival-times,

arbitrary service times, 5 servers, an infinite system capacity, and a first-come-first-

served queue discipline.4 The most common queueing models assume that interarrival

times and service times follow an exponential distribution (i.e., M/M/n). This corre-

sponds to cases in which both the arrival process and the service process are described

by a homogeneous Poisson process.

4The letter M stands for the Markovian or memoryless property of the exponential distribution.
The letter G stands for general.
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A homogeneous Poisson process with rate r > 0 describes the probability distri-

bution of a counting process {N(t) ∈ N|t ≥ 0},

P (N(t) = n) =
(rt)n

n!
e−rt (2.21)

with mean and variance rt; (2.21) describes the probability of having n events in the

counting process by time t. A Poisson process has the memoryless property meaning

that the time between events is independent of the number of events that have already

taken place.

Let Q(t) be the number of customers in the system (either waiting in queue or

being served) at time t. For an M/G/∞ queue, the probability of having n customers

in the system at steady-state P (Q(∞) = n) is given by a Poisson process with rate

q = r/µ where r is the mean interarrival-time and 1/µ is the mean service time [108].

Therefore, at steady-state, the expected system size is E[Q(∞)] = q and, since there

are an infinite number of servers, the expected number of customers waiting in the

queue is zero and the average waiting time in the system (from arrival to departure)

is equal to the average service time 1/µ.

The assumption that the arrival process can be described by a Poisson process with

a fixed rate is, in many cases, not realistic as many arrival processes vary with time.

A non-homogeneous Poisson process with rate function r(t) > 0 extends the idea of

a homogeneous Poisson process to time-varying rates, and describes the probability

distribution of a counting process N(t) as,

P (N(t+ t′)−N(t) = n) =
Λn

n!
e−Λ (2.22)

where

Λ =

∫ t+t′

t

r(τ) dτ. (2.23)
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For an M(t)/G/∞ queue, where M(t) denotes a non-homogeneous Poisson pro-

cess, with arrival rate function r(t), and where the service time random variable S

has the cumulative distribution function F (s), we get the following results (see [110]

for details):

• For each time t, Q(t) has a Poisson distribution with mean

E[Q(t)] =

∫ ∞
0

r(t− u)(1− F (s)) ds.

• The departure process is a non-homogeneous Poisson process with rate function

r′(t) = E[r(t− S)].

2.6 Graph Theory

In dynamical systems with interconnected agents, graph theory provides a mathe-

matical framework to study the role of the interconnection topology on individual

and group level dynamics.

A weighted digraph G = (V , E) consists of a set of nodes V and a set of edges

E ⊆ V×V , where each edge (j, k) ∈ E from node j ∈ V to node k ∈ V has an associated

weight wjk > 0. We denote the set of neighbors of node j as Nj = {k ∈ V|(j, k) ∈ E}.

In multi-agent systems, it is common to represent agents as nodes and an interac-

tion between agents as an edge, where the weight of the edge represents the strength

of the interaction. The directionality of an edge represents cases in which the infor-

mation transfer that results from the interaction between agents is not bidirectional.

For example, an edge (j, k) ∈ E might represent agent j paying attention to agent k

but not vice-versa; agent j receives information from agent k but agent k does not

receive information from agent j.
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The structure of a weighted digraph G with N nodes is captured by the weighted

adjacency matrix A = {ajk} ∈ RN×N with

ajk =


wjk (j, k) ∈ E

0 otherwise.

A directed path between two agents j, k ∈ V is a sequence of non-repeating edges

in E that start in node j and end in node k. A digraph is strongly connected if there

exists a directed path from any node j ∈ V to any other node k ∈ V (see Figure 2.7A).

The adjacency matrix A of digraph G is irreducible if G is strongly connected.

A weighted undirected digraph is a weighted digraph G with undirected edges where

if (j, k) ∈ E , then (k, j) ∈ E and akj = ajk. An undirected graph is connected if there

exists a sequence of undirected edges from any node j ∈ V to any other node k ∈ V .

A digraph is weakly connected if replacing every edge in E with an undirected edge

results in an undirected graph that is connected (see Figure 2.7B). Every strongly

connected digraph is weakly connected, but the opposite is not true. In a weakly

connected digraph there may exist a pair of nodes for which there is no directed path

connecting them. A subgraph G ′ = (V ′, E ′) of digraph G is a digraph with V ′ ⊂ V

and E ′ ⊂ E . A digraph is disconnected if it contains at least two isolated subgraphs

(see Figure 2.7C).

2.7 Metzler Matrices

A real square matrix M = {mjk} is Metzler if its off diagonal entries are nonnegative,

mjk ≥ 0, j 6= k.5 Metzler matrices appear prominently in the study of positive systems

(systems in which the state variables are always nonnegative). A linear system ẋ = Ax

5Metzler matrices are also called quasipositive or essentially positive matrices. If M is a Metlzer
matrix, then −M is an M-matrix, a matrix with nonpositive off-diagonal entries [111].
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Figure 2.7: A. Strongly connected digraph. There exists a directed path between any
two nodes. B. Weakly connected digraph. There exists an undirected path between
any two nodes but a directed path may not exist (e.g., nodes 2 and 7). C. Disconnected
digraph. There exists no directed or undirected path between some nodes (e.g., nodes
2 and 7).

is a positive linear system if A is Metzler [112]. Positive systems are ubiquitous

across many fields, including economics, chemistry, biology, and engineering, as many

systems have states that represent physical quantities that cannot be negative. In

Chapter 5 we study the SIRI epidemiological model on network topologies, where we

make repeated use of the results for Metzler matrices presented in this Section.

A positive matrix is a matrix with positive entries M � 0̄. Similarly, a nonneg-

ative matrix is a matrix with nonnegative entries M � 0̄. Any positive matrix is

nonnegative, but the opposite is not always true. The study of positive and non-

negative matrices is called Perron-Frobenius theory after the contributions of Oskar

Perron and Ferdinand Georg Frobenius. In 1907, Perron published his treatment

of positive matrices [113, 114] and in 1912, Frobenius extended the theory to non-

negative matrices [115]. Two of the fundamental results of Perron-Frobenius theory

are the Perron-Theorem for positive matrices, and the Perron-Frobenius Theorem for

nonnegative irreducible matrices [116].

Both theorems state that any positive or nonnegative matrix M has a real eigen-

value λmax(M), called the leading eigenvalue, with magnitude equal to the spectral

radius of the matrix λmax(M) = ρ(M). If M is positive, then λmax(M) has multiplic-
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Figure 2.8: Comparison of spectrum of nonnegative matrix N (cyan crosses) and its
spectral radius (blue circle) against the spectrum of the Metzler matrix M = N − γI
(red crosses). The red circle represents the γ-shifted spectral radius of N .

ity one and the corresponding eigenvector, called the leading eigenvector, is positive

vmax � 0. If M is nonnegative, then the leading eigenvector is nonnegative vmax � 0.

The matrix M is irreducible if, when interpreted as the adjacency matrix of a

digraph G, G is strongly connected. IfM is nonnegative and irreducible, then λmax(M)

has multiplicity one. In addition, in both the positive and nonnegative cases, M has no

other nonnegative eigenvectors besides multiples of vmax. A nonnegative irreducible

matrix M also has the property that λmax(M) increases/decreases as any entry mjk

increases/decreases [117].

Any nonnegative matrix N can be transformed into a Metzler matrix M = N−γI

by picking γ ≥ |minjmjj| (see Figure 2.8). As a result, the spectrum of the Metzler

matrix M looks like the shifted spectrum of the nonnegative matrix N , and M has a

leading eigenvalue λmax(M) = λmax(N)−γ. Most results on the spectral properties of

nonnegative matrices extend to Metzler matrices (see Theorem 6.2.3 in [111], Chapters

5 and 6 in [112], and Chapter 8 in [116]):

Proposition 1. Let M be a Metzler matrix. Then,

1. λmax(M) ∈ R. If M is irreducible, λmax(M) has multiplicity one.
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2. Let wT and v be left and right eigenvectors corresponding to λmax(M). Then,

w,v � 0. If M is irreducible, then w,v � 0, and every other eigenvector of

M has at least one negative entry.

3. Let Mmin,Mmax be irreducible Metzler matrices where

Mmin ≺M ≺Mmax, then

λmax(Mmin) < λmax(M) < λmax(Mmax).

The existence of the leading eigenvalue and eigenvector of a Metzler matrix M

leads to the following necessary and sufficient conditions for M to be Hurwitz (i.e.,

for all eigenvalues of M to have negative real part).

Proposition 2. Let M be a Metzler matrix. Then, the following statements are

equivalent:

1. M is Hurwitz.

2. There exists a vector v� 0 such that Mv� 0.

3. There exists a vector w� 0 such that wTM � 0.

The regular splitting property of Metzler matrices associates the sign of the leading

eigenvalue of a Metzler matrix to the spectral radius of a related matrix.

Definition 2.7.1 (Regular Splitting). Let M be a Metzler matrix. M = T + U is a

regular splitting of M if T � 0̄ and U is a Hurwitz Metzler matrix.

Proposition 3. Let M be a Metzler matrix and let M = T +U be a regular splitting.

Then,

1. λmax(M) < 0 if and only if ρ(TU−1) < 1.

2. λmax(M) = 0 if and only if ρ(TU−1) = 1.
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3. λmax(M) > 0 if and only if ρ(TU−1) > 1.

We use the leading eigenvalue of the regular splitting of Metzler matrices in Chap-

ter 5 to define scalar metrics that determine global transient and steady-state behav-

iors for the network SIRI dynamics.
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Chapter 3

Regulation of Harvester Ant

Foraging: Excitability and

Feedback

In this Chapter we summarize results from our collaboration with biologist Deborah

Gordon from Stanford University, presented in Part II: Chapter 8 which appears as

Pagliara, Gordon, and Leonard [43]. Gordon has been studying red harvester ants

in the deserts of the Southwestern United States for over 30 years. Her pioneering

research on how individuals ants within the colony perform different tasks throughout

their lifetime has shown that ant task allocation and performance is a dynamic process

that self-regulates according to the colony’s needs.

Our collaboration focuses on the robust and flexible collective behaviors observed

in the regulation of foraging in red harvester ants. We provide a brief introduction

to the problem in Section 1.1 and a detailed introduction in Section 8.1.

In Section 3.1 we discuss important features of the regulation of the foraging

problem in red harvester ants. In Section 3.2 we present results from three years of
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field observations. In Section 3.3 we introduce a low-dimensional, simply parame-

terized model, developed in Chapter 8, for the regulation of foraging rates. We use

the excitability dynamics of the FitzHugh-Nagumo equations (FN) to model the fast

activation mechanism of available foragers inside the nest. We introduce a parameter

into the FN model which controls the frequency of oscillations and use it to represent

the volatility of available foragers inside the nest to interactions with food-bearing

incoming foragers. To model the slow process of foraging for seeds outside the nest,

we use a random delay distribution. In Section 3.4 we discuss our use of excitability

dynamics. In Section 3.5, we summarize results for the open-loop model in which the

incoming foraging rate is the input to the system and the outgoing foraging rate is the

output. We show that the volatility parameter controls the nonlinear map between

the incoming and the outgoing foraging rates. In Section 3.6, we summarize results

for the closed-loop model dynamics in which outgoing foragers return to the nest after

foraging. We show the slow feedback of returning ants leads to an equilibration of the

foraging rates at a stable rate determined by the volatilty parameter. In Section 3.7

we propose that foragers adapt their volatility after a first exposure to the environ-

mental conditions outside the nest, and discuss how this mechanism, which depends

on two volatility values, adjusts the colony foraging rates in response to different con-

ditions. In Section 3.8 we compare simulations of the model with field observations of

foraging activity. In Section 3.9 we present a novel discussion, not published in [57]

of Chapter 9, on the existence of four distinct behavioral regimes in the closed-loop

model with the adaptation mechanism, where each regime is characterized by the two

volatility values.
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3.1 Ecology, Interactions, and Feedback in Red

Harvester Ants

Living in the desert, harvester ant colonies must constantly obtain water to survive.

Harvester ants obtain water by metabolizing the fat in the seeds they eat, but foragers

lose water through desiccation while outside the nest [32, 33]. Therefore, colonies

must balance the trade-off between foraging for seeds to obtain water and conserving

water by not foraging. To balance this trade-off, colonies must regulate their foraging

activity across different timescales according to food availability and environmental

conditions. How they achieve balance and thrive in these extreme environmental

conditions is not well understood [14,118].

The collective behaviors that ant colonies exhibit are highly dependent on the

context in which they live [119]. For example, non-harvester ant species that live

in competitive environments with clumped food resources, make use of pheromone

trails that trace the shortest path towards the food and rapidly increase the number

of foragers at the food source [31, 120, 121]. This increases the probability that the

colony reaches and consumes the resources before anyone else does. In contrast,

harvester ants do not use pheromone trails, probably because they consume resources

that are scattered across space and deplete over the course of weeks, not minutes.

As such, harvester ants face different evolutionary pressures, where minimizing water

loss through desiccation is of the utmost importance.

Colonies regulate the rate of outgoing foragers via interactions with incoming food-

bearing foragers [34–38,122]. The rate of interactions provides available foragers with

limited, noisy information on the quality of the foraging conditions outside the nest.

Available foragers inside the nest integrate this noisy information in order to decide

whether or not to forage [38].
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The interactions mechanism regulates the outgoing foraging rate across seconds-

to-minutes long timescales in response to food availability, but it does not explain how

colonies adjust foraging activity across hour-long timescales in response to different

environmental conditions. A fundamental component of the foraging process that has

so far not been studied is the feedback that results from outgoing foragers returning

to the nest after foraging and becoming available foragers once again. This feedback

loop takes place across minutes-to-hour timescales and is, therefore, much slower

than the fast activation of foragers inside the nest. Feedback in dynamical systems

provides a way to stabilize and control the state of a system, suggesting that the

slow feedback of returning foragers may play a fundamental role in the regulation of

foraging activity across minutes-to-hours timescales.

Colonies vary in how they regulate foraging activity in response to different envi-

ronmental conditions [41,123–126]. This variation leads to differences in reproductive

success between colonies. Colonies that exhibit large differences in foraging activity

between dry and humid days are reproductively more successful than colonies that

exhibit smaller differences [41]. We hypothesize that these differences in the collec-

tive behavior of colonies result from differences in how individual foragers assess the

quality of the environmental conditions. Understanding the mechanisms that colonies

use to respond to different environmental conditions would provide valuable insight

into how behavioral differences between individuals belonging to different colonies

can result in differences in collective behavior between colonies.

3.2 Field Observations: Transients and Quasi

Steady-States

In collaboration with Stanford University biologist Deborah Gordon, we performed

three years of field observations of red harvester ant colonies from 2015 to 2017.
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Observations were made at the site of a long term study near Rodeo, New Mexico,

USA, where Prof. Gordon has been studying harvester ant colonies for more than 30

years.

We recorded foragers crossing a line perpendicular to the foraging trail at a dis-

tance of about 1 m. from the nest entrance. The recordings were made from the

beginning of the foraging period in early morning until around noon. From these

recordings, we obtained timestamps for every incoming and outgoing forager (see

Section 8.2.1 for details).

Definition 3.2.1. The sequence of times at which incoming foragers cross the line is

tini , i ∈ N, and the sequence of times at which outgoing foragers cross the line is toutj ,

j ∈ N.

Definition 3.2.2. The incoming foragers indicator function is λin(t) =
∑n

i=1 δ(t−tini )

and the outgoing foragers indicator function is λout(t) =
∑m

j=1 δ(t− toutj ), where δ(·)

is the Dirac delta function and, n and m are the indices of the last incoming and

outgoing forager, respectively, before time t.

Definition 3.2.3. The estimated instantaneous incoming and outgoing foraging rates,

in units of ants/sec, are

rin(t) =

∫ ∞
−∞

w(ζ)λin(t− ζ) dζ, rout(t) =

∫ ∞
−∞

w(ζ)λout(t− ζ) dζ, (3.1)

where

w(t) =


1/∆t if −∆t/2 ≤ t ≤ ∆t/2

0 otherwise.

(3.2)

Remark 1. The instantaneous incoming and outgoing foraging rates are computed

via a sliding window filter with window ∆t = 300 sec. We selected the size of the

sliding window to remove noise but preserve the interesting dynamic features of the

foraging rates across tens of minutes to hours.
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We collected data for 16 colonies across 25 days for a total of 47 data sets.1

This was no small feat. Each data set required identifying potential colonies that

seemed likely to forage on that given day. These colonies would then be checked every

few minutes in order to determine the most likely colony to forage. The recording

equipment would then be set up around the most promising colonies and, in many

cases, we would have to change the setup once a colony started foraging because they

had decided to use a different foraging trail to the one we thought they would use.

Sometimes, one of the colonies selected displayed extremely low foraging rates that

were not useful for our analysis. At least two people were required to keep track of

the camera batteries or manually count ants with a tablet in order to prevent data

loss. Each data set took about 6 hours to obtain. In addition, all this work had to

be done in extreme temperatures while wearing snake-guards around one’s legs for

protection against rattlesnakes.2

The data sets show that there is large variation in foraging activity across colonies

(on the same day), and across days (for the same colony). Despite this variation, we

found that across colonies and days, the foraging rates rin(t) and rout(t), where t is

time of day, exhibit a transient behavior at the start of the foraging period followed

by a quasi steady-state (QSS) in which the rates equilibrate, i.e., rin(t) = rout(t) (see

Figure 3.1 for two examples of this behavior for different colonies and Section 8.3.1

for more details).

We also found that the variation in transient and QSS responses appears to be con-

sistent with the idea that colonies actively regulate their foraging activity in response

to environmental conditions [41,124]. On Figures 3.2A, 3.2C, and 3.2E we show three

additional examples of foraging rates for two different colonies across three different

days. Figures 3.2B, 3.2D, and 3.2F show the foraging rates in Figures 3.2A, 3.2C,

1All raw data and the MATLAB model simulation scripts are available in Princeton University’s
DataSpace repository.

2Being bitten by a rattlesnake would result in a helicopter ride to the nearest hospital. Thankfully,
rattlesnakes are nocturnal animals and are not usually observed during daytime.
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Figure 3.1: Plots of incoming foraging rate rin (blue) and outgoing foraging rate rout
(red) versus time of day on August 20, 2016 for A) Colony 1357 and B) Colony 1317.
The quasi steady-state (QSS) where incoming and outgoing rates equilibrated to a
near-equal value can be observed for both colonies. The QSS rate for Colony 1317
was more than twice as great as it was for Colony 1357. Adapted from Figure 8.4.

and 3.2E, respectively, as input-output plots of rin(t) versus rout(t), where the color

of the curve represents time of day.

Figures 3.2A to 3.2D show the foraging rates for the same colony on two different

days: August 27 and August 31, 2015. The QSS rate on August 27 is more than

twice the QSS rate on August 31. The QSS appears in the input-output plot as the

region of the curves that remains close to the diagonal. The differences in the value

of the QSS provide evidence that colonies increase their foraging activity on cool and

humid days. August 27 was slightly cooler and more humid than August 31 (see

Section 8.3.1 for details).

Figure 3.2E and 3.2F show the foraging rates for a different colony on a different

day. The foraging rates rapidly increase in the morning before turning around and

decreasing until the foraging process ends. This appears in the input-output plot as

a closed orbit in the form of a loop; half of the curve lies above the diagonal, where

rin = rout, and the other half lies below the diagonal. We associate this type of

foraging behavior with hot and dry days (see Section 8.3.1 for details).
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Figure 3.2: Plots of foraging rate data. Time series plots show incoming foraging rate
rin (blue), outgoing foraging rate rout (red), and cumulative difference between the
number of incoming and outgoing foragers (green) versus time of day. Input-output
plots show rout(t) versus rin(t) with the color scale representing time of day t. A) and
B) Colony 664 on August 27, 2015. C) and D) Colony 664 on August 31, 2015. E)
and F) Colony 863 on September 1, 2015. Adapted from Figure 8.5.

The foraging rates in Figures 3.1 and 3.2 are representative of the data collected

and suggest that both early morning transients and the QSS are important features

in the regulation of foraging in red harvester ants.
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3.3 Closed-Loop Excitable Model

Our model has three components, as shown in Figure 3.3 (see Section 8.2.2 for details):

Foraging

Interactions
Outgoing ForagersIncoming Foragers

NEST  
Response of

available foragers

+1i
int+2i

int i
int j

outt 1−j
outt

)t(s )t(outλ)t(inλ

Figure 3.3: Closed-loop model block diagram. Adapted from Figure 8.1.

1. Interactions: Models the stimulus s(t) received by the group of available for-

agers inside the nest entrance chamber from their interactions with food-bearing

incoming foragers. We use leaky-integrator dynamics to model s:

ṡ = −s
τ

+ kλin, (3.3)

where k > 0 determines the amount by which s increases with every incoming

forager and τ is the time constant for the exponential decay of s towards zero

at times when there are no incoming foragers.

2. Response of available foragers: Models the activation of available foragers to

leave the nest to forage in response to the accumulated evidence. We model

this through the variable v(t) representing the activation state of the group of

available foragers inside the nest entrance. We interpret every point in time at

which v increases above 0.75 from below as a forager leaving the nest. We model
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v as the fast timescale variable in the FitzHugh-Nagumo (FN) equations [103,

104]:

ε1ε2v̇ = v − v3/3− cu− a+ s (3.4)

ε1u̇ = v − cu, (3.5)

where ε2 � 1 defines the time separation between the dynamics of the fast

and slow states, ε1 � 1 defines the time separation between the FN dynamics

and the stimulus dynamics (3.3), a provides an offset to s, and c controls the

frequency of oscillations in the FN dynamics (see Section 3.4 for details and a

discussion of our modeling approach).3

3. Foraging: Models how active foragers collect seeds outside the nest. We define

the foraging time as the the total time elapsed from when a forager leaves the

nest to when it returns with food, and model it through a random variable

X with chi-square distribution with parameter D ∈ N representing the mean

foraging time in minutes. The chi-square distribution describes the distribution

of the sum of D random samples from the standard normal distribution [127]

and was selected based on field observations of foraging times [39].

Our model describes the process by which the sequence of incoming foragers λin

(Figure 3.4A) gets mapped by the interactions component to the stimulus s that the

group of available foragers inside the nest experience (Figure 3.4B). The response

of available foragers component then maps s into the activation state v which ex-

hibits oscillations whenever s is in the oscillating region of the FN (Figure 3.4C). We

interpret each oscillation as the activation of a forager and threshold v in order to

obtain the sequence of outgoing foragers λout (Figure 3.4D). Each outgoing forager in

3The FN equations eqs. (3.4) and (3.5) can be transformed into (2.16) by scaling time by 1/ε and
setting v = x1, u = x2, ε1 = 1, ε2 = ε, c = 1, and s = I.
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λout leaves the nest at a time toutj and becomes an incoming forager in λin at a time

tini = toutj +X.

0 2 4 6 8 10

0.0

0.5

1.0

1.5

t

 λ
in

(t
)

A

0 2 4 6 8 10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

t

s
(t
)

B

0 2 4 6 8 10

- 2

- 1

0

1

2

t

v
(t
)

C

0 2 4 6 8 10

0.0

0.5

1.0

1.5

t

 λ
o

u
t(
t)

D

Figure 3.4: Open-loop model. A) Sequence of incoming foragers λin. B) Stimulus
signal s associated with λin. C) FN output v for input s. D) Sequence of outgoing
foragers λout obtained by thresholding FN output from below at 0.75. Repeated from
Figure 8.2.

Throughout the rest of the chapter, we set k = 0.3, τ = 0.41, a = 0.35, ε1 =

0.2, and ε2 = 0.05. We selected the parameter values to allow for rich dynamical

behavior. We refer the reader to Section 8.3.2 for a discussion on our selection of

model parameter values.

3.4 Response of Available Foragers as an

Excitable System

We use the excitability dynamics of the FN model to represent the process by which

available foragers inside the nest entrance chamber become active and leave the nest

to forage. The FN model is a low-dimensional model for neuronal excitability, and
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our modeling choice is motivated by the many parallels between the ant-to-ant inter-

actions that drive foraging and the neuron-to-neuron interactions that underlie the

cognitive abilities of organisms [3,4,38,128,129]. In both cases, system units (i.e., ants

or neurons) accumulate evidence via interactions with neighbors. When the evidence

reaches a threshold, the unit activates.

The FN system is a well-studied excitable model for weakly-interacting groups of

neurons that captures mesoscopic-scale changes in neuronal activity in response to

stimuli [130,131]. In our model, we use the FN model to capture group level changes

in the activity of available foragers in response to stimuli in the form of interactions

with returning foragers.4

As described in Section 2.4.1, the FN equations describe an excitable system that

exhibits nonlinear oscillations when the input is larger than the first bifurcation value

b1 and smaller than the second bifurcation value b2, where b1,2 = a∓ 1
3
(1− cε2)3/2. In

our model, the stimulus s acts as the input to the FN equations. When s ∈ [b1, b2],

the activation state v exhibits short-lived spikes, and we interpret each spike as the

activation of an available forager inside the nest entrance chamber. When s > b2,

the activation state saturates and the oscillations stop. We use the saturation state

of the FN system to model overcrowding effects, the limited size of the nest entrance

tunnel, and the difference in timescales between the high outgoing rates, in seconds,

and the time required, in minutes, for foragers to move from the deeper chambers of

the nest up to the entrance chamber [37,132].

Remark 2. The non-static input in the FN model yields solutions that dynamically

pass through the Hopf bifurcation. When s crosses b2 from above, solutions are

characterized by a bifurcation delay in which v remains close to the saturation state

for an O(1) range of s after the Hopf bifurcation at s = b2. Similarly, when s

4The activation mechanism via the accumulation of evidence can also be interpreted in terms
of a complex contagion process in which the infective state is represented by the active state (i.e.,
foraging in ants or firing in neurons). We discuss the connection between excitability and complex
contagion in more detail in Chapter 6.
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crosses b1 from above, v continues to oscillate for an O(1) range of s after the Hopf

bifurcation at s = b1. We illustrate this delay in Figure 3.5. Analogous bifurcation

delays are observed when s crosses b1 and b2 from below. The delay is caused by

the v dynamics (3.4) being significantly slower near the bifurcation points, with the

implication that singular perturbation arguments based on the timescale separation

do not hold at these points (see [91] for an example of a bifurcation delay for the

pitchfork case).
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Figure 3.5: Bifurcation delay. As s(t) decays with time constant τ , v(t) crosses the
two Hopf bifurcations in the FN model. The activation state v enters the oscillating
region when s(t) = b2 and leaves the oscillating region when s(t) = b1. The dynamics
of v exhibit a bifurcation delay in which oscillations in v do not start for a range of
values s(t) < b2 and continue for a range of values s(t) < b1.

The parameter c > 0 in the FN equations (3.4) and (3.5) scales the negative

feedback, acting as a control parameter for the frequency of oscillations and the

range of values of stimulus s that lead to oscillations (See Section 8.5.1 for details).

The parameter c regulates how susceptible the group of available foragers inside the

nest is to the stimulus s.5

5The parameter ε1, ε2, and a also regulates susceptibility, but c does so in a more controlled way.
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Definition 3.4.1. The volatility of the available foragers inside the nest entrance

chamber is c > 0.

Remark 3. The volatility parameter c scales the cubic v-nullcline, changing the size

of the limit cycle in the oscillating region s ∈ [b1, b2]. Small values of c increase the

size of the limit cycle, leading to v(t) solutions that take longer to traverse the cycle

and, therefore, exhibit smaller oscillation frequencies. Large values of c decrease the

size of the limit cycle and lead to higher frequencies. We illustrate this in Figure 3.6

and refer the reader to Section 8.5.1 for details.
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Figure 3.6: Effect of volatility on FN dynamics. A. FN nullclines for c = 0.5, c = 1.0,
and c = 2.0. Volatility scales the cubic v-nullcline and modifies the slope of the linear
u-nullcline. B. FN limit cycle for for c = 0.5, c = 1.0, and c = 2.0. Volatility scales
the limit cycle and modulates the frequency of oscillations in v.

The dynamics of forager activation inside the nest take place in the three-

dimensional (s, v, u) phase space. When a forager returns to the nest, s jumps in

value by magnitude k and then decays at an exponential rate towards zero with time

constant τ . The time that s spends in the oscillating region [b1, b2] together with the

volatility c determine the number of oscillations in v, and, therefore, the number of

outgoing foragers. In Figures 3.7A, 3.7C, and 3.7E, we illustrate an example of a

solution in (s, v, u) phase space for an input s(t) that decays from s = 0.6 towards

zero with time constant τ for three different volatility values: c = 0.1, c = 1.0, and

c = 2.0. The planes s = 0 (magenta) and s = 0.6 (green) illustrate the upward shift
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in the v-nullcline as a function of s. Figures 3.7B, 3.7D, and 3.7F show the resulting

oscillations in v associated with Figures 3.7A, 3.7C, and 3.7E, respectively.
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Figure 3.7: Dynamics in the (s, v, u) phase space for a decaying stimulus ṡ = −s/τ ,
s(0) = 0.6. A. Phase space dynamics for c = 0.5. B. Time-series of v for c = 0.5. C.
Phase space dynamics for c = 1.0. D. Time-series of v for c = 1.0. E. Phase space
dynamics for c = 2.0. F. Time-series of v for c = 2.0.
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3.5 Volatility and Nest I/O Curves

The Interactions and Response of available foragers components of our model de-

scribe an open-loop model (Figure 3.8) which predicts the sequence of outgoing ants

λout with rate rout(t) generated by a given sequence of incoming ants λin with rate

rin(t). This prediction relies on the volatility parameter c, which determines how the

activation state v is affected by the stimulus s.{

Interactions
Outgoing ForagersIncoming Foragers

NEST  

Response of
available foragers

)t(s )t(outλ)t(inλ

{r̄in r̄out

Figure 3.8: Open-loop model block diagram. A sequence of incoming foragers λin
with mean incoming rate r̄in is mapped into the stimulus signal s via leaky-integrator
dynamics. The stimulus s then becomes the input to the FitzHugh-Nagumo model,
resulting in output oscillations in the activation state v. The oscillations are thresh-
olded from below to obtain the sequence of outgoing foragers λout with mean outgoing
rate r̄out.

Definition 3.5.1. The mean incoming foraging rate r̄in for a time period t ∈ [t1, t2]

where t2 > t1 ≥ 0 is equal to the number of incoming foragers tini ∈ [t1, t2] divided by

the length of the time period t2− t1. The mean outgoing foraging rate r̄out is similarly

defined.

We obtain an analytic approximation for r̄out given r̄in, parameterized by c:

r̄out =

∫ b2(c)

b1(c)

p(s, r̄in)

TLC(s, c)
ds, (3.6)

where TLC(s, c) is an approximation for the FN limit cycle period and p(s, r̄in) is the

probability density function of s at steady-state when λin is a homogeneous Poisson
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process with rate r̄in. We derive (3.6) in Section 8.5.3, TLC in Section 8.5.1, and p in

Section 8.5.4. We refer the reader to Section 8.3.2 for an overview of the derivations.

Using (3.6), we obtain open-loop input-output curves, called nest I/O curves,

that show how the analytic mapping from r̄in to r̄out depends nonlinearly on c (Fig-

ure 3.9A). The resulting curves agree with model simulations of the open-loop system

(Figure 3.9B) (See Section 8.3.2 for a discussion of the results).
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Figure 3.9: A) Analytical approximations for the nest I/O curves. B) Simulated
nest I/O curves for different values of c. Each pair of error bars correspond to 10
simulation trials, each 5 minutes long, with a constant expected incoming rate and
constant volatility c. The dashed black line represents points at which the mean
incoming rate r̄in is equal to the mean outgoing rate r̄out. Repeated from Figure 8.6.

We distinguish two different cases for the nest I/O curves. The first case corre-

sponds to small volatility values for which the nest I/O curve lies on or below the

black diagonal dashed line where r̄in = r̄out (e.g., c = 0.1 and c = 0.5). The second

case corresponds to high volatility values for which the nest I/O curve lies above the

diagonal line for low r̄in values, and below the diagonal line for high r̄in values (e.g.,

c = 1.0 to c = 5.0). The nest I/O curves in the second case intersect the diagonal

line at either the origin, or at a positive rate bounded away from zero.
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3.6 Stable Foraging Rates through Feedback

The closed-loop model (Figure 3.3) describes the feedback process by which λin maps

to λout (via the open-loop dynamics shown in Figure 3.8), and λout maps to λin at a

later time via the foraging dynamics outside the nest.

Under the assumption that λout(t) is a non-homogeneous Poisson process, the

dynamics outside the nest that map λout maps to λin at a later time are analogous

to the dynamics of a M(t)/F/∞ queue, where F is the chi-square foraging time

distribution (see 8.7 for an expression for F ). Foragers play the role of customers in

search of a service (finding a seed). The number of servers is infinite since foragers

do not wait before they start searching for a seed. The service time is given by the

random foraging time X.

We leverage results from Queueing Theory for M(t)/F/∞ queues in order to

reduce the study of the closed-loop model dynamics (Figure 3.3), across minutes-

to-hours timescales, to the study of the discrete iterated mapping rn = Gc(rn−1)

where rn represents the mean foraging rate at time step n and rn−1 represents the

mean foraging rate at time step n − 1 (see Section 8.3.2 for details). The mapping

Gc : R≥0 → R≥0 is defined by the c-dependent nest I/O curves shown in Figure 3.9,

and describe the process by which rin becomes rout through the dynamics of forager

activation inside the nest, and rout becomes rin at a later time.

The points at which Gc (i.e., the nest I/O curves in Figure 8.6) intersect the

diagonal line correspond to a stable steady-state of the iterated mapping. Thus, the

intersection points correspond to an equilibrated steady-state foraging rate in the

closed-loop model dynamics where rin(t) = rout(t). This steady-state is analogous to

the QSS observed in the data and we refer to it as the QSS. When Gc lies below the

diagonal line where rin = rout, iterations of Gc decrease r. When Gc lies above the

diagonal line, iterations of Gc increase r (Figure 3.10A). For volatilities where the nest
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I/O curve lies on or below the r̄out = r̄in diagonal (e.g., c = 0.1 and c = 0.5), Gc has a

small interval of fixed points close to the origin. This results in the closed-loop model

dynamics converging to a trivial steady-state with rate close to zero. In contrast,

for volatilities where the nest I/O curve lies above the diagonal for low r̄in values

(e.g., c = 2 to c = 5.0), the closed-loop model dynamics converge to a QSS with rate

bounded away from zero. Simulations of the closed-loop system match the analytical

predictions (Figure 3.10B). We initialize the foraging dynamics by setting λin from

t = 0 to t = 60 × (D + 1) seconds to be equal to the initial sequence of incoming

foragers for Colony 859 on August 20, 2017, which has the very low mean incoming

rate of 0.01 ants/sec during the first 15 minutes (see Section 8.3.2 for details).
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Figure 3.10: Closed-loop model dynamics. A. Red, purple, and blue curves show
closed-loop trajectories of rout(t) versus rin(t) for fixed volatility c equal to 5.0, 2.0, and
0.1, respectively. B. Closed-loop model simulations for 7 different values of volatility
c. The initial sequence of incoming foragers for all simulations was set equal to the
sequence of incoming foragers recorded during the first 11 minutes for Colony 859 on
August 20, 2017 which has a mean incoming rate of 0.01 ants/sec. The total time for
all simulations was 3 hours. The mean foraging time was set to 10 minutes (D = 10).
The corresponding curves for c = 0.1 and c = 0.5 are not visible as they lie near the
origin for all time. Adapted from Figures 8.7 and 8.8.

Furthermore, this implies that there exists a critical value c∗ such that if c >

c∗, there is an isolated steady-state away from the origin (i.e., the QSS) and the

colony forages, and if c < c∗, the steady-state remains close to the origin, which
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we interpret as the colony deciding not to forage (Figure 3.11). Through numerical

analysis of (3.6), we find the upper bound ĉ > c∗, where ĉ = 0.5287 (see Section 8.3.2

for details).
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Figure 3.11: Analytical magnitude of the quasi steady-state (QSS) foraging rate as
a function of the volatility c obtained from numerically solving eq. (3.6). Repeated
from Figure 8.8A.

3.7 Volatility Adjustments as an Adaptation

Mechanism

The closed-loop model dynamics show that the fast dynamics of forager activation

inside the nest, in combination with the slow dynamics of foraging outside the nest,

lead to a stable steady-state foraging rate where rin(t) = rout(t) (i.e., the QSS). The

steady-state rate is set by the volatility parameter c. These dynamics capture the

initial transient and the QSS observed in field observations, but cannot explain the

range of foraging behaviors observed in the data across different environmental con-

ditions. As a step towards the development of refined hypotheses on the mechanisms

that colonies use to exhibit flexible collective behavior, we propose a mechanism for

colony response to conditions in which the volatility of foragers changes after a first

exposure to the environment during their first foraging trip (Figure 3.12). We set
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the total number of foragers in the system to N and group available foragers in the

nest entrance chamber into two sets: uninformed foragers who have not left the nest,

and informed foragers who have. We represent the uninformed group with an FN

model with volatility cu and the group of informed foragers with an FN model with

volatility ci. We let cu be the nominal excitability of the colony and fix ci according

to the environmental conditions. High ci values represent cool and humid conditions

while low ci values represent hot and dry conditions (see Sections 8.2.2 for details).

Foraging

NEST  

Response of

uninformed

available foragers

Interactions

Response of

informed

available foragers

cu

ci

)t(s)t(inλ )t(outλ

)t(iλ

)t(uλ

Outgoing Foragers

    

Incoming Foragers

    

+

Figure 3.12: Block diagram of proposed mechanism for response of colony to en-
vironmental conditions. The available foragers inside the nest comprise two sets:
uninformed foragers that have not yet left the nest and so are uninformed about the
conditions outside the nest, and informed foragers who have left the nest and therefore
are aware of the conditions. The response of each set to s is represented by a different
FN model, distinguished by the volatility parameter cu for the uninformed and ci for
the informed. The outputs of these two oscillator dynamics are weighted probabilis-
tically using thinning to get an outgoing stream of foragers λout(t). Repeated from
Figure 8.3.

We extend our open-loop results for r̄out in (3.6) to the open-loop model with the

adaptation mechanism:

r̄out = xu

∫ b2(cu)

b1(cu)

p(s, r̄in)

TLC(s, cu)
ds+ xi

∫ b2(ci)

b1(ci)

p(s, r̄in)

TLC(s, ci)
ds,
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where xu is the fraction of uninformed foragers inside the nest and xi is the fraction

of informed foragers, i.e., xu + xi = 1.

Similarly, we extend our closed-loop results by considering the iterated mapping

as it evolves in time Gc(t), from an initial mapping Gc(t0) = Gcu with volatility cu to

a final mapping Gc(∞) = Gci with volatility ci.

The intuition behind the adaptation mechanism is illustrated in Figure 3.13. At

the start of the day, the colony behaves as a colony with volatility cu. As the fraction

of informed foragers in the nest increases, the volatility of the colony slowly shifts

towards ci. The colony behaves as a colony with volatility ci once all foragers have

been outside, i.e., xi = 1. The light and dark green curves show examples of this

transition for cu = 5.0. For the light green curve ci = 2 � c∗ leading to a solution

that converges to a QSS. For the dark green curve, ci = 0.1� c∗ leading to a solution

that exhibits a “loop” behavior (similar to that observed in Figure 3.2F) in which

the foraging rates reach a maximum before decaying to a trivial rate close to zero,

leading to the end of the foraging process.

3.8 Simulations

Figure 3.14 show three example simulations of the closed-loop model with the adapta-

tion mechanism. In each case, we initialized the foraging dynamics as in Figure 3.10B

and selected parameter values D,N, ci and cu to match the resulting foraging rates

to the observed rates in Figure 3.2 (see Section 8.3.2 for details). The fractions of

informed foragers xi and uninformed foragers xu were updated over time as described

in the legend of Figure 3.12.
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Figure 3.13: Illustration of the response of foraging rates to environmental conditions.
Red, purple, and blue semitransparent curves show closed-loop trajectories of rout(t)
versus rin(t) for fixed volatility c equal to 5.0, 2.0, and 0.1, respectively. Initially, all
available foragers are uninformed about the environment and have volatility cu = 5.0.
The light green curve shows the dynamics in the case when foragers exposed to the
environment reduce their volatility to ci = 2.0, as might happen on a moderately hot
and dry day. The dark green curve shows the dynamics in the case when foragers
exposed to the environment reduce their volatility to ci = 0.1, as might happen on a
very hot and dry day. Adapted from Figure 8.7.

3.9 Dynamics of the Closed-Loop Model with

Adaptation Mechanism

The dynamics of the closed-loop model with adaptation mechanism shown in Fig-

ure 3.12 are determined by the system parameters: k, τ , D, N , ci, and cu (see

Section 8.3.2 and Tables 3.1 and 3.2 for details). We choose k and τ to exhibit rich

dynamics in the model, while the parameters D and N can be selected to affect the

timing of the dynamics. The volatilities cu and ci control the transient and steady-

state dynamics.

We identify four foraging behavioral regimes in the closed-loop model dynamics

with the adaptation mechanism. Each regime has qualitatively distinct transient

and steady-state properties. These behaviors are characterized by the values of the

uninformed volatility cu, the informed volatility ci, and the initial foraging rates:
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Figure 3.14: Simulations of the closed-loop model with the adaptation mechanism.
Plots are of the same form as in Figure 3.2, and qualitative comparisons can be made
between A and B here and Figure 3.2A and B, between C and D here and Figure 3.2C
and D, and between E and F here and Figure 3.2E and F. A) and B) cu = 3, ci = 0.9,
N = 500, D = 5. C) and D) cu = 3, ci = 0.75, N = 200, D = 5. E) and F) cu = 5,
ci = 0.02, N = 600, D = 15. Adapted from Figure 8.9.

1. Trivial foraging (cu � c∗ and ci � c∗): For any initial foraging rates, the rates

decrease and converge to a rate close to zero. This follows from the mapping

Gc lying below the diagonal for any r̄in bounded away from zero if c � c∗.

Therefore, the mappings Gcu and Gci lie below the diagonal line and iterations

of the mapping Gc(t) for all t > 0 decrease r. The Trivial Foraging behavior

is analogous to the closed-loop model dynamics without adaptation mechanism
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Table 3.1: States of the closed-loop model with adaptation mechanism.

State Description
λin sequence of incoming foragers
λout sequence of outgoing foragers
rin incoming foraging rate
rout outgoing foraging rate
s available foragers’ stimulus
v fast FN state (avtivation state)
u slow FN state
xi fraction of informed available foragers
xu fraction of uninformed available foragers

Table 3.2: Parameters of the closed-loop model with adaptation mechanism.

Parameter Description
k stimulus gain constant
τ stimulus time constant
ε1 time separation between FN and s dynamics
ε2 time separation between v and u
a stimulus offset
D mean foraging time
N total number of foragers
ci informed volatility
cu uninformed volatility

when c < c∗. For example, in Figure 3.10B, the curves for c = 0.1 and c = 0.5

are not visible because the remain near the origin for all time.

2. Steady-state foraging (cu � c∗ and ci � c∗): For any initial foraging rates,

the rates converge to a steady-state where rin(t) = rout(t) bounded away from

zero. This follows from the mapping Gc lying above the diagonal line for low

r̄in values, below the line for high r̄in values, and intersecting the line at a rate

r∗ bounded away from zero, if c � c∗. Therefore, the mappings Gcu and Gci

are as describe above and iterations of the mapping Gc(t) for all t > 0 move r

towards the diagonal line. Once all foragers have become informed, the solution
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converges to the QSS given by the mapping Gci . See Figures 3.14A and 3.14C

for an example of the Steady-State Foraging regime.

3. Loop foraging (cu � c∗, and ci � c∗): For low initial foraging rates, the rates

initially increase, reach a maximum value, and then decrease to a rate close to

zero. This follows from the system initially behaving according to the mapping

G(t0) = Gcu , which lies above the diagonal for low r̄in values. This leads to an

initial transient that increases the foraging rates. As the number of informed

foragers increases, the mapping G(t) goes to Gci , which lies below the diagonal

for any r̄in bounded away from zero, leading to foraging rates that decrease with

time and converge to a rate close to zero. See Figure 3.14E for an example of

the Loop Foraging regime.

4. Delayed foraging (cu � c∗ or cu ≈ c∗, and ci � c∗): The rates remain close

to zero for a period of time before eventually increasing towards a steady-state

where rin(t) = rout(t) bounded away from zero. The initial decay in the foraging

rates follows from the condition for cu, which implies that near the initial time,

the number of informed foragers in the nest increases at a slow rate. That is,

the dynamics of Gc(t) from Gcu to Gci are very slow. Over a sufficiently long

period of time, the number of informed foragers reaches a critical mass and the

foraging rates begin to increase. As they increase, the rate at which foragers

become informed increases, leading to a positive feedback. Once all foragers

have become informed, the solution converges to the QSS given by the mapping

Gci . See Figure 3.15A for an example of the Delayed Foraging regime.

When ci and/or cu are close to c∗, the model dynamics are significantly affected by

the stochasticity in the sequence of incoming and outgoing foragers. In these cases,

the dynamics of the closed-loop model with adaptation may exhibit responses that

do not fall into one of these four regimes.
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Figure 3.15: Delayed foraging. A. Simulation of the closed-loop model with the
adaptation mechanism with cu = 0.9, ci = 1.0, N = 1000, and D = 5. B. Foraging
rates for Colony 859 on August 20, 2017. Adapted from Figures 8.11 and 8.14.

Each one of the four behavioral regimes have analogues in the data. The trivial

foraging regime is comparable to cases in which colonies do not forage, the steady-state

foraging regime is comparable to cases in which the foraging rates reach a QSS (such

as those shown in Figures 3.2A and 3.2C), the loop foraging regime is comparable

to cases such as the one shown in Figure 3.2E, and the delayed foraging regime is

comparable to cases such as the one shown in Figure 3.15B.

3.10 Concluding Remarks

In this Chapter we derived and analyzed a low-dimensional model for the regulation of

foraging in red harvester ants. We proved that the inclusion of feedback from foragers

returning to the nest leads to the emergence of a stable equilibrated foraging rate

where rin = rout. The model captures the range of foraging behaviors observed in the

field through a small number of parameters. Particularly, we prove that the volatility

parameter c controls the initial transient in rin and rout, parameterizes the magnitude

of the equilibrated foraging rate, and predicts the early cessation of foraging or no

foraging at all for c below the critical threshold c∗. We showed how a change in

volatility as foragers first become exposed to the environmental conditions outside the
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nest can account for the observed foraging behavior under different temperature and

humidity values. Finally, we categorized the range of observed foraging behaviors into

four distinct behavioral regimes characterized by the value of the informed volatility

ci and the uninformed volatility cu.

Our results suggest that the foraging behavior of the colony can be regulated in

the presence of different environmental conditions through the accumulated response

of the individual foragers to the conditions. The adjustments in volatility at the

forager level slowly change the volatility of the colony, modulating the response of

the colony to stimulus and regulating foraging activity. Through the adjustments in

volatility, the colony can achieve a robust foraging rate that is flexible in response to

different conditions.
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Chapter 4

Adaptive Susceptibility in

Well-Mixed Reinfection Models

In this chapter we study the SIRI epidemiological model in well-mixed settings. The

model considers a large group of individuals that interact with each other, where the

susceptibility of individuals change after a first exposure to the infection. Related

models have been studied in [133, 134] to study the role of partial immunity in the

spread of contagious diseases across populations. We perform an exhaustive analysis

of the SIRI model dynamics and consider cases beyond that of partial immunity. We

prove the existence of four different dynamical regimes in the model: infection-free,

endemic, epidemic, and bistable. As far as we know, this is the first such analysis of

its kind.

Our study of the SIRI model is motivated by the results presented in Chapter 3.

We have shown that adaptations in susceptibility in response to a first exposure to

the environment are sufficient to provide harvester ant colonies with the ability to

regulate foraging behavior in response to different environmental conditions. Here, we
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generalize this idea to epidemiological settings, where we consider a spreading process

and individuals that adjust their susceptibility to the process after a first exposure.

Sections 4.1-4.3 summarize results from Part II: Chapter 9, which appears as

Pagliara, Dey, and Leonard [57]. In Section 4.1 we introduce the SIRI model in

well-mixed settings. In Section 4.2 we perform a stability analysis of the equilibria

and introduce the notion of the basic infection and basic reinfection reproduction

numbers. In Section 4.3 we show that the basic reproduction numbers distinguish

four distinct behavioral regimes: Infection-free, endemic, epidemic, and bistable. We

show that in the bistable regime, there exists a critical initial condition below which

the infection dies out and above which it spreads. Solutions that reach the endemic

equilibrium exhibit a resurgent epidemic in which the fraction of infected individuals

initially decays, reaches a minimum and then grows towards an endemic equilibrium

where there are always infected individuals. In addition, we show that the initial

conditions can be selected such that the resurgent epidemic spends an arbitrarily

long period of time close to zero before resurgence.

In Section 4.4 we prove new results, not published in [57] of Chapter 9, showing

that the behavioral regimes in the SIRI model are explained by the existence of a

transcritical bifurcation without parameters with drift singularity.

4.1 Well-mixed SIRI model

We consider a large population of individuals, where each individual can be in any

of the following three states: susceptible (S), infected (I), or recovered (R). Suscep-

tible individuals become infected with rate β through contact with already infected

individuals. Infected individuals recover with rate δ. Recovered individuals become

reinfected with rate β̂ through further contact with already infected individuals.
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S+I
β

I+I
β̂

R+I

I
δ

R

(4.1)

We assume that interactions between any two individuals occur with the same prob-

ability, and study the resulting well-mixed model (see Section 1.2.1):

ẋS = −βxSxI

ẋI = βxSxI + β̂xRxI − δxI

ẋR = −β̂xRxI + δxI ,

(4.2)

where xS, xI , and xR represent the fractions of population that belong to the suscep-

tible, infected, and recovered states, respectively.

The SIRI model dynamics describe a family of models which can be categorized

into five different cases, where each case considers individuals that adapt in particular

ways after a first exposure to the infection:

1. Setting δ = 0 and redefining xS as xS + xR reduces the SIRI model to the SI

model. Infected individuals do not recover.

2. Setting β̂ = 0 reduces the SIRI model to the SIR model. Recovered individuals

gain full immunity after a first exposure.

3. Setting β = β̂ and redefining xS as xS + xR reduces the SIRI model to the SIS

model. Recovered individuals gain no immunity and become infected at the

same rate as susceptible individuals.

4. Setting 0 < β̂ < β reduces the SIRI model to a partial immunity model in which

individuals become less susceptible to the infection after first exposure.
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Table 4.1: Special cases of the SIRI model. Repeated from Table 9.1

Parameter Value Equivalent Model Immunity Condition

β̂ = 0 SIR Full Immunity

0 < β̂ < β — Partial Immunity

β̂ = β SIS No Immunity

β < β̂ <∞ — Compromised Immunity
δ = 0 SI No Recovery

5. Setting β < β̂ <∞ reduces the SIRI model to a compromised immunity model

in which individuals become more susceptible to the infection after first expo-

sure.

Table 4.1 highlights how the special cases of the SIRI model fall along a spectrum

of immunity.

The dynamics of well-mixed epidemiological models usually depend on the basic

reproduction number, defined as the average number of infections caused by a single

infected individual (see Section 1.2.1). In the SIRI model, the basic reproduction

number depends on whether the infected individual interacts with susceptible or with

recovered individuals.

When there are no individuals who have been previously exposed to the infec-

tion, the SIRI model initially behaves as the SIS model with infection rate β. As

infected individuals recover, the system dynamics slowly transition towards a model

that behaves as the SIS model with infection rate β̂.

Definition 4.1.1. The basic infection reproduction number is R0 = β/δ. The basic

reinfection reproduction number is R1 = β̂/δ.

The basic infection reproduction number R0 represents the average number of

infections caused by a single infected individual in a population of susceptible indi-

viduals, while the basic reinfection reproduction number R1 represents the average

number of reinfections caused by a single infected individual in a population of re-

covered individuals (see Section 9.3.1 for details).
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4.2 Equilibria and Stability Analysis

The dynamics of the SIRI model (4.2) evolve on the 2-simplex ∆2 = {(xS, xI , xR) ∈

[0, 1]3|xS + xI + xR = 1}. Using the substitution xR = 1 − xS − xI , we obtain the

reduced model

ẋS = −βxSxI

ẋI = (β̂ − δ)xI + (β − β̂)xSxI − β̂x2
I .

(4.3)

The equilibria of (4.3) consists of a continuum of infection-free equilibria, and an

isolated endemic equilibrium point:

1. Infection-Free Equilibria (IFE): xS = x∗S, xI = 0,

2. Endemic Equilibrium (EE) (only if β̂ > δ): xS = 0, xI = 1− δ/β̂.

The IFE forms a line of equilibria in which, at every point on the line, there are no

infected individuals. The EE corresponds to an equilibrium in which every individual

is either in the infected or recovered state.

The Jacobian at the EE and at an arbitrary point in the IFE are given by

JEE =

 −β(β̂ − δ)/β̂ 0

(β − β̂)(β̂ − δ)/β̂ −(β̂ − δ)

 , JIFE =

0 −βx∗S
0 (β − β̂)x∗S + β̂ − δ

 . (4.4)

The Jacobian JEE, when the EE exists, has two negative eigenvalues, from which

we get the following result:

Lemma 1 ( [57]). The EE is an equilibrium point of (4.3) if and only if R1 ≥ 1.

Moreover, the EE is locally stable.

At every point xS = x∗S, xI = 0 in the IFE, JIFE has a zero eigenvalue with

eigenvector [1, 0]T , corresponding to the direction of the line of equilibria xI = 0,

and a second eigenvalue (β − β̂)x∗S + β̂ − δ with eigenvector [0, 1]T corresponding
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to a direction transverse to xI = 0. As long as this transverse eigenvalue is not

equal to zero, the point in the IFE is normally hyperbolic. Normal hyperbolicity

implies that the stability of the point xS = x∗S, xI = 0 is given by the sign of the

transverse eigenvalue (see Section 2.1 for details). At x∗S = (1 − R1)/(R0 − R1),

the IFE subspace xI = 0 loses normal hyperbolicity through a bifurcation without

parameters. We explore this in more detail in Section 4.4.

Definition 4.2.1. The IFE bifurcation point is M = (1−R1)/(R0 −R1).

Lemma 2 ( [57]). The following holds true for the IFE:

1. If R0 < 1 and R1 < 1, then all points in the IFE are locally stable.

2. If R0 > 1 and R1 > 1, then all points in the IFE are unstable.

3. If R0 > 1 and R1 ≤ 1, points in the IFE with x∗S < M are locally stable and

points with x∗S > M are unstable.

4. If R0 ≤ 1 and R1 > 1, points in the IFE with x∗S > M are locally stable and

points with x∗S < M are unstable.

4.3 Global Dynamics and Basic Reproduction

Numbers

The dynamics of xS in (4.3) are monotonic decreasing, preventing the SIRI model

from exhibiting non-trivial periodic orbits.

Lemma 3 ( [57]). The SIRI model does not exhibit non-trivial periodic orbits on ∆2.

Lemma 3 implies that any solution starting on ∆2 must end at either a point in

the IFE or the EE. As shown in Section 4.2, the local stability of points in the IFE

and the EE are determined by the values of R0 and R1. It follows that the dynamics

of the SIRI model (4.3) are determined by the values of R0 and R1.
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Theorem 1 (Behavioral Regimes of SIRI [57]). Given an initial condition xI = xI0,

xS = 1−xI0, where 0 < xI0 < 1, the SIRI model (4.3) exhibits four different dynamical

behaviors:

1. Infection-Free: If R0 < 1 and R1 < 1, then all solutions reach a point in the

IFE as t→∞, and xI decays monotonically to zero.

2. Endemic: If R0 > 1 and R1 > 1, then all solutions reach the EE as t→∞.

3. Epidemic: If R0 > 1 and R1 ≤ 1, then all solutions reach a point in the

IFE as t → ∞ and, at equilibrium, x∗S < M . For initial conditions where

xI0 ≥ (β − δ)/β, xI decays monotonically to zero. While for initial conditions

where xI0 < (β − δ)/β, xI grows initially and reaches a maximum value:

xmaxI =
R0 −R1

R1(RR0
0 (1− xI0)R1)1/(R0−R1)

+
R1 − 1

R1

,

before decaying to zero as t→∞.

4. Bistable: If R0 ≤ 1, R1 > 1, then xI decays initially. Moreover, there is a

critical initial fraction of infected individuals

xIC = 1−M(R0M)
−R0

R1 . (4.5)

Solutions with initial condition xI0 < xIC reach a point in the IFE as t → ∞

and xI decays monotonically to zero. Solutions with initial conditions xI0 > xIC

reach the EE as t→∞.

Figure 4.1 summarizes the results of Theorem 1. In each quadrant of the R0,

R1 parameter space, we show a simulation of the corresponding dynamics on ∆2.

The bottom boundary of ∆2 represents the IFE. The solid blue and dashed red lines

correspond to locally stable and unstable points in the IFE, respectively, as described
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Figure 4.1: The four different behavioral regimes of the SIRI model plotted on ∆2.
The four plots are arranged in the R0, R1 parameter space to illustrate the four
corresponding regimes. Bistable regime: R0 = 0.5, R1 = 1.5, xI(0) = 0.15, 0.30.
Endemic regime: R0 = 1.5, R1 = 2.0, xI(0) = 0.05. Infection-free regime: R0 = 0.75,
R1 = 0.25, xI(0) = 0.45. Epidemic regime: R0 = 2.5, R1 = 0.25, xI(0) = 0.05.
Repeated from Figure 9.1.

in Lemma 2. The thinner black lines are example trajectories of solutions with initial

conditions where xS(0) = 1 − xI(0). We highlight the bistability phenomenon by

showing two trajectories, corresponding to a trajectory with xI0 = 0.15 that reaches

a point in the IFE and a trajectory with xI0 = 0.3 that reaches the EE.

Remark 4. The transient dynamics in the infection-free and endemic regimes depend

on the ratio R0/R1. When R0/R1 > 1 recovered individuals become partially immune

to the infection and as xR increases, the rate at which the infection spreads through

the population decreases, leading to concave trajectories in ∆2. In contrast, when

R0/R1 < 1, recovered individuals become more susceptible to the infection and as

xR increases, the rate of change of xI accelerates, leading to convex trajectories in
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Figure 4.2: Two distinct cases of transient dynamics in the endemic regime (see
Remark 4)

.

∆2. Figure 4.2 provides an example for these two types of trajectories in the endemic

regime.

Remark 5. The behavioral regimes defined in Theorem 1 provide analytical predic-

tions on the behavior of solutions in any of the cases described in Table 4.1. Figure 4.3

illustrates this point by coloring the different regions of the R0, R1 parameter space

according to the type of immunity that a model in that region would exhibit. Note

that the SIS case is represented by a dashed diagonal line where R0 = R1, while the

SIR case is represented with a dashed line where R1 = 0.

4.3.1 Resurgent Epidemics

When R0 < 1 the infection cannot spread in a population of susceptible individuals.

As a result, the fraction of infected individuals xI decays near the initial time t =

t0. However, if R1 > 1, the infection can subsequently spread in the population of

recovered individuals. Here we show that solutions in the bistable regime (R0 ≤ 1,

and R1 > 1) that reach the EE as t → ∞ exhibit a resurgent epidemic in which xI

reaches a minimum value at some time t = tmin before increasing towards the EE.

Moreover, we show that as the difference between the initial condition xI(0) = xI0
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Figure 4.3: The SIRI behavioral regimes describe the possible behaviors of solutions
in models with different types of immunity. Adapted from Figure 9.1.

and the critical initial condition xIC goes to zero, xI spends an arbitrarily long period

of time near zero before rapidly increasing towards the EE.

Theorem 2 (Resurgent Epidemic [57]). Consider a solution in the bistable regime

with initial condition xIC < xI0 < 1 such that the solution reaches the EE as t→∞.

For that solution, the fraction of infected individuals decreases initially, reaches a

minimum value

xminI =
R0 −R1

R1(RR0
0 (1− xI0)R1)1/(R0−R1)

+
R1 − 1

R1

,

and then increases until it reaches the EE.

Theorem 3 (Time to Resurgence [57]). Consider a solution in the bistable regime

that exhibits a resurgent epidemic. The time to resurgence tRS = tmin − t0 satisfies
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the lower bound

tRS ≥
log xI0 − log xminI

δ − β ,

where t0 is the initial time and tmin is the time at which xI = xminI . Moreover,

tRS →∞ as xI0 − xIC → 0+.

Figure 4.4 shows a simulation that exhibits resurgent epidemics with β = 0.5,

δ = 1, and β̂ = 1.5. The initial fraction of infected individuals xI0 was set to 0.207.

The infection decays at first, reaching a value close to zero after 20 time units. The

infection stays close to zero for over 350 time units before increasing towards an

endemic state where xI = 0.33. The critical initial conditions for this system is

xIC = 0.206. In Figure 4.5 we show the time to resurgence and the bound presented

in Theorem 3 against xI0 for the same system.

Time

Sx

Ix

Rx

Figure 4.4: Resurgent epidemic for β = 0.5, δ = 1, β̂ = 1.5, and xI0 = 0.207.
Repeated from Figure 9.2.

4.4 Well-Mixed SIRI Bifurcations

In this section we show an alternative analysis of the SIRI model dynamics (4.3)

using both classical bifurcations and bifurcations without parameters (see Sections 2.2

and 2.3). We first analyze the SIS case R0 = R1 and show that the SIS model exhibits
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S

t

0Ix

Figure 4.5: Numerical simulations (solid) and lower bound in Theorem 3 (dashed) for
time to resurgence tRS versus initial condition xI0 for β = 0.5, δ = 1, β̂ = 1.5. The
dotted line shows the critical initial condition xIC = 0.206. Repeated from Figure 9.3

a transcritical bifurcation at R0 = 1. We then analyze the case R0 6= R1 and show

that, at the bifurcation point x∗S = M , xI = 0, the SIRI model dynamics (4.2) exhibit

a transcritical bifurcation without parameters with drift singularity.

4.4.1 Transcritical Bifurcation

Assume R0 = R1. Renaming xS + xR as xS, and using xS = 1 − xI , the SIRI

model (4.2) reduces to the SIS model:

ẋI = (β − δ)xI − βx2
I .

Letting µ = β − δ = δ(R0 − 1), puts (4.4.1) in the transcritical bifurcation normal

form xI = µxI − x2
I (see Section 2.2). Therefore, the system exhibits a transcritical

bifurcation at xI = 0, R0 = 1.
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4.4.2 Transcritical Bifurcation Without Parameters

Assume R0 6= R1. Then the SIRI model dynamics (4.2) satisfy conditions (TBWP1)–

(TBWP6) for the transcritical bifurcation without parameters with drift singularity

at the point xS = M , xI = 0, with bifurcation parameter µ = R0(R1 − 1):

• (TBWP1) The system has a line of equilibria at xI = 0.

• (TBWP2) The transverse eigenvalue of JIFE (see (4.4)) is zero at x∗S = M .

• (TBWP3) For all parameter values, β, β̂, δ > 0 where β 6= β̂, the transverse

eigenvalue crosses zero with nonvanishing speed as x∗S increases,

∂2ẋI
∂xS∂xI

(M, 0) = β − β̂ = δ(R0 −R1). (4.6)

• (TBWP4) and (TBWP5) The non-degeneracy condition fails when µ = 0:

∂ẋS
∂xI

(M, 0) = −β δ − β̂
β − β̂

= δ
R0(R1 − 1)

R0 −R1

= δ
µ

R0 −R1

. (4.7)

• (TBWP6) The non-degeneracy condition for the bifurcating equilibrium is sat-

isfied:

∂2ẋS
∂µ∂xI

(M, 0) =
1

β − β̂
=

1

R0 −R1

.

Moreover, we can put the SIRI dynamics (4.3) into the normal form for the tran-

scritical bifurcation without parameters with drift singularity in two steps. First, we

shift the coordinates of (4.3) to place the origin at the bifurcation point (M, 0),

˙̄xS = −xIδR0(x̄S +M)

ẋI = xIδ
(
(R0 −R1)x̄S −R1xI

)
.
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where x̄S = xS −M . Second, we scale time by δ by introducing the variable τ = tδ,

and apply the coordinate transformation y = xI , z =
(
(R0−R1)x̄S−R1xI

)
to obtain

the normal form

dy

dτ
= yz

dz

dτ
= −R0R1y

2 − (R0 +R1)yz +R0(R1 − 1)y. (4.8)

In the normal form (4.8), the IFE line of equilibria is now given by (0, z), while

the EE is given by the equilibrium at (0, R0(R1 − 1)/R0R1). As R1 increases, the

location of the EE shifts along the z-axis. Figure 4.6 summarizes the results of this

section. In each quadrant of the R0, R1 parameter space, we show a simulation of

the corresponding phase portrait of (4.8). The gray triangles represent the region

of the phase portrait corresponding to ∆2. Similar to Figure 4.1, solid blue lines

and dashed red lines correspond to locally stable and unstable points in the IFE,

respectively. The isolated equilibrium, corresponding to the EE, is represented as a

hollow circle if the equilibrium is unstable and as a black circle if the equilibrium is

stable. For µ < 0, or equivalently for R1 < 1, the equilibrium is an unstable node

and lies below the y-axis. For µ > 0, or equivalently for R1 > 1, the equilibrium is

a stable node and lies above the y-axis. For µ = 0, or equivalently for R1 = 1, the

equilibrium is degenerate and lies directly on the y-axis. In the bistable regime, we

denote the stable manifold of the bifurcation point (M, 0) in green and the unstable

manifold in magenta.

4.5 Concluding Remarks

In this Chapter we analyzed the SIRI model in well-mixed settings. We prove that the

SIRI model has a line of infection-free equilibria and an isolated endemic equilibrium.

Depending on the system parameters β, β̂, and δ, the infection-free equilibria is di-
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Figure 4.6: The four different behavioral regimes of the SIRI model plotted in the
phase space diagram of the transcritical bifurcation without parameters with drift
singularity normal form (4.8). The four plots are arranged in the R0, R1 parameter
space to illustrate the four corresponding regimes. The position of ∆N (dark gray
triangles) within the phase-space depends on the values of R0 and R1, which changes
the size of the stable (blue) and unstable (dashed red) regions of the IFE set. The
critical initial condition xIC in the bistable regime corresponds to the stable manifold
(green) of the bifurcation point (M, 0). The unstable manifold (magenta) of the
bifurcation point converges to the EE as t → ∞. Bistable regime: R0 = 0.5 and
R1 = 1.5. Endemic regime: R0 = 1.1 and R1 = 1.9. Infection-free regime: R0 = 0.1
and R1 = 0.8. Epidemic regime: R0 = 1.5 and R1 = 0.5.

vided into a stable and an unstable region. The transient and steady-state dynamics

of the SIRI model are characterized by the values of the infection reproduction num-
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ber R0 and the reinfection reproduction number R1 and can be categorized into four

behavioral regimes: infection-free, endemic, epidemic, and bistable. We proved that

in the bistable regime there exists a critical initial condition that separates solutions

where the infection dies out from solutions where the infection spreads and remains

endemic. Moreover, we showed that solutions in the bistable regime that go endemic

exhibit a resurgent epidemic where the fraction of infected individuals remains close

to zero for arbitrarily long periods of time. Finally, we showed that the four behav-

ioral regimes in the SIRI model can be explained by the existence of a transcritical

bifurcation without parameters with drift singularity.

Our results show that the transient and steady-state dynamics that describe how

the contagion process spreads through a population are captured by the two scalar

parameters R0 and R1. These parameters describe how individuals within the pop-

ulation adapt after a first exposure to the contagion and can be used to provide

straightforward predictions on the short and long term behavior of the group. The

existence of the bistable regime in the SIRI model suggests that it is possible to

design a contagion process such that it initially decays, avoiding detection, before

rapidly spreading through the population at a later time. Control strategies that

seeks to eradicate the contagion process from the population can prevent the resur-

gent epidemic by stopping the control effort only once it is absolutely certain that

the contagion has been completely eradicated.

92



Chapter 5

Contagion Processes on Networks

of Heterogeneous Agents with

Adaptive Susceptibility

In this chapter we study the SIRI epidemiological model on network topologies. The

model considers a contagion process that spreads across a population of two or more

interconnected individuals where the susceptibility of each individual changes after a

first exposure to the infection. We generalize results from Chapter 4 and show how

the interaction topology, represented by a strongly connected digraph, affects the

transient and steady-state dynamics of the contagion. Unlike the well-mixed SIRI

model studied in Chapter 4, individuals in the network SIRI model are not assumed

to be homogeneous. Different individuals may react differently in response to a first

exposure to the infection. Through the network SIRI model, we examine the role of

network structure as well as heterogeneity among individuals in infection, re-infection,

and recovery rates, in the spread of contagion processes. Our analytic results show

the effect that individual adaptations in susceptibility have on group behavior and
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provide design opportunities for multi-agent systems capable of robust and flexible

collective behavior.

Sections 5.1-5.6 summarize results from Part II: Chapter 10, which appears as

Pagliara and Leonard [58]. In Section 5.1 we introduce the network SIRI model.

In Section 5.2 we classify the network SIRI model into six cases and introduce the

notion of the basic and extreme basic reproduction numbers. In Section 5.3 we present

results for the stability of equilibria, with an emphasis on the stability of infection-free

points, which form a local manifold of equilibria. In Section 5.4 we show that the

basic and extreme basic reproduction numbers characterize four distinct behavioral

regimes: infection-free, endemic, epidemic, and bistable. These regimes are analogous

to the behavioral regimes of the well-mixed SIRI model in Chapter 4. In Section 5.5

we describe properties of the network SIRI model near points at which the infection-

free set of equilibria loses normal hyperbolicity. In Section 5.6 we present analytical

and numerical results for the bistable regime in the case of d-regular digraphs with N

agents and complete digraphs with two agents (N = 2). In Section 5.7 we discuss how

our results suggest the existence of a codimension-N transcritical bifurcation without

parameters with drift singularity in the network SIRI model.

5.1 From Markov Process to ODEs:

Individual-Based Mean-Field Approach

In this section we derive the network SIRI model, which considers a contagious pro-

cess with reinfection in a population of N agents (i.e, individuals). We consider a

digraph G = (V , E) with N nodes and adjacency matrix A = {ajk}. Each node j ∈ V

represents an agent and each directed edge (j, k) ∈ E represents an interaction chan-

nel between agents j and k, where j is susceptible to k but k is not susceptible to j.

I.e., k can infect j but j cannot infect k. If both (j, k) and (k, j) are in E , then agents
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j and k are susceptible to each other. The state of each agent is given by the random

variable Xj(t) ∈ {S, I, R}, where S, I and R correspond to “susceptible”, “infected”,

and “recovered”, respectively. Agents change state according to independent Poisson

processes with rates defined as follows: susceptible agent j becomes infected through

contact with infected neighbor k at the rate βjk = fjk(ajk) ≥ 0. Infected agent j

recovers from the infection at the rate δj ≥ 0. Recovered agent j becomes reinfected

through contact with infected neighbor k at the rate β̂jk = f̂jk(ajk) ≥ 0.1 These

transitions are summarized as:

Sj + Ik
βjk

Ij + Ik
β̂jk

Rj + Ik

Ij
δj

Rj.

Agents can become infected or reinfected by interacting with infected neighbors

only. That is, βjk = 0, and β̂jk = 0 if (j, k) /∈ E (i.e., ajk = 0). We assume that if

(j, k) ∈ E (i.e., ajk 6= 0), then βjk > 0 but β̂jk ≥ 0; we allow the susceptibility of j

to k to change after a first infection (by any infected neighbor of j) such that j is no

longer susceptible to k.

The contagion process as described above corresponds to a Markov process with

3N states. Here, we use the individual-based mean-field approach (IBMF) introduced

in Section 1.2.2 to derive a reduced model consisting of 3N continuous-time ODEs for

the probability pΩ
j of node j belonging to compartment Ω ∈ {S, I, R} at time t. The

IBMF approach is a mean-field approximation that assumes that the state of every

node in the network is statistically independent of the state of its nearest neighbors.

We refer the reader to [135, 136] for a discussion and numerical exploration of the

accuracy of mean-field approximations in network dynamics. We follow the IBMF

approach as described in the derivation of the network SIS model in [75,77]. We begin

1The functions fjk and f̂jk describe the relationship between the adjacency matrix entry ajk and

the infection rate βjk and reinfection rate β̂jk, respectively. For example, the relationship could be

linear: fjk = cjkajk, f̂jk = ĉjkajk for some cjk, ĉjk ∈ R.
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by examining the Markov process in more detail. We highlight that if solutions in an

IBMF model converge to an infection-free equilibrium, then the stochastic Markov

model reaches the infection-free absorbing state in sublinear time with respect to the

size of the network in expectation [74].

Definition 5.1.1 (Markov process transition rate [137]). For an agent j, the transi-

tion rate between any two states Ω1,Ω2 ∈ {S, I, R} where Ω1 6= Ω2 is

qjΩ1,Ω2
= lim

ε→0

P [Xj(t+ ε) = Ω2 |Xj(t) = Ω1]

ε
,

where P [·] denotes probability.

For the SIRI transitions summarized in 5.1, the possible transition rates are:

• qjSI =
∑N

k=1 βjk1Xj(t)=I , where 1x : x 7→ {0, 1} is the indicator function associ-

ated with the event x:

1x =


1 x is true

0 otherwise.

• qjIR = δj.

• qjRI =
∑N

k=1 β̂jk1Xj(t)=I .

Definition 5.1.2 (Infinitesimal Generator). For an agent j, the infinitesimal gener-

ator is

Qj =


−qjSI qjSI 0

0 −qjIR qjIR

0 qjRI −qjIR

 .
The transition rates in the infinitesimal generator Qj for node j are themselves

random variables that depend on the random state of the neighbors of j, which

themselves are coupled to the random state of their neighbors, etc. To simplify
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the transition rates, we replace the random infection transition rates qjS,I and the

reinfection transition rates qjR,I with “effective” infection and reinfection transition

rates

E[qjS,I ] =
N∑
k=1

βjkP [Xk = I] (5.1)

E[qjR,I ] =
N∑
k=1

β̂jkP [Xk = I] (5.2)

which results in the effective infinitesimal generator

Q̄i =


−E[qjSI ] E[qjSI ] 0

0 −qjIR qjIR

0 E[qjRI ] −E[qjRI ].

 (5.3)

The effective Q̄i allows us to proceed with Markov theory and define dynamic equa-

tions for the time evolution of the probabilities pSj , pIj , and pRj :

ṗSj =− pSj
N∑
k=1

βjkp
I
k

ṗIj =− δjpIj + pSj

N∑
k=1

βjkp
I
k + pRj

N∑
k=1

β̂jkp
I
k (5.4)

ṗRj =− pRj
N∑
k=1

β̂jkp
I
k + δjp

I
k.

We can reduce the number of equations from 3N to 2N by using the substitution

pRj = 1− pSj − pIj in (5.4):

ṗSj =− pSj
N∑
k=1

βjkp
I
k (5.5)

ṗIj =− δjpIj +
N∑
k=1

(
(1− pSj )β̂jk + pSj βjk

)
pIk − pIj

N∑
j=1

β̂jkp
I
k.
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The network SIRI dynamics (5.5) can be written in matrix form by defining the

vectors pΩ = [pΩ
1 , · · · , pΩ

N ]T for Ω ∈ {S, I}:

ṗS = −P SBpI

ṗI =
(
(I− P S)B̂ + P SB

)
pI − ΓpI − P IB̂pI , (5.6)

where PΩ = diag(pΩ), B = {βjk} � 0̄ is the infection matrix, B̂ = {β̂jk} � 0̄ is the

reinfection matrix, and Γ = diag(δ1, . . . , δN) � 0̄ is the recovery matrix.

In the remainder of this Chapter, we assume that Γ is non-singular and that B̂ is

irreducible. An irreducible B̂ implies that the graph GB̂, generated by interpreting B̂

as its adjacency matrix, is strongly connected. As a result, at any stage in the spread

of the contagion, there is a directed path connecting any two agents in the network

through which the infection can spread.

The reducible B̂ case depends on the results of the irreducible case. If B̂ is

reducible, then GB̂ is weakly connected or disconnected. If GB̂ is weakly connected, the

adjacency matrix of GB̂ can always be written as an upper block triangular matrix with

K diagonal irreducible blocks which describe the K strongly connected subgraphs of

G ( see [138] for a study of the reducible case in the network SIS model). If GB̂ is

disconnected, then each connected subgraph of GB̂ can be independently analyzed.

5.2 Classification and Reproduction Numbers

The network SIRI model can be classified as the following six different families of

models (summarized in Table 5.1) [quoted from [58]]:

• Case 1 (SI): When Γ = 0̄ the network SIRI model specializes to the

network SI model.
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• Case 2 (SIR): When B̂ = 0̄, the network SIRI model specializes to

the network SIR model.

• Case 3 (SIS): When B = B̂ the network SIRI model specializes to

the network SIS model with pS 7→ pS + pR.

• Case 4 (Partial Immunity): When B � B̂ � 0̄, every recovered agent

acquires partial (or no) immunity to each of its infected neighbors.

• Case 5 (Compromised Immunity): When B̂ � B � 0̄, every recov-

ered agent acquires compromised (or no) immunity to each of its

infected neighbors.

• Case 6 (Mixed Immunity): Models not in Cases 1-5. Notably, there

is at least one pair of edges (j, k) and (l,m) such that βjk ≥ β̂jk and

βlm < β̂lm. We classify mixed immunity into two sub-cases:

– Case 6a (Weak Mixed Immunity): For every agent j, βjk− β̂jk ≥

0 for all k ∈ Nj or βjk − β̂jk ≤ 0 for all k ∈ Nj.

– Case 6b (Strong Mixed Immunity): Mixed immunity that is not

weak.

Note that the first five cases (Cases 1-5) are analogous to the cases of the well-

mixed SIRI model described in (4.1). Case 6 showcases how, unlike the well-mixed

SIRI model, the network SIRI model can be used to study contagion processes in

networks of heterogeneous agents, where agents adapt differently to the infection

after a first exposure.

Previous work on the network SIS model [77,79,81]

ṗI = (B − Γ)pI − P IBpI , (5.7)

has shown that the steady-state behavior of solutions depends on the value of the

basic reproduction number R0 = ρ(BΓ−1) where ρ(·) is the spectral radius. If R0 ≤
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Table 5.1: Network SIRI model cases. Repeated from Table 10.1

Case Parameter Value Equivalent Model
1 Γ = 0̄ SI

2 B̂ = 0̄ SIR

3 B = B̂ SIS

4 B � B̂ � 0̄ Partial Immunity

5 B̂ � B � 0̄ Compromised Immunity
6 Otherwise Mixed Immunity

1, solutions converge to an infection-free steady-state, while if R0 > 1, solutions

reach an endemic steady-state where the probability of infection of every agent is

nonzero [81,139].

Based on the network SIS results and the well-mixed SIRI model results presented

in Chapter (4), we define four scalar quantities that extend the notion of the basic

reproduction number to contagion processes in which agents adapt their susceptibility

to the infection after a first exposure.

Definition 5.2.1 (Basic Reproduction Numbers). The basic infection reproduc-

tion number is R0 = ρ(BΓ−1) and the basic reinfection reproduction number is

R1 = ρ(B̂Γ−1).

Definition 5.2.2 (Extreme Basic Reproduction Numbers). Let B∗(pS) = (I−P S)B̂+

P SB. The maximum basic reproduction number is Rmax = maxpS ρ(B∗(pS)Γ−1) and

the minimum basic reproduction number is Rmin = minpS ρ(B∗(pS)Γ−1).

Remark 6 ( [58]). Each reproduction number corresponds to K = B∗(pS) − Γ for a

particular value of pS, where K is the linear term of the dynamics of pI in (5.6). K

is a Metzler matrix and each reproduction number R is the spectral radius associated

with this regular splitting, i.e., R = ρ(B∗(pS)Γ−1) as defined in Proposition 3. R0 is

R for P S = I, R1 is R for P S = 0̄, Rmax is R for pS = argmaxpS ρ(B∗(pS)Γ−1) and

Rmin is R for pS = argminpS ρ(B∗(pS)Γ−1).
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5.3 Manifold of Infection-Free Equilibria

The network SIRI model (5.6) dynamics evolve on a 2N -dimensional space corre-

sponding toN copies of the the 2-simplex ∆ := {(pSj , pIj , pRj ) ∈ [0, 1]3| pSj +pIj+p
R
j = 1}.

On this space, the only equilibria of the network SIRI model (5.6) with B̂ irreducible

are an invariant set of infection-free equilibria (IFE)M = {(pS∗,0) ∈ ∆N | 0 � pS∗ �

1} and a unique isolated endemic equilibrium (EE) where pS∗ = 0 and pI∗ � 0 satisfy

pI∗j =

∑N
k=1 β̂jkp

I∗
k

δj +
∑N

k=1 β̂jkp
I∗
k

. (5.8)

The EE is locally stable and exists if and only if R1 > 1 (see Proposition 9 for

details). To study the stability of points in the IFE set M, we consider the network

SIRI dynamics on R2N . In this extended space, M is a subset of the manifold of

equilibria M′ = {(p,0)|p ∈ RN ,0 ∈ RN}.

Definition 5.3.1. The boundary of M is ∂M = {x = (pS∗,0) ∈ M|∃j, pS∗j ∈

{0, 1}}. The corner set of M is M̂ = {x = (pS∗,0) ∈ ∂M| pS∗j ∈ {0, 1}, ∀j}. The

interior of M is int M =M\ ∂M.

5.3.1 Stability of points in the IFE set M

For an arbitrary point x = (pS∗,0) ∈M, the Jacobian is given by

JM(x) =

0̄ −P S∗B

0̄ JT (pS∗)

 (5.9)

where JT (pS∗) = B∗(pS∗) − Γ. The Jacobian JM(x) has N zero eigenvalues corre-

sponding to the N dimensions tangent toM. The N transverse eigenvalues of JM(x)

are the eigenvalues of JT (pS∗).

Remark 7. JT (pS∗) is Metzler irreducible since B and B̂ are Metzler irreducible.
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Definition 5.3.2. The leading transverse eigenvalue of JM(x) is λTmax(JM(x)) =

λmax(JT (pS∗)) ∈ R.

The stability of points in the IFE set M depends on the sign of λTmax(JM(x)).

Lemma 4 (Local Stability of Points in the IFE set M. Adapted from [58]). Let

x = (pS∗,0) ∈M. Then the following hold.

• Suppose λTmax(JM(x)) < 0. Then, x is locally stable. I.e., given a neighborhood

U of x on M′ such that λTmax(JM(u)) < 0 for all u ∈ U , there exists V ⊂ ∆N

and x ∈ V such that any solution starting in V converges exponentially to a

point in U ∩∆N .

• Suppose λTmax(JM(x)) > 0. Then, x is unstable. I.e., there exists W ⊂ ∆N

and x ∈ W , such that any solution starting in W leaves W .

5.3.2 Stable, Unstable, and Center Subsets of M

Based on the results of Lemma 4, we partition the IFE set M into three subsets.

Definition 5.3.3 (Stable, unstable, and center IFE subsets). The stable IFE subset

is M− = {x ∈ M|λTmax(JM(x)) < 0}. The unstable IFE subset is M+ = {x ∈

M|λTmax(JM(x)) > 0}. The center IFE subset is M0 = {x ∈ M|λTmax(JM(x)) =

0}.

Proposition 4 ( [58]). M− ∪M+ ∪M0 =M. Every point in M− is locally stable

and every point in M+ is unstable.

We prove that the size and location of the subsetsM−,M+, andM0 depend on

the value of the extreme basic reproduction numbers Rmax and Rmin.

Theorem 4 (Stability of the IFE set M [58]).

(A) If Rmax < 1, then M− =M.
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(B) If Rmin > 1, then M+ =M.

(C) If Rmax = Rmin = 1, then M0 =M.

(D) If Rmin < Rmax = 1, then M− =M\M0 and M0 ⊂ ∂M.

(E) If Rmax > Rmin = 1, then M+ =M\M0 and M0 ⊂ ∂M.

(F) If Rmax > 1 and Rmin < 1, then M−,M+,M0 6= ∅ and each subset consists

of n−, n+, n0 connected sets, respectively. Each of the center connected sets

Mj
0, j = 1, . . . , n0, is an N −1-dimensional smooth hypersurface with boundary

∂Mj
0 ⊂ ∂M. Each Mj

0 separates an N-dimensional stable connected hypervol-

ume from an N-dimensional unstable connected hypervolume.

Remark 8 ( [58]). Theorem 4 applies to the six different cases of the network SIRI

model (see Table 4.1) as follows. (A) applies to Cases 2, 3, 4, 5, and 6. (B) applies to

Cases 3, 4, 5, and 6. (C) applies to Case 3. (D) applies to Cases 2, 4, 5, and 6. (E)

applies to Cases 4, 5, and 6. (F) applies to Cases 2, 4, 5, and 6. We specialize (F) in

Theorem 5 to provide the key to characterizing global behavior in Cases 2, 4, 5, and

6a.

Theorem 5 (Uniqueness of stable, unstable, and center subsets [58]). If Rmax > 1

and Rmin < 1, then for Cases 2, 4, 5, 6a, M0 consists of a unique N −1-dimensional

surface with boundary ∂M0 ⊂ ∂M dividing M into M− and M+.

Remark 9 ( [58]). We conjecture that Theorem 5 can be extended to Case 6b. Ex-

tensive simulations of the IFE subsetM for a three agent network (i.e., N = 3), with

different network configurations and parameter values, consistently show a unique

connected surface M0 dividing M into M− and M+.

Remark 10. The proofs of Theorems 4 and 5 rely on the description of λTmax(JM(x)),

for x = (p,0) in a subset E of M′ as a potential function with respect to p, which
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we call the λTmax function Λ(p,0). We introduce and make use of these results in

Section 5.5 to analyze the dynamics of the network SIRI model near points in M0.

5.4 Transient and Steady-State Dynamics

The analysis of the global dynamics of the network SIRI model (5.6) is facilitated by

the decreasing monotonicity of the solutions along the pS directions, which implies

that solutions either converge to a point in the IFE set M or to the EE as t→∞.

Definition 5.4.1 ( [87]). A point x is an ω-limit point of a solution y(t,y0) = y(t)

if there is a sequence {tn}, with tn →∞ as n→∞, such that y(tn)→ x as n→∞.

The set of all ω-limit points is called the ω-limit set Ω(y0) of y(t).

Lemma 5 ( [58]). Let y(t,y0) = (pS(t),pI(t)) be the solution of (10.3) with initial

condition y0 ∈ ∆N . Then the following hold:

• The ω-limit set Ω(y0) of y(t,y0) is either a point in the IFE set M or the EE.

• y(t,y0) cannot exhibit non-trivial periodic orbits.

• y(t,y0) converges to a point in M as t→∞ if R1 ≤ 1.

The transient and steady-state dynamics of the network SIRI model (5.6) can be

categorized into four distinct behavioral regimes, analogous to those of the well-mixed

SIRI model described in Theorem 1:

Theorem 6 (Behavioral Regimes [58]). Let pI(0) � 0 and wT
m be the leading left-

eigenvector of B∗(pS)Γ−1, where pS = argmaxpS ρ(B∗(pS)Γ−1). Then the network

SIRI model (5.6) exhibits four qualitatively distinct behavioral regimes:

1. Infection-Free Regime: If Rmax ≤ 1 then the following hold.

(a) All solutions converge to a point in M as t→∞.
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Table 5.2: Behavioral Regimes of the Network SIRI Special Cases. Repeated from 10.2

Case Model Infection-Free Endemic Epidemic Bistable
1 SI X
2 SIR X X
3 SIS X X
4 Partial X X X
5 Compromised X X X
6 Mixed X X X X

(b) If B � B̂ or B̂ � B, the weighted infected average pIavg(t) = wT
mΓ−1pI(t)

decays monotonically to zero.

2. Endemic Regime: If Rmin > 1 then all solutions converge to the EE as t→∞.

3. Epidemic Regime: If Rmin < 1, Rmax > 1 and R1 ≤ 1, then the following hold.

(a) All solutions converge to a point in M as t→∞.

(b) There exists H ∈ ∆N and H ⊃ M+ that is foliated by families of hetero-

clinic orbits, each orbit connecting two points in M.

4. Bistable Regime: If Rmin < 1, Rmax > 1 and R1 > 1, then, depending on the

initial conditions, solutions converge to a point in M or converge to the EE as

t→∞.

Remark 11 ( [58]). Theorem 6 applies to the six different cases of the network SIRI

model as follows (summarized in Table 5.2).2 The infection-free regime applies to

Cases 2, 3, 4, 5, and 6. The endemic regime applies to Cases 3, 4, 5, and 6. The

epidemic regime applies to Cases 2, 4, and 6. The bistable regime applies to Cases 5

and 6.

2The basic and extreme basic reproduction numbers are not well-defined for the network SI
model (Case 1). Therefore the results of Theorem 6 do not apply. However, we include the SI case
in Table 5.2 under the endemic regime because all solutions in the model reach the EE pI∗ = 1 as
t→∞ [69].
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5.4.1 Examples

Figures 5.1 to 5.4 illustrate the results of Theorem 6 on a strongly connected digraph

G with four agents (N = 4). We show how knowledge of the basic and extreme basic

reproduction numbers is sufficient to predict the effects of changes in graph structure,

system parameters, and initial conditions on the transient and steady-state dynamics

of the network SIRI model. Panels in the figures show time-series for pIj , j ∈ {1, 2, 3, 4}

(solid colored lines).

Definition 5.4.2 (Stubborn agents). An agent j ∈ V is stubborn if (βjk − β̂jk) = 0

for all k ∈ Nj.

Effects of the recovery rates

Figure 5.1 shows the effects of heterogeneity in the recovery rates on the dynamics

of a partial immunity case (Case 4) network with adjacency matrix A, where agent

1 acquires partial immunity to all its infected neighbors, and agents 2, 3, and 4

are stubborn. We set B = 0.9A and B̂ = diag([0.5, 0.9, 0.9, 0.9])A. We use the

initial condition pS(0) = 1 − pI(0), pI(0) = [0.1, 0.1, 0.1, 0.1]T . In Figure 5.1A,

all agents have the same recovery rate (δj = 1) and the reproduction numbers are

Rmax = R0 = 1.19 and Rmin = R1 = 0.94. This places the network in the epidemic

regime: the probability of infection of every agent in the network initially increases,

reaches a maximum and decays to zero. In Figure 5.1B, we halve the recovery rate

of agent 1 (δ1 = 0.5) and double the recovery rate of agent 4 (δ4 = 2). The new

reproduction numbers are Rmax = R0 = 1.37 and Rmin = R1 = 1.09. This places the

network in the endemic regime: the probability of infection of all agents is non-zero at

steady-state. Note that the steady-state probability of infection pI∗ is given by (5.8),

which describes how pI∗j is inversely proportional to the recovery rate δj.
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Figure 5.1: Effects of heterogeneity in the recovery rates on the steady-state behavior.
Partial immunity case (Case 4) with four agents. Agent 1 acquires partial immunity to
all its infected neighbors, and agents 2, 3, and 4 are stubborn. A. Γ = diag([1, 1, 1, 1]),
Rmax = R0 = 1.19, and Rmin = R1 = 0.94. B. Γ = diag([0.5, 1, 1, 2]), Rmax =
R0 = 1.37, and Rmin = R1 = 1.09. In both panels we set B = 0.9A and B̂ =
diag([0.5, 0.9, 0.9, 0.9])A, and use the initial condition pS(0) = 1 − pI(0), pI(0) =
[0.1, 0.1, 0.1, 0.1]T .

Effects of the reinfection rates

Figure 5.2 shows the effects of heterogeneity in the reinfection rates on the steady-

state behavior. In Figure 5.2A, we consider again the partial immunity case (Case 4)

in which all agents acquire partial immunity to all their infected neighbors: B = 1.5A,

B̂ = 0.5A, and Γ = I. The corresponding reproduction numbers are Rmax = R0 =

1.99 and Rmin = R1 = 0.66. This places the network in the epidemic regime: the

probability of infection of every agent in the network initially increases, reaches a

maximum and decays to zero. In Figure 5.2B, we increase the susceptibility to rein-

fection of agent 4 to β̂41 = 2.5. The network is now in the weak mixed immunity case

(Case 6a) with agent 4 acquiring compromised immunity to all its infected neigh-

107



0 5 10 15 20 25 30
0.0

0.1

0.2

0.3

0.4

t

p j
I

0 5 10 15 20 25 30
0.0

0.1

0.2

0.3

0.4

t

p j
I

1

2

3

4

A

B

Figure 5.2: Effects of heterogeneity in the reinfection rates on the steady-state be-
havior. A. Partial Immunity (Case 4). All agents acquire partial immunity to all
their infected neighbors: B = 1.5A and B̂ = 0.5A. Rmax = R0 = 1.99, and
Rmin = R1 = 0.66. B. Weak mixed immunity (Case 6a). Agents 1,2, and 3 acquire
partial immunity to all their infected neighbors and agent 4 acquires compromised
immunity to all its infected neighbors: B = 1.5A and B̂ = diag([0.5, 0.5, 0.5, 2.5])A.
Rmax = R0 = 1.99, and Rmin = R1 = 0.66. In both panels we set Γ = I, and use the
initial condition pS(0) = 1− pI(0), pI(0) = [0.1, 0.01, 0.4, 0.01]T .

bors and all other agents acquiring partial immunity to all their infected neighbors.

The new basic reproduction numbers are Rmax = 2.29, Rmin = 0.94, R0 = 1.99 and

R1 = 1.17. This places the network in the bistable regime. With the given initial

conditions, the probability of infection of all agents is non-zero at steady-state. The

large reinfection rate β̂41 results in a high probability of infection at steady-state for

agent 4.
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Effects of graph structure

Figure 5.3 shows the effect of network structure on the steady-state behavior. We

consider the partial immunity case (Case 4) where agent 1 acquires partial immunity

to all its infected neighbors, and agents 2, 3, and 4 are stubborn. In Figure 5.3A,

agents 1 and 4 are susceptible to each other and agent 4 is not susceptible to any

other agent. While, in Figure 5.3B, agents 2 and 4 are susceptible to each other and

agent 4 is not susceptible to any other agent. In both cases, we set Γ = I, B = 0.9A

and, B̂ = diag([0.5, 0.9, 0.9, 0.9])A. We set the initial condition to pS(0) = 1−pI(0),

pI(0) = [0.1, 0.1, 0.1, 0.1]T .

For Figure 5.3A, Rmax = R0 = 1.19 and Rmin = R1 = 0.94, placing the system in

the epidemic regime. The probability of infection of every agent initially increases,

reaches a maximum and decays to zero. For Figure 5.3B, Rmax = R0 = 1.19 and

Rmin = R1 = 1.09, placing the system in the endemic regime: the probability of

infection of all agents is non-zero at steady-state. Differences in pI∗j values are the

result of both the location of agents within the graph and heterogeneities in the

reinfection rates (see (5.8)).

Bistability and Resurgent Epidemic

Figure 5.4 illustrates the bistability and resurgent epidemic phenomena in the com-

promised immunity case (Case 5). For this case, we set Γ = I, B = 0.7A, and

B̂ = diag([1.5, 0.7, 0.7, 0.7])A. That is, agents 2, 3, and 4 are stubborn and agent

1 acquires compromised immunity to all its infected neighbors. For this system,

Rmax = R1 = 1.28 and Rmin = R0 = 0.85, placing the system in the bistable

regime. To illustrate the bistability phenomenon, we set the initial conditions to

pI = [0, 0.05, 0.1, 0] in Figure 5.4A and to pI = [0, 0.08, 0.1, 0] in Figure 5.4B. In Fig-

ure 5.4A, the solution converges to zero within the first 50 time units; the infection

readily dies out. In contrast, in Figure 5.4B there is a resurgent epidemic in which
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Figure 5.3: Effects of graph structure on steady-state behavior. Partial immunity
case (Case 4) with four agents. Agent 1 becomes partially immune to all its infected
neighbors and agents 2,3, and 4 are stubborn. A. Agents 1 and 4 are susceptible
to each other. B. Agents 2 and 4 are susceptible to each other. In both panels
we set B = 0.9A and B̂ = diag([0.5/0.9, 1, 1, 1])B, and use the initial condition
pS(0) = 1− pI(0), pI(0) = [0.1, 0.1, 0.1, 0.1]T .

the probabilities of infection reach a minimum and stay close to zero for close to 100

time units before increasing and converging to the EE.

Effect of agents that acquire full immunity

Figure 5.5 shows the effects of agents that acquire full immunity on the steady-state

behavior. Recall that GB and GB̂ are the networks described by interpreting B and

B̂ as an adjacency matrix, respectively. Therefore, GB describes the effective infec-

tion network, which represents the possible paths in G through which the contagion

process can spread when all agents are susceptible. Similarly, GB̂ describes the effec-
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Figure 5.4: Bistability and resurgent epidemic. Compromised immunity digraph
with four agents. All agents become compromised. A. initial condition pS(0) =
1 − pI(0), pI(0) = [0, 0.05, 0.1, 0]T . B. initial condition pS(0) = 1 − pI(0), pI(0) =
[0, 0.08, 0.1, 0]T . In both panels we set B = 0.7A, B̂ = 1.5A, and Γ = I. Adapted
from Figure 10.2.

tive reinfection network, which represents the possible paths in G through which the

contagion process can spread when all agents have been infected at least once.

In Figure 5.5, we show the SIS case (Case 3) for the complete four agents graph.

We set B = B̂ = A, where A is the adjacency matrix, and Γ = diag([0.25, 0.5, 0.75, 1]).

Therefore, GB = GB̂, and the network can be in the infection-free regime or in the

endemic regime depending on the value of Rmax = Rmin = R0 = R1 = ρ(AΓ−1) (see

Table 5.2). For this case, ρ(AΓ−1) = 5.79, placing the network in the endemic regime,

leading to solutions that converge to the EE.

In Figure 5.5B we modify the network in Figure 5.5A, by letting the agents acquire

full immunity in a selective way, such that GB̂ describes a directed cycle graph. The

matrix B̂ is Metzler irreducible and all our results hold. For this case, Rmax = R0 =
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ρ(AΓ−1) = 5.79 and Rmin = R1 = ρ(B̂Γ−1) = 1.80. This places the network in the

endemic state, but the resulting value of pI∗ is significantly smaller at each entry.

Thus, through a selective removal of links in the effective reinfection network GB̂, we

can achieve a significant reduction in the probability of infection at steady-state.

Moreover, if we maintain the cycle structure in GB̂ but decrease the susceptibility

to reinfection between all pairs of connected agents, we can eradicate the infection.

In Figure 5.5C we modify the network in Figure 5.5B, by setting B̂ = 0.2A. For

this case, Rmax = R0 = ρ(AΓ−1) = 5.79 and Rmin = R1 = ρ(B̂Γ−1) = 0.36. This

places the network in the epidemic regime: solutions converge to an infection-free

steady-state.

5.5 Dynamics near M0

In this section we extend the results of Chapter 10 by investigating the dynamics near

the center IFE subset M0 in the epidemic and bistable regimes.

5.5.1 Center Eigenspace of points in M0

At an arbitrary point m0 = (m,0) in M0, the leading eigenvalue λTmax(JM(m0)) is

zero, and by Proposition 1, all other transverse eigenvalues have negative real part.

As a consequence, the Jacobian JM(m0) has N + 1 zero eigenvalues and N − 1

eigenvalues with negative real part. The first N zero eigenvalues correspond to the

tangent space of the IFE setM while the last remaining zero eigenvalue corresponds

to λTmax(JM(m0)). Therefore, points in M0 correspond to points at which the IFE

set M loses normal hyperbolicity.

The loss of normal hyperbolicity at these points is characterized by the deficiency

of JM(m0): there are only N linearly independent eigenvectors corresponding to the

N + 1 zero eigenvalues. Therefore, the right eigenvectors of JM(m0) do not span its
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Figure 5.5: Effective Infection and Effective Reinfection Networks. A. SIS case (Case
3) for the complete four agents graph with B = B̂ = A, where A is the adjacency
matrix. B. Partial immunity case (Case 4) where B is adjacency matrix for the
complete graph (B = A) and B̂ is the adjacency matrix for the directed cycle graph.
C. Same as in B, but the entries of B̂ have magnitude 0.2 or 0. In all cases, Γ =
[0.25, 0.5, 0.75, 1]T and pS(0) = 1− pI(0), pI(0) = [0.1, 0.1, 0.1, 0.1]T .

center eigenspace. To see this, note that any eigenvector of JM(m0) corresponding

to a zero eigenvalue must be of the form [v̂TS ,0
T ]T where vS ∈ RN 6= 0.

To complete the center eigenspace basis, we need one right generalized eigenvector.

Let v̂S = −diag(m)Bv where v� 0 is the right eigenvector of λmax(JT (m)). If m 6=
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0, then, [v̂TS ,0
T ]T is an eigenvector for zero and JM(m0)[0T ,vT ]T = [v̂TS ,0

T ]T . There-

fore, κ = [0T ,vT ]T is a generalized eigenvector for zero, and the center eigenspace is

spanned by the set of vectors


e1

0

 ,
e2

0

 , . . . ,
eN−1

0

 ,
v̂S

0

 ,
0

v


 . (5.10)

We note that the generalized eigenvector κ is the only vector in (5.10) that is

not tangent to M. By the Center Manifold Theorem [30], there exists an (N + 1)-

dimensional center manifold Wc(m0) tangent to the center eigenspace of JM(m0)

at m0. Moreover, since the remaining N − 1 eigenvalues have negative real part,

Wc(m0) is attractive.

5.5.2 Towards the Center Manifold Dynamics

In this section we discuss the procedure by which the dynamics on the center manifold

Wc(m0) could be derived. We begin by shifting the origin of (5.6) to a point m0 =

(m,0) in M0,

 ˙̄pS

ṗI

 =

0̄ −MB

0̄ B∗(m)− Γ


p̄S

pI

+

 −P̄ SBpI

P̄ S(B − B̂)pI − P IB̂pI

 , (5.11)

where P̄ S = diag(p̄S) and M = diag(m). Let ȳ = [(p̄S)T , (pI)T ]T and ˙̄y = f(ȳ). We

can rewrite (5.11) as ˙̄y = JM(m0)ȳ + F̄ (ȳ). The nonlinear term F̄ , corresponding to

the last term in (5.11), can also be expressed in terms of the Hessian D2f :

F̄ (ȳ) =
1

2
D2f(ȳ, ȳ) =

1

2


ȳT H̄1ȳ

...

ȳT H̄2N ȳ

 . (5.12)
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where H̄T
j = H̄j = {hkl} and hkl = ∂f̄j/∂ȳk∂ȳl.

Let K ∈ R2N×2N drive JM(m0) to Jordan form,

J = K−1JM(m0)K =

J0 0̄

0̄ J−

 (5.13)

where J0 consists of N − 1, 1 × 1 blocks and one 2 × 2 block (corresponding to the

N + 1 zero eigenvalues), and J− consists of the corresponding Jordan blocks for the

N eigenvalues with negative real part. Without loss of generality, we can pick the

columns kj of K such that they correspond to the (generalized) right eigenvectors of

JM(m0) and the rows k̄j of K−1, such that they correspond to the left (generalized)

eigenvectors of JM(m0). Using the similarity transformation ȳ = Kŷ, we get ˙̂y =

J ŷ + F (ŷ), where

F (ŷ) =
1

2
K−1D2f(ŷ, ŷ) =

1

2


ȳTH1ȳ

...

ȳTH2N ȳ

 (5.14)

where HT
j = Hj = KT (

∑2N
i=1 k̄ji H̄i)K.

The dynamics ˙̂y = J ŷ + F (ŷ) can be written in the block diagonal form

ẋ0 = J0x0 + g(x0,x−); x0 ∈ RN+1

ẋ− = J−x− + h(x0,x−); x− ∈ RN−1. (5.15)

The system (5.15) can be used to derive an approximation for the center manifold

dynamics up to any desired order by seeking series solutions to the center manifold

equation ((3.2.16) in [30]). However, the high-dimensionality of the system makes

this approach analytically challenging. As an alternative, we study the dynamics
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near points in M0 by looking for transversality conditions as described in the next

section.

5.5.3 Transversality of Solutions and M0

In this section we gain additional insight into the transient behaviors of solutions

in the epidemic and bistable regimes by studying the projection of solutions of the

network SIRI model onto the IFE manifoldM. We find conditions for these projected

solutions to cross the center IFE subset M0 transversally. To do so, we make use of

the following definitions and lemmas.3

Definition 5.5.1 (Neighborhood E ⊂ M′ of M). Neighborhood E ⊂ M′ of M is

the union of M and the neighborhoods Ū ⊂ M′ of every x̄ ∈ ∂M for which JM(ū)

is Metzler irreducible for any ū ∈ Ū , (see the proof of Lemma 13 for details).

Definition 5.5.2 (JT and Λ). Let JT (p) = B∗(p) − Γ for (p,0) ∈ E. The λTmax

function is Λ : E → R, (p,0) 7→ λmax(JT (p)). For ease of notation we use Λ(p) for

Λ(p,0).

Lemma 6 (IFE subsets as level surfaces of Λ [58]). Let Λc = {Λ−1(c) | c ∈ R} be

the level surface of Λ on E ⊂ M′ corresponding to c ∈ R. Then, M0 = Λ0 ∩M,

M− =
⋃
c<0 Λc ∩M and M+ =

⋃
c>0 Λc ∩M.

Lemma 7 (Gradient of Λ [58]). For x́ = (p,0) ∈ E, let wT , v ∈ RN be left and right

eigenvectors of JT (p) for Λ(p). Then, Λ is smooth on E, i.e., Λ(·) ∈ C∞(E), with

partial derivatives

∂Λ

∂pj
(p) = wj

N∑
k=1

(βjk − β̂jk)vk (5.16)

and gradient

∇Λ(p) = diag(w)(B − B̂)v. (5.17)

3Many of the definitions and lemmas in this section are used in the proof of Theorem 4 (see
Section 5.3 for details).
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In addition, the following hold.

• If B = B̂, all points x́ ∈ E are critical points of Λ.

• If j is a stubborn agent, (∂Λ/∂pj)(p) = 0 for all x́ ∈ E.

• If B � B̂, and there are no stubborn agents in G, ∇Λ(p) � 0 for all x́ ∈ E,

and Λ has no critical points.

• If B̂ � B, and there are no stubborn agents in G, ∇Λ(p) � 0 for all x́ ∈ E

and Λ has no critical points.

• If B 6= B̂ then either Λ has no critical points or all points x́ ∈ E are critical

points of Λ.

Lemma 8 (Maximum and minimum values of Λ inM [58])). Let (pS,0) ∈M. Then

Λ(pS) achieves its global maximum and minimum cmax, cmin at one or more points

in ∂M. In Cases 2, 4, 5, and 6a, there exist unique corner points (pmax,0) ∈ M̂,

(pmin,0) ∈ M̂ such that Λ(pmax) = cmax, Λ(pmin) = cmin, Rmax = ρ(B∗(pmax)Γ−1),

and Rmin = ρ(B∗(pmin)Γ−1). Moreover, pmax and pmin are the respective unique

global maximum and minimum points of Λ inM if, and only if, there are no stubborn

agents in G.

Definition 5.5.3 (Transversal crossing of Λc). Let y(t) = (pS(t),pI(t)) ∈ ∆N , t ≥ 0,

be a solution of (10.3). We say that y crosses Λc transversally if pS, the projection

of y onto M, crosses Λc transversally. This holds if there exists a time t′ > 0 and

m ∈ Λc such that pS(t′) = m and ṗS(t′)T∇Λ(m) 6= 0.

Proposition 5 (Transversal crossing direction [58]). Let y(t) = (pS(t),pI(t)) ∈ ∆N ,

t ≥ 0, be a solution of (10.3) that crosses Λc transversally at the point (m,0) ∈ M

and time t = t′, where c = Λ(m). If ṗS(t′)T∇Λ(m) < 0, then Λ decreases as pS

crosses Λc, and if ṗS(t′)T∇Λ(m) > 0, then Λ increases as pS crosses Λc. Suppose
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(m,0) ∈ M0, then if ṗS(t′)T∇Λ(m) < 0, pS crosses M0 from M+ to M− and if

ṗS(t′)T∇Λ(m) > 0, then pS crosses M0 from M− to M+.

Definition 5.5.4. The stable manifold of M0 is Ws(M0) and the unstable manifold

of M0 is Wu(M0).

Theorem 7 (Transversality of solutions [58]). Consider Cases 2 and 4 in the epidemic

regime (R0 > 1, R1 < 1) and Case 5 in the bistable regime (R0 < 1, R1 > 1). Assume

no stubborn agents. Let y(t) = (pS(t),pI(t)) ∈ ∆N , t ≥ 0, be a solution of (10.3)

for which there exists a time t′ > 0 and (m,0) ∈ int(M), such that pS(t′) = m

and pI(t′) � 0. Let c = Λ(m) so that m ∈ Λc. Then y crosses Λc transversally.

Suppose (m,0) ∈ int(M0). In the epidemic regime of Cases 2 and 4, pS crosses M0

from M+ to M−, and the stable and unstable manifolds of M0 lie outside ∆N . In

the bistable regime of Case 5, pS crosses M0 from M− to M+, and the stable and

unstable manifolds of M0 lie inside ∆N .

Corollary 1 ( [58]). In the epidemic regime of Cases 2 and 4, every heteroclinic orbit

in ∆N connects a point in M+ to a point in M−.

Corollary 2 ( [58]). Consider Case 5 in the bistable regime. Let y(t) = (pS(t),pI(t))

be a solution of (10.3). Then it holds that

• If y crosses M0 transversally or (pS(0),0) ∈M+, then y converges to the EE

as t→∞. Moreover, the EE lies on the unstable manifold of M0.

• The stable manifold of M0 intersects the boundary of ∆N where pS = 1− pI .

In Figure 5.6, we illustrate the results of Theorem 17 for the compromised immu-

nity case in the bistable regime, and show that, in the mixed immunity case, solutions

do not necessarily cross M0 transversally. The figure shows the IFE set M for the

complete two agent graph (i.e., N = 2) in two different cases. In Figure 5.6A, we

set β12 = β21 = 0.8, β̂12 = β̂21 = 1.3, and δ1 = δ2 = 1. This corresponds to the
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compromised immunity case in the bistable regime; the corresponding reproduction

numbers are Rmin = R0 = 0.8, Rmax = R1 = 1.3. That is, both agents become more

susceptible to reinfection. In Figure 5.6B, we set β12 = β̂21 = 0.8, β̂12 = β21 = 1.3,

and δ1 = δ2 = 1. This corresponds to the weak mixed immunity case in the bistable

regime; the corresponding reproduction numbers are R0 = R1 = 1.02, Rmin = 0.8,

Rmax = 1.3. That is, agent 1 becomes more susceptible to reinfection and agent 2

becomes less susceptible to reinfection. The advantage of studying the case N = 2 is

that the IFE manifold M is 2-dimensional, which can be visualized as the (pS∗1 , pS∗2 )

plane. The center IFE subsetM0 in this case corresponds to the dashed white curve

that partitions the plane into two regions, with the blue region corresponding toM−

and the red striped region corresponding to M+. The remaining solid white curves

correspond to level-surfaces of Λ, with the white curves in the blue region correspond-

ing to Λc for c < 0 and the white curves in the red region corresponding to Λc for

c > 0. The black arrows represent the vector field for the pS dynamics ṗS = −P SBpI

when pI = c1 for c = 0.1. Note that, in both cases, the vector field is identical, but

the orientation of the level-surfaces of Λ is not. As a result of this, the vector field in

Figure 5.6A is transverse toM0, as proved in Theorem 17. While, the vector field in

Figure 5.6B appears to be parallel to M0 at multiple points.

Figure 5.7 illustrates the results of Theorems 6 and 17. In the figure, we illus-

trate the local dynamics near M0 for Cases 2-5 in the R0, R1 parameter space. For

simplicity of illustration, we represent the N -dimensional manifold M as a plane in

a 3-dimensional space. The solid blue region of the plane represents M− and the

striped red region represents M+. The line dividing the blue and red regions rep-

resents M0. Black arrows are used to illustrate the behavior of solutions near M.

When R0 ≤ 1 and R1 ≤ 1 (infection-free regime), all solutions decay to a point in

M. When R0 > 1 and R1 > 1 (endemic regime), all solutions grow away from M

and eventually reach the EE. When R0 > 1 and R1 ≤ 1 (epidemic regime), there
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Figure 5.6: IFE set M for two interconnected agents with δ1 = δ2 = 1. A. Compro-
mised immunity case with β12 = β21 = 0.8, β̂12 = β̂21 = 1.3. B. Weak mixed immunity
case with β12 = β̂21 = 0.8, β̂12 = β21 = 1.3. The dashed white curve represents M0

and the solid white curves represent level-surfaces Λc for c 6= 0. The black arrows
represent the component of the vector field (5.6) tangent to M, ṗS = −P SBpI , for
pI = [0.1, 0.1]T .

exists a family of solutions near M that form heteroclinic orbits connecting points

in M− and M+. Finally, when R0 ≤ 1 and R1 > 1 (bistable regime), there exists a

stable manifoldWs(M0) (green translucent surface) and unstable manifoldWu(M0)

(magenta translucent surface) of M0.

Remark 12. The behavioral regimes defined in Theorem 6 provide analytical predic-

tions on the behavior of solutions as described in Table 5.2. Figure 5.8 illustrates this

point by coloring the different regions of the R0, R1 parameter space according to

the type of immunity that a model in that region would exhibit. Note that the SIS

case is represented by a dashed diagonal line where R0 = R1, while the SIR case is

represented with a dashed line where R1 = 0.
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Bistable Endemic

EpidemicInfection-Free

Figure 5.7: Illustration of local dynamics near M for the four different behavioral
regimes of the network SIRI model (5.6) when B � B̂ or B̂ � B. The diagrams are
arranged where they exist in the R0, R1 parameter space according to Theorem 6.
M− is blue, M+ is red, and M0 is the black dashed line. The stable and unstable
manifolds of M0 are green and magenta, respectively. Repeated from 10.1.

5.6 Bistability, Critical Manifold, and

Vaccination

In this section we examine the bistability regime in the compromised immunity case

B̂ � B (Case 5) in two special cases. In the first case, we consider d-regular digraphs

and obtain analytical results for initial conditions of the form pS(0) = 1 − pI(0)

and pI(0) = pic1 for pic ∈ [0, 1]. In the second case, we consider complete digraphs

with two agents (N = 2). We use numerical simulations to study the bistable regime
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Figure 5.8: Illustration of the network SIRI behavioral regimes and how they apply
to Cases 2, 3, 4, and 5. See Table 5.2.

with initial conditions of the form pS(0) = 1 − pI(0), and how it is affected by

initial conditions in which agent j has been previously exposed to the infection (i.e.,

pSj (0) = 0).

5.6.1 d-Regular Digraphs

The degree of node j is dj =
∑N

k=1 ajk, where ajk are the entries of the adjacency

matrix A. A digraph G is d-regular if dj = d for all j = 1, . . . , N .

We present the following analysis for d-regular digraphs (quoted from [58]):

Consider a d-regular digraph with global recovery, infection, and reinfec-

tion rates: Γ = δI, B = βA, and B̂ = β̂A, where A is the adjacency
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matrix. The network SIRI dynamics (5.5) are

ṗSj = −βdpSj pIj − βpSj
N∑
k=1

ajk(p
I
k − pIj )

ṗIj = −δpIj + (β − β̂)dpSj p
I
j + β̂dpIj − β̂d(pIj )

2

+
(

(β − β̂)pSj + β̂(1− pIj )
) N∑
k=1

ajk(p
I
k − pIj ), (5.18)

where we have used the identity
∑N

k=1 ajkp
I
k = pIjd +

∑N
k=1 ajk(p

I
k − pIj ).

Let pI(0) = pic1. Then (5.18) reduce to

ṗSj = −βdpSj pIj

ṗIj = −δpIj + (β − β̂)dpSj p
I
j + β̂dpIj − β̂d(pIj )

2. (5.19)

(5.19) describes identical and uncoupled dynamics for every agent j. Fur-

ther, the dynamics (5.19) are equivalent to the dynamics of the well-mixed

SIRI model [57] with infection rate βd and reinfection rate β̂d. Follow-

ing [57], we find the critical initial condition pcrit = 1 − ξ(R0dξ)
−β/β̂,

where ξ = (R1 − 1/d)/(R1 − R0). If pic < pcrit solutions converge to a

point in the IFE as t → ∞. If pic > pcrit solutions converge to the EE,

pI∗ = (1− δ/(β̂d))1, as t→∞.

If pic = pcrit, the solution flows along the stable manifold of the point

ξ1 ∈ M0 and converges to ξ1. For the well-mixed SIRI model [57], we

proved that the stable manifold of the point at which the IFE set loses

normal hyperbolicity separates solutions that converge to an infection-free

steady-state from solutions that converge to the EE. The case of d-regular

graphs suggests how these results generalize to the network SIRI model.
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5.6.2 Complete Digraphs with N = 2

We can gain insight into the role of the stable and unstable manifolds of M0 in the

bistable regime by studying the compromised immunity and weak mixed immunity

cases for complete digraphs with N = 2. Consider the complete digraphs with two

agents introduced in Figure 5.6. Figure 5.6A considers the case of two homogeneous

agents whose susceptibility increases after a first exposure to the infection. In con-

trast, Figure 5.6B considers the case of two heterogeneous agents, where agent 1

increases its susceptibility after a first exposure to the infection and agent 2 decreases

its susceptibility after a first exposure to the infection.

In Figure 5.9 we show numerical simulations results for the set of initial conditions

that yield solutions that converge to a point in the IFE set M or solutions that

converge to the EE. Figures 5.9A and 5.9B illustrate the space of initial conditions

of the form pS(0) = 1 − pI(0) for the two agent networks shown in Figures 5.6A

and 5.6B, respectively. In each of these two figures, we represent an initial condition

pS1 (0) = 1 − pI1(0), pS2 (0) = 1 − pI2(0) as a point in the pI1(0), pI2(0) plane. Green

points correspond to initial conditions that lead to solutions that converge to a point

in the IFE setM, while magenta points correspond to initial conditions that lead to

solutions that converge to the EE. In the compromised immunity case (Figure 5.9A),

there is a small region of initial conditions, near the origin, that lead to an infection-

free steady-state. The curve separating the green and magenta regions in this case

corresponds to the intersection of Ws(M0) with the boundary of ∆N where pS =

1 − pI . In contrast, in the weak immunity case (Figure 5.9B), all initial conditions

lead to solutions that converge to the EE.

At first sight, this result appears to contradict Theorem 6, which guarantees the

existence of initial conditions in the bistable regime that lead to solutions that con-

verge to a point inM. However, note that in Figure 5.9B we only consider solutions
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with initial conditions of the form pS1 (0) = 1− pI1(0), pS2 (0) = 1− pI2(0). Figures 5.9C

and 5.9D illustrate the space of initial conditions of the form pS1 (0) = 1 − pI1(0),

pS2 (0) = 0. This corresponds to initial conditions for which agent 2 in the network has

been previously exposed to the infection. This is analogous to vaccinating agent 2.

In the compromised immunity case (Figure 5.9C), vaccinating agent 2 has the effect

of making the network more susceptible to the infection; agent 2 is more susceptible

to reinfection (β21 < β̂21), facilitating the spread of the infection at time t = 0. As

a result, all initial conditions lead to solutions that converge to the EE. In contrast,

for the weak mixed immunity case (Figure 5.9D), vaccinating agent 2 has the effect

of making the network less susceptible to the infection; agent 2 is less susceptible to

reinfection (β21 > β̂21), impeding the spread of the infection at time t = 0. As a

result, there exists a region of initial conditions (yellow) that leads to solutions that

converge to a point in the IFE set M.

Remark 13. Vaccinating agent 1 instead of agent 2 changes the results for the weak

mixed immunity case but not for the compromised immunity case. In the former case,

vaccinating agent 1 increases the susceptibility of the network to the infection since

agent 1 is more susceptible to reinfection (β12 < β̂12). In the latter case, the results

do not change because of the symmetry in the system.

5.7 Bifurcation Without Parameters

The results in Sections 5.5 and 5.6 suggest that the dynamics of the network SIRI

model (5.6) exhibit a codimension-N transcritical bifurcation without parameters

with drift singularity (TBWPDS). In Section 2.3 we described the normal form and

transversality conditions for the codimension-one TBWPDS, and in Section 4.4 we

proved that the dynamics of the well-mixed SIRI model (9.7) exhibit this bifurcation.
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Figure 5.9: Bistability and space of initial conditions for two interconnected agents.
Compromised immunity case with β12 = β21 = 0.8, β̂12 = β̂21 = 1.3. B. Weak mixed
immunity case with β12 = β̂21 = 0.8, β̂12 = β21 = 1.3.
A. Compromised immunity case with pS(0) = 1−pI(0). Green points correspond to
initial conditions that converge to a point in the IFE set M as t→∞ and magenta
points correspond to initial conditions that converge to the EE as t → ∞. B. Weak
mixed immunity case with pS(0) = 1 − pI(0). All initial conditions converge to the
EE. C. Compromised immunity case where agent 2 has been previously exposed to
the infection: pS1 (0) = 1 − pI1(0) and pS2 (0) = 0. All initial conditions converge to
the EE. D. Weak mixed immunity case where agent 2 has been previously exposed
to the infection: pS1 (0) = 1 − pI1(0) and pS2 (0) = 0. Yellow points correspond to
initial conditions that converge to a point in the IFE set M as t→∞ and magenta
points correspond to initial conditions that converge to the EE as t → ∞. For the
compromised immunity case, we set β12 = β21 = 0.8, β̂12 = β̂21 = 1.3. For the
weak mixed immunity case, we set β12 = β̂21 = 0.8, β̂12 = β21 = 1.3. In both cases,
δ1 = δ2 = 1.
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In both the well-mixed SIRI model (9.7) and the network SIRI model (5.6), we

proved that if R1 < 1 all solutions converge to an infection-free equilibrium, and that

if R1 > 1 solutions converge a point on the IFE or the EE depending on the system

parameters and the initial conditions. Moreover, in the well-mixed case we proved

that the stable manifold of the point at which the IFE set loses normal hyperbolicity

separates solutions that converge to an infection-free steady-state from solutions that

converge to the EE. In Section 5.6, we showed that a comparable situation arises

in the case of d-regular graphs. Our results in Section 5.5 on the transversality of

solutions suggests that these results may generalize to the network SIRI model under

certain parameter conditions.

Transversality conditions for the codimension-N transcritical bifurcation without

parameters with drift singularity do not currently exist. However, based on our

results, we can conjecture on what they would look like.

Extending conditions (TBWP1) and (TBWP2) to the codimension-N case is

straightforward. Condition (TBWP1) corresponds to the existence of a manifold

of equilibria and condition (TBWP2) corresponds to the loss of normal hyperbolicity

as λTmax(JM(x)) crosses zero. Condition (TBWP3) corresponds to the transversal

crossing of solutions at points in M0. This condition is analogous to the condi-

tion ṗS∇Λ(pS) 6= 0 we used in Theorem 17. Conditions (TBWP4) and (TBWP5)

are related to the non-degeneracy and degeneracy of the top right block of JM(x)

in (5.9). Further analysis of the network SIRI model could provide insight into how

to generalize conditions (TBWP4)-(TBWP6).

5.8 Concluding Remarks

In this Chapter we studied the network SIRI model. We proved that, similar to

the well-mixed case, the model exhibits four behavioral regimes: infection-free, en-
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demic, epidemic, and bistable. However, unlike the well-mixed case, the network SIRI

model contains an explicit description of the communication network structure which

facilitates the study of heterogeneities between agents (in how they recover and/or

respond to a first infection by their neighbors). To characterize the dynamics, we

generalized the basic reproduction numbers R0 and R1 to network topologies and

introduced the notion of extreme basic reproduction numbers: Rmax and Rmin. We

studied the geometry of the IFE set M and found conditions on R0, R1, Rmax and

Rmin for the existence of stable, center, and unstable IFE subsetsM−,M0 andM+,

respectively. Understanding how these subsets change with the system parameters

facilitates the study of transient and steady-state dynamics in the model and was

fundamental in our derivation of conditions for the four behavioral regimes. We il-

lustrated the connection between these subsets and the resulting dynamics in the

bistable case through analytical results for d-regular digraphs and though numerical

results for N = 2. Furthermore, we examined possible control strategies through

example simulations in which we modified the recovery rates, reinfection rates, and

network structure. Finally, we studied vaccination as a control strategy and suggested

that the dynamics of the network SIRI model exhibit a codimension N transcritical

bifurcation without parameters with drift transversality.

Our results provide analytical results on the effects of network structure and agent

heterogeneity on the transient and steady-state dynamics of the group. Moreover, we

characterize these effects with a small number of scalar parameters: R0, R1, Rmax

and Rmin. Knowledge of these four reproductive numbers facilitates the design of

control strategies for the eradication or spread of the contagion process. Finally, the

existence of the bistable regime, which is absent in the SIS and SIR models, presents

opportunities for the analysis and design of multi-agent systems that exhibit more

complex collective behaviors.
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Chapter 6

Final Remarks

In this dissertation, we derived and analyzed dynamic models for groups of inter-

connected individuals that exhibit robust and flexible collective behaviors that are

controlled by a small number of critical system parameters. In Chapter 3, motivated

by field observations of foraging red harvester ants, we showed that adaptations in

volatility at the level of the individual, in response to a first exposure to the envi-

ronment, lead to the emergence of complex collective behaviors that are robust to

perturbations and flexible to changes in environmental conditions [43]. In Chapters 4

and 5, we generalized our results to contagion processes in which individuals adjust

their susceptibility after a first exposure to the infection. We examined both well-

mixed settings (Chapter 4) and network topologies (Chapter 5), demonstrating that

adaptations in susceptibility in response to a first exposure to the infection lead to a

distinct number of transient and steady-state group behaviors that depend on initial

conditions and communication topology. Moreover, we showed that these behaviors

are characterized by the values of a small number of critical system parameters [57,58].

Our results suggest that the ability of individuals to adjust their susceptibility in

response to interactions, and the feedback across multiple timescales that results from

it, constitutes a general principle for robust and flexible collective behavior. Groups
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that operate without central control rely on complex patterns of interactions to func-

tion. The response of a group to stimulus depends on the effects of the stimulus on

the individuals within the group, and on how they interact with one another and their

environment. Adaptations in the susceptibility of individuals introduce a feedback

mechanism at the level of the group that is significantly slower than the dynamics

at the level of the individual. This fast-slow process modulates the sensitivity of the

group to stimulus and results in group behaviors that evolve in time to reflect the

collective assessment of the conditions by the individuals in the group.

The abstraction provided by our modelling approach allows for generalizations

and comparisons with other systems that exhibit collective behaviors that display a

balance of stability and plasticity. Our use of feedback across multiple timescales to

regulate group sensitivity has a number of parallels with the homeostatic regulation of

excitability in neurons, in which neurons adjust their sensitivity to stimulus based on

their previous activity [21,22]. These changes in the excitability of neurons have been

linked with changes in the number and density of receptors and ion-gate channels that

modulate the level of stimulus required for activation. Comparably, in our models,

group sensitivity to stimulus is regulated as a result of the accumulated changes in

susceptibility of the individuals in the group based on previous activity.

Our results can be applied to suggest improvements to existing engineered dis-

tributed systems. The regulation of bandwidth congestion in TCP-IP communication

networks has many parallels with the regulation of foraging in harvester ants [40,140].

In TCP-IP networks, source nodes transfer files to destination nodes via packets of

information. When the recipient node receives each packet, it sends an acknowledg-

ment to the source node. This feedback loop is used to prevent congestion in the

network [140]. If the rate of acknowledgements is slow, then the sender node inter-

prets this as a signal for low available bandwidth. The sender reacts to this signal

by decreasing the data transmission rate accordingly. Similarly, higher rates of ac-
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knowledgements lead to higher transmission speeds. This is similar to the process

of interactions by which harvester ant colonies regulate the rate of outgoing for-

agers [34–38,122]. The acknowledgement process provides information on the quality

of the available bandwidth in the network, similar to how the interaction process

in harvester ants provides information on the quality of the foraging conditions. In

both cases, the information is used to regulate the rate of the output “packets”. Our

model for the regulation of foraging in harvester ants suggests that adjusting how

source nodes respond to different acknowledgement rates could lead to more flexible

communication networks. Furthermore, introducing heterogeneities between nodes

in how they respond to different acknowledgement rates could prioritize the flow of

information along selected parts of the network when bandwidth is limited.

The mechanism by which foragers in the nest become active is comparable to a

complex contagion process in which the active foragers play the role of infected indi-

viduals. Individuals change state from inactive to active via the complex contagion

process of interactions with active individuals (incoming foragers), and active indi-

viduals become inactive after an arbitrary delay (the foraging time). This analogy

allows us to compare the behavioral regimes for the closed-loop foraging ant model

with the adaptation mechanism, described in Section 3.9, to the behavioral regimes

of the well-mixed SIRI model, described in Section 4.3. The trivial foraging regime is

comparable to the infection-free regime, the steady-state foraging regime is compa-

rable to the endemic regime, the loop foraging is comparable to the epidemic regime,

and the delayed foraging regime is comparable to the resurgent epidemic phenomenon

of the bistable regime. The equivalence of the two sets of behavioral regimes, one in

the complex contagion process of foraging harvester ants, and the other in the simple

contagion process of the SIRI model, support our hypothesis that the adaptations in

susceptibility mechanism is a general principle for robust and flexible collective be-

havior. In addition, our results show that these behavioral regimes are determined by
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the value of two critical system parameters that capture the sensitivity of the group

to stimulus before and after the adjustments in susceptibility.

In Chapter 5 we developed multi-agent system dynamics that incorporate our

insights on robust and flexible collective behavior that we developed in Chapters 3

and 4. We extended the results of the previous chapters by demonstrating how the

behavior of the group is affected by network structure and agent heterogeneities. Our

results highlight the use of a small number of critical system parameters to understand

the complex mapping between the actions of individual agents and the resulting group

outcomes. Knowledge of the analytical form of these critical parameters yields exact

predictions on how changes in network structure and/or individual behavior affect

group outcomes.

6.1 Future Work

Many exciting avenues of research remain in the study of robust and flexible collective

behavior. The most promising of these would develop simple rules at the level of the

individual that provide analytic guarantees on the performance of the group in new,

unforeseen environments. Generating design principles and control methodologies for

resilient collective behavior requires the development of new models and theories to

answer questions concerning the relationship between robustness and communication

topology, the benefits and/or costs of agent heterogeneity in the flexibility of group

behaviors, and the importance of agent learning and adaptation in group level strate-

gies for an ever changing environment. Here we present a selected number of ideas

that would extend the results of this dissertation along these avenues.
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6.1.1 Refined Models for Harvester Ant Foraging

The results in this dissertation were inspired by the regulation of foraging problem

in harvester ants. A better understanding of the regulation of foraging in harvester

ants would lead to better principles for robust and flexible collective behavior.

The closed-loop excitable model developed in Chapter 3 is a phenomenological

model that captures the main components in the regulation of foraging. The model

can be used as a starting point for the development of mechanistic models that resem-

ble the biological system more closely. In our model, we have assumed that foragers

adapt their volatility once after a first exposure to the environmental conditions.

In an ongoing collaboration, we are analyzing data for individual foraging ants to

test whether foragers adapt their sensitivity to interactions after every foraging trip.

Results on the continuous effects of temperature and humidity on the sensitivity of

foragers could then be used to develop models that describe how colonies adapt to

changing environments and decide when to stop foraging. Supplementary improve-

ments to the model include the addition of dynamics that describe the movement of

foragers between the entrance chamber and the deeper tunnels of the nest, dynamics

that describe the effects of foraging time on volatility, and the inclusion of forager

heterogeneity. All of these will require further experimental efforts to support the

modeling decisions.

6.1.2 Exact Bistability Conditions in Networks

In the bistable regime of the network SIRI model, described in Section 5.4, solutions

converge to an infection-free equilibrium or to an endemic equilibrium depending on

the initial conditions. Descriptions of the set of initial conditions that lead to an

infection-free equilibrium could be used to design control methodologies that prevent

or exploit the resurgent epidemic phenomenon. We conjecture that analytic results
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for the exact bistability conditions in the network SIRI model might be feasible in the

case of two agents. In this case, the center manifold dynamics are three-dimensional,

allowing for the description of transversality conditions for the resulting co-dimension

two bifurcation without parameters. These results could then be used to gain insight

into the N agent case and the resulting co-dimension N bifurcation without param-

eters.

6.1.3 Centrality Measures for Contagion Processes

Centrality measures provide a metric that ranks nodes within a network in terms of

how “well-positioned” they are within the graph. These measures are used in a variety

of contexts to better understand the roles of individual agents in multi-agent system

dynamics. Deriving a centrality measure for contagion processes would facilitate the

design of control strategies that seek to eradicate or spread the infection by ranking

the nodes in the network in terms of their effect on the contagion dynamics.

Usually, centrality measures are static metrics that depend on properties of the

graph structure only [29]. Understanding how the placement of agents within the

network influences the spread of the contagion process requires a different notion

of centrality that takes into account the dynamics of the infection and the way in

which agents adapt to it [141–145]. We propose that the equation for the endemic

equilibrium (EE) in the network SIRI model (5.8) could be used as a basis for the

development of natural centrality measures for contagion processes on networks. The

equation provides a natural ranking of nodes according to their probability of infection

at steady-state, acting as a centrality measure that identifies agents at the most risk

of being reinfected once the infection has become endemic. However, since (5.8) is

only valid once the infection has spread through the network, this centrality measure

is not helpful in the derivation of control laws that seek to prevent the spread of the

infection. Future centrality measures should incorporate information on the state of
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the system at any point in time, providing a ranking of nodes that could then be

used to develop centralized or distributed control strategies. Moreover, any centrality

measure derived from the network SIRI model dynamics could potentially be used

for the stochastic SIRI Markov process described in Section 5.1. This would provide

a valuable resource for the development of control strategies for contagion processes

in stochastic settings which more closely resemble real-world scenarios [146].

6.1.4 Control of Contagion Processes on Networks

Previous results on the network SIS model (5.7) have shown that whether the infec-

tion dies or spreads depends on the value of the basic reproduction number R0 =

ρ(BΓ−1) [77,81]. Many proposed control methodologies for contagion processes focus

on mechanisms that affect R0 via changes to the network structure and the system

parameters [74]. Example mechanisms include optimal node removal, optimal link

removal, and budget-constrained allocation [73, 74, 147, 148]. Under the assumption

of perfect knowledge of the network structure and the system parameters, these same

mechanisms could be used to derive control strategies for the network SIRI model that

affect the value of the basic and extreme basic reproduction numbers: Rmax, Rmin,

R0, and R1. We note that optimal node and link removal have been shown to be

NP-complete and NP-hard problems, respectively [74, 149]. Alternatives include the

use of centrality measures to select the nodes that should be removed first. Moreover,

if knowledge of the network structure or system parameters is uncertain or not avail-

able, these control strategies are not viable. Instead, distributed control strategies

that affect the system parameters are required. Our network SIRI model results invite

an interpretation of the changes in susceptibility by the individuals in the network as

a distributed heuristic feedback policy: individuals assess the quality of the process

spreading through the network and adjust their susceptibility accordingly, leading to

the eradication or spread of the infection. Future studies could exploit our results for
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the network SIRI model and use centrality measures for contagion processes to derive

necessary and sufficient conditions on the reinfection and/or recovery rates of a small

number of selected agents that would guarantee that the infection dies out or spreads

through the network.
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Part II

Published Work
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Chapter 7

Outline and Contributions

Part II of this dissertation consists of two chapters containing work that has been

published in peer-reviewed journals and a third chapter containing work that has

been submitted for publication. Each chapter has been slightly adapted from their

published or submitted version to conform with the format and notation used in Part

I of this dissertation.

7.1 Outline

In Chapter 8 we present a dynamic model for the regulation of foraging in desert

harvester ants [43]. The model implements feedback across different timescales and

is based on field observations of foraging rates. The model is low-dimensional and

retains sufficient analytical tractability to perform analysis on the effects of critical

system parameters on transient and steady-state foraging rates. We show how a

simple mechanism in which foragers adapt after first exposure to the environment is

sufficient to capture most of the foraging behaviors observed in the data.

In Chapter 9 we study the SIRI epidemic model for reinfection in well-mixed

settings in which the susceptibility of individuals changes irreversibly after a first
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exposure to the infection [57]. We show how the dynamics of the model exhibit

four distinct dynamical regimes: infection-free, endemic, epidemic, and bistable. The

regimes are determined by two parameters that are related to the basic reproduction

number. We prove that in the bistable regime, there exists a critical initial condition

below which solutions reach an infection-free equilibrium and above which solutions

reach an endemic equilibrium. Moreover, we prove that solutions in the latter case

exhibit a resurgent epidemic in which the solution initially decays and gets close to

zero for arbitrarily long lengths of time before rapidly increasing.

In Chapter 10 we study the SIRI epidemic model for reinfection in network topolo-

gies. We consider the heterogeneous case in which each individual has a recovery rate

and each pair of individuals have an infection rate and a reinfection rate. We extend

the results from the well-mixed model and show that the dynamics of the network

model also exhibit four distinct dynamical regimes: infection-free, endemic, epidemic,

and bistable. We prove that the regimes are determined by two parameters that cap-

ture the effect of heterogeneities and network structure.

7.2 Contributions

I am the lead author and lead contributor to the conceptualization, formal analysis,

investigation, illustrations, simulations, and writing presented in all three papers.

My advisor, Professor Naomi Ehrich Leonard, provided advice and guidance on all

aspects of this work. Journal reviewers provided valuable suggestions that improved

the quality of the manuscripts, and listed co-authors provided advice on different

aspects of the research, as described below.

In Chapter 8, Deborah Gordon provided a first data set which guided my initial

questions and analysis. Data from 2015 and 2016 was collected by myself and Deb-

orah Gordon’s team, but I did not participate in the 2017 data collection process.
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Members of Deborah Gordon’s team are acknowledged at the end of the chapter. I

performed the data cleaning and analysis for all data sets. Naomi Leonard and I, with

guidance from Deborah Gordon, framed the main questions addressed in the work.

I developed and refined the model with guidance from Naomi Leonard. I proposed

the adaptation mechanism and wrote all simulations. Naomi Leonard and Deborah

Gordon revised and edited the manuscript. Chapter 8 appeared in PLoS Computa-

tional Biology in December of 2018 [43]. I presented early versions and partial results

at the Princeton 2017 MAE Research Day, the SIAM 2017 Conference on Applica-

tions of Dynamical Systems, the Janelia 2018 Conference on Distributed, Collective

Computation in Biological and Artificial Systems, and the International Center for

Theoretical Physics 2018 Conference on Collective Behavior.

In Chapter 9, I framed the questions, derived the model, and performed all anal-

ysis. Biswadip Dey suggested the time to resurgence definition and checked the

mathematical results. Both Biswadip Dey and Naomi Leonard revised and edited the

manuscript. I am grateful to Zahra Aminzare for providing helpful suggestions for

the structure of the paper that improved early stages of the manuscript. Chapter 9

appeared in IEEE Control Systems Letters in April 2018 and as a contributed paper

in the Proceedings of the 2018 IEEE Conference on Decision and Control, where I

presented the work.

In Chapter 10, I framed the questions with guidance from Naomi Leonard. I

performed all of the analysis with the exception of the reduction of the model for d-

regular digraphs, which I performed with the help of Naomi Leonard. Naomi Leonard

made a number of suggested changes to the structure of the manuscript and results

which vastly improved the presentation of the material. I am very grateful to Naomi

Leonard for her invaluable help in revising the results and editing the manuscript.

Chapter 10 has been submitted for publication. I presented early versions and partial

results at the 2018 Dynamic Days Conference, the International Center for Theoretical
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Physics 2018 Conference on Collective Behavior, and the 2018 IEEE Conference on

Decision and Control.
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Chapter 8

Regulation of Harvester Ant

Foraging as a Closed-Loop

Excitable System∗.

Renato Pagliara, Deborah M. Gordon, and Naomi Ehrich Leonard

Ant colonies regulate activity in response to changing conditions without using

centralized control. Desert harvester ant colonies forage for seeds, and regulate for-

aging to manage a tradeoff between spending and obtaining water. Foragers lose

water while outside in the dry air, but ants obtain water by metabolizing the fats in

the seeds they eat. Previous work shows that the rate at which an outgoing forager

leaves the nest depends on its recent rate of brief antennal contacts with incoming

foragers carrying food. We examine how this process can yield foraging rates that

are robust to uncertainty and responsive to temperature and humidity across minute-

to-hour timescales. To explore possible mechanisms, we develop a low-dimensional

1This chapter was published as Pagliara, Gordon, and Leonard in PLOS Computational Bi-
ology on December 4, 2018 [43]. All raw data and the MATLAB model simulation scripts
are available in the repository in Princeton Universitys DataSpace at the permanent address:
http://arks.princeton.edu/ark:/88435/dsp01qv33s040d
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analytical model with a small number of parameters that captures observed foraging

behavior. The model uses excitability dynamics to represent response to interactions

inside the nest and a random delay distribution to represent foraging time outside

the nest. We show how feedback from outgoing foragers returning to the nest stabi-

lizes the incoming and outgoing foraging rates to a common value determined by the

volatility of available foragers. The model exhibits a critical volatility above which

there is sustained foraging at a constant rate and below which foraging stops. To

explain how foraging rates adjust to temperature and humidity, we propose that for-

agers modify their volatility after they leave the nest and become exposed to the

environment. Our study highlights the importance of feedback in the regulation of

foraging activity and shows how modulation of volatility can explain how foraging

activity responds to conditions and varies across colonies. Our model elucidates the

role of feedback across many timescales in collective behavior, and may be gener-

alized to other systems driven by excitable dynamics, such as neuronal networks.

Author Summary: We investigate the collective behavior that allows colonies

of desert harvester ants to regulate foraging activity in response to environmental

conditions. We develop an analytical model connecting three processes: 1) the

interactions between foragers returning to the nest and available foragers waiting

inside the nest, 2) the effect of these interactions on the likelihood of available

foragers to leave the nest to forage, and 3) the return of foragers to the nest

after finding seeds. We propose a mechanism in which available foragers mod-

ify their response to interactions after their first exposure to the environment.

We show how this leads to colony foraging rates that adjust to environmental

conditions over time scales from minutes to hours. Our model may prove use-

ful for studying other classes of systems with excitability dynamics that exhibit
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both stability in behavior and flexibility with respect to environmental conditions.

8.1 Introduction

Social insect colonies operate without central control. Colonies maintain coherence

and plasticity in the face of perturbation and change, even though individuals have

limited and uncertain information on the state of the group and the state of the

environment. Collective behavior emerges from the response of individuals to social

interactions and their assessment of the local environment [7–9, 24]. The study of

social insects provides opportunities to investigate open, fundamental questions on

how collective behavior adjusts to different conditions and how small differences in

these adjustments can lead to large differences in behavior across groups.

The regulation of foraging activity in colonies of the harvester ant (Pogonomyrmex

barbatus) is a well-studied example of collective behavior [41]. Harvester ants live in

the hot and dry Southwestern US desert where they forage for seeds scattered by wind

and flooding on the timescale of weeks and months. Foragers do not use pheromone

trails; instead, they spread out across the foraging area in search of seeds [39]. Thus

the regulation of foraging in harvester ant colonies, unlike in honey bees and in ant

species that use pheromone trails, does not allocate workers among spatially fixed

resources that differ in quality and availability [150–153]. A harvester ant’s foraging

trip time may vary with food availability. However, on the scale of the colonys foraging

area, food is not depleted in the course of the foraging period on a given day, and hot

and dry conditions, rather than lack of food, can cause colonies to stop foraging.

The regulation of foraging activity manages a tradeoff between spending water

and obtaining water and food: foragers lose water while outside in the dry air, but

colonies obtain water by metabolizing the fats in the seeds that they eat [32, 33].
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Foraging is initiated each morning by a distinct group of workers, the patrollers [154,

155], who leave the nest before the foragers emerge and explore the nest mound and

foraging area. It is the safe return of the patrollers that initiates foraging, through

encounters inside the nest between foragers and returning patrollers [122]. Once

foraging has begun, harvester ant colonies regulate the rate at which foragers leave

the nest using the incoming rate of successful foragers returning with food [34–38].

When an ant contacts another ant with its antennae, it perceives the other ant’s

cuticular hydrocarbon (CHC) profile [34]. Because conditions outside the nest change

the chemistry of the cuticular hydrocarbons, CHC profiles are task-specific [156], so

that in the course of antennal contact, one ant can detect whether another is a forager.

An available forager, waiting in the entrance chamber inside the nest, is stimulated

to leave the nest by antennal contact with foragers carrying food [36–38]. The rate

of interactions experienced by an available forager inside the nest entrance chamber

correlates with the local density of ants [38]. Thus a higher rate of incoming foragers

leads to a higher rate of interactions [37]. Because each forager searches until it

finds a seed, the rate of interaction serves as a noisy measurement of the current

foraging conditions [39, 40]. A higher rate of forager return, which reflects a greater

food supply, increases the likelihood that available foragers will leave the nest to

forage [37,38,132].

In the integrator model of [38], each available forager inside the nest collects

evidence from incoming foragers by integrating its recent experience of antennal con-

tacts. When the integrated stimulus passes a threshold, the available forager is likely

to leave the nest; in the absence of interactions the forager is likely to descend from

the entrance chamber to the deeper nest [37,132], protecting the colony from the in-

herently noisy signal that results from limited and uncertain interactions [157]. The

integrator model has been used to study regulation of the outgoing foraging rate on

short timescales of minutes [40].
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Colonies regulate their foraging activity on longer timescales, such as from hour

to hour, from day to day [123,125], and across years [41,123,124,126] as colonies grow

older and larger. Over timescales from tens of minutes to hours, ants that start as

available foragers inside the nest leave the nest to forage, find seeds, return to the nest,

and become available foragers again. Thus, the activation of available foragers inside

the nest through interactions with incoming foragers is connected in a “closed loop”

to the foraging activity outside the nest through feedback of the ants themselves:

the stream of foraging ants out of the nest is the input to the foraging activity, and

the output of the foraging activity is the stream of foraging ants into the nest (see

Figure 8.1). However, little is known about the role of feedback in the regulation

of foraging activity at the timescale of hours and as foraging activity is adjusted to

changing environmental conditions. By mid-day in the summer, temperature is high

and humidity is low (Figure 8.10). Foraging activity increases from its start in early

morning and then levels off, often remaining at a steady rate for tens of minutes to

hours. It declines to no activity during the heat of the afternoon.

How a colony regulates foraging in response to environmental conditions, espe-

cially temperature and humidity, is ecologically important. Colonies live for 20-30

years, the lifetime of the single founding queen who produces short-lived workers

year after year. At about five years of age the queen begins to produce reproduc-

tives that mate with those of other colonies, and the daughter queens found offspring

colonies [42]. Colonies differ in the regulation of foraging and these differences persist

from year to year, including variation in how often colonies are active [123] and in

how they respond to changing temperature and humidity conditions [41, 124, 125].

The persistence of foraging behavior across years, in subsequent cohorts of workers,

and comparison of parent and offspring colonies [42] suggests that foraging behavior

is heritable. It appears that colony differences in the regulation of foraging arise from
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Figure 8.1: Diagram of the closed-loop model with two components inside the nest
and one component outside the nest. The “Interactions” component maps the se-
quence of incoming foragers λin to a stimulus s to represent the result of interactions
of available foragers inside the nest entrance chamber with incoming food-bearing
foragers. The mapping uses a leaky integrator that increases by a fixed magnitude
with every incoming forager and has a natural decay rate. The “Response of avail-
able foragers” component maps s to the sequence of outgoing foragers λout using the
nonlinear FitzHugh-Nagumo oscillator dynamics. Each oscillation represents an ant
leaving the nest to forage. The “Foraging” component maps λout to λin using a ran-
dom time delay with an associated probability distribution to represent the time an
ant spends outside the nest foraging.

differences in how individuals respond to interactions with incoming foragers, that is,

in the rates of interaction required to stimulate a forager to leave the nest [38].

How a colony adjusts foraging activity to low humidity and high temperature

is crucial for reproductive success: colonies that conserve water are more likely to

have offspring colonies [41]. We hypothesize that these differences among colonies in

their response to different environmental conditions are the result of differences in how

their foragers assess humidity and in how this influences their response to interactions

with incoming foragers [125]. Recent work suggests this depends on variation in the

neurophysiology of biogenic amines such as dopamine [158]. Here we model how

colonies adjust to environmental conditions by adjusting their “volatility” defined as

their sensitivity to interactions with returning foragers. Our goal is to suggest testable
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hypotheses about the sources of variation among colonies upon which natural selection

can act to shape collective behavior.

Previous modeling work has elucidated how the outgoing foraging rate across

timescales of minutes depends on the incoming foraging rate [40], and how individ-

uals assess interaction rate [38]. But we do not know how these are combined to

adjust foraging activity across minute-to-hour timescales, how steady foraging rates

are maintained, how the adjustments may depend on environmental conditions, and

how they may differ from colony to colony.

Here we propose a closed-loop model (Figure 8.1) to address these questions by

examining how an incoming forager’s assessment of external conditions provides addi-

tional feedback to the colony and in turn adjusts the colony foraging rate. Our model

is motivated in part by the frequent use of excitability dynamics to model neurons, and

the parallels between ant-to-ant interactions that drive foraging and neuron-to-neuron

interactions that underlie the cognitive abilities of organisms [3, 4, 38, 128, 129]. Us-

ing well-studied excitability dynamics of a weakly interacting collective, we introduce

feedback at multiple time-scales and explore general questions concerning stability

and responsiveness to a changing environment.

Drawing on theory and tools from dynamical and control systems, we study the

relationship, in the model, between the fast activation of foragers inside the nest and

the slow feedback from incoming foragers to describe, with a small number of param-

eters, how the incoming and outgoing foraging rates adjust to changing conditions on

the timescale of tens of minutes to hours. We show how the foraging rates are stabi-

lized, and we suggest how small differences in parameter values can lead to variation

in the regulation of foraging for different environmental conditions and for different

colonies.
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8.2 Methods

8.2.1 Field Observations of Foraging Activity

We performed field observations of red harvester ant colonies at the site of a long

term study near Rodeo, New Mexico, USA. Observations were made in August and

September of 2015, 2016, and 2017. Foragers leave the nest in streams or trails

that can extend up to 20 m from the nest [159]. Each forager leaves the trail

to search for seeds, and once it finds food, it returns to the nest [39, 159]. Data

on foraging rates were recorded from the beginning of the foraging period in early

morning until around noon. We recorded the times at which foragers crossed a line

perpendicular to the trail at a distance of about 1 m from the nest entrance, as

in previous work (e.g. [40, 124, 160]). The timestamps for each forager crossing the

line were recorded either manually in real-time with the assistance of an electronic

tablet and custom software, or from video recordings, processed with computer vision

software (AnTracks Computer Vision Systems, Mountain View, CA). In some cases

we used both tablet and video to ensure that both data collection methods provided

similar results.

We denote by tini , i ∈ N, the sequence of times incoming foragers cross the line

and by toutj , j ∈ N, the sequence of times outgoing foragers cross the line. Sequences

of incoming and outgoing foragers are represented as sums of infinitesimally narrow,

idealized spikes in the form of Dirac-delta functions:

λin(t) =
n∑
i=1

δ(t− tini ), λout(t) =
m∑
j=1

δ(t− toutj ), (8.1)

where n and m are the indices of the last incoming and outgoing forager, respectively,

before time t. We estimated the instantaneous incoming and outgoing foraging rates,
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in units of ants/sec, using a sliding window filter with window ∆t = 300 sec:

rin(t) =

∫ ∞
−∞

w(ζ)λin(t− ζ) dζ, rout(t) =

∫ ∞
−∞

w(ζ)λout(t− ζ) dζ (8.2)

where

w(t) =


1/∆t if −∆t/2 ≤ t ≤ ∆t/2

0 otherwise.

(8.3)

We selected the size of the sliding window to be sufficiently long to remove noise

but sufficiently short to preserve the interesting dynamic features of the foraging rates

across tens of minutes to hours.

8.2.2 Model

We propose a low-dimensional dynamic model with a small number of parameters

that has sufficiently rich dynamics to capture the range of observed foraging behavior

across minute-to-hour timescales and yet retains tractability for analysis. We use the

model to systematically investigate the effects of model parameters and environmental

conditions, notably temperature and humidity, on foraging rates.

Our model has three components as shown in Figure 8.1: 1) the Interactions

component models the accumulation of evidence by available foragers inside the nest

entrance chamber from their interactions with incoming foragers carrying food, 2) the

Response of available foragers component models the activation of available foragers

to leave the nest to forage in response to accumulated evidence, and 3) the Foraging

component models the collecting of seeds outside the nest by active foragers. We

assume the total number of foragers N (active foragers outside the nest plus available

foragers inside the nest) remains constant throughout the foraging day, although this

assumption could be relaxed in a generalization of the model.
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Interactions

We use leaky-integrator dynamics to model the stimuli s that the group of available

foragers inside the nest entrance chamber experience from their interactions with

incoming food-bearing foragers:

ṡ = −s
τ

+ kλin. (8.4)

The leaky-integrator (8.4) integrates information from the sequence of incoming for-

agers (Figure 8.2A), but the information “leaks,” i.e., decays slowly over time. Here,

we use the leaky-integrator dynamics to estimate the instantaneous rate of incoming

foragers which is proportional to the overall rate of interactions experienced by avail-

able foragers inside the nest [37]. The continuous-time signal s increases by a fixed

amount k with every incoming forager in λin and decays exponentially back to zero

with a time constant of τ (Figure 8.2B).
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Figure 8.2: Open-loop model. A) Sequence of incoming foragers λin. B) Stimulus
signal s associated with λin. C) FN output v for input s. D) Sequence of outgoing
foragers λout obtained by thresholding FN output from below at 0.75.

151



The leaky-integrator dynamics work as an evidence accumulator that gradu-

ally forgets past evidence. These dynamics have been used to model chemical

synapses [161] and have been used as the integrate-and-fire neuronal model when

there is no reset boundary [162–164].

Response of Available Foragers

We use the FitzHugh-Nagumo (FN) excitability dynamics [103, 104], often used to

model neuronal excitability, as a phenomenological model for the activation of avail-

able foragers inside the nest entrance chamber. Our choice of dynamics is motivated

by the similarities between the ant-to-ant interactions that activate available foragers

to leave the nest to forage and the neuron-to-neuron interactions that drive cogni-

tion in organisms [3,4,38,128,129]. In the neuronal setting, the FN dynamics model

the membrane voltage response of a neuron to an electrical stimulus. The state v is

the voltage and a second state u is a recovery variable that models the flow of ions

across the membrane and provides a relatively slow negative feedback on the rate

of change of v. For low values of stimulus, the voltage remains at rest; for interme-

diate values, the voltage oscillates; and for large values, the voltage saturates. In

our phenomenological model, an oscillation represents the activation of an outgoing

forager.

We first consider a homogeneous colony and model the dimensionless, scalar acti-

vation state v of available foragers in the nest entrance chamber as the fast timescale

variable in the FN equations [103,104]:

ε1ε2v̇ = v − v3/3− cu− a+ s (8.5)

ε1u̇ = v − cu. (8.6)
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These equations describe nonlinear oscillator dynamics with the stimulus s of (8.4)

as the input and v as the output. Oscillations result from a balance between positive

feedback in v (first term on the right of (8.5)) and negative feedback in the dimension-

less, slow timescale, recovery variable u. The parameter c, which scales the negative

feedback, modulates the frequency of oscillations and the range of values of stimulus

s that lead to oscillations. We introduce c in both (8.5) and (8.6) so that a change in

c determines the frequency of oscillations and the range of values of stimulus s that

lead to oscillations, but it leaves other features of the dynamics unchanged. Since c

regulates responsiveness, and does so better than parameters ε1, ε2, and a, we let c

represent the volatility of the available foragers.

The parameter ε2 defines the time separation between the dynamics of the fast

and slow states, and the parameter ε1 defines the time separation between the FN

dynamics and the stimulus dynamics (8.4). The parameter a provides an offset to s

and its value is selected based on the value of k, which is the increase in stimulus s

resulting from an interaction with an incoming forager. Parameter a is chosen so that

k is greater than the threshold above which input s elicits an oscillation. Eliciting

at least one oscillation per isolated incoming forager in the model allows for a rapid

increase in the foraging rates during the first few minutes of foraging, when the initial

incoming foraging rate is low.

The activation dynamics ((8.5) and (8.6)) of the available foragers yield three

qualitatively distinct dynamical regimes, determined by the magnitude of input s,

and bifurcation values b1 and b2 (Figure 8.2C). In the first regime, the system remains

in a resting state for 0 < s < b1. This reflects the situation in which the stimulus for

available foragers to leave the nest is low because there are few incoming foragers. In

the second regime, which takes place when b1 < s < b2, the system is in an excited

state with oscillations in v. This reflects the situation in which incoming foragers are

sufficiently frequent to stimulate the available foragers. The transition from resting
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to oscillatory behavior as s increases corresponds to a Hopf bifurcation and b1 is

the corresponding bifurcation point. The oscillations appear as short-lived spikes,

and we define each spike for which v increases above 0.75 as a forager leaving the

nest (Figure 8.2D). The shortest possible time between foragers leaving the nest is

determined by the volatility c (see Section 8.5.1).

In the third regime, corresponding to very large values of s > b2, there are no

oscillations and the system is fixed in a saturation state. The transition from oscilla-

tory to saturated regime is a second Hopf bifurcation with bifurcation point b2. This

means that a high instantaneous incoming rate that produces a high value of s will

lead to saturation in the FN dynamics resulting in a decrease in instantaneous outgo-

ing rate. Conditions represented by the effect of saturation include 1) overcrowding

effects, which reduce the percentage of interactions experienced by each available for-

ager relative to the incoming foraging rate, 2) the limited size of the nest entrance

tunnel, which constrains how many foragers can enter and leave the nest in a short

amount of time, and 3) the difference in timescales between the high outgoing rates,

in seconds, and the time required, in minutes, for foragers to move from the deeper

chambers of the nest up to the entrance chamber [37,132].

Foraging

We treat the process of foraging for seeds outside the nest as a random time delay.

We model the interval between the time that a forager leaves the nest and the time

when it returns with food as a chi-square random variable X, with parameter D

representing the mean foraging time in minutes. The distribution of foraging times

F (X,D) is

F (X,D) = 1− Γ(D/2, X/2)

Γ(X/2)
, (8.7)

where Γ(X) and Γ(a,X) are the Gamma function and the upper incomplete Gamma

function, respectively. This right-skewed distribution is based on field observations of

154



the duration of foraging trips, measured as the total time elapsed from when a forager

leaves the nest to when it returns with food [39]. For D = 2, F (X, 2) = 1− e−X/2.

Our model for the foraging process is equivalent to a queueing system [165] in

which arriving customers, represented by outgoing foragers λout, find a seed after a

given random “service time”. The number of servers in this analogy of the foraging

process as a queue is assumed to be infinite because foragers do not need to wait

before they start looking for a seed (i.e., before receiving the service). In queueing

theory, queues with random service time and infinite number of servers can elucidate

the effects of service time on the expected number of customers being serviced at any

time.

Proposed Mechanism for Response to Environmental Conditions

We propose a mechanism for colony response to environmental conditions, illustrated

in Figure 8.3, in which the volatility of a forager changes after it has been on a foraging

trip and exposed to the conditions outside the nest. The proposed mechanism is based

on measurements showing that the temperature and humidity inside the nest remain

constant throughout the foraging activity period (see Figure 8.10). This means that

foragers have no information about conditions outside until they leave the nest.

As a first approximation, the model changes the volatility of each forager after it

leaves the nest to forage for the first time. Available foragers that have not yet been

outside the nest, and are therefore uninformed about the current temperature and

humidity outside the nest, have volatility cu. Available foragers that have been outside

at least once to forage, and are therefore informed about the current temperature and

humidity, have volatility ci.

The values of cu and ci, representing an average uninformed and an average in-

formed available forager, can be any positive real numbers. These values can vary

across colonies and across days. The uninformed volatility cu can vary across days for
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Figure 8.3: Block diagram of proposed mechanism for response of colony to envi-
ronmental conditions. The available foragers inside the nest comprise two sets: fu
corresponds to those that have not yet left the nest and so are uninformed about
the conditions outside the nest, and fi corresponds to those informed during a pre-
vious foraging trip. The response of each set to s is represented by a different FN
model, distinguished by the volatility parameter cu for the uninformed and ci for the
informed. The outputs of these two oscillator dynamics are weighted probabilistically
using thinning to get an outgoing stream of foragers λout(t).

a given colony, and across colonies, in response to colony needs, such as the amount of

brood to be fed and the amount of stored food, colony size, or neurophysiological fac-

tors such as biogenic amines (e.g. [158]). The informed volatility ci reflects response

to conditions that change both on the hourly and daily timescales, such as humidity

and temperature outside the nest. For example, the hotter and drier it is outside,

the smaller the ci, so the foragers become less volatile and thus less likely to make

subsequent foraging trips; the cooler and more humid it is outside, the larger the ci, so

the foragers become more volatile and thus more likely to make subsequent foraging

trips. ci can vary across colonies due to physiological differences among colonies in

response to conditions. There is currently no evidence that ci depends on how long

it takes for a forager to find a seed, but further work is needed to investigate this.
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Let fu be the set of nu uninformed available foragers that have not yet left the

nest during the day and thus have no information about the environmental condi-

tions and fi the set of ni informed available foragers that have been exposed to the

environmental conditions during one or more previous foraging trips that day. We

assume that once a forager becomes informed, it remains informed for the rest of the

foraging day. The ants in fu have volatility cu and the ants in fi have volatility ci.

Let xu = nu/(nu +ni) and xi = ni/(nu +ni) be the fraction of available foragers that

are uninformed and informed, respectively, where we assume that nu + ni > 0. Then

xu + xi = 1.

Initially, xi = 0 and the colony is completely uninformed (xu = 1). As foragers

return to the nest after their first trip, xi begins to increase and can continue to

increase until xi = 1 (xu = 0), when all N foragers have been outside the nest at least

once. How many minutes (or hours) it takes for xi to transition from 0 to 1 depends

on N , D, and the changing foraging rates. To model the changing foraging rates,

we use two sets of FN oscillator dynamics: one to represent the response to s of the

uninformed ants in fu with volatility cu and a second to represent the response to s

of informed ants in fi with volatility ci. Let the corresponding sequences of output

from the two oscillator dynamics be λu and λi, respectively. We define the sequence

of outgoing foragers λout as a probabilistic sum of λu and λi, using a method called

thinning [166]: Every event in λi is kept in λout with probability xi, and every event in

λu is kept in λout with probability 1−xi. When xi = 0 the foraging rate is determined

by cu, and when xi = 1 the foraging rate is determined by ci. When 0 < xi < 1, the

effective c will be a nonlinear combination of cu and ci. The higher the effective c,

the higher the outgoing foraging rate.

Here foragers adjust their volatility only once after their first foraging trip outside.

We find that even with this adjustment at first exposure, the model provides the range

of foraging behavior observed. However, the model can be generalized and predictions
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refined by allowing for adjustments on subsequent foraging trips, and by allowing for

other kinds of adjustments. For example, more than two sets of available foragers

with different values of volatility can be used to model effects of repeated exposures

to the environment, changing conditions on successive trips, or decay of information

about the external environment over time. A decrease in N (total number of foragers

outside and available inside the nest) can be used to model active foragers that return

to the deeper nest after exposure to hot and dry outside conditions [37].

8.3 Results

8.3.1 Observations of Regulation of Foraging in Red

Harvester Ants

Observations of instantaneous foraging rates computed from the 2015, 2016, and 2017

data show that across colonies and days, the incoming and outgoing foraging rates

rin(t) and rout(t), where t is time of day, undergo a transient (i.e., a temporary pattern

of change) early in the foraging period followed by an equilibration to a near-equal

value, i.e., rin(t) ≈ rout(t), during the middle part of the foraging period.

The equilibration of the incoming and outgoing foraging rates to a near-equal

value lasts for intervals from tens of minutes to several hours, and so we refer to it

as a quasi steady-state (QSS). We show the data for two colonies in Figure 8.4. We

plot the incoming rate rin (blue) and the outgoing rate rout (red) computed from the

data for Colony 1357 (Figure 8.4A) and Colony 1317 (Figure 8.4B) versus time of day

on August 20, 2016. For Colony 1357, the rates equilibrated to a near-equal value

early in the day, i.e., between 8:00 and 8:30 am. This was followed by a couple of

dynamic adjustments, but then by 9:30 am until just before noon, when all the ants

returned to the nest, the incoming and outgoing rates were very closely equilibrated
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at a QSS rate of around 0.25 ants/sec. Colony 1317 also was observed to reach a

QSS. Its incoming and outgoing rates equilibrated to a near equal value shortly after

10:00 am, which lasted until just before noon, when all the ants returned to the nest.

Colonies vary greatly in foraging rate [124], and that was true of these two as well.

For Colony 1317, the QSS rate was approximately 0.65 ants/sec, more than twice the

QSS rate for Colony 1357 on the same day.
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Figure 8.4: Plots of incoming foraging rate rin (blue) and outgoing foraging rate rout
(red) versus time of day on August 20, 2016 for A) Colony 1357 and B) Colony 1317.
The quasi steady-state (QSS) where incoming and outgoing rates equilibrated to a
near-equal value can be observed for both colonies. The QSS rate for Colony 1317
was more than twice as great as it was for Colony 1357.

We show data for two other colonies in Figure 8.5. Figure 8.5A and C show rin

(blue) and rout (red) versus time of day for a single colony, Colony 664, on two different

days: August 27, 2015 and August 31, 2015. In each plot, the rates can be seen to

come to a near-equal value sometime after 10:30 am. We plot in green the cumulative

difference between number of incoming and number of outgoing foragers versus the

time of day. The rates are at a QSS when the green curve is approximately horizontal.

These data show, as has been observed previously [167], that a given colony varies in

foraging rate from day to day, demonstrating that foraging is regulated by processes

other than the number of foragers in a colony, which remains relatively constant on the

timescale of months. From Figure 8.5A and C it can be seen that Colony 664 reached

a QSS rate on August 27, 2015 that is more than twice the QSS rate it reached on
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August 31, 2015. We note that August 27, 2015 was slightly cooler and more humid

than August 31, 2015. On August 27 the average temperature and humidity were

25.3 C◦ and 58% while on August 31 they were 26.8 C◦ and 53%. Moreover, at 11:00

am on August 27, they were 27.5 C◦ and 52% while at 11:00 am on August 31, they

were 28.8 C◦ and 45%.
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Figure 8.5: Plots of foraging rate data. Time series plots show incoming foraging rate
rin (blue), outgoing foraging rate rout (red), and cumulative difference between the
number of incoming and outgoing foragers (green) versus time of day. Input-output
plots show rout(t) versus rin(t) with the color scale representing time of day t. A) and
B) Colony 664 on August 27, 2015. C) and D) Colony 664 on August 31, 2015. E)
and F) Colony 863 on September 1, 2015.
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Figure 8.5E shows the data for Colony 863 on September 1, 2015, which were

recorded manually. No QSS is observed, i.e., the ants went out but then returned to

the nest by 11:00 am without maintaining a steady-state of foragers outside of the

nest. Colony 863 did reach a QSS at a reasonably high foraging rate at 11:00 am on

September 5, 2015 (see Figure 8.11A). These observations are consistent with mea-

surements showing that September 1, 2015 was much hotter and drier than September

5, 2015. On September 1 the average temperature and humidity were 25.2 C◦ and

53% while on September 5 they were 22.6 C◦ and 77%. See Table 8.1 of the SI for

more details.

Figure 8.4 and Figure 8.5 are representative of observations that suggest the equi-

libration of incoming and outgoing foraging rates to a near-equal rate to be an im-

portant feature in the regulation of foraging in red harvester ant colonies. Further,

the equilibrated rate, and the possibility of early cessation of foraging, depend on

factors that differ among colonies (Figure 8.4) and from day to day (Figure 8.5). We

examine the transient in foraging rates further in Figure 8.5. Early in the foraging

day, both rin and rout increased rapidly with rout increasing more rapidly than rin.

This led to a rapid increase in the number of active foragers outside the nest. The

rapid increase in both rates was followed by a decrease in rout to the equilibrated

near-equal value of the QSS (Figure 8.5A and C) or to an early return of the ants to

the nest (Figure 8.5E).

Input-output plots show the relation between incoming and outgoing foraging

rates Figure 8.5B, D, and F. These figures show the same data as Figure 8.5A, C,

and E, respectively, but plot rout(t) versus rin(t) with time of day t in hours indicated

by the color scale. The transient in rates during the early part of the foraging day

appear as curved trajectories above the diagonal, because rout(t) is typically higher

than rin(t). In Figure 8.5B and D, the curve rises and then falls to the QSS value

where the trajectory then equilibrates around a point on the diagonal corresponding
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to equal incoming and outgoing rates. This rise and fall of the curve in the input-

output plot is typical, even when the trajectory returns to the origin as in the case

of Figure 8.5F.

The data shown in Figs 8.4 and 8.5 as well as in Figure 8.11 are representative

of the data collected in 2015, 2016, and 2017. Temperature and humidity for these

data sets are given in Table 8.1. Figure 8.11B shows another example of a very

early cessation of foraging. Figure 8.11C and D show two different examples of long

transients. Figure 8.11E and F show two examples of a burst in the outgoing foraging

rate at the start of the foraging day. See Section 8.5.2 for details.

8.3.2 Model Dynamics

Foraging Dynamics Inside the Nest

Given a sequence of incoming ants λin, our open-loop model of foraging dynamics

inside the nest (Figure 8.1) predicts a corresponding sequence of outgoing ants λout.

We find an analytic approximation for the mapping from mean incoming foraging

rate r̄in to mean outgoing foraging rate r̄out, parametrized by volatility c. To do so,

we assume λin is a Poisson process with (constant) mean incoming rate r̄in; this is

justified for observations of incoming and outgoing sequences of foragers for short

periods of time [40].

We assign model parameter values to be k = 0.3, τ = 0.41, a = 0.35, ε1 = 0.2, and

ε2 = 0.05, which allow for rich dynamical behavior. While the qualitative behavior is

unchanged for different values of ε2 � 1, very high or low values of a, k, and/or τ yield

dynamics in which the stimulus s is either too low or too high to produce oscillations.

So the values for a, k, and τ are selected to balance their opposing effects on s and

the FN oscillating region.

162



The oscillating region of the FN dynamics corresponds to the range of values of

s between the FN bifurcation points b1 and b2, computed as b1,2 = a∓ 1
3
(1− cε2)3/2.

The offset a does not affect the size of the oscillating region whereas the volatility c

can control it: as c increases, the size of the oscillating region decreases (Figure 8.12).

The offset a modifies the lower threshold value of s, i.e., the lower bifurcation point b1,

above which the FN oscillates. To ensure that every isolated incoming forager elicits

at least one outgoing forager, given k, which is the increase in s for an interaction

with an incoming forager, we choose a such that k > b1 for all c ∈ [0, 5]. We choose k

and τ to produce sensible values of s for the range of incoming foraging rates observed

in the data. One of the strengths of the model is that, while there is some flexibility

in selecting a, k, and τ such that they satisfy these desired conditions, the qualitative

behavior of the system is not affected by the specific values selected.

For very low r̄in, r̄out is low because s is low and the FN system remains in the

resting state with occasional short-lasting periods of oscillatory behavior (Figure 8.2).

For very high r̄in, r̄out is also low because s is high and the FN system remains most

of the time in the saturated state. In contrast, r̄out is high for r̄in that yields an s

that keeps the FN system inside the oscillating region. In the oscillating region, r̄out

is equal to the frequency of the oscillations, which is inversely proportional to the

volatility c as we show in Section 8.5.1.

To get an expression for the natural frequency of the oscillations in the FN, we

compute an approximation for its period TLC(s, c) that uses the time-scale separa-

tion between the dynamics of v and u, see Section 8.5.1 and Figure 8.13. Under the

assumption of a Poisson incoming rate, the process s is ergodic (see Section 8.5.3).

Thus, over sufficiently long periods of time, suitable time statistics converge to en-

semble statistics, allowing us to approximate the fraction of time that s spends in the

oscillating region using p(s, r̄in), the probability density function of s at steady-state.

We compute p(s, r̄in) in Section 8.5.4 as a piecewise function where the piecewise ele-

163



ments satisfy recurrence equations and depend on k and τ . From this we can construct

an analytical expression for r̄out as a function of both r̄in and c (see Section 8.5.3):

r̄out =

∫ b2(c)

b1(c)

p(s, r̄in)

TLC(s, c)
ds. (8.8)

In Figure 8.6A we plot r̄out versus r̄in using (8.8) for different values of c. The

resulting open-loop input-output curves, which we call nest I/O curves show that the

analytic mapping from r̄in to r̄out depends nonlinearly on c. The increasing steepness

of the curve at low r̄in becomes more pronounced for higher c because the frequency

of oscillations is proportional to c. Similarly, the decreasing steepness of the curves

for high r̄in also becomes more pronounced for higher c. This is because as c increases

b2 decreases, causing the FN to saturate at lower r̄in values. The maximum value

of r̄out takes place at the r̄in that yields an s that keeps the FN system inside the

oscillating region. Because of this, the maximum r̄out must be less than or equal to

the natural frequency of the oscillations at the given value of c.
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Figure 8.6: A) Analytical approximations for the nest I/O curves. B) Simulated
nest I/O curves for different values of c. Each pair of error bars correspond to 10
simulation trials, each 5 minutes long, with a constant expected incoming rate and
constant volatility c. The dashed black line represents points at which the mean
incoming rate r̄in is equal to the mean outgoing rate r̄out.

In Figure 8.6B we show the nest I/O curves obtained by simulating the open-

loop system for different constant Poisson incoming rates at a fixed volatility. We
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measured the resulting mean outgoing rate in each case. We set λin to a five-minutes-

long Poisson process, and, in each of 10 simulation trials, we recorded the output λout.

We computed the mean outgoing foraging rate r̄out by dividing the total number of

outgoing foragers in the trial by the 300 seconds that the trial lasted. We used

the average of the 10 trials as a point estimate for r̄out as a function of r̄in given

the volatility parameter c. We constructed nest I/O curves by repeating this point

estimation process for twelve different values of r̄in ∈ [0.1, 5] while keeping c constant.

The simulated I/O curves in Figure 8.6B are in good agreement with the analyt-

ical I/O curves in Figure 8.6A. The simulation curves are slightly higher than the

analytical curves because TLC underestimates the period of the FN oscillations (see

Figure 8.13) and because (8.8) relies on s being ergodic (see Section 8.5.3). The fact

that there is good agreement between the simulation curves computed from 5-minute-

long input sequences and the analytical curves derived under the assumption of an

infinite time period suggests that time statistics of s(t) converge rapidly to ensemble

statistics. This rapid convergence indicates that our analytical approximation is also

valid across short timescales. We make use of this in our analysis of the closed-loop

model dynamics.

The points at which the nest I/O curves in Figure 8.6 intersect the black dashed

diagonal line correspond to r̄in = r̄out, which are predictive of the (quasi) steady-

state solutions at an equal incoming and outgoing foraging rate observed in the data.

Figure 8.6 suggests that for sufficiently high values of c, the equal foraging rate is

positive and bounded away from zero, capturing a nontrivial steady-state foraging

rate as in Figure 8.4 and Figure 8.5B and D. However, Figure 8.6 suggests that for

low values of c, the equal foraging rate is nearly zero, capturing a steady-state with

negligible foraging as in Figure 8.5F.

To understand how c affects the equal foraging rate, consider that, because k > b1,

every isolated incoming forager elicits at least one oscillation in the FN output and
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so at low r̄in, r̄out is equal to or larger than r̄in. At high c values, the frequency of

oscillations in the FN is high and an isolated incoming forager will elicit more than

one oscillation, resulting in nest I/O curves with an initial slope higher than one

and an intersection with the diagonal line at a single point away from the origin.

In contrast, for low c values, an isolated incoming forager will elicit exactly one

oscillation, resulting in nest I/O curves with an initial slope of one, i.e., the curve lies

on the diagonal line close to the origin and intersects nowhere else.

This analysis implies the existence of a critical value c∗ such that if c > c∗, there

is an isolated steady-state solution away from the origin, and if c < c∗, the steady-

state solution remains close to the origin. We find an upper bound ĉ > c∗ so that

c > ĉ is sufficient for the existence of an isolated steady-state solution away from the

origin. For b1 < k < b2, it can be shown that the number of oscillations caused by

a single incoming forager is at most (−τ log b1/k)/TLC . We numerically solved this

expression for c using the asymptotic expansion of TLC described in Section 8.5.1 and

found that for c > ĉ = 0.5287 the FN oscillates at least two times per every incoming

forager. Therefore, c > ĉ is a sufficient condition for the nest I/O curve to lie above

the diagonal line at low r̄in and to intersect the diagonal line at an isolated point,

corresponding to a nontrivial steady-state foraging rate.

Foraging Dynamics Outside the Nest

Given a sequence of outgoing foragers λout with rate rout, the foraging dynamics

outside the nest predict a corresponding delayed sequence of incoming foragers λin

with rate rin. We use results from queueing theory to find analytic expressions relating

rout to rin and the expected number of active foragers outside the nest.

To facilitate the analysis we assume that λout is a non-homogeneous Poisson pro-

cess (i.e., a Poisson process with time-varying rate) [40]. Applying known results for
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queues with a non-homogeneous Poisson distribution of arrival times [110] we obtain

the following three results:

1. Let Q(t) represent the number of active foragers outside the nest, then, for each

time t′ = t/60 where t is seconds, Q(t′) has a Poisson distribution with mean

E[Q(t′)] =

∫ ∞
0

rout(t
′ − x)(1− F (x,D)) dx. (8.9)

2. The output process describing how foragers leave the queueing system, that is,

the process λin describing how foragers return to the nest, is a non-homogeneous

Poisson process with mean

E[λin(t)] =

∫ t

0

rin(x) dx. (8.10)

3. rin is related to rout by

rin(t′) =

∫ ∞
0

rout(t
′ − x) dF (x,D) = E[rout(t

′ −X)]. (8.11)

(8.9) and (8.7) show how the number of active foragers outside the nest depends

on the history of outgoing foragers. (8.10) shows that if the outgoing foraging process

is a non-homogeneous Poisson process, then the incoming foraging process is also a

non-homogeneous Poisson process. And (8.11) shows how the incoming foraging rate

rin depends on the history of the outgoing foraging rate rout.

At steady-state, the outgoing foraging rate is constant, i.e., rout(t) = r∗, and (8.11)

reduces to rin = rout = r∗, i.e., the incoming foraging rate is also constant and equal

to the outgoing foraging rate. Moreover, (8.9) reduces to

E[Q] = routE[X] = r∗D, (8.12)
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i.e., the mean number of active foragers outside the nest is given by the steady-state

foraging rate r∗ multiplied by the average foraging trip time D.

The relaxation time for the queue output process to reach steady-state can be

analyzed by considering the step-function arrival rate rout(t
′) = 0 for t′ < 0 and

rout(t
′) = r∗ for t′ ≥ 0. Then, from (8.11), rin(t′) = r∗

∫ t′
0
dF (x,D) = r∗F (t′, D) for

t′ ≥ 0. The difference between the queue input and output rates as a function of time

is

||rout(t′)− rin(t′)|| = r∗
Γ(D/2, t′/2)

Γ(t′/2)
(8.13)

for t′ ≥ 0. To illustrate, we compute for D = 2 that the right-hand side of (8.13)

simplifies to r∗e−t
′/2 and the foraging queue converges exponentially in time towards

a steady-state where the input and output rates are equal.

Closed-loop Model Dynamics

In our model, outgoing foragers from the nest go out to forage, return to the nest as

incoming foragers after finding a seed, and then go back out to forage again if suffi-

ciently excited (Figure 8.1). Here we show that adding the feedback connection from

outgoing to incoming foragers to the open-loop dynamics in the nest yields long-term

dynamics with a stable and attracting equilibrium where the incoming and outgoing

rates are equal. Stability of an isolated equilibrium implies robustness: the steady-

state equilibrated foraging rate is maintained even in the presence of disturbances,

e.g., small changes in the rates of incoming foragers. When the volatility c > c∗, the

critical value defined earlier, the steady-state foraging rate is nontrivial, whereas if

c < c∗, the steady-state foraging rate is negligible.

For the dynamics inside the nest, we have shown that c parametrizes a family of

nest I/O curves, described by (8.8), which map r̄in to r̄out across short timescales of

a few minutes. For c < c∗, the nest I/O curve always has slope less than or equal to

1, such that it lies on or below the diagonal line where rin = rout. For c > c∗, the
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nest I/O curve has initial slope greater than 1 and then intersects the diagonal line

rin = rout at a nontrivial point. For the dynamics outside the nest, we have shown

that the mapping from rout(t) to rin(t) is described across longer timescales of tens of

minutes by a time delay given by (8.11).

We study the closed-loop model dynamics for timescales ranging from tens of

minutes to hours by investigating the behavior of a discrete iterated mapping rn =

Gc(rn−1) where rn represents the mean foraging rate at time step n and rn−1 represents

the mean foraging rate at time step n − 1. We can interpret rn and rn−1 as mean

incoming rate or mean outgoing foraging rate since the mean incoming rate becomes

the mean outgoing rate after a time delay. The mapping Gc : R≥0 → R≥0 is defined

by the c-dependent nest I/O curves shown in Figure 8.6. Gc describes the process

by which the incoming foraging rate becomes the outgoing foraging rate through

the dynamics of forager activation inside the nest, which then becomes the incoming

foraging rate at a later time.

When Gc lies below (above) the diagonal line where rin = rout, the average num-

ber of outgoing foragers per every incoming forager is less (greater) than one, and

iterations of Gc decrease (increase) r (Figure 8.7). For c > c∗, Gc has one unstable

fixed point at the origin and one attractive stable fixed point where rin = rout. For

c < c∗, Gc has a small interval of fixed points close to the origin. Thus, the closed-

loop model dynamics evolve in time towards either a finite steady-state foraging rate

rin = rout = r∗ (Figure 8.7, c = 2 and c = 5) or to negligible foraging (Figure 8.7,

c = 0.1).

The stability of the steady-state equilibrated foraging rate and the implications

for robustness result from the balance between positive feedback from incoming ants

activating a larger number of outgoing ants, and negative feedback from saturation

effects. The magnitude and variance of the steady-state foraging rate increase with

c. The magnitude also depend on k and τ , as these affect s in (8.8), which can be
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Figure 8.7: Model dynamics illustrating response of foraging rates to environmental
conditions. Red, purple, and blue curves show closed-loop trajectories of rout(t) versus
rin(t) for fixed volatility c equal to 5.0, 2.0, and 0.1, respectively. Initially, all available
foragers are uninformed about the environment and have volatility cu = 5.0. The
darker gray dashed curve shows the dynamics in the case when foragers exposed to
the environment reduce their volatility to ci = 2.0, as might happen on a moderately
hot and dry day. The lighter gray dashed curve shows the dynamics in the case
when foragers exposed to the environment reduce their volatility to ci = 0.1, as might
happen on a very hot and dry day.

numerically solved to find how the magnitude changes with c (Figure 8.8A). We refer

to the steady-steady foraging rate as the QSS.

As shown in Figure 8.8B, simulations of the closed-loop model validate the predic-

tions of the iterated mapping model (Figure 8.7). We initialize the foraging dynamics

by setting λin from t = 0 to t = 60×(D+1) seconds to be equal to the initial sequence

of incoming foragers for Colony 859 on August 20, 2017, which has the very low mean

incoming rate of 0.01 ants/sec during the first 15 minutes (Figure 8.11 C). Using

the additional minute, i.e., D + 1 instead of D, for the initial sequence of incoming

foragers helps ensure that the sequence of incoming foragers does not abruptly end

before the first few outgoing foragers return to the nest.
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Figure 8.8: A. Analytical magnitude of the quasi steady-state (QSS) foraging rate ob-
tained from numerically solving (8.8). B. Closed-loop model simulations for 7 different
values of volatility c. The initial sequence of incoming foragers for all simulations was
set equal to the sequence of incoming foragers recorded during the first 11 minutes
for Colony 859 on August 20, 2017 which has a mean incoming rate of 0.01 ants/sec.
The total time for all simulations was 3 hours. The mean foraging time was set to 10
minutes (D = 10).

Closed-loop Dynamics with Response to Environmental Conditions

For Poisson sequences of incoming foragers, the mean outgoing foraging rate of the

colony is given as the weighted sum of the outputs of the uninformed and informed:

r̄out = xu

∫ b2(cu)

b1(cu)

p(s, r̄in)

TLC(s, cu)
ds+ xi

∫ b2(ci)

b1(ci)

p(s, r̄in)

TLC(s, ci)
ds. (8.14)

The closed-loop dynamics can still be studied as an iterated mapping, but we allow

the mapping to evolve in time, Gc = Gc(t), from an initial mapping Gc(t0) = Gcu with

volatility cu to a final mapping Gc(∞) = Gci with volatility ci. The dark and light

gray curves in Figure 8.7 provide an illustration for how the map Gc(t) changes with

time when cu = 5.0, and ci = 2.0 or ci = 0.1. The dynamics first evolve along Gcu

(red), but as xi increases, the dynamics shift increasingly to Gci , and the trajectory

on the plot of rout(t) versus rin(t) moves towards the ci curve. In the case ci = 2.0, the

trajectory converges to the fixed point associated with c = 2.0 (darker gray dashed
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curve). In the case ci = 0.1, the trajectory converges to the only fixed point of Gci ,

which is the origin, leading to a cessation of foraging (lighter gray dashed curve).

Figure 8.9 shows the resulting time-series and input-output plots for three dif-

ferent simulations of the model with the mechanism for response to environmental

conditions. The simulations are distinguished by the set of four parameters: cu, ci,

N , and D. The simulated trajectories qualitatively resemble the trajectories from

the field observations shown in Figure 8.5. We set the initial sequence of incoming

foragers as in Figure 8.8B.

Figure 8.9A and B show the results for cu = 3, ci = 0.9, N = 500, and D = 5. In

this case, cu is much higher than ci, leading to a system with an overshoot behavior in

which the outgoing foraging rate increases more rapidly than the incoming rate and

then decreases before settling around a steady-state where the rates are approximately

equal to 0.7 ants/sec. This is qualitatively similar to the observations of Colony 664 on

August 27, 2015 of Figure 8.5A and B. The result of a relatively small number of total

foragers N and short mean foraging time D is that the fraction of informed foragers

increases rapidly, leading to a quick convergence towards the steady-state. The net

number of foragers outside the nest at steady-state fluctuates with low variability at

around 230, close to the prediction given by (8.12).

Figure 8.9C and D show the results for cu = 3, ci = 0.75, N = 200, and D = 5.

This case simulates the same colony as in Figure 8.9A and B but on a hotter and drier

day, when the total number of ants N that engage in foraging may be reduced and the

volatility of the informed ants ci may be reduced. The overshoot behavior is followed

by the foraging rates settling around a steady-state of about 0.25 ants/sec. The result

of low values of N and D is that the fraction of informed foragers increases very

rapidly, leading to a rapid convergence towards the steady-state. This is qualitatively

similar to the observations of Colony 664 on August 31, 2015 of Figure 8.5C and D.
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Figure 8.9: Simulations of the closed-loop model with the adaptation mechanism.
Plots are of the same form as in Figure 8.5, and qualitative comparisons can be made
between A and B here and Figure 8.5A and B, between C and D here and Figure 8.5C
and D, and between E and F here and Figure 8.5E and F. A) and B) cu = 3, ci = 0.9,
N = 500, D = 5. C) and D) cu = 3, ci = 0.75, N = 200, D = 5. E) and F) cu = 5,
ci = 0.02, N = 600, D = 15.

Figure 8.9E and F show the simulation results for cu = 5, ci = 0.02, N = 600,

D = 15. In this case, ci is close to zero, leading to a colony that goes out to forage

but then returns to the nest without sustained foraging. The result of the long

mean foraging time D is that the fraction of informed foragers increases at a slow

rate, leading to longer lasting transient dynamics towards the steady-state. This

is qualitatively similar to the observations of Colony 664 on August 27, 2015 of

Figure 8.5E and F.
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The time it takes for the colony to transition from fully uninformed to fully in-

formed about outside conditions is dictated by cu, ci, D, N , and the initial conditions

for rin and rout. Low values of cu result in initially low outgoing foraging rates, so

that the corresponding rate at which foragers become informed is low too, even if

ci is high (Figure 8.14 A). Low values of ci can cause long transients, because once

a critical number of foragers has become informed, low volatility makes it difficult

for the remaining foragers to become informed. High D and N can also result in

long transients because the time it takes for the transition to a fully informed state

depends on the number of available foragers and on how long it takes for informed

foragers to return to the nest (Figure 8.14 B). Finally, initially high values of rout

produce a rapidly increasing number of active foragers, reducing the time it takes

to reach the informed state with foraging rates that reach a QSS (Figure 8.14 C).

Qualitative comparisons can be made between the simulations in Figure 8.14 A, B,

and C, and the data in Figure 8.11 C, D, and, E and F, respectively.

8.4 Discussion

We have derived and analyzed a low-dimensional analytical model of foraging dy-

namics that requires only a small number of parameters to qualitatively capture a

wide range of transient and steady-state features observed in the foraging rates of

red harvester ant colonies. Our model extends previous work by using feedback at

multiple timescales to account for how foraging rates to and from the nest change

over long timescales, from tens of minutes to hours.

Importantly, the long timescales allow for a model-based investigation into how a

colony, with no centralized control and little individual information about the state

of the colony or environment, can stably regulate its foraging rates and be responsive

to temperature and humidity outside the nest across minute-to-hour timescales. Sta-

174



bility implies robustness of the steady-state foraging rate to small disturbances, e.g.,

small changes in the rate of incoming foragers. Further, because the model is analyti-

cally tractable, it can be used to systematically derive empirically testable predictions

of foraging behavior as a function of critical model parameters, including number of

foragers N , mean foraging trip time D, and volatility c. In our model, these param-

eters determine the steady-state foraging rate, independent of initial foraging rates.

The transient and convergence time to the steady-state, however, do depend on initial

rates; higher initial rates lead to faster convergence. The model suggests that a change

in volatility as the foragers become exposed to the temperature and humidity outside

the nest can account for the observed foraging behavior under different environmental

conditions. Further, the model suggests that differences among colonies in volatility,

in response to temperature and humidity, can produce the observed variation among

colonies in the regulation of foraging.

Our model and analysis highlight the importance of feedback across multiple

timescales in the regulation of foraging activity. Previous work isolates the open-

loop dynamics inside the nest, which maps incoming ants to outgoing ants on very

short timescales. We address the minute-to-hour timescales by examining analytically

the closed-loop dynamics that connect the slow foraging activity outside the nest to

the fast activation of foragers inside the nest through feedback generated by the ants

themselves and their interactions with others. The stream of foraging ants out of

the nest is the input to the foraging activity, and the output of the foraging activity

is the stream of foraging ants into the nest. The effective volatility of the colony

also changes in the model at the timescale of minutes to hours, as foragers leave the

nest for the first time and become exposed to the outside humidity and temperature,

yielding flexibility in the regulation of foraging activity at minute-to-hour timescales.

In the model, volatility c approximates the average sensitivity of available foragers

in the nest to interactions with incoming foragers: the higher the c the fewer inter-
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actions needed to activate available foragers to go out and forage. The relationship

between c and the activation of foragers is nonlinear, and the subtleties of our model

reflect some of the complexities of the system. We use analytical predictions to show

how c determines three important features of the foraging model dynamics (see Fig-

ure 8.8): 1) the initial transient in incoming and outgoing foraging rates, parametrized

by c, 2) the equilibration of incoming and outgoing foraging rates to a stable, and

thus robust, quasi steady-state rate, parametrized by c, and 3) the prediction of an

early cessation of foraging or no foraging at all if c < c∗, a critical volatility value c∗.

The behavior of different colonies on the same day or the same colony on different

days correspond in the model to different values of c. Lower values of c result in

model dynamics that are consistent with data for hotter and drier days, because

lower c means that available foragers are less volatile and thus less likely to go out

and forage. Higher values of c result in model dynamics that are consistent with data

for cooler and more humid days, because higher c means that available foragers are

more volatile and thus more likely to go out and forage. The model distinguishes the

volatility cu of available foragers in the nest who have yet to to go on a foraging trip

from the volatility ci of available foragers in the nest who have already been outside

the nest and been exposed to the environment (Figure 8.3). The result is a transition

from the foraging activity of ants with volatility cu to the foraging activity of ants

with volatility ci, which can last from minutes to hours as each of the total N ants

goes out at a different time on its first foraging trip and returns to the nest after

foraging for an average of D minutes (Figure 8.7).

Differences among colonies in the values of parameters cu, ci, N , and D could

lead to the differences among colonies in foraging behavior that we observe. Indeed,

over a range of values for the four parameters cu, ci, N , and D, the model describes

the range of transient and quasi steady-state foraging rate behavior observed in the

data collected for red harvester colonies in August and September of 2015, 2016,
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and 2017. The model thus suggests hypotheses about the physiological processes

that would lead to different parameter values, such as differences among colonies in

how outgoing foragers respond to interactions with returning foragers, and differences

among colonies in how foragers respond to conditions such as humidity.

The model represents the case in which foragers make an adjustment to their

volatility only after their first foraging trip. To include more variability within a

colony the model could be generalized to M > 2 groups of available foragers in the

nest, distinguished by M values of volatility c1, . . . , cM . For example, the general-

ization could be used to account for foragers that make adjustments to how they

respond to interactions in the nest after subsequent foraging trips due to repeated

exposure or changing temperature and humidity. The generalization could also be

used to account for decay of information for those foragers who stay in the nest for

a long period after a foraging trip, or to represent foragers that return to the deeper

nest after exposure to hot and dry outside conditions.

Foraging models that consider the regulation of foraging activity tend to fall into

two categories: multi-agent models that keep track of every individual [150–152], and

compartmental models that keep track of the time evolution of fractions of individuals

engaged in a specific task [67,153]. Multi-agent models allow for a detailed modeling

of foraging dynamics, often relying on simulations due to their complexity and poor

analytical tractability. In contrast, compartmental models provide high tractability in

many cases but assume very large group sizes which affect predictions when the group

size is small. Our model considers two idealized processes, the activation of foragers

inside the nest and the collection of seeds outside the nest, to generate a dynamical

system with a small number of equations and parameters. The model accommodates

any group size and retains sufficient tractability to generate predictions on the impact

of critical model parameters.
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Our biologically informed, low-dimensional, and simply parameterized model al-

lows for systematic exploration of mechanisms and sensitivities that can explain col-

lective behavior and guide further theoretical and experimental investigations. Our

use of well-studied excitability dynamics opens the way for comparison with other

complex systems, such as neuronal networks, that are driven by excitable dynamics.

The model together with our analysis based on dynamics and control theory con-

tribute to a better understanding of the role of feedback across multiple timescales in

collective behavior.

Acknowledgments

We thank many dedicated undergraduate field assistants for their help: Sam Crow,

Eleanor Glockner, Christopher Jackson, Sarah Jiang, Ga-Il Lee, Arthur Mestas, Becca

Nelson, and especially Rebia Khan.

178



8.5 Supporting Information

Time of Day

E

C

A

Time of Day

F

D

B

H
u

m
id

it
y
 (

%
R

H
)

08:00 09:00 10:00 11:00

0

20

40

60

80

100

07:00 08:00 09:00 10:00 11:00

0

20

40

60

80

100

H
u

m
id

it
y
 (

%
R

H
)

08:00 09:00 10:00 11:00

0

20

40

60

80

100

H
u

m
id

it
y
 (

%
R

H
)

09:00 10:00 11:00
20

30

40

50

60

T
e

m
p

e
ra

tu
re

 (
C

)

08:00 09:00 10:00 11:00
20

30

40

50

60

T
e

m
p

e
ra

tu
re

 (
C

)

08:00 09:00 10:00 11:00
20

30

40

50

60

T
e

m
p

e
ra

tu
re

 (
C

)

Figure 8.10: Humidity and temperature readings recorded on the surface of the desert
soil (blue) and inside the nest entrance chamber (red). Temperature and humidity
ibutton sensors were placed outside but close to the nest entrance on the desert soil,
unshaded, and inside in the nest in an excavated hole, which had been uncovered by
excavation and then covered with glass on top and shaded. The humidity and tem-
perature outside the nest changed significantly throughout the morning hours while
the humidity and temperature inside the nest entrance chamber remained relatively
constant. The measured moderate rise in temperature inside the nest is likely due
to the light coming into the nest entrance chamber through the glass. A) Humidity
on August 29, 2014 (Colony E). B) Temperature on August 29, 2014 (Colony E).
C) Humidity on August 31, 2015 (Colony 10). D) Temperature on August 31, 2015
(Colony 10). E) Humidity on September 1, 2015 (Colony 10). F) Temperature on
September 1, 2015 (Colony 10).

179



07AM 08AM 09AM 10AM
0 0

1000

0.4

0.8

1.2

1.6

2

500

250

750

F
o

ra
g

in
g

 R
a

te
 (

a
n

ts
/s

e
c
)

07AM 08AM 09AM 10AM
0 -250

250

750

0.4

0.8

1.2

1.6

2

0

500

06AM 08AM 10AM
0 -400

800

1400

0.2

0.4

0.6

0.8

1

200

08AM 09:30AM 11:30AM 1PM
0 0

1250

0.2

0.4

0.6

0.8

1

1000

500

250

750

F
o

ra
g

in
g

 R
a

te
 (

a
n

ts
/s

e
c
)

Time of Day

10AM 11AM 12PM
0 0

500

750

0.2

0.4

0.6

0.8

1

250

08AM 09AM 11AM
0 0

1500

2000

0.3

0.6

0.9

1.2

1.5

1000

500

10AM

F
o

ra
g

in
g

 R
a

te
 (

a
n

ts
/s

e
c
)

Time of Day

A B

C

F

D

E

Figure 8.11: Additional field observations of foraging rates. Incoming foraging rate rin
(blue), outgoing foraging rate rout (red), and difference between number of incoming
and outgoing foragers (green) versus time of day. A) Colony 863 September 5, 2015
reached a QSS at a high rate; compare to Figure 8.5E when on the much hotter and
drier day, September 1, 2015, Colony 863 returned to the nest early. B) Colony D19
August 08, 2016 returned to the nest early; the day was very hot and dry. C) Colony
859 August 20, 2017; the transient started late in the morning. The day was cool
and humid. D) Colony 1107 August 16, 2017; the transient was slow. The day was
dry. E) Colony 1017 August 23, 2016; the initial transient was more like a burst of
outgoing foragers. The day was dry. F) Colony 1015 August 18, 2016; another initial
burst of outgoing foragers. The day was very dry.
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Daily Average At 11 am
Figure Date Temperature Humidity Temperature Humidity
3A, 3B Aug. 20, 2016 25.9C◦ 57% 24.8C◦ 57%
4A, 4B Aug. 27, 2015 25.3C◦ 58% 27.5C◦ 52%
4C, 4D Aug. 31, 2015 26.8C◦ 53% 28.8C◦ 45%
4E, 4F Sept. 1, 2015 25.2C◦ 53% 27.5C◦ 52%

S1A Sept. 5, 2015 22.6C◦ 77% 23.3C◦ 77%
S1B Aug. 8, 2016 29.7C◦ 48% 39.9C◦ 43%
S1C Aug. 20, 2017 23.0C◦ 71% 22.7C◦ 73%
S1D Aug. 16, 2017 26.0C◦ 48% 27.4C◦ 41%
S1E Aug. 23, 2016 24.1C◦ 43% 28.8C◦ 36%
S1F Aug. 18, 2016 25.5C◦ 27% 31.2C◦ 23%

Table 8.1: Average temperature, average relative humidity, temperature at 11 am,
and relative humidity at 11 am in Rodeo, New Mexico, USA for days with data
plotted in Figures 8.4, 8.5, and Figure 8.11. Data collected by the Citizen Weather
Observer Program station E8703 and accessed through Weather Underground [168].
The station is located 1.7 miles from the study site.
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rin. The gray rectangles represent the size of the oscillatory region in the FN sys-
tem (b1, b2) for a = 0.35 and different values of volatility c. For all curves, k = 0.3,
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Figure 8.13: Period of FN Limit Cycle when s=0.35. Blue dots represent numeri-
cal simulations for the period of the FN limit cycle. The red curve represents the
analytical approximation in S1 Text. In both cases we set s = 0.35.
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Figure 8.14: Additional simulations of the closed-loop system with the adaptation
mechanism. Plots resemble observed foraging behaviors in Figure 8.11. Qualitative
comparisons can be made between A here and Figure 8.11C, between B here and
Figure 8.11D, and between C here and in Figure 8.11E and Figure 8.11F. A) cu = 0.9,
ci = 2.2, N = 500, D = 5. Setting cu < ci where cu is close to c∗ results in a long
period before the rates ramp up. B) cu = 1, ci = 1, N = 1000, D = 15. Setting the
mean foraging trip time D to be large results in long lasting transients. C) cu = 0.7,
ci = 0.9, N = 1000, D = 7. Setting the initial λin equal to the sequence from the
first 5 minutes of λin for Colony 1017 on Aug. 23, 2016 yields the behavior shown in
Figure 8.11E and Figure 8.11F that follows an initial burst of foragers.
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8.5.1 Effect of Volatility on the Frequency of Oscillations in

the FN

Here we use results from [1] Chapter III, Theorem 3 to obtain an asymptotic expansion

for the period of the limit cycle TLC as ε2 goes to zero. We show that the period of

the FN limit cycle is inversely proportional to c by computing the leading term in the

expansion.

The limit cycle of the FN is comprised of four components: two fast components

that stretch along the v direction between the crest and valley of the cubic nullcline,

and two slow components that stretch along the sides of the cubic nullcline. Because

it takes much longer to traverse the slow components of the limit cycle than the

fast components of the cycle, the period can be approximated by the time it takes

trajectories to traverse the two slow components. These slow components run from

v = −2 to v = −1 and from v = 2 to v = 1, respectively, and are proportional to the

length of the sides of the cubic nullcline, which we show are proportional to c.

Theorem 8. The limit cycle of the FN system

ε1ε2v̇ = v − v3/3− cu− 0.35 + s

ε1u̇ = v − cu

has the asymptotic representation:

TLC = T0 + C1ε
2/3
2 + C2ε2 ln

1

ε2
+O(ε2),

as ε2 → 0, where C1 and C2 are constants and where

T0 =
3ε1
c

{∫ −1

−2

(v2 − 1)

(3z − v3)
dv +

∫ 1

2

(v2 − 1)

(3z − v3)
dv

}
.
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Proof. By Chapter III, Theorem 3 of [169], the limit cycle of the FN model has the

asymptotic representation

TLC = T0 + C1ε
2/3
2 + C2ε2 ln

1

ε2
+ C3ε2 +O(ε

4/3
2 ).

Or, equivalently,

TLC = T0 + C1ε
2/3
2 + C2ε2 ln

1

ε2
+O(ε2).

Let time be scaled by 1/ε1 and let z = s− 0.35, leading to the new system

ε2v̇ = v − v3/3− cu+ z

u̇ = v − cu

The critical manifold of this fast-slow system is M0 := {(v, u) ∈ R2|u = (v − v3/3 +

z)/c}. In the limit ε2 → 0, the slow manifold is equal to the critical manifold. Let

Ψ0 denote the limit cycle in this limit.

Using the description of M0 as a graph u = h(v), the dynamics of the system on

the slow flow can be written as

u̇ = v3/3− z.

We get a second expression for du/dt by differentiating M0 with respect to t

u̇ =
1− v2

c
v̇.

Equating the two expressions we obtain

v̇ =
c(v3 − 3z)

3(1− v2)
.

185



Multiplying both sides by dt and integrating over Ψ0,

T0 =
3

c

∫
Ψ0

(1− v2)

(v3 − 3z)
dv.

In Ψ0, the fast components of the orbit take place instantaneously and the time taken

to complete the orbit is equal to the time taken to traverse the slow components.

The slow components of the trajectory take place on the slow manifold between

v ∈ [−2,−1] and v ∈ [1, 2], yielding the expression

T0 =
3ε1
c

{∫ −1

−2

(1− v2)

(v3 − 3z)
dv +

∫ 1

2

(1− v2)

(v3 − 3z)
dv

}

where time has been scaled back to its original form. This expression is inversely

proportional to c. Furthermore, this integral has a short closed form solution when

the slow components are symmetric (i.e. z = 0, or s = 0.35),

T0 = 2
3ε1
c

∫ −1

−2

(1− v2)

v3
dv =

ε1
4c

(−9 + 8 log 8).

We compute the constants C1 and C2 by applying formulas 7.9 and 7.10 of [1]

Chapter III, Theorem 3. When s = 0.35, the flow along the system is symmetric and

the constants C1 and C2 are given by

C1 =
3.79366ε1
c1/3

and

C2 =
−ε1
2
.

When s 6= 0.35, z 6= 0 and the flow along the system is not symmetric. In this

case the constants C1 and C2 can each be represented as the sum of two constants,
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and the asymptotic representation for T0 becomes

TLC = T0 + (C11 + C12)ε
2/3
2 + (C21 + C22)ε2 ln

1

ε2
+O(ε2)

where

C11 =
3.37214|1− 3z| Sgn(1/3− z)

(−8/9 + z(−7/3 + z))(c/ε21)1/3
,

C12 =
ε1(−2 + 6z + |1− 3z|)

2(1− 3z)2
,

C21 =
3.37214|1 + 3z| Sgn(1/3 + z)

(−8/9 + z(−7/3 + z))(c/ε21)1/3
,

C22 =
ε1(−2− 6z + |1 + 3z|)

2(1 + 3z)2

and Sgn represents the sign function.

8.5.2 Additional Field Observations of Foraging Rates

Here we present additional details for the field observations of foraging rates shown

in Figure 8.11.

Panel A of Figure 8.11 shows the foraging rates for Colony 863 on September 5,

2015. The rates increased before reaching a QSS at around 10:30 am. The same

colony on September 1, 2015 did not exhibit a QSS and had stopped foraging by 11

am (Figure 8.5E). These observations are consistent with measurements showing that

September 5, 2015 was a particularly cool and humid day while September 1, 2015

was much hotter and drier (see Table 8.1).

Panel B of Figure 8.11 shows the data for Colony D19 on August 8, 2016 (from

video recording) and provides an example of a very early cessation of foraging where

both outgoing and incoming rates reached zero well before 11:00 am, similar to Colony

863 on September 1, 2015 (Figure 8.5E). Both August 8, 2016 and September 1, 2015

were very hot and dry days (see Table 8.1).
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Panel C of Figure 8.11 show the data for Colony 859 on August 20, 2017 (from

manual recording) and provides an example where the initial transient took a long

time before ramping up. The initial transient for Colony 859 on August 20, 2017

remained at around 0.01 ants/sec from 10 am to 11:15 am before increasing to about

0.4 ants/sec by 12:30 pm. August 20, 2017 was a cool and humid day (see Table 8.1).

Colonies might prefer different ranges of temperature and humidity; on cool and

humid days, colonies that prefer warmer temperatures might forage at slightly later

times of the day than colonies that prefer more cool temperatures.

Panel D of Figure 8.11 show the data for Colony 1107 on August 16, 2017 (from

manual recording) and provides a different example of a slow transient; it took from

8 am to 10:30 am for the foraging rates to increase from 0.3 ants/sec to around 0.9

ants/sec. During this period the number of foragers outside the nest reached almost

2000. In this case August 16, 2017 was not a particularly cool or humid day (see

Table 8.1). The long transient and large numbers of active foragers suggests that the

average time it took a forager to find a seed was long. Long foraging trip times can

result in slow transients and high numbers of active foragers because when foragers

take a long time to find a seed, it takes longer for foragers to return to the nest and

interact with available foragers who then become active foragers. As well, when the

average foraging trip time is long, more foragers might be required to cover larger

and less dense foraging areas.

Panel E and F of Figure 8.11 show the data for Colony 1017 on August 23, 2016

(from manual recording) and for Colony 1015 on August 18, 2016 and provide two

examples of a burst in the outgoing foraging rate at the start of the foraging day

that rapidly increases the number of active foragers outside the nest; it took from

7:30 am to 7:45 am for Colony 1017 on August 23, 2016 to increase the number of

active foragers from 0 to 800 and it took from 7:15 am to 7:30 am for Colony 1015

on August 18, 2016 to increase the number of active foragers by 600. In both cases,
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the foraging rates reached a QSS that lasted tens of minutes. Both August 23 and

August 18, 2016 were very dry days (see Table 8.1).

The burst kick starts the foraging process very rapidly and appears to be different

from the mechanism that activates available foragers to leave the nest through inter-

actions between incoming successful foragers and the available foragers. The rapid

increase in the number of active foragers outside the nest might be advantageous on

hot and dry days on which there will be only a short period of time in the early

morning with acceptable foraging conditions.

8.5.3 Analytical Approximation for r̄out in terms of r̄in and c

Under the assumption that λin is a Poisson process with constant rate r̄in, Eq. (4) is

equivalent to a Poisson shot-noise process with exponential decay:

s(t) = s(0)h(t) +

N(t)∑
i=1

k h(t− ti)

where ti are the jump times of the Poisson process, and

h(t) =


e−t/τ , t ≥ 0

0, t < 0.

The mean and variance of this random process for an initial condition s(0) = 0

are given by r̄inτk(1 − e−t/τ ) and 1
2
r̄inτk

2(1 − e−2t/τ ) respectively [64]. Shot-noise

processes are Markovian and it can be shown that for finite jump sizes, k < ∞, s is

ergodic [170], meaning that as t → ∞, s(t) converges in total variation to a unique

stationary probability distribution π(s) for any initial condition s(0). In other words,

s has the property that time averages converge in time to statistical averages. The

ergodicity of s allows us to find an asymptotic expression as t→∞ for the expected
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fraction of time that any single outcome of the random process spends in a region

(b1, b2) by looking at its stationary probability density function.

Let Sf = {tf ∈ [t0, t0 + T ] | b1 < s < b2} be the set of all times over the time

interval [t0, t0 + T ] for which the stimulus is in the (b1, b2) region. Then Sf ⊆ S

where S = {t ∈ [t0, t0 + T ]}. We define 1Sf
: S → {0, 1} to be the indicator function

associated with the subset Sf :

1Sf
(t) =


1 t ∈ Sf

0 otherwise.

Let Tf be the amount of time that s is between b1 and b2:

Tf =

∫ t0+T

t0

1Sf
(t) dt.

From the ergodic properties of s, and by the strong law of large numbers,

lim
T→∞

1

T

∫
T

1Sf
(s) ds =

∫ b2

b1

p(s) ds,

where p(s) is the density associated with π(s), i.e. the stationary probability density

function (PDF) of s:

π(s) =

∫ s

0

p(y) dy.

The PDF (see Section 8.5.4) is given as a piecewise function pn(s) for (n−1)k ≤ s < nk

where the piecewise elements satisfy recurrence equations that depend on r̄in, τ , and

k.

Let b1 and b2 be the FN bifurcation values of the input to the FN that takes

the system from quiescence into the oscillatory regime and from this regime into

saturation respectively:

b1,2 = 0.35∓ 1

3
(1− cε2)3/2.
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The size of the oscillatory region is given by the difference between b2 and b1 and it

decreases with increasing volatility c (see Figure 8.12). For constant s where b1 < s <

b2, the output rate is a constant given by the oscillation frequency of the FN when

driven by a constant input s.

For s not constant, the FN transitions between quiescence, oscillatory behavior,

and saturation as s varies. For ε1 � 1, the FN dynamics are much faster than the

dynamics of s, and the number of foragers leaving the nest in a given time period

[t0, t0 + T ] is proportional to Tf , the amount of time spent by s in the oscillatory

region.

For T → ∞, nonlinear effects in the oscillations become negligible and the mean

outgoing rate becomes

r̄out = lim
T→∞

1

T

∫
T

fε2(s) · 1Sf
(s) ds

where fε2 is the mean oscillation frequency of the FN when the driving input is

constant and equal to s. We approximate fε2 = 1/TLC through the asymptotic

representation [169]:

TLC = T0 + C1ε
2/3
2 + C2ε2 ln

1

ε2
+O(ε2),

where T0, C1, and C2 are given in Section 8.5.1 to obtain an approximate expression

for how r̄out changes as a function of both r̄in and c:

r̄out =

∫ b2

b1

p(s, r̄in)

TLC(s, c)
ds.
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8.5.4 Probability Density Function of s(t)

Here we find an analytical description of the probability density function of the stim-

ulus function s(t) under the assumption that the incoming rate is a Poisson process.

Under this assumption s(t) takes the form of a Poisson shot-noise process. Before we

state our results, we state a result by Gilbert and Pollak (1959) [171]:

Lemma 9. The amplitude distribution function Fs(ξ) = Pr[s(t) ≤ ξ] for the Poisson

shot-noise process

s(t) =

N(t)∑
i=−∞

h(t− ti),

where h(t) is called the impulse shape function, satisfies the integral equation

sFs(s) =

∫ s

−∞
Fs(x) dx+ r̄in

∫ ∞
−∞

Fs(s− h(t)) h(t) dt

where r̄in is the rate parameter of the underlying Poisson process.

Proof. We refer the reader to [171] for the proof.

Theorem 9. Consider the shot-noise process with exponential decay and impulses

arriving with rate r̄in given by

s(t) =

N(t)∑
i=1

k h(t− ti),

where k > 0 is a constant and

h(t) =


e−t/τ , t ≥ 0

0, t < 0.

Then, the steady-state probability density function of s(t) can be written as a piecewise

function p(s) where the piecewise elements pn(s) for (n − 1)k ≤ s < nk satisfy the
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recurrence equations:

pn(s) = pn−1(s) + αsr̄inτ−1(−r̄inτ)n−1gn(s, r̄in, k, τ)

gn(s, r̄in, k, τ) =

∫ s

k

(x− k)r̄inτ−1x−r̄inτgn−1(x− k, r̄in, k, τ)dx

with

α =
(keγ)−r̄inτ

Γ(r̄inτ)
sr̄inτ−1, p0(s) = 0, g1(s, r̄in, k, τ) = 1,

where γ = 0.5772... is Euler’s constant and Γ is the gamma function.

Proof. For a Poisson shot-noise process with impulse shape function:

h(t) =


e−t/τ , t ≥ 0

0, t < 0,

the integral equation in Lemma 9 can be rewritten as

sp(s) = r̄inτ

∫ k

0

p(s− ξ) dξ = r̄inτ

∫ s

s−k
p(x) dx,

where p(s) = dFs/ds is the density function of s.

Differentiating with respect to s, we obtain

s
dp

ds
+ p(s)[1− r̄inτ ] = −r̄inτp(s− k). (8.15)

When 0 ≤ s ≤ k, then p(s− k) = 0 and

s
dp

ds
+ p(s)[1− r̄inτ ] = 0.

Picking p(s) = α sr̄inτ−1 satisfies the equation above. Thus, we have obtained a solu-

tion for p(s) = p1(s) when 0 ≤ s ≤ k. For s > k, the differential equation eq. (8.15)
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may be converted to an integral form:

p(s) = sr̄inτ−1

[
α− r̄inτ

∫ s

k

p(x− k)x−r̄inτ dx

]
. (8.16)

Since the integrand is known for k < x < 2k, we can determine p(s) = p2(s) for

k < s < 2k. This in turn enables us to integrate further to get p(s) = p3(s) for

2k < s < 3k, etc. Let m = r̄inτ , then the results for the first three jump regions

pn(s), n = 1, 2, 3 are given by

p1(s) = α sm−1

p2(s) = p1(s)− α sm−1m

∫ s

k

(x− k)m−1x−m dx

p3(s) = p2(s) + α sm−1m2

∫ s

k

(x− k)m−1x−m
∫ x−k

k

(ξ − k)m−1ξ−mdξ dx.

We now show by induction that p(s) = pn(s), for (n − 1)k ≤ s < nk, satisfies the

following recurrence equations:

pn(s) = pn−1(s) + αsm−1(−m)n−1gn(s)

gn(s) =

∫ s

k

(x− k)m−1x−mgn−1(x− k) dx

with p0 = 0, g1(s) = 1. For n = 1,

p1(s) = p0(s) + αsm−1(−m)0g1(s) = αsm−1

as expected. Now, assume that for n = j,

pj(s) = pj−1(s) + αsm−1(−m)j−1gj(s)

gj(s) =

∫ s

k

(x− k)m−1x−mgj−1(x− k) dx.
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Then, for n = j + 1,

pj+1(s) = sm−1

[
α−m

∫ s

k

pj(x− k)x−m dx

]
= sm−1

[
α−m

∫ s

k

x−mpj−1(x− k) dx

+ α(−m)j
∫ s

k

(x− k)m−1x−mgj(x− k) dx

]
= sm−1

[
α−m

∫ s

k

x−mpj−1(x− k) dx

]
+ αsm−1(−m)jgj+1(s)

= pj(s) + αsm−1(−m)jgj+1(s).

Finally, the constant α must be determined by the condition

∫ ∞
0

p(s) ds = 1.

To compute the constant, we first note that the characteristic equation of s is given

by

C(ζ) = exp

[
−r̄in

∫ ∞
−∞

(1− exp[−ζFs(t)]) dt

]
(see [64] for derivation). The characteristic function is the Laplace transform p̂ of p,

p̂(ζ) = exp

[
−r̄inτ

∫ ζk

0

1− e−y
y

dy

]
.

Using partial integration, this can be rewritten as

p̂(ζ) = exp

[
−r̄inτ(1− e−ζk) log ζk + r̄inτ

(∫ ∞
0

e−y log y dy −
∫ ∞
s

e−y log y dy

)]
= (ζk)−r̄inτe−r̄inτγ(1 +O[e−ζk(1−ε)]) for any ε > 0.

Thus, for 0 ≤ s ≤ k,

α =
(keγ)−r̄inτ

Γ(r̄inτ)
sr̄inτ−1
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where γ = 0.5772... is Euler’s constant and Γ is the gamma function.

196



Chapter 9

Bistability and Resurgent

Epidemics in Reinfection Models∗

Renato Pagliara, Biswadip Dey, and Naomi Ehrich Leonard

Spreading processes that propagate through local interactions have been stud-

ied in multiple fields (e.g., epidemiology, complex networks, social sciences) using

the SIR (Susceptible-Infected-Recovered) and SIS (Susceptible-Infected-Susceptible)

frameworks. SIR assumes individuals acquire full immunity to the infection after re-

covery, while SIS assumes individuals acquire no immunity after recovery. However, in

many spreading processes individuals may acquire only partial immunity to the infec-

tion or may become more susceptible to reinfection after recovery. We study a model

for reinfection called SIRI (Susceptible-Infected-Recovered-Infected). The SIRI model

generalizes the SIS and SIR models and allows for study of systems in which the sus-

ceptibility of agents changes irreversibly after first exposure to the infection. We show

that when the rate of reinfection is higher than the rate of primary infection, the SIRI

model exhibits bistability with a small difference in the initial fraction of infected indi-

1This chapter was published as Pagliara, Dey, and Leonard in IEEE Control Systems Letters on
May 1, 2018 [57].
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viduals determining whether the infection dies out or spreads through the population.

We find this critical value and show that when the infection does not die out there is a

resurgent epidemic in which the number of infected individuals decays initially and re-

mains at a low level for an arbitrarily long period of time before rapidly increasing to-

wards an endemic equilibrium in which the fraction of infected individuals is non-zero.

9.1 Introduction

Epidemiological models [47] have been widely studied and successfully applied in

many settings, including mobile networks [172], rumor spreading [51], and even viral

video dynamics [53]. These compartmental models typically describe how the group

sizes of different types of individuals evolve over time. The main appeal for these

models is their high analytic tractability, which makes them a powerful framework

for studying transient and steady-state system behaviors.

These models are also central to the understanding of contagious processes [74,

173,174]. and to the development of control and optimal resource allocation strategies

that seek to inhibit or promote the spread of the process [175–177].

Two of the most successful and well-studied epidemiological models are the SIS

and SIR models. In the SIS model individuals can be either susceptible or infected.

Susceptible individuals become infected through contact with already infected indi-

viduals, and return to the susceptible state after recovering from the infection. The

SIR model is similar to the SIS model except for the fact that recovered individuals

acquire full immunity to the infection, meaning they cannot become infected again.

While the SIS (no immunity) and the SIR (full immunity) models have been

extensively used and studied, they do not address many of the applicable real-world

situations in which the susceptibility of individuals to primary infections is different
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from the susceptibility to secondary infections (i.e., reinfections). For instance, in

the case of infectious diseases, a lower probability of reinfection corresponds to the

development of partial immunity in which primary infections are more likely than

secondary infections, such as in the case of influenza [178]. Alternatively, a higher

probability of reinfection might correspond to a compromised immune system in which

secondary infections are more likely, such as in the case of tuberculosis in particular

populations [179].

In the spread of social behaviors, past experiences may lead to differences between

primary and secondary infections. A lower probability of reinfection could be the

result of a negative experience that reduces the propensity of an individual to further

engage in the behavior, while a higher probability of reinfection could result from a

positive experience that increases the propensity of an individual to engage in the

behavior.

In this paper we study the role of susceptibility to reinfections by considering

the spread of a contagious process using the SIRI (Susceptible-Infected-Recovered-

Infected) model in which the rate of primary infections is different from the rate of

secondary infections. The SIRI model contains the SIS and SIR models as special

cases and allows for the study of systems in which individuals become more or less

susceptible to the infection after first exposure.

In the theoretical biology literature reinfection models have been used to study

the role of partial immunity and waning immunity across populations [134], while

in the physics community spatial reinfection models have garnered attention due to

their critical behavior connecting directed percolation and dynamic percolation [180].

In [181] the authors study the Markovian SIRI model on arbitrary networks and show

through numerical simulations on random networks that the model exhibits bistability

in which a low number of initially infected individuals leads to an infection-free steady-

state while a much larger number of initially infected individuals leads to an endemic
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steady-state. We have found no other work in the literature that examines this

bistability. In the present paper we formalize the observation of [181] in the case of a

well-mixed population by proving new results on the critical initial condition below

which the infection dies out and above which solutions reach an endemic equilibrium.

Our contribution in the present paper is a rigorous analysis of the SIRI model

dynamics over its entire phase space. We identify and prove conditions for each of

four different dynamical regimes exhibited by the SIRI model: infection-free, endemic,

epidemic, and bistable. As far as we know this is the first such analysis of its kind.

We prove that the bistability phenomenon occurs when secondary infections are more

likely than primary infections. We prove that when the bistability condition leads to

an endemic steady-state, the system exhibits a resurgent epidemic in which the num-

ber of infected individuals initially decreases before ramping up after an arbitrarily

long delay.

The paper is organized as follows. Section 9.2 introduces the SIRI model. In

Section 9.3 we analyze the dynamics of the SIRI model over the entire phase space

and prove conditions for the four dynamical regimes. In Section 9.4 we study the

bistable regime in more detail and introduce the concept of a resurgent epidemic with

an arbitrarily long delay. We provide closing remarks and discuss future work in

Section 9.5.

9.2 Model Description

Consider a large population in which an individual can be in any of the following

three states: susceptible (S), infected (I), or recovered (R). Susceptible and recov-

ered individuals become infected through contact with already infected individuals

at respective rates β ≥ 0 and β̂ ≥ 0, while infected individuals recover at a fixed rate

δ ≥ 0:

200



S+I
β

I+I
β̂

R+I

I
δ

R

(9.1)

By assuming that interactions between any two individuals occur with the same

probability (i.e., under homogeneous mixing conditions), we can model the system

dynamics as

ẋS = −βxSxI

ẋI = βxSxI + β̂xRxI − δxI

ẋR = −β̂xRxI + δxI ,

(9.2)

where xS, xI , and xR represent the fractions of population that belong to the suscep-

tible, infected, and recovered states, respectively. Note that xS + xI + xR = 1, and

this constraint is preserved under (9.2).

Table 9.1 shows the special cases of the SIRI model. Setting β̂ = 0 reduces the

SIRI model to the SIR model, while setting β̂ = β and redefining xS as xS+xR reduces

the SIRI model to the SIS model. In between the SIR (full immunity) and the SIS (no

immunity) models, the rate of secondary infections is larger than zero but lower than

the rate of primary infections (0 < β̂ < β), and we say that recovered individuals

have developed partial immunity to the infection, i.e., they are less likely to become

reinfected. For example, in the spread of rumors, partial immunity might represent

the scenario wherein individuals become less likely to spread new rumors, possibly due

to negative consequences of an initially spread rumor. When the rate of secondary

infections is larger than that of primary infections (β < β̂ <∞), recovered individuals

become reinfected more easily, and we say that recovered individuals have developed

compromised immunity to the infection. In the example, this could represent the

scenario wherein individuals become more willing to spread new rumors, possibly due

to benefits from spreading a previous rumor. In the limit β̂ →∞, the rate of recovery

is negligible compared to the rate of reinfection, and the SIRI model approximates
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Table 9.1: Special cases of the SIRI model.

Parameter Value Equivalent Model Immunity Condition

β̂ = 0 SIR Full Immunity

0 < β̂ < β — Partial Immunity

β̂ = β SIS No Immunity

β < β̂ <∞ — Compromised Immunity
δ = 0 SI No Recovery

the SI model where infected individuals can never recover. An exact equivalence with

the SI model can be achieved by setting the recovery rate δ to zero and redefining

xS as xS + xR. This could represent the scenario wherein individuals cannot stop

spreading rumors once they hear a rumor.

9.3 Model Analysis

9.3.1 Epidemic Analysis

Here we derive conditions on model parameters that guarantee an epidemic, i.e.,

growth in number of infected individuals for a small initial number of infected indi-

viduals.

The dynamics for xI in (9.2) can be written as

ẋI = δ((R0xS +R1xR)− 1)xI = δ(R(xS, xR)− 1)xI (9.3)

where R0 , β/δ, R1 , β̂/δ, and R(xS, xR) , R0xS + R1xR. The infection decays

when R < 1, grows when R > 1, and neither grows nor decays when R = 1.

If R0 > 1, a small fraction of initially infected individuals can spread the infection

in a population with no recovered individuals (xR = 0). To see this, consider the

dynamics for xI around a point where xR = 0 and xI ≈ 0:

ẋI = (β − δ)xI = δ(R0 − 1)xI . (9.4)
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Similarly, if R1 > 1 a small fraction of initially infected individuals can spread

the infection in a population with no susceptible individuals (xS = 0). To see this,

consider the dynamics for xI around a point where xR ≈ 1 and xI ≈ 0:

ẋI = (β̂ − δ)xI = δ(R1 − 1)xI . (9.5)

We can investigate the effect of introducing a small fraction of infected individuals

in a population with both susceptible and recovered individuals by looking at the

linearized dynamics of xI around an infection-free point xS = 1 − x̄R, xI = 0, and

xR = x̄R,

ẋI = δ(R0 + (R1 −R0)x̄R − 1)xI . (9.6)

For initial conditions where x̄R = 0, by (9.4) the initial infection spreads if R0 > 1.

If all individuals become infected, i.e., x̄R = 1, by (9.5) the infection spreads through

the recovered population if R1 > 1.

When 0 < x̄R < 1, the infection spreads if R0 + (R1−R0)x̄R > 1. So, if R0 > R1,

i.e., β > β̂, as in the case of partial immunity, the effective spreading power of the

infection decreases with the fraction of recovered individuals x̄R. That is, recovered

individuals are less prone to the infection than susceptible individuals, which makes

it harder for the infection to spread. And if R0 < R1, i.e., β < β̂, as in the case

of compromised immunity, recovered individuals are likely to become reinfected and

facilitate the spread of the infection through the population.

9.3.2 Equilibrium Points and Stability Analysis

The dynamics of the SIRI model (9.2) evolve on the 2-simplex ∆2 , {(xS, xI , xR) ∈

[0, 1]3|xS + xI + xR = 1}, and the corresponding reduced dynamics can be expressed
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as

ẋS = −βxSxI

ẋI = (β̂ − δ)xI + (β − β̂)xSxI − β̂x2
I .

(9.7)

This reduced model (9.7) has one continuum of equilibria and an isolated equilibrium

point:

1. Infection-Free Equilibria (IFE): xS = x∗S, xI = 0,

2. Endemic Equilibrium (EE): xS = 0, xI = 1− δ/β̂.

The IFE is a continuum of equilibria corresponding to the boundary of ∆2 where xI =

0 and x∗S ∈ [0, 1], while the EE corresponds to the case in which every individual is

either in the infected or recovered state. The SIRI model does not have an equilibrium

point where all three states S, I, and R coexist.

We now show how the steady-state solution x∗S at a point in the IFE depends on

the initial conditions.

Theorem 10. The fraction of susceptible individuals x∗s at a point in the IFE is given

by the implicit equation

(
x∗S
xS0

)R1/R0
(
xI0 + xS0 −

R1 − 1

R1

)
− x∗S +

R1 − 1

R1

= 0,

where xI0 and xS0 are the initial fractions of infected and susceptible individuals,

respectively.

Proof. Dividing the two equations in (9.7) we get an expression for dxI/dxS:

dxI
dxS

=
(β̂ − β)

β
− β̂ − δ

βxS
+
β̂xI
βxS

with solution

xI = −xS +
β̂ − δ
β̂

+ kx
β̂/β
S (9.8)
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where the value of k can be found by setting t = 0, yielding

xI + xS − (β̂ − δ)/β̂
x
β̂/β
S

=
xI0 + xS0 − (β̂ − δ)/β̂

x
β̂/β
S0

. (9.9)

In the limit t→∞, xI(∞) = 0. Simplifying and making the substitution x∗S = xS(∞)

we get the implicit equation

(
x∗S
xS0

)β̂/β(
xI0 + xS0 −

β̂ − δ
β̂

)
− x∗S +

β̂ − δ
β̂

= 0.

Substituting R1 = β̂/δ completes the proof.

Corollary 3. Given an initial condition xI = xI0, xS = 1− xI0, where 0 < xI0 < 1,

the fraction of susceptible individuals x∗s at the IFE is given by the implicit equation

1

R1

(
x∗s

1− xI0

)R1/R0

− x∗s +
R1 − 1

R1

= 0. (9.10)

Proof. The proof follows by setting xS0 = 1− xI0 in Theorem 10.

Before we state the main theorem of the paper, we define the quantity M ,

(1−R1)/(R0 −R1) which we use throughout the rest of this section.

Theorem 11 (Behavioral Regimes of SIRI). Given an initial condition xI = xI0,

xS = 1−xI0, where 0 < xI0 < 1, the SIRI model (9.7) exhibits four different dynamical

behaviors:

1. Infection-Free: If R0 < 1 and R1 < 1, then all solutions reach a point in the

IFE as t→∞, and xI decays monotonically to zero.

2. Endemic: If R0 > 1 and R1 > 1, then all solutions reach the EE as t→∞.

3. Epidemic: If R0 > 1 and R1 ≤ 1, then all solutions reach a point in the

IFE as t → ∞ and, at equilibrium, x∗S < M . For initial conditions where
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xI0 ≥ (β − δ)/β, xI decays monotonically to zero. While for initial conditions

where xI0 < (β − δ)/β, xI grows initially and reaches a maximum value:

xmaxI =
R0 −R1

R1(RR0
0 (1− xI0)R1)1/(R0−R1)

+
R1 − 1

R1

,

before decaying to zero as t→∞.

4. Bistable: If R0 ≤ 1, R1 > 1, then xI decays initially. Moreover, there is a

critical initial fraction of infected individuals

xIC = 1−M(R0M)
−R0

R1 . (9.11)

Solutions with initial condition xI0 < xIC reach a point in the IFE as t → ∞

and xI decays monotonically to zero. Solutions with initial conditions xI0 > xIC

reach the EE as t→∞.

Before proving Theorem 11, we prove three lemmas.

Lemma 10. The EE is an equilibrium point of (9.7) if and only if R1 ≥ 1. Moreover,

the EE is locally stable.

Proof. To show necessity, note that at the EE we have xI = 1 − δ/β̂ = 1 − 1/R1

which is nonnegative only if R1 ≥ 1.

Sufficiency follows from the fact that xI = 1 − 1/R1, xs = 0 and xR = 1 − xI is

an equilibrium point of (9.7).

The Jacobian of (9.7) around the EE is given by

J =

 −β(β̂ − δ)/β̂ 0

(β − β̂)(β̂ − δ)/β̂ −(β̂ − δ)


which is Hurwitz if R1 > 1.
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The following lemma shows that in the epidemic and bistable regimes, the IFE

contains both locally stable and unstable equilibrium points.

Lemma 11. The following holds true for the IFE:

1. If R0 < 1 and R1 < 1, then all points in the IFE are locally stable.

2. If R0 > 1 and R1 > 1, then all points in the IFE are unstable.

3. If R0 > 1 and R1 ≤ 1, points in the IFE with x∗S < M are locally stable and

points with x∗S > M are unstable.

4. If R0 ≤ 1 and R1 > 1, points in the IFE with x∗S > M are locally stable and

points with x∗S < M are unstable.

Proof. The Jacobian for the linearized system about xI = 0, xS = x∗S is

J =

0 −βx∗S
0 (β − β̂)x∗S + β̂ − δ

 (9.12)

The zero eigenvalue has eigenvector [1, 0]T corresponding to the invariant subspace

xI = 0. The second eigenvalue Ja = (β− β̂)x∗s + (β̂− δ) determines the local stability

of points in the IFE.

To prove 1, assume R0 < 1 and R1 < 1. If R0 > R1, then β > β̂ and Ja < 0 for

any 0 ≤ x∗S ≤ 1 and all points in the IFE are locally stable. If R0 < R1 then β < β̂

and max Ja = β − δ < 0 and all points in the IFE are locally stable.

To prove 2, assume R0 > 1 and R1 > 1. If R0 > R1, Ja > 0 for any 0 ≤ x∗S ≤ 1

and all points in the IFE are unstable. If R0 < R1 then max Ja = β − δ > 0 and all

points in the IFE are unstable.

To prove 3, assume R0 > 1 and R1 ≤ 1. It follows that Ja < 0 if 0 < x∗S < M and

Ja > 0 if M < x∗S < 1, which is equivalent to 3.
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To prove 4, assume R0 ≤ 1 and R1 > 1. It follows that Ja < 0 if M < x∗S < 1 and

Ja > 0 if 0 < x∗S < M , which is equivalent to 4.

We rule out the existence of periodic orbits in the SIRI model as this has the

implication that any solution starting on ∆2 must end at either a point in the IFE or

the EE.

Lemma 12. The SIRI model does not exhibit non-trivial periodic orbits on ∆2.

Proof. We rule out the existence of periodic orbits by contradiction. Suppose there

is a periodic solution of (9.7) on ∆2. Then xS(t) = xS(t′) for some t′ > t. Since xS

is nonincreasing in ∆2, this implies that ẋS ≡ 0 on [t, t′] which holds if and only if

xIxS ≡ 0 on [t, t′].

If xI = 0 at any time t̄ ∈ [t, t′], then the system is at a point in the IFE at time

t̄. Then xI ≡ 0 on [t̄, t′] and the solution is not a non-trivial periodic orbit. If xS ≡ 0

on [t, t′], then xR = 1− xI and the dynamics of (9.7) can be reduced to a single first

order ODE. Because periodic orbits cannot take place in a first order system, we have

a contradiction.

Proof of Theorem 11. Assume R0 < 1 and R1 < 1. By Lemma 11 the IFE are the

only equilibria of the system and by Lemma 12 there are no periodic solutions. These

two statements imply that all solutions reach a point in the IFE as t→∞. Moreover,

solutions decrease monotonically since R < 1 for any xS, xI ∈ [0, 1]. From (9.3) it

follows that ẋI < 0 for xI 6= 0. This completes the proof for 1.

Assume R0 > 1 and R1 > 1. By Lemmas 11 and 10 all points in the IFE are

unstable and the EE is locally stable. By Lemma 12 there are no periodic solutions.

These statements imply that all solutions reach the EE as t → ∞. This completes

the proof for 2.

Assume R0 > 1 and R1 ≤ 1. Following the same argument as in the proof of 1,

all solutions reach a point in the IFE as t→∞. From Lemma 11, equilibrium points
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in the IFE for which x∗S > M are unstable. Therefore solutions reach points in the

IFE where x∗S < M .

At the initial condition xI = xI0, xS = 1− xI0, with 0 < xI0 < 1, the initial rate

of change of xI by (9.7) is ((β − δ)− βxI0)xI0. It follows that xI grows initially if

xI0 < (β − δ)/β and decays initially if xI0 > (β − δ)/β.

Points along the solution where ẋI = 0 belong to the xI-nullcline and satisfy R = 1

if xI 6= 0. Since all solutions reach a point in the IFE, solutions that grow initially

must reach a maximum value xmaxI where R = 1. Since solutions cannot intersect,

this implies that solutions that decay initially do not change sign and continue to

decay monotonically until they reach a point in the IFE.

By setting ẋI = 0 in (9.7), we can express xmaxS (i.e. the maximum value xS) in

terms of xmaxI as

xmaxS =
δ + β̂(xmaxI − 1)

β − β̂
. (9.13)

Then substituting (9.13) into (9.9) and simplifying, we get

xmaxI =
R0 −R1

R1(RR0
0 (1− xI0)R1)1/(R0−R1)

+
R1 − 1

R1

. (9.14)

This completes the proof for 3.

Assume R0 ≤ 1, R1 > 1. It follows that at the initial condition ẋI < 0 for any

0 < xI0 ≤ 1 and xI decays initially. A necessary condition for the solution to reach

a point in the IFE is for the fraction of susceptible individuals at steady-state x∗S to

satisfy the implicit equation (9.10) and for the IFE point (x∗S, 0) to be locally stable.

By Lemma 11 any point in the IFE with x∗S < M is unstable. Therefore we

require x∗S > M . Solving (9.10) for xI0 shows that the necessary condition is satisfied

if xI0 < xIC , 1−M(R0M)−R0/R1 . Thus, xI0 < xIC is a necessary condition for the

solution to reach a point in the IFE.

209



1

1
0R

1R

Infection-Free

Bistable Endemic

Epidemic

Figure 9.1: The four different behavioral regimes of the SIRI model plotted on ∆2.
The four plots are arranged in the R0, R1 parameter space to illustrate the four
corresponding regimes.

To prove sufficiency, we show that ẋI does not change sign when xI0 < xIC and

therefore solutions with xI0 < xIC decrease monotonically.

If ẋI changes sign, then xI has a minimum value where R = 1. To be a valid

minimum of xI ∈ [0, 1], we require a minimum value xminI ∈ [0, 1]. If xminI = 0,

then we must have R = 1 at (x∗S, 0). This condition is satisfied when x∗S = M ,

or equivalently when xI0 = xIC . Thus, any solution with xI0 < xIC cannot have

xminI > 0 and xI → 0 monotonically as t→∞.

From the discussion above, it follows that a necessary and sufficient condition for

the solution not to reach a point in the IFE is xI0 > xIC . Due to the invariance of

∆2 and the impossibility of periodic orbits, this implies that xI0 > xIC is a necessary

and sufficient condition for solutions to reach the EE. This completes the proof.
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Figure 9.1 summarizes the results of Theorem 11. In each quadrant of the R0,

R1 parameter space, we show a simulation of the corresponding dynamics on ∆2.

The bottom boundary of ∆2 represents the IFE. The solid blue and dashed red lines

correspond to locally stable and unstable points in the IFE, respectively. The thinner

black lines are example trajectories. We show two trajectories in the bistable case

corresponding to a trajectory with xI0 = 0.15 that reaches a point in the IFE and a

trajectory with xI0 = 0.3 that reaches the EE.

Remark 14. The transient dynamics in the infection-free and endemic regimes depend

on the ratio R0/R1. When R0/R1 > 1 recovered individuals inhibit the spread of

the infection, leading to concave trajectories in ∆2. In contrast, when R0/R1 < 1,

recovered individuals facilitate the spread, leading to convex trajectories in ∆2.

9.4 Resurgent Epidemics

In this section we study the bistable regime in more detail and show that when the

initial condition is above the critical value solutions exhibit a resurgent epidemic in

which the infection initially decreases before increasing after an arbitrarily long period

of time.

Theorem 12 (Resurgent Epidemic). Consider a solution in the bistable regime with

initial condition xIC < xI0 < 1 such that the solution reaches the EE as t → ∞.

For that solution, the fraction of infected individuals decreases initially, reaches a

minimum value

xminI =
R0 −R1

R1(RR0
0 (1− xI0)R1)1/(R0−R1)

+
R1 − 1

R1

,

and then increases until it reaches the EE.
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Proof. Assume R0 < 1, R1 > 1, and xI0 > xIC . From (9.4) we get that the initial

fraction of infected individuals decays exponentially while from result 4 of Theorem 11

we get that the solution reaches the EE as t→∞.

Similar to the analysis for xmaxI in the epidemic case, any minimum of xI must

satisfy R = 1. This is only satisfied along the portion of the xI-nullcline between

the points (M, 0), which separates the IFE into locally stable and unstable sets, and

(R1−1
R1

, 0), which corresponds to the EE. We refer to this portion of the xI-nullcline as

Λ.

To show that all trajectories reach a minimum, note that if a trajectory passes

through a point in Λ, that point will correspond to xminI , the minimum value of xI

along the trajectory. Solving (9.9) for xI0 we get

xI0 = 1−Q(R0Q)−R0/R1 (9.15)

where Q = (1 +R1(xI − 1))/(R0 −R1).

Setting xI = 0 in (9.15) yields a lower bound on the initial condition xI0 that

results in a trajectory with a minimum value xminI ∈ [0, 1], while setting xI = (R1 −

1)/R1 in (9.15) yields an upper bound on the initial condition xI0 that results in a

trajectory with a minimum xminI ∈ [0, 1].

When xI = 0, Q = M and we get xI0 = xIC , that is, we recover (9.11), the critical

value for bistability. When xI = (R1 − 1)/R1, Q = 0 and xI0 = 1. This shows that

any solution with xIC < xI0 < 1 achieves a minimum value xminI ∈ [0, 1].

Finally, note that the same analysis used to find (9.14) is valid in the bistable

case, except that the resulting equation describes the minimum value xminI .

Figure 9.2 shows a simulation that exhibits resurgent epidemics with β = 0.5,

δ = 1, and β̂ = 1.5. The initial fraction of infected individuals xI0 was set to 0.207.

The infection decays at first, reaching a value close to zero after 20 time units. The
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infection stays close to zero for over 350 time units before increasing towards an

endemic state where xI = 0.33.

Time

Sx

Ix

Rx

Figure 9.2: Resurgent epidemic for β = 0.5, δ = 1, β̂ = 1.5, and xI0 = 0.207.

The time it takes before the resurgent epidemic is observed depends on the differ-

ence between the initial condition xI0 and the critical value xIC . If xI0 is close to xIC

then the minimum value xminI will be close to zero and the rate of growth of xI will

be very slow, leading to long time periods where the infection appears to be under

control before the epidemic resurges.

To study this phenomenon in more detail, we define the time to resurgence tRS as

the time it takes xI to decay from xI0 to the minimum value xminI . Figure 9.3 shows

tRS versus xI0 > xIC for the same parameters as in Figure 9.2. As the difference

xI0 − xIC goes to zero, tRS goes to infinity.

Theorem 13 (Time to Resurgence). Consider a solution in the bistable regime that

exhibits a resurgent epidemic. The time to resurgence tRS , tmin − t0 satisfies the

lower bound

tRS ≥
log xI0 − log xminI

δ − β ,

where t0 is the initial time and tmin is the time at which xI = xminI . Moreover,

tRS →∞ as xI0 − xIC → 0+.
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Figure 9.3: Numerical simulations (solid) and lower bound in Theorem 13 (dashed)
for time to resurgence tRS versus initial condition xI0 for β = 0.5, δ = 1, β̂ = 1.5.
The dotted line shows the critical initial condition xIC = 0.206.

Proof. Recall that close to the initial condition, the dynamics of xI are given by (9.4)

with solution xI(t) = xI0e
(β−δ)t, where β − δ < 0. Setting xI = xminI and solving for

t, we find the time td it takes (9.4) to decay from xI0 to xminI :

td =
log xminI − log xI0

β − δ . (9.16)

Along the solution, xI(t) ≥ xI0e
−(δ−β)t, which implies tRS ≥ td. In the limit

xI0 → xIC , log xminI → −∞ and td →∞.

9.5 Conclusions and Future Directions

We have studied the SIRI model for reinfection. We prove that the model has four

different behavioral regimes determined by the values R0 and R1 that describe the

susceptibility of individuals to primary and secondary infections. When both R0 and

R1 are below or above the critical value of 1, the SIRI model behaves like the SIS

model: if R0 ≤ 1 and R1 ≤ 1 the infection dies out, and if R0 > 1 and R1 > 1 the

infection spreads. When R0 > 1 and R1 ≤ 1, the SIRI model behaves qualitatively

like the SIR model and the infection spreads initially in an epidemic that reaches a
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maximum number of infected individuals before dying out. Finally, when R0 ≤ 1

and R1 > 1, the model displays bistability in which initial conditions below a critical

value lead to an infection-free equilibrium while initial conditions above the critical

value lead to the infection spreading through the population. We prove that, in the

latter case, solutions exhibit a resurgent epidemic in which the infection decreases at

first and reaches a minimum value before rapidly increasing after a long delay.

Possible extensions of the SIRI model include an SIRS-like model in which recov-

ering individuals pass through an additional stage with full immunity before transi-

tioning to the recovered state at a fixed rate.

Our results have implications for spreading processes where individuals adapt af-

ter first exposure. Common control strategies focus on preventative measures that

seek to minimize the number of exposed individuals. However, the resurgent epi-

demic phenomenon shows that if reinfections are more likely than primary infections,

these control strategies might fail at preventing the spread of the process. More effec-

tive control strategies should complement prevention of infection with post-exposure

treatment and reinfection prevention.

Our results hold under the restrictive assumption of homogeneous interactions.

Although in most cases individuals tend to interact in a non-homogeneous manner

with other individuals in the population, our assumption provides invaluable intuition

into the dynamics, and the analytical tractability of the model has allowed us to obtain

rigorous results. The SIS and SIR models have been successfully adapted to network

topologies [69,74,79]. In ongoing work we are designing and analyzing SIRI dynamics

on networks.
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Chapter 10

Adaptive Susceptibility and

Heterogeneity in Contagion

Models on Networks∗

Renato Pagliara and Naomi Ehrich Leonard

Contagion processes, such as the spread of infectious diseases, computer viruses,

and social behaviors, form the basis of many biological, societal, and engineering

systems. Epidemic models have been successfully used in many cases to understand

and control transient and steady-state behaviors in these systems. Prior research has

focused mainly on network models with agents who either gain no immunity to the in-

fection after recovery, or gain full immunity after recovery and cannot be reinfected.

However, in many systems, agents fall somewhere in between these two extremes;

agents adapt after a first exposure to the infection and become either more or less

susceptible to reinfection. In this paper, we consider the network SIRI (Susceptible-

Infected-Recovered-Infected) model, an epidemic model for the spread of contagious

1This chapter is in preparation for submission and appears as Pagliara and Leonard [58].
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processes on networks of heterogeneous agents who adapt their susceptibility to in-

fection after first exposure to each of their infected neighbors. We study the network

SIRI dynamics in arbitrary strongly connected digraphs and show that the model ex-

hibits four distinct dynamic regimes: infection-free, epidemic, endemic, and bistable.

We find necessary and sufficient conditions on model parameters and graph struc-

ture for the model to be in each of the regimes. In the bistable regime the infection

dies out or spreads depending on initial conditions. Our model presents opportuni-

ties for the design and control of multi-agent systems with adaptive susceptibility.

10.1 Introduction

Many engineering, biological, and social systems are the result of contagion processes

in which interconnected agents form networks on which information, cultural norms,

and/or social behaviors spread. In many cases, “infected” agents, willingly or un-

willingly, adapt their susceptibility to reinfection based on their previous experience.

For example, in the case of infectious diseases, the susceptibility of individuals to the

infection might decrease after a first exposure, resulting in partial immunity as in the

case of influenza. Alternatively, the susceptibility of individuals might increase after

a first exposure, resulting in a compromised immunity, such as in the case of dengue.

Similarly, in the spread of social behaviors, the susceptibility of individuals to the

infection might decrease (increase) as a result of a negative (positive) past experience

that decreases (increases) the propensity of an individual to engage in the behavior.

Here, we study the role of adaptive susceptibility in the spread of a contagious pro-

cess in an arbitrary network using the SIRI (Susceptible-Infected-Recovered-Infected)

epidemic model for reinfection. The SIRI model describes a group of susceptible

agents that become infected by coming in contact with an already infected agent.
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Infected agents then recover from the infection at a given rate and become suscepti-

ble again. However, unlike the SIS (Susceptible-Infected-Susceptible) model in which

there is no difference in susceptibility between a first infection and reinfection, in the

SIRI model the susceptibility of agents may increase or decrease irreversibly after a

first infection. When every agent in the network drops their susceptibility to rein-

fection to zero, the SIRI model reduces to the SIR (Susceptible-Infected-Recovered)

model. In network settings, the SIRI model describes how agents adapt their suscep-

tibility after a first infection with respect to each of their infected neighbors, leading

to heterogeneities in how agents adapt in response to a contagious process.

Epidemic models have been successfully used to study contagious processes in a

wide number of systems, ranging from the spread of infectious diseases on popula-

tions [139,182] and memes on social networks [183] to the evolution of riots [52] and

power grid failures [19]. The wide applicability of epidemic models has, in turn, lead to

an increase in recent years on the number of studies in the controls community focus-

ing on theoretical epidemic models for the propagation of contagious processes in net-

works [72,74,184,185]. Typically, these models are SIS like models [75,81,135,184,185]

in which recovered individuals gain no immunity to the infection, with fewer studies

considering SIR like models [78] in which recovered individuals gain full immunity to

the infection and cannot become infected again.

Models that consider reinfection usually only consider the case of partial immu-

nity in which the reinfection rate is equal or lower than the infection rate. In the

theoretical biology literature, reinfection models have been used to study the role of

partial immunity in multi-strain epidemics in very large number of individuals, where

every pair of individuals has the same probability of interaction (i.e., under the well-

mixed assumption) [134]. In the physics community, reinfection models with partial

immunity have been used to study the connection between directed and dynamic

percolation in regular lattices [180,186].
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In previous work [57] we analyzed the SIRI model in well-mixed settings and

showed that there exist four distinct dynamical regimes characterized by the value

of two numbers R0 and R1: infection-free, endemic, epidemic, and bistable. R0 is

the ratio of infection rate to recovery rate and R1 is the ratio of reinfection rate to

recovery rate. They are related to the so-called basic reproduction numbers [46].

In the infection-free regime (R0, R1 ≤ 1), all solutions decay monotonically to an

infection-free equilibrium. In the endemic regime (R0, R1 > 1), the infection spreads

through the population and all solutions reach an endemic equilibrium corresponding

to a nonzero fraction of infected individuals. In the epidemic regime (R0 > 1, R1 ≤

1) the fraction of infected individuals rapidly increases at first before reaching a

maximum and then decays towards an infection-free equilibrium. Finally, in the

bistable regime (R0 ≤ 1, R1 > 1), there exists a critical initial fraction of infected

individuals below which the infection dies out and above which the infection spreads

through the population and remains endemic. We showed that in the bistable regime

there is a resurgent epidemic in which the fraction of infected individuals initially

decreases to close to zero before ramping up after an arbitrarily long delay.

In this paper we extend the well-mixed SIRI results to arbitrary strongly connected

network topologies with heterogeneous agents. Each agent has its own recovery rate

and every ordered pair of agents has its own infection and reinfection rates. Follow-

ing the individual-based mean-field approach (IBMF) used in the derivation of the

N -intertwined SIS model [75,77], we reduce the Markov chain model for the SIRI dy-

namics on networks to a system of deterministic nonlinear differential equations that

can be analytically studied. In [72] the authors studied the Markovian SIRI model on

networks with global recovery, infection, and reinfection rates, and showed through

numerical simulations that when the reinfection rate is larger than the infection rate,

the transition from an infection-free steady-state to an endemic one changes from

smooth to abrupt. In the present paper we formalize this observation by proving new
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results on the existence of a bistable regime in which a critical manifold of initial

conditions separates solutions where the infection dies out from solutions where the

infection spreads through the network and remains endemic.

Our contributions in the present paper are as follows. First, we introduce the

network SIRI model over strongly connected digraphs and present a rigorous stability

analysis of its dynamics under the assumption that the infection can reach every

agent in the network. We show that there exists a set of non-isolated infection-free

equilibria, and an isolated endemic equilibrium. We find conditions on the graph

structure and system parameters for equilibria to be locally stable or unstable. In

the case of the set of infection-free equilibria, we find conditions for the set to be split

into two or more connected sets of locally stable and unstable points. Second, we

study transient and steady-state responses to show that the model exhibits the same

four distinct dynamical regimes observed in the well-mixed SIRI model: infection-

free, epidemic, endemic, and bistable. We show how the four dynamical regimes are

characterized by four numbers that generalize R0 and R1 in [57] to network settings

and also generalize previous results for the SIS and SIR models in networks [75, 77,

78,81]. Third, we show that, in the bistable regime, the infection dies out or spreads

depending on initial conditions. We show through simulations that when, for every

pair of ordered agents in the graph, the reinfection rate is larger or equal than the

infection rate, solutions for which the infection spreads exhibit a resurgent epidemic

in which the infection initially decreases and reaches a minimum before ramping up

and spreading through the network.

The structure of the paper is as follows. In Section 10.2 we present mathematical

notation and results that are used throughout the paper. Section 10.3 introduces

the network SIRI model and enumerates the different special cases of the model.

In Section 10.4 we describe the equilibria of the model and introduce the notion of

reproduction numbers. In Section 10.5 we perform a stability analysis under the
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assumption that there is always a directed path for the infection to reach all agents in

the network, with particular emphasis on the stability properties of the manifold of

infection-free equilibria. In Section 10.6 we prove our main result on the existence of

the four dynamical regimes. In Section 10.4 we study the geometry of solutions and

present analytical and numerical results for the bistable and epidemic regimes. In

Section 10.8 we discuss possible control strategies through simulations. We provide

closing remarks and future directions in Section 10.9.

10.2 Mathematical Preliminaries

10.2.1 Properties of Gradient Systems

A gradient system on an open set Ω ⊆ Rn is a system of the form ζ̇ = −∇V (ζ) where

ζ(t) ∈ Ω, V ∈ C2(Ω) is the potential function, and ∇V = [∂V/∂ζ1, . . . , ∂V/∂ζN ]

is the gradient of V with respect to ζ. The level surfaces of V are the subsets

Vc = {V −1(c) ∈ Ω | c ∈ R}. A point ζ0 ∈ Ω is a regular point if ∇V (ζ0) 6= 0 and a

critical point if ∇V (ζ0) = 0. If ∇V (ζ) 6= 0 for all ζ ∈ Vc, then c is a regular value for

V .

Proposition 6 (Properties of Gradient Systems [187, 188]). Consider the gradient

system ζ̇ = −∇V (ζ) where V ∈ C2(Ω), ζ(t) ∈ Ω ⊆ Rn. Then,

1. V (ζ) is a Lyapunov function of the gradient system. Moreover, V̇ (ζ) = 0 if and

only if ζ is an equilibrium.

2. The critical points of V are the equilibria.

3. If c is a regular value for V , then the surface set Vc forms an N−1 dimensional

surface in Ω and the vector field is perpendicular to Vc.
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4. At every point ζ ∈ Ω, the directional derivative along w ∈ RN is given by

DwV (ζ) = wT∇V (ζ).

5. Let ζ0 be an α-limit point or an ω-limit point of a solution of the gradient system.

Then ζ0 is an equilibrium.

6. The linearized system at any equilibrium has only real eigenvalues. No periodic

solutions are possible.

10.3 Network SIRI Model Dynamics

In this section we present the network SIRI model dynamics, which represents a con-

tagious process with reinfection in a population of N agents. Consider a strongly con-

nected digraph G = (V , E) with adjacency matrix A, where each node in V represents

an agent. The state of each agent j is given by the random variable Xj(t) ∈ {S, I, R},

where S is “susceptible”, I is “infected”, and R is “recovered”. Let transitions be-

tween states for each agent be independent Poisson processes with rates defined as

follows. Susceptible agent j becomes infected through contact with infected neighbor

k at the rate βjk = fjk(ajk) ≥ 0. We assume fjk(ajk) = 0 ⇐⇒ ajk = 0. Infected

agent j recovers from the infection at the rate δj ≥ 0. Recovered agent j becomes

reinfected through contact with infected neighbor k at the rate β̂jk = f̂jk(ajk) ≥ 0,

where f̂jk(0) = 0. These transitions are summarized as

Sj + Ik
βjk

Ij + Ik
β̂jk

Rj + Ik

Ij
δj

Rj.

The dynamics are described by a continuous-time Markov chain, where the probability

that an agent transitions state at time t can depend on the state of its neighbors at

time t. Thus, the dimension of the state space can be as large as 3N .
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To reduce the size of the state space, we use an individual mean-field approxima-

tion similar to that described in [75] for the SIS model. This approach assumes that

the state of every node is statistically independent from the state of its neighbors.

The approximation reduces the state of every agent j to the probabilities pSj (t), pIj (t),

and pRj (t) of agent j being in state S, I, and R, respectively, at time t ≥ 0. Since at

every time t ≥ 0, these probabilities sum to 1, the state of every agent j evolves on

the 2-simplex ∆ := {(pSj , pIj , pRj ) ∈ [0, 1]3| pSj + pIj + pRj = 1}. The reduced state space

corresponds to N copies of ∆, denoted ∆N , which has dimension 2N .

The dynamics retain the full topological structure of the network encoded in the

infection and reinfection rates βjk and β̂jk, which depend on the entries of the adja-

cency matrix A. We refer the reader to [77] for a detailed derivation of the individual

mean-field approximation for the SIS model, and to [135, 136] for a discussion and

numerical exploration of the accuracy of mean-field approximations in network dy-

namics.

Under the individual mean-field approximation, the dynamics of the network SIRI

model are given by

ṗSj =− pSj
N∑
k=1

βjkp
I
k

ṗIj =− δjpIj + pSj

N∑
k=1

βjkp
I
k + pRj

N∑
k=1

β̂jkp
I
k

ṗRj =− pRj
N∑
k=1

β̂jkp
I
k + δjp

I
k. (10.1)
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We can reduce the number of equations from 3N to 2N by using the substitution

pRj = 1− pSj − pIj in (10.1):

ṗSj =− pSj
N∑
k=1

βjkp
I
k (10.2)

ṗIj =
N∑
k=1

(
(1− pSj )β̂jk + pSj βjk

)
pIk − δjpIj − pIj

N∑
j=1

β̂jkp
I
k.

The dynamics can be written in matrix form where pΩ = [pΩ
1 , · · · , pΩ

N ]T and PΩ =

diag(pΩ) for Ω ∈ {S, I}:

ṗS = −P SBpI

ṗI =
(
B∗(pS)− Γ

)
pI − P IB̂pI , (10.3)

where

B∗(pS) = (I− P S)B̂ + P SB

and

B = {βjk} � 0̄ (infection matrix),

B̂ = {β̂jk} � 0̄ (reinfection matrix),

Γ = diag(δ1, . . . , δN) � 0̄ (recovery matrix).

Further, we define

B̄max = [max(βjk, β̂jk)], B̄min = [min(βjk, β̂jk)]. (10.4)

The network SIRI model dynamics provide sufficient richness to describe a family

of models which can be categorized into six different cases (summarized in Table 10.1):
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Table 10.1: Network SIRI model cases.

Case Parameter Value Equivalent Model
1 Γ = 0̄ SI

2 B̂ = 0̄ SIR

3 B = B̂ SIS

4 B � B̂ � 0̄ Partial Immunity

5 B̂ � B � 0̄ Compromised Immunity
6 Otherwise Mixed Immunity

• Case 1 (SI): When Γ = 0̄ the network SIRI model specializes to the network SI

model.

• Case 2 (SIR): When B̂ = 0̄, the network SIRI model specializes to the network

SIR model.

• Case 3 (SIS): When B = B̂ the network SIRI model specializes to the network

SIS model with pS 7→ pS + pR.

• Case 4 (Partial Immunity): When B � B̂ � 0̄, every recovered agent acquires

partial (or no) immunity to each of its infected neighbors.

• Case 5 (Compromised Immunity): When B̂ � B � 0̄, every recovered agent

acquires compromised (or no) immunity to each of its infected neighbors.

• Case 6 (Mixed Immunity): Models not in Cases 1-5. Notably, there is at least

one pair of edges (j, k) and (l,m) such that βjk ≥ β̂jk and βlm < β̂lm. We

classify mixed immunity into two sub-cases:

– Case 6a (Weak Mixed Immunity): For every agent j, βjk − β̂jk ≥ 0 for all

k ∈ Nj or βjk − β̂jk ≤ 0 for all k ∈ Nj.

– Case 6b (Strong Mixed Immunity): Mixed immunity that is not weak.
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10.4 Equilibria and Reproduction Numbers

In this section we analyze the equilibria of the network SIRI model dynamics and

define the notion of basic and extreme basic reproduction numbers, which we use

throughout the rest of the paper. We denote the value of pS and pI at equilibrium

as pS∗ and pI∗, respectively.

10.4.1 Equilibria

Proposition 7. The only equilibria of the network SIRI model (10.3) are an invariant

set of infection-free equilibria (IFE) M = {(pS∗,0) ∈ ∆N | 0 � pS∗ � 1} and one or

more isolated endemic equilibria (EE) where pI∗ � 0 satisfy

pI∗j =

∑N
k=1 β̂jkp

I∗
k

δj +
∑N

k=1 β̂jkp
I∗
k

. (10.5)

If B̂ is irreducible then pS∗ = 0 and pI∗ � 0 for every EE.

Proof. Setting ṗS = 0 in (10.3), we get P S∗BpI∗ = 0. Since G is strongly connected

and B preserves the connectivity of A, then for every agent j we must have pS∗j = 0

or
∑
Nj

pI∗k = 0. Moreover, since B̂ has a zero at every entry where B has a zero, it

follows that P S∗B̂pI∗ = 0.

Setting ṗI = 0 in (10.3) and using P S∗BpI∗ = P S∗B̂pI∗ = 0 we get

0 = (B̂ − Γ− P I∗B̂)pI∗ = (B̂ − Γ− diag(B̂pI∗))pI∗. (10.6)

One solution is the invariant setM = {(pS∗,0) ∈ ∆N | 0 � pS∗ � 1}. The only other

solutions are isolated equilibria pI∗ � 0 satisfying (10.5).

If B̂ is irreducible then βjk > 0 for any (j, k) ∈ E , and if pI∗k > 0 for any k ∈ V ,

it follows from (10.5) that pI∗j > 0 for any j where k ∈ Nj. This in turn implies that
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pI∗i > 0 for any i where j ∈ Ni. This argument can be recursively applied until all

nodes in G are covered. Moreover, since P S∗BpI∗ = 0, pI∗ � 0 implies pS∗ = 0.

Definition 10.4.1. The boundary of M is ∂M = {x = (pS∗,0) ∈ M|∃j, pS∗j ∈

{0, 1}}. The corner set of M is M̂ = {x = (pS∗,0) ∈ ∂M| pS∗j ∈ {0, 1}, ∀j}. The

interior of M is int (M) =M\ ∂M.

Remark 15. The equilibria of the network SIRI model are equivalent to the equilibria

of the network SIS model (Case 3), where B = B̂. This follows since any equilibrium

of (10.3) satisfies (10.6), and therefore is also an equilibrium of the network SIS

dynamics [77,81,139]:

ṗI = (B − Γ)pI − P IBpI . (10.7)

For the network SI model (Case 1), the only equilibrium is a unique EE with pI∗ = 1

and pS∗ = 0. For the network SIR model (Case 2), the only equilibria are the IFE

set M.

Remark 16. For initial conditions pS(0) = 1−pI(0), the network SIRI dynamics (10.3)

initially behave as the network SIS model (10.7) with infection matrix B. As agents

become exposed to the infection for the first time, the dynamics transition to network

SIS dynamics with infection matrix B̂. This model of adaptive susceptibility of agents

can be used in other contexts, including the spread of behaviors, such as the regulation

of foraging by desert harvester ants [43].

In the remainder of this paper, we assume Γ is non-singular and that B̂ is irre-

ducible, and thus every EE is strong since pI∗ � 0. The generalization to the case of

reducible B̂ is straightforward.2

2If B̂ is reducible, then the graph GB̂ generated by interpreting B̂ as its adjacency matrix is
weakly connected or disconnected. If GB̂ is weakly connected, the adjacency matrix of GB̂ can
always be written as an upper block triangular matrix with K diagonal irreducible blocks which
describe the K strongly connected subgraphs of G [138]. If GB̂ is disconnected, it is sufficient to
study each connected subgraph of GB̂ .
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10.4.2 Basic Reproduction Numbers

In the network SIS model (10.7), the steady-state behavior of solutions depends on

the value of the basic reproduction number R0 = ρ(BΓ−1). If R0 ≤ 1, solutions

reach the IFE set M as t → ∞ while if R0 > 1, solutions reach the EE (10.5) as

t → ∞ [81, 139]. A key concept in epidemiology, the basic reproduction number is

the expected number of new cases of infection caused by a typical infected individual

in a population of susceptible individuals [46,68].

In previous work [57] we proved that, in well-mixed settings, the transient and

steady-state behavior of solutions in the SIRI model depend on two numbers R0 and

R1, corresponding to the basic reproduction number for a population of susceptible

individuals and for a population of recovered individuals, respectively. Here we extend

the definition of R0 and R1 in [57] to network topologies and introduce the notion of

extreme basic reproduction numbers.

Definition 10.4.2 (Basic Reproduction Numbers). The basic infection reproduc-

tion number is R0 = ρ(BΓ−1) and the basic reinfection reproduction number is

R1 = ρ(B̂Γ−1).

Definition 10.4.3 (Extreme Basic Reproduction Numbers). Let B∗(pS) = (I −

P S)B̂ + P SB. Maximum basic reproduction number is Rmax = maxpS ρ(B∗(pS)Γ−1)

and minimum basic reproduction number is Rmin = minpS ρ(B∗(pS)Γ−1).

Remark 17. Each reproduction number corresponds to K = B∗(pS)− Γ for a partic-

ular value of pS, where K is the linear term of the dynamics of pI in (10.3). K is

a Metzler matrix and each reproduction number R is the spectral radius associated

with this regular splitting, i.e., R = ρ(B∗(pS)Γ−1) as defined in Proposition 3. R0 is

R for P S = I, R1 is R for P S = 0̄, Rmax is R for pS = argmaxpS ρ(B∗(pS)Γ−1) and

Rmin is R for pS = argminpS ρ(B∗(pS)Γ−1).
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Proposition 8. Let R̄max = ρ(B̄maxΓ
−1) and R̄min = ρ(B̄minΓ−1). Then,

R̄min ≤ Rmin ≤ λmax(B
∗(pS)Γ−1) ≤ Rmax ≤ R̄max (10.8)

for any 0 � pS � 1. If B � B̂, then R̄max = Rmax = R0 and R̄min = Rmin = R1. If

B̂ � B, then R̄max = Rmax = R1, and R̄min = Rmin = R0.

Proof. Any matrix with nonnegative entries is Metzler. Thus, Y (pS) = B∗(pS)Γ−1

is an irreducible Metzler matrix since B � 0̄ and B̂ � 0̄ are irreducible. By Proposi-

tion 1, λmax(Y (pS)) increases (decreases) as any entry in Y (pS) increases (decreases).

Since every non-zero entry of Y (pS) is a scaled convex sum of βjk and β̂jk, it follows

that B̄minΓ−1 � Y (pS) � B̄maxΓ
−1 for any 0 � pS � 1. Consequently, (10.8) holds

for any 0 � pS � 1. If B � B̂, then B̄max = B and B̄min = B̂. If B̂ � B, then

B̄max = B̂ and B̄min = B. The stated results then follow from the definitions for the

extreme basic and basic reproduction numbers.

10.5 Stability of equilibria

In this section we prove conditions for the local stability of the EE and of points in

the IFE set M.

10.5.1 Stability of the Endemic Equilibria

Proposition 9. The network SIRI dynamics (10.3) have a unique EE if and only if

R1 > 1. The EE is locally stable.

Proof. Proof of the existence and uniqueness of the EE if and only if R1 > 1 for (10.3)

follows from the proof in Section 2.2 of [81] for the network SIS model (10.7) (see

Remark 15).
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Recall that B and B̂ are irreducible, so pS∗ = 0. To prove local stability, we

compute the Jacobian of (10.3) at the EE (10.5):

JEE =

 −diag(BpI∗) 0̄

diag((B − B̂)pI∗) Ja

 (10.9)

where Ja = B̂ − Γ − P I∗B̂ − diag(B̂pI∗). Since −diag(BpI∗) is Hurwitz, showing

that the EE is locally stable is equivalent to showing that the Metzler matrix Ja is

Hurwitz.

By (10.6), (B̂ − Γ− P I∗B̂)pI∗ = 0, and thus

Jap
I∗ = −diag(B̂pI∗)pI∗ � 0. (10.10)

where the inequality follows from pI∗ � 0.

By Proposition 2 we conclude that Ja is Hurwitz.

10.5.2 Stability of Infection-Free Equilibria

In this section we prove results on the stability of the IFE set M. The equilibria

in M are non-hyperbolic: the Jacobian of (10.3) at a point x ∈ M has N zero

eigenvalues corresponding to the N -dimensional space tangent toM. The remaining

N eigenvalues are called transverse as they correspond to the N -dimensional space

transverse to M. The Shoshitaishvili Reduction Principle [90], which extends the

Hartman-Grobman Theorem to non-hyperbolic equilibria, can be used to study the

local stability of points in M in terms of the transverse eigenvalues of the Jacobian

and the dynamics on the center manifold. We show how the irreducibility of B and

B̂ imply that the behavior of solutions in ∆N close to a point x ∈ M depends only

on the sign of the leading transverse eigenvalue of the Jacobian at x.
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Throughout the rest of this paper, we consider the topological space ∆N as a

subspace of R2N . This allows us to study points in ∂M and in int(M) simultaneously.

In R2N , the invariant setM of IFE points becomes a subset of the invariant manifold

of equilibria M′ = {(p,0)|p ∈ RN}.

Lemma 13 (Local Stability of Points in the IFE set M). Let x = (pS∗,0) ∈ M.

Let JM(x) be the Jacobian of (10.3) at x and λTmax(JM(x)) the leading transverse

eigenvalue of JM(x). Then, λTmax(JM(x)) ∈ R and the following hold.

• Suppose λTmax(JM(x)) < 0. Then, x is locally stable. I.e., given a neighborhood

U of x on M′ such that λTmax(JM(u)) < 0 for all u ∈ U , there exists V ⊂ ∆N

and x ∈ V such that any solution starting in V converges exponentially to a

point in U ∩∆N .

• Suppose λTmax(JM(x)) > 0. Then, x is unstable. I.e., there exists W ⊂ ∆N

and x ∈ W , such that any solution starting in W leaves W .

Proof. For an arbitrary point x = (pS∗,0) ∈M,

JM(x) =

0̄ −P S∗B

0̄ JT (pS∗)

 (10.11)

where JT (pS∗) = B∗(pS∗) − Γ. The N transverse eigenvalues of JM(x) are the

eigenvalues of JT (pS∗) and so λTmax(JM(x)) = λmax(JT (pS∗)). The matrix JT (pS∗)

is Metzler irreducible since B and B̂ are Metzler irreducible. By Proposition 1

λmax(JT (pS∗)) ∈ R.

Consider an arbitrary point x′ = (p′,0) ∈ M′ \M. The Jacobian of (10.3) at x′

takes on the same form as (10.11), and JT (p′) is Metzler irreducible if every entry of

p′ satisfies 
p′j > −

∑N
j=1 β̂jk∑N

j=1(βjk−β̂jk)
if
∑N

j=1(βjk − β̂jk) ≥ 0

p′j <
∑N

j=1 β̂jk∑N
j=1(β̂jk−βjk)

if
∑N

j=1(βjk − β̂jk) ≤ 0.
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Since B, B̂ are irreducible, | ∑N
j=1 β̂jk/

∑N
j=1(βjk − β̂jk) |> 1 for all j. So, for any

x ∈ ∂M, there exists a neighborhood Ū of x on M′ such that JT (ū′) is Metzler

irreducible for every ū = (ū′,0) ∈ Ū . By Proposition 1 λmax(JT (p′)) ∈ R.

Let U be a neighborhood of x onM′ such that λTmax(JM(u)) has the same sign as

λTmax(JM(x)) for all u ∈ U . Then, λmax(JT (u′)) has the same sign as λmax(JT (pS∗))

for all u = (u′,0) ∈ U . By Proposition 1 every left and right eigenvector of every

eigenvalue of JT (u′), other than λmax(JT (u′)), contains at least one negative entry.

Thus, for any ū ∈ U ∩ ∆N , the eigenvector corresponding to λTmax(JM(ū)) lies in

∆N , and the eigenvectors corresponding to the other N − 1 transverse eigenvalues lie

outside ∆N .

If λmax(JT (pS∗)) < 0, then every transverse eigenvalue of JM(x) has negative

real part. By the Shoshitaishvili Reduction Principle, there exists a neighborhood

V ′ ∈ R2N of x that is positively invariantly foliated by a family of stable manifolds

corresponding to the family of stationary solutions in U (see [86,189,190]), each stable

manifold spanned by the (generalized) eigenvectors associated with the N negative

transverse eigenvalues of JM(u). Let V = V ′ ∩ ∆N . Then V ⊂ ∆N is positively

invariantly foliated by a family of stable manifolds. The invariance of ∆N implies

each of these stable manifolds correspond to a point ū ∈ U ∩M. Thus, any solution

starting in V converges exponentially along a stable manifold to the corresponding

stationary solution in U ∩M.

If λmax(JT (pS∗)) > 0, then there is at least one transverse eigenvalue of JM(x)

with positive real part. The trace of JT (pS∗) is negative for any 0 � pS∗ � 1, so

the sum of the eigenvalues of JT (pS∗) is always negative and JM(x) has at least

one transverse eigenvalue with negative real part. By the Shoshitaishvili Reduction

Principle there exists a neighborhood W ′ ⊂ R2N of x that is positively invariantly

foliated by a family of stable, unstable, and possibly center manifolds corresponding

to the family of stationary solutions in U . Let W = W ′ ∩∆N . Then, the stable and
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center manifolds of each stationary solution ū ∈ W ∩M lie outside ∆N . Thus, no

solution starting in W can remain in W for all time, i.e., any solution starting in W

leaves W .

Definition 10.5.1 (Stable, unstable, and center IFE subsets). The stable IFE subset

is M− = {x ∈ M|λTmax(JM(x)) < 0}. The unstable IFE subset is M+ = {x ∈

M|λTmax(JM(x)) > 0}. The center IFE subset is M0 = {x ∈ M|λTmax(JM(x)) =

0}.

Proposition 10. M− ∪M+ ∪M0 =M. Every point in M− is locally stable and

every point in M+ is unstable.

Proof. This follows from Definition 10.5.1 and Lemma 13.

We now state two main theorems of the paper, which relate the extreme basic

reproduction numbers Rmax and Rmin to the stable, unstable, and center subsets of

the IFE set M.

Theorem 14 (Stability of the IFE set M).

(A) If Rmax < 1, then M− =M.

(B) If Rmin > 1, then M+ =M.

(C) If Rmax = Rmin = 1, then M0 =M.

(D) If Rmin < Rmax = 1, then M− =M\M0 and M0 ⊂ ∂M.

(E) If Rmax > Rmin = 1, then M+ =M\M0 and M0 ⊂ ∂M.

(F) If Rmax > 1 and Rmin < 1, then M−,M+,M0 6= ∅ and each subset consists

of n−, n+, n0 connected sets, respectively. Each of the center connected sets

Mj
0, j = 1, . . . , n0, is an N −1-dimensional smooth hypersurface with boundary

∂Mj
0 ⊂ ∂M. Each Mj

0 separates an N-dimensional stable connected hypervol-

ume from an N-dimensional unstable connected hypervolume.
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Remark 18. Theorem 14 applies to the six different cases of the network SIRI model

(see Table 10.1) as follows. (A) applies to Cases 2, 3, 4, 5, and 6. (B) applies to

Cases 3, 4, 5, and 6. (C) applies to Case 3. (D) applies to Cases 2, 4, 5, and 6. (E)

applies to Cases 4, 5, and 6. (F) applies to Cases 2, 4, 5, and 6. We specialize (F)

in Theorem 15 to provide the key to characterizing global behavior in Cases 2, 4, 5,

and 6a.

Theorem 15 (Uniqueness of stable, unstable, and center subsets). If Rmax > 1 and

Rmin < 1, then for Case 2 (SIR), Case 4 (partial immunity), Case 5 (compromised

immunity), and Case 6a (weak mixed immunity), M0 consists of a unique N − 1-

dimensional surface with boundary ∂M0 ⊂ ∂M dividing M into M− and M+.

Remark 19. We conjecture that Theorem 15 can be extended to Case 6b. Extensive

computations of M0, M−, and M+, for an N = 3 agent network, with different

network configurations and parameter values, consistently show a unique connected

surface M0 dividing M into M− and M+.

The proofs of Theorem 14 and 15 make use of the following definitions and lemmas.

Definition 10.5.2 (Neighborhood E ⊂ M′ of M). Neighborhood E ⊂ M′ of M is

the union of M and the neighborhoods Ū ⊂ M′ of every x̄ ∈ ∂M described in the

proof of Lemma 13.

Definition 10.5.3 (JT and Λ). Let JT (p) = B∗(p) − Γ for (p,0) ∈ E. The λTmax

function is Λ : E → R, (p,0) 7→ λmax(JT (p)). For ease of notation we use Λ(p) for

Λ(p,0).

Definition 10.5.4 (Stubborn agents). An agent j ∈ V is stubborn if (βjk − β̂jk) = 0

for all k ∈ Nj.

Lemma 14 (IFE subsets as level surfaces of Λ). Let Λc = {Λ−1(c) | c ∈ R} be the

level surface of Λ on E ⊂ M′ corresponding to c ∈ R. Then, M0 = Λ0 ∩ M,

M− =
⋃
c<0 Λc ∩M and M+ =

⋃
c>0 Λc ∩M.
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Proof. This follows from Definitions 10.5.1 and 10.5.3.

Lemma 15 (Gradient of Λ). For x́ = (p,0) ∈ E, let wT ,v ∈ RN be left and right

eigenvectors of JT (p) for Λ(p). Then, Λ is smooth on E, i.e., Λ(·) ∈ C∞(E), with

partial derivatives

∂Λ

∂pj
(p) = wj

N∑
k=1

(βjk − β̂jk)vk (10.12)

and gradient

∇Λ(p) = diag(w)(B − B̂)v. (10.13)

In addition, the following hold.

• If B = B̂, all points x́ ∈ E are critical points of Λ.

• If j is a stubborn agent, (∂Λ/∂pj)(p) = 0 for all x́ ∈ E.

• If B � B̂, and there are no stubborn agents in G, ∇Λ(p) � 0 for all x́ ∈ E,

and Λ has no critical points.

• If B̂ � B, and there are no stubborn agents in G, ∇Λ(p) � 0 for all x́ ∈ E

and Λ has no critical points.

• If B 6= B̂ then either Λ has no critical points or all points x́ ∈ E are critical

points of Λ.

Proof. Let x́ = (p,0) ∈ E. By the proof of Lemma 13, JT (p) is Metzler irreducible.

By Proposition 1, λmax(JT (p)) ∈ R and has multiplicity one. Thus by [191, p. 66-67],

Λ(·) ∈ C∞(E).

Differentiating the right-eigenvector equation JT (p)v = Λ(p)v with respect to pj,

and premultiplying by wT we get

wT ∂JT
∂pj

v + wTJT
∂v

∂pj
= wTv

∂Λ

∂pj
+ wTΛ

∂v

∂pj
,
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where all terms are evaluated at p, ∂JT/∂pj(p) = {zkl} and

zkl =


βkl − β̂kl k = j and (k, l) ∈ E ,

0 otherwise.

Because Λ(p) has multiplicity one, we can always pick w such that wTv = 1. Using

wTJT (p) = wTΛ(p), we obtain

∂Λ

∂pj
(p) = wT ∂JT

∂pj
(p)v = wj

N∑
k=1

(βjk − β̂jk)vk. (10.14)

In vector form, (10.14) becomes ∇Λ(p) = diag(w)(B − B̂)v.

By Proposition 1 w,v � 0. If B = B̂, then ∇Λ(p) = 0 for all x́ ∈ E. If j is a

stubborn agent, then βjk− β̂jk = 0 for all k ∈ Nj. Therefore, (∂Λ/∂pj)(p) = 0 for all

x́ ∈ E. If B � B̂ and there are no stubborn agents in G, then
∑N

k=1(βjk − β̂jk)vk > 0

for any j. Therefore, ∇Λ(p) � 0 for all x́ ∈ E. A similar argument is made if

B̂ � B, and there are no stubborn agents in G.

By Proposition 6 and (10.13), x́ is a critical point of Λ if and only if (B−B̂)v = 0.

Let x́0 = (p0,0) ∈ E be a critical point, then (B − B̂)v0 = 0. Thus, for any p, we

have

JT (p)v0 = (B∗(p)− Γ)v0

= (B̂ − Γ)v0 + diag(p)(B − B̂)v0

= (B̂ − Γ)v0. (10.15)

In particular, (B̂−Γ)v0 = Λ(p0)v0. Hence, (Λ(p0),v0) is an eigenpair of B̂−Γ and

by (10.15) also an eigenpair of JT (p) for any p. Since Λ(p) has multiplicity one and

v is the only eigenvector satisfying v � 0, then (Λ(p),v) = (Λ(p0),v0) and x́ ∈ E

is a critical point of Λ.
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Lemma 16 (Λc with stubborn agents). If agents 1, . . . , k, k < N , are stubborn, then

at any (p,0) ∈ E, the subspace spanned by {e1, . . . , ek} is tangent to the level surface

Λc with p ∈ Λc.

Proof. By Lemma 15, for any stubborn agent j, (ej)T∇Λ(p) = 0 for any (p,0) ∈ E.

By Proposition 6, ej is tangent to the level surface Λc with p ∈ Λc.

Lemma 17 (Maximum and minimum values of Λ on M). Λ achieves its global

maximum and minimum cmax, cmin on M at one or more points in ∂M. In Cases

2, 4, 5, and 6a, there exist unique corner points (pmax,0) ∈ M̂, (pmin,0) ∈ M̂

such that Λ(pmax) = cmax, Λ(pmin) = cmin, Rmax = ρ(B∗(pmax)Γ−1), and Rmin =

ρ(B∗(pmin)Γ−1). Moreover, pmax and pmin are the respective unique global maximum

and minimum points of Λ(p) if and only if there are no stubborn agents in G.

Proof. The case in which every point in E is a critical point of Λ is trivial. Assume Λ

has no critical points in E. SinceM⊂M′ is a compact set and Λ is continuous, then

by the Extreme Value Theorem, Λ achieves cmax and cmin at one or more points in

∂M. Let (pmax,0) ∈ ∂M and (pmin,0) ∈ ∂M be points such that Λ(pmax) = cmax

and Λ(pmin) = cmin.

Let (pS,0) ∈ M. Assume there are no stubborn agents. The components

(JT (pS))jk = (1 − pSj )β̂jk + pSj βjk, j 6= k, are maximized and minimized at pSj = 0

or pSj = 1 for all j. If B � B̂ (Cases 2 and 4), the entries (JT (pS))jk are maximized

at pSj = 1 and minimized at pSj = 0 for all j. It follows from Proposition 1 that

pmax = 1 ∈ M̂ and pmin = 0 ∈ M̂. Using a similar argument if B̂ � B (Case 5)

pmax = 0 ∈ M̂ and pmin = 1 ∈ M̂. Further, in Case 6a with no stubborn agents,

βjk − β̂jk > 0 for all k ∈ Nj or βjk − β̂jk < 0 for all k ∈ Nj. Thus, similarly,

pmaxj , pminj ∈ {0, 1} for all j.

For any pS 6= pmax,pmin, it follows that B∗(pmax)Γ−1 � B∗(pS)Γ−1 �

B∗(pmin)Γ−1. By Proposition 1, Rmax = ρ(B∗(pmax)Γ−1) andRmin = ρ(B∗(pmax)Γ−1).
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Now suppose there are stubborn agents 1, . . . , k, k < N . Let ve ∈ span{e1, . . . , ek}.

Then, by Lemma 16, if pmax ∈ Λcmax then pmax + ve ∈ Λcmax as long as

(pmax + ve,0) ∈ E. Similarly, if pmin ∈ Λcmin
then pmin + ve ∈ Λcmin

as long

as (pmin + ve,0) ∈ E.

We now present the proof for Theorems 14 and 15.

Proof of Theorem 14. To prove (A), assume Rmax < 1. By Proposition 3,

λTmax(JM(x)) < 0 for all x ∈M. Therefore,M− =M,M+ = ∅, andM0 = ∅. The

proof of (B) and (C) follow similarly.

To prove (D), assumeRmin < Rmax = 1. By Proposition 3, maxx∈M λTmax(JM(x)) =

0. Therefore, M0 6= ∅ and M− = M\M0. By Lemma 17, M0 ⊂ ∂M. The proof

of (E) follows similarly.

To prove (F), assume Rmax > 1 and Rmin < 1. By Proposition 3 and Lemma 17,

there exist points xmax = (pSmax,0) and xmin = (pSmin,0) in ∂M such that

λTmax(JM(xmax)) > 0 and λTmax(JM(xmin)) < 0. By the continuity of Λ on E and

Lemma 14, it follows that M−,M+,M0 6= ∅, with each subset consisting of n−, n+,

and n0 connected sets, respectively, where each of the n0 center sets separates n−

stable connected sets from n+ unstable connected sets.

Since, by Lemma 15, Λ has no critical points in E, it follows that c is a regular

value of Λ for any c ∈ R. Hence, by the Implicit Function Theorem, every center

connected set M0 is an (N − 1)-dimensional smooth hypersurface, and every stable

and unstable connected set is an N -dimensional hypervolume.

Since Λ has no critial points in E, the gradient dynamics of Λ have no equilibria

in M ⊂ E. Thus, no center connected set M0 in M0 is compact in int(M) in any

direction, since by Proposition 6 there cannot be any α-limit points or ω-limit points

in M. Thus, ∂M0 in M must be contained in ∂M.
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Proof of Theorem 15. Let Rmax > 1, Rmin < 1. In Cases 2, 4, 5 and 6a, by Lemma 17,

there exists a unique corner point xmin = (pmin,0) ∈ M̂ where Λ(pmin) ≤ Λ(pS) for

any x = (pS,0) ∈M, and Rmin = ρ(B∗(pmin)Γ−1). By Remark 17 and Proposition 3,

it follows that Λ(pmin) < 0.

Given pS, there exists a point (pend,0) ∈ ∂M such that the line connecting pmin

to pend passes through pS. Each point on the line is parameterized by r ∈ [0, 1] as

follows: s(r,pend) = {(p(r),0) ∈M|p(r) = (1− r)pmin + rpend}.

Let p̄ = pend − pmin. Then, p̄ is tangent to s(r,pend), and p̄j ≥ 0 if pminj = 0

and p̄j ≤ 0 if pminj = 1, for all j. By Proposition 6, the directional derivative of Λ at

s(r,pend) in the direction p̄ is Dp̄Λ(s(r,pend)) = p̄T∇Λ(s(r,pend)).

By Lemma 17, if B � B̂ (Cases 2 and 4), then pmin = 0 and p̄ � 0. By Lemma 15,

∇Λ(s(r,pend)) � 0 and so p̄T∇Λ(s(r,pend)) ≥ 0 for any r ∈ [0, 1]. Similarly, for Cases

5 and 6a, p̄T∇Λ(s(r,pend)) ≥ 0 for all r ∈ [0, 1].

If p̄T∇Λ(s(r,pend)) = 0, Λ is constant along the line s(r,pend), r ∈ [0, 1], and

the line describes a level-surface Λc. Moreover, since Λ(pmin) < 0, by Lemma 14

c 6= 0, i.e.,M0 does not intersect Λc. For all other lines, p̄T∇Λ(s(r,pend)) > 0, which

implies that Λ is strictly increasing from a negative value at the corner (pmin,0) to

the value at (pend,0) ∈ ∂M. By Theorem 14, ∂M0 ⊂ ∂M. Thus, there is only the

possibility of a single crossing of Λ0 on each of these lines. By Lemma 14 there is a

unique center connected hypersurface.

10.6 Reproduction Numbers and Regimes of

Dynamical Behavior

In this section we prove our main theorem, which provides conditions that determine

whether solutions of (5.6) converge to a point in the IFE setM or to the EE as t→∞.

We show that the basic and extreme basic reproduction numbers R0, R1, Rmin, Rmax
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distinguish four behavioral regimes in the network SIRI model, each characterized by

qualitatively different transient and steady-state behaviors.

10.6.1 The ω-limit Set of Solutions

The components of p decrease monotonically along solutions of (5.6). Here we show

that this monotonicity implies that all solutions either converge to a point in M or

to the EE as t → ∞. Moreover, this means that when the EE is not an equilibrium

of the dynamics, the infection cannot survive in the network and all solutions reach

an IFE point in M. The results in this section are valid even if B̂ is not irreducible.

Lemma 18. Let y(t,y0) = (pS(t),pI(t)) be the solution of (10.3) with initial condi-

tion y0 ∈ ∆N . Then the following hold:

• The ω-limit set Ω(y0) of y(t,y0) is either a point in the IFE set M or the EE.

• y(t,y0) cannot exhibit non-trivial periodic orbits.

• y(t,y0) converges to a point in M as t→∞ if R1 ≤ 1.

Proof. By invariance of ∆N , any solution y = y(t,y0) of (5.6) with initial condition

y0 ∈ ∆N is bounded and stays in ∆N for t ≥ 0. Therefore its ω-limit set Ω(y0) is a

nonempty, compact, invariant set, and y approaches Ω(y0) as t→∞ (see Lemma 4.1

in [192]). Let V = 1TpS, then V̇ = −(pS)TBpI ≤ 0 in ∆N . By LaSalle’s Invariance

Principle [192], y approaches the largest invariant set W in the set L = {(pS,pI) ∈

∆N | V̇ = 0}. It follows that, on L, P SBpI = 0 which implies ṗS = 0. Moreover,

since B̂ has a zero at every entry where B has a zero, it follows that P SB̂pI = 0

on L. This in turn implies that the pI dynamics on L are given by the network SIS

dynamics (10.7). Since solutions of (10.7) either converge to the IFE point pI∗ = 0

or to the EE (10.5) as t → ∞ [81], it follows that every invariant set of L consists

only of equilibria of (10.3) (see Remark 15). By Proposition 7, W is the union of the
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IFE set M and the EE (10.5). Furthermore, since all w-limit points are equilibria,

Ω(y0) contains a single point corresponding to either a point in the IFE setM or the

EE.

Consequently, y converges to a point in the IFE or to the EE as t → ∞, and

y cannot exhibit non-trivial periodic orbits. In addition, if R1 ≤ 1 it follows from

Propositions 7 and 9 that the IFE set M comprises the only equilibria of (10.3).

Therefore, y converges to a point in M as t→∞.

10.6.2 Behavioral Regimes

We now state the main theorem of the paper. We interpret and illustrate in Fig-

ure 10.1. The proof follows.

Theorem 16 (Behavioral Regimes). Let pI(0) � 0, and wT
m be the leading left-

eigenvector of B∗(pS)Γ−1, where pS = argmaxpS ρ(B∗(pS)Γ−1). Then the network

SIRI model (10.3) exhibits four qualitatively distinct behavioral regimes:

1. Infection-Free Regime: If Rmax ≤ 1 the following hold:

(a) All solutions converge to a point in M as t→∞.

(b) If B � B̂ or B̂ � B, the weighted infected average pIavg(t) = wT
mΓ−1pI(t)

decays monotonically to zero.

2. Endemic Regime: If Rmin > 1, all solutions converge to the EE as t→∞.

3. Epidemic Regime: If Rmin < 1, Rmax > 1, and R1 ≤ 1, the following hold:

(a) All solutions converge to a point in M as t→∞.

(b) There exists H ∈ ∆N and H ⊃ M+ that is foliated by families of hetero-

clinic orbits, each orbit connecting two points in M.
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Table 10.2: Behavioral Regimes of the Network SIRI Cases

Case Model Inf.-Free Endemic Epidemic Bistable
1 SI X
2 SIR X X
3 SIS X X
4 Partial X X X
5 Comprom. X X X
6 Mixed X X X X

4. Bistable Regime: If Rmin < 1, Rmax > 1 and R1 > 1, then, depending on the

initial conditions, solutions converge to a point in M or to the EE as t→∞.

Table 10.2 summarizes which regimes of Theorem 16 exist for each of the six cases

of the network SIRI model. Figure 10.1 illustrates the four regimes of Theorem 16

near the IFE set M when B � B̂ or B̂ � B.

In Case 2 (SIR), since B̂ = 0̄, Rmax = R0 and Rmin = R1 = 0. So only the

infection-free and epidemic regimes are possible. This corresponds to the line R1 = 0

in Figure 10.1.

In Case 3 (SIS), since B = B̂, Rmax = R0 = R1 = Rmin. So only the infection-

free and endemic regimes are possible. This corresponds to the line R1 = R0 in

Figure 10.1.

In Case 4 (partial immunity), since B � B̂, by Proposition 8, Rmax = R0 and

Rmin = R1. So only the infection-free, endemic, and epidemic regimes are possible.

This corresponds to the region R1 < R0 in Figure 10.1.

In Case 5 (compromised immunity), since B̂ � B, by Proposition 8, Rmax = R1

and Rmin = R0. So only the infection-free, endemic, and bistable regimes are possible.

This corresponds to the region R1 > R0 in Figure 10.1.

In Case 6 (mixed immunity), all four regimes are possible.

The N -dimensional set M is illustrated in Figure 10.1 as a plane (N = 2) for

ease of visualization. The blue region representsM− (the set of stable points inM)
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and the red region represents M+ (the set of unstable points in M). Black arrows

illustrate the flow of solutions near M. Theorems 11 and 15 prove which regions

of M exist in each of the regimes. In the infection-free regime, M = M− and all

solutions converge to the IFE set M. In the endemic regime, M = M+ and all

solutions converge to the EE. In Cases 2 and 4 in the epidemic regime and in Case

5 in the bistable regime, M− andM+ both exist and there is a unique hypersurface

M0 shown as a black dashed line separating the two.

In Section 10.7 we study the geometry of solutions nearM and the stable manifold

(green translucent surface) and unstable manifold (magenta translucent surface) of

M0 in the epidemic regime of Cases 2 and 4 and the bistable regime of Case 5. These

manifolds are included in Figure 10.1 and help illustrate how solutions can flow.

proof of Theorem 16. To prove 1, let Rmax ≤ 1. Then by definition R1 ≤ 1. By

Lemma 18, all solutions converge to a point in M as t→∞.

By (10.3), the dynamics of pIavg are

ṗIavg = wT
mΓ−1(B∗(p)− Γ)pI −wT

mΓ−1P IB̂pI

≤ wT
mΓ−1(B̄max − Γ)pI −wT

mΓ−1P IB̂pI

= (R̄max − 1)wT
mpI −wT

mΓ−1P IB̂pI . (10.16)

The inequality follows from (10.4), and the last equality follows from ρ(Γ−1B̄max) =

ρ(B̄maxΓ
−1). Since B̂ is irreducible and by Proposition 1 wm � 0, the nonlinear

term wT
mΓ−1P IB̂pI is nonnegative. And since B � B̂ or B̂ � B, by Proposition 8,

R̄max = Rmax. Therefore, if Rmax < 1, then ṗIavg < 0 and pIavg decays monotonically

to zero as t→∞.

If Rmax = 1, ṗIavg ≤ 0 with equality holding only at points in Σ = {0 � pI �

1 | pIj > 0 implies pIk = 0, k ∈ Nj}.
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Bistable Endemic

EpidemicInfection-Free

Figure 10.1: Illustration of local dynamics near M for the four different behavioral
regimes of the network SIRI model (10.3) when B � B̂ or B̂ � B. The diagrams are
arranged where they exist in the R0, R1 parameter space according to Theorem 16.
M− is blue, M+ is red, and M0 is the black dashed line. The stable and unstable
manifolds of M0 are green and magenta, respectively.

At any point in Σ, the dynamics of node j where pIj > 0 reduce to ṗIj = −δjpIj .

Thus, no solution can stay in Σ except for the trivial solution pI = 0. By LaSalle’s

Invariance Principle, we conclude that pIavg decays monotonically to zero as t→∞.

To prove 2, let Rmin > 1. Then by definition R1 > 1. By Theorem 14, all points

in M are unstable. Therefore, no non-trivial solution can converge to a point in M.

By Lemma 18, it follows that the ω-limit set of all solutions with pI(0) � 0 is the

EE. Therefore, all solutions converge to the EE as t→∞.

To prove 3, let Rmin < 1, Rmax > 1, and R1 ≤ 1. By Theorem 14,M−,M+,M0 6=

∅. By Lemma 18, all solutions converge to a point in M as t → ∞. By the proof
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of Lemma 13, the unstable manifold of any unstable point x ∈ M+, lies partially or

entirely in ∆N . Let y = y(t,y0) be a solution of (10.3) with initial condition y0 on

the unstable manifold of x. Then, y converges to x as t → −∞. By Lemma 18, y

converges to a point x′ ∈ M, x′ 6= x, as t → ∞. Thus, y forms a heteroclinic orbit.

Let H ⊂ ∆N be the union of the unstable manifolds of all points x ∈ M+. Then,

every solution in H forms a heteroclinic orbit connecting two points in M.

To prove 4, let R1 > 1. By Proposition 9, the EE exists and it is locally stable.

Therefore any solution in the region of attraction of the EE converges to the EE as

t → ∞. By Lemma 13, for any locally stable point x ∈ M−, there exists V ⊂ ∆N

and x ∈ V such that any solution starting in V converges to a point in V ∩M− at

an exponential rate.

10.7 Bistable and Epidemic Regimes

10.7.1 Geometry of solutions near M

In this section we examine the geometry of solutions near the IFE set M in the

epidemic regime for Case 2 (SIR) and Case 4 (partial immunity), and the bistable

regime for Case 5 (compromised immunity). The bistable regime for the network

SIRI model, which doesn’t exist for the well-studied SIS and SIR models, generalizes

that proved for the well-mixed SIRI model studied in [57].

Definition 10.7.1 (Transversal crossing of Λc). Let y(t) = (pS(t),pI(t)) ∈ ∆N ,

t ≥ 0, be a solution of (10.3). We say that y crosses Λc transversally if pS, the

projection of y onto M, crosses Λc transversally. This holds if there exists a time

t′ > 0 and m ∈ Λc such that pS(t′) = m and ṗS(t′)T∇Λ(m) 6= 0.

Proposition 11 (Transversal crossing direction). Let y(t) = (pS(t),pI(t)) ∈ ∆N ,

t ≥ 0, be a solution of (10.3) that crosses Λc transversally at the point (m,0) ∈ M
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and time t = t′, where c = Λ(m). If ṗS(t′)T∇Λ(m) < 0, then Λ decreases as pS

crosses Λc, and if ṗS(t′)T∇Λ(m) > 0, then Λ increases as pS crosses Λc. Suppose

(m,0) ∈ M0, then if ṗS(t′)T∇Λ(m) < 0, pS crosses M0 from M+ to M− and if

ṗS(t′)T∇Λ(m) > 0, then pS crosses M0 from M− to M+.

Proof. Since ṗS = −P SBpI , it follows that ṗS(t′)T∇Λ(m) is the derivative of Λ at

m along solutions of (10.3) (see Proposition 6). If ṗS(t′)T∇Λ(m) < 0, Λ decreases as

pS(t) crosses Λc and if ṗS(t′)T∇Λ(m) > 0, Λ increases as pS(t) crosses Λc. Suppose

(m,0) ∈M0. By Lemma 14, if ṗS(t′)T∇Λ(m) < 0, pS crossesM0 fromM+ toM−.

Similarly, if ṗS(t′)T∇Λ(m) > 0, pS crosses M0 from M− to M+.

Theorem 17 (Transversality of solutions). Consider Cases 2 and 4 in the epidemic

regime (R0 > 1, R1 < 1) and Case 5 in the bistable regime (R0 < 1, R1 > 1). Assume

no stubborn agents. Let y(t) = (pS(t),pI(t)) ∈ ∆N , t ≥ 0, be a solution of (10.3)

for which there exists a time t′ > 0 and (m,0) ∈ int(M), such that pS(t′) = m

and pI(t′) � 0. Let c = Λ(m) so that m ∈ Λc. Then y crosses Λc transversally.

Suppose (m,0) ∈ int(M0). In the epidemic regime of Cases 2 and 4, pS crosses M0

from M+ to M−, and the stable and unstable manifolds of M0 lie outside ∆N . In

the bistable regime of Case 5, pS crosses M0 from M− to M+, and the stable and

unstable manifolds of M0 lie inside ∆N .

Proof. Assume no stubborn agents. Let t′ > 0 such that pS(t′) = m, pI(t′) � 0

and (m,0) ∈ int(M). By Definition 10.4.1, m � 0. Let c = Λ(m). So ṗS(t′) =

−diag(m)BpI(t′) ≺ 0. By Lemma 15, if B � B̂ (Cases 2 and 4) then ∇Λ� 0 and if

B̂ � B (Case 5) then ∇Λ� 0. Thus ṗS(t′)T∇Λ(m) 6= 0, and so, by Proposition 11,

y crosses Λc transversally. Suppose (m,0) ∈ int(M0). Then, by Proposition 11, pS

crosses from M+ to M− in Cases 2 and 4, and from M− to M+ in Case 5. By

continuity of solutions with respect to initial conditions, it follows that the stable and

unstable manifolds ofM0 must lie outside ∆N in the epidemic regime of Cases 2 and

4 and inside ∆N in the bistable regime of Case 5, as illustrated in Figure 10.1.
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Corollary 4. In the epidemic regime of Cases 2 and 4, every heteroclinic orbit in

∆N connects a point in M+ to a point in M−.

Proof. Since by Theorem 17 the stable manifold of any point inM0 lies outside ∆N ,

it follows by Theorem 16 that the orbit connects a point inM+ to a point inM−.

Corollary 5. Consider Case 5 in the bistable regime. Let y(t) = (pS(t),pI(t)) be a

solution of (10.3). Then it holds that

• If y crosses M0 transversally or (pS(0),0) ∈M+, then y converges to the EE

as t→∞. Moreover, the EE lies on the unstable manifold of M0.

• The stable manifold of M0 intersects the boundary of ∆N where pS = 1− pI .

Proof. If y crosses M0 transversally at t = t′, then, by Theorem 17, pS crosses

every level surface Λc in M transversally and crosses M0 from M− to M+. By

Proposition 11, Λ strictly increases along pS. It follows by Lemma 14 that (pS,0) ∈

M+ for all t > t′. Since by Lemma 13 y cannot converge to a point in the IFE

subset M+, it follows by Lemma 18 that y converges to the EE as t → ∞. The

same argument holds if (pS(0),0) ∈M+. It follows that the EE lies on the unstable

manifold of M0.

Consider any point y = (pS,pI) ∈ ∆N on the stable manifold of M0. Then,

as t → −∞ and y(t) ∈ ∆N , y remains on the stable manifold of M0 and (pS,0)

remains in M−. By Lemma 13, points in M− have no unstable manifold in ∆N so

the stable manifold ofM0 cannot intersectM−. Instead, because the components of

pS increase monotonically as t→ −∞, y intersects ∂∆N where pS = 1− pI .

The locations of the stable and unstable manifolds of M0, as proved in Theo-

rem 17, are illustrated in Figure 10.1: outside ∆N in the epidemic regime and inside

∆N in the bistable regime. The figure shows the heteroclinic orbits proved in Corol-

lary 4 for the epidemic regime. The solutions along the heteroclinic orbits cross M0

247



0 50 100 150 200
0.00
0.05
0.10
0.15
0.20
0.25
0.30

t

p j
I

0 50 100 150 200
0.00
0.05
0.10
0.15
0.20
0.25
0.30

t

p j
I

1

2

3

4

Figure 10.2: Bistability and resurgent epidemic. Simulation of pIj versus time t for
network of N = 4 agents in bistable regime of Case 5 (compromised immunity) with
pS(0) = 1 − pI(0). A is the unweighted adjacency matrix of the digraph shown.
B = 0.7A, B̂ = diag([1.5, 0.7, 0.7, 0.7])A, and Γ = I. Left. pI(0) = [0, 0.05, 0.1, 0]T .
Right. pI(0) = [0, 0.08, 0.1, 0]T .

transversally, with their projection onto M crossing from M+ to M−, as proved in

Theorem 17.

Figure 10.1 also shows the local flow in the bistable regime, as proved in Corol-

lary 5. These solutions also cross M0 transversally, but with their projection onto

M crossing from M− to M+, as proved in Theorem 17.

10.7.2 Bistability Conditions for d-Regular Digraphs

In this section we examine the bistable regime of Theorem 16, which exists for Case 5

(compromised immunity) and for Case 6 (mixed immunity). We show how solutions

in this regime can exhibit a resurgent epidemic in which an initial infection appears

to die out for an arbitrarily long period of time, but then abruptly and surprisingly

resurges to the EE.

Conditions on the initial state that predict a resurgent epidemic were proved for

the well-mixed SIRI model in [57]. Here we compute a critical condition on the

initial state in the special case that G is a d-regular digraph and every node has the

same initial state. We then illustrate numerically for a more general digraph with

compromised immunity in Figure 10.2.
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Consider a d-regular digraph with global recovery, infection, and reinfection rates

Γ = δI, B = βA, and B̂ = β̂A, where A is the adjacency matrix. Because the graph

is d-regular, we have that, for any agent j,
∑N

k=1 ajk = d > 0. The network SIRI

agent dynamics (10.2) can be rewritten as

ṗSj = −βdpSj pIj − βpSj
N∑
k=1

ajk(p
I
k − pIj )

ṗIj = −δpIj + (β − β̂)dpSj p
I
j + β̂dpIj − β̂d(pIj )

2

+ (β − β̂)pSj

N∑
k=1

ajk(p
I
k − pIj )

+ β̂(1− pIj )
N∑
k=1

ajk(p
I
k − pIj ),

where we have used the identity
∑N

k=1 ajkp
I
k = pIjd +

∑N
k=1 ajk(p

I
k − pIj ). Setting

pI(0) = pic1, the dynamics reduce to

ṗSj = −βdpSj pIj (10.17)

ṗIj = −δpIj + (β − β̂)dpSj p
I
j + β̂dpIj − β̂d.

(10.17) describes identical and uncoupled dynamics for every agent j, which are

equivalent to the dynamics of the well-mixed SIRI model [57] with infection rate

βd and reinfection rate β̂d. Following [57], we find the critical initial condition

pcrit = 1 − ξ(R0dξ)
−β/β̂, where ξ = (R1 − 1/d)/(R1 − R0). If pic < pcrit solutions

converge to a point in the IFE as t → ∞. If pic > pcrit solutions converge to the

EE, pI∗ = (1− δ/(β̂d))1, as t→∞. If pic = pcrit, the solution flows along the stable

manifold of the point ξ1 ∈ M0 and converges to ξ1. These results suggest more

generally that the stable manifold of M0 separates solutions that converge to the

IFE from those that converge to the EE, as in [57].
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Further, as in [57], if pic > pcrit, the solution exhibits a resurgent epidemic in

which pIj initially decreases to a minimum value pImin and then increases to the EE.

As (pic−pcrit)→ 0, pImin → 0 and the time it takes for the solution to resurge goes to

infinity. That is, the infection may look like it is gone for a long time before resurging

without warning. We note that the SIR and SIS models do not admit a bistable

regime and therefore fail to account for the possibility of a resurgent epidemic, which

could result when there is variability in infection or reinfection rates.

Figure 10.2 illustrates the bistability and resurgent epidemic phenomena for an

example network of N = 4 agents for Case 5 (compromised immunity). B = 0.7A,

B̂ = diag([1.5, 0.7, 0.7, 0.7])A, and Γ = I. That is, agents 2, 3, 4 are stubborn and

agent 1 acquires compromised immunity to all its infected neighbors (agents 2 and

4). So Rmax = R1 = 1.28 and Rmin = R0 = 0.85, placing the system in the bistable

regime. In both panels of Figure 10.2, pS(0) = 1 − pI(0). In the left panel pI(0) =

[0, 0.05, 0.1, 0]T and the solution can be observed to converge to the IFE, i.e., pIj → 0

for all j. In the right panel pI(0) = [0, 0.08, 0.1, 0]T and there is a resurgent epidemic:

each pIj initially decays and then remains close to zero until t ≈ 100, after which the

pIj increase rapidly to the EE, which is pI∗ = [0.29, 0.11, 0.17, 0.17]T .

10.8 Control Strategies

We apply our theory to design control strategies that guarantee desired steady-state

behavior, such as the eradication of an infection. We begin with an example network

with mixed immunity in the endemic regime, which has an infected steady state. We

show three strategies for changing parameters that modify the reproduction numbers

R0, R1, Rmin, and Rmax, and control the dynamics to a behavioral regime that results

in an infection-free steady state, according to Theorem 16. We then consider two

example networks with mixed immunity in the bistable regime. We illustrate how
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vaccination of well-chosen agents increases the set of initial conditions that yield an

infection-free steady state or at least delay a resurgent epidemic so that further control

can be introduced.

10.8.1 Control from Endemic to Infection-Free Steady State

Consider the network of four agents shown in the top left panel of Figure 10.3.

Let B = A, the unweighted adjacency matrix for the digraph shown. Let B̂ =

diag([0.3, 1, 2, 1])A and Γ = I. The network has weak mixed immunity (Case 6a):

agent 1 acquires partial immunity to reinfection, agent 3 acquires compromised im-

munity to reinfection, and agents 2 and 4 are stubborn. We compute the reproduc-

tion numbers: R0 = 1.32, R1 = 1.22, Rmin = 1.13, and Rmax = 1.52, which imply

dynamics in the endemic regime and an infected steady state for every initial con-

dition. This is illustrated in the simulation of pIj versus time t for initial conditions

pS(0) = 1 − pI(0), pI(0) = [0.01, 0.01, 0.01, 0.2]T . By (10.5), the solution converges

to the EE: pI∗ = [0.07, 0.23, 0.12, 0.19]T .

Modification of agent recovery rate

This strategy controls the network behavior by selecting one or more agents for treat-

ment to increase its recovery rate. In the epidemiological setting, this could mean

medication. In the behavioral setting, this could mean providing incentives or train-

ing. We make just one modification to the example network of four agents: δ2 = 1 be-

comes δ2 = 3.5. The corresponding reproduction numbers are R0 = 0.80, R1 = 0.72,

Rmin = 0.65, and Rmax = 0.94, which imply dynamics in the infection-free regime.

Using the same initial conditions as in the top left panel, we simulate the modi-

fied system in the bottom left panel of Figure 10.3. The solution converges to an

infection-free steady state as predicted by Theorem 16.
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Figure 10.3: Simulations of pIj vs. t to illustrate control strategies that eradicate
infection: j = 1 in red, j = 2 in blue, j = 3 in green, and j = 4 in cyan. Top Left.
Example network of 4 agents with weak mixed immunity (Case 6a) in the endemic
regime. B = A, B̂ = diag([0.3, 1, 2, 1])A, and Γ = I. Bottom Left. Modification
of recovery rate of agent 2 from δ2 = 1 to δ2 = 3.5. Top Right. Modification
of reinfection rate β̂42 = 1 to β̂42 = 0.3. Bottom Right. Modification of network
topology as shown.

Modification of agent reinfection rate

This strategy controls the network behavior by selecting one or more agents for treat-

ment to decrease its reinfection rate. In the epidemiological setting, this could mean

innoculation after first exposure. In the behavioral setting, this could mean education

that leverages first exposure. We make just one modification to the example network

of four agents: β̂42 = 1 becomes β̂42 = 0.3. The corresponding reproduction numbers

are R0 = 1.32, R1 = 0.96, Rmin = 0.82, and Rmax = 1.52, which imply dynamics

in the epidemic regime. Using the same initial conditions as in the top left panel,

we simulate the modified system in the top right panel of Figure 10.3. After a small

and short-lived epidemic, the solution converges to an infection-free steady state, as

predicted by Theorem 16.
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Modification of network topology

This strategy controls the network behavior by selecting one or more edges in the net-

work graph for re-wiring. In the epidemiological and behavioral settings, this could

mean affecting who comes in contact with whom. For the example network of four

agents, we move the connections between agent 4 and agent 1 to instead be connec-

tions between agent 4 and agent 2. The corresponding reproduction numbers are

identical to the reproduction numbers in the modification of reinfection rate example

and therefore also imply dynamics in the epidemic regime. Using the same initial

conditions as in the top left panel, we simulate the modified system in the bottom

right panel of Figure 10.3. The solution converges to an infection-free steady state,

as predicted by Theorem 16, with an initial epidemic smaller than in the top right

panel.

10.8.2 Control in Bistable Regime

Small network

A network of two agents with weak mixed immunity in the bistable regime is shown in

Figure 10.4. Agent 1 acquires compromised immunity while agent 2 acquires partial

immunity: β12 = β̂21 = 0.8, β̂12 = β21 = 1.3, δ1 = δ2 = 1. Suppose initially there are

no recovered agents, i.e., pS(0) = 1−pI(0). Then, it can be shown that the solution

will always converge to the EE. Now suppose we apply a control strategy in which we

vaccinate the agent who acquires partial immunity, where vaccination is equivalent

to exposing the agent to the infection. In the behavioral setting, this could mean

preemptive exposure to the infection; see for example [193] where this was explored

in the context of people resisting the spread of misinformation. After the vaccination

of agent 2 in our example, we have pS1 (0) = 1− pI1(0) and pS2 (0) = 0.
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Figure 10.4: Vaccination of agent 2 in network of two agents with mixed immunity
in bistable regime. Agent 1 acquires compromised immunity and agent 2 acquires
partial immunity: β12 = β21 = 0.8, β̂12 = β̂21 = 1.3, δ1 = δ2 = 1. Left. With agent
2 vaccinated, solutions with initial conditions in magenta converge to the EE, and
solutions with initial conditions in yellow converge to an IFE. Top Right. Simula-
tion with no vaccination. Bottom Right. Simulation with vaccination. The initial
condition is pI1(0) = 0.1 and pI2(0) = 0.4, shown as a star in the left panel.

We illustrate the results of the vaccination of agent 2 in the left panel of Fig-

ure 10.4. Initial conditions that lead to the EE are shown in magenta and to an

infection-free steady state in yellow. We illustrate with simulations using the ini-

tial conditions pI1(0) and pI2(0) denoted by the star in the left panel of Figure 10.4.

The top right simulation is of the system with no vaccination: there is an infected

steady state as predicted. The bottom right simulation is of the system with agent 2

vaccinated: there is an infection-free steady state as predicted.

Large network

A network of twenty agents with weak mixed immunity in the bistable regime is

shown in Figure 10.5. Agents 2, 3, 5, 7, 11, 13, 17, and 19 (dark gray) acquire

partial immunity to reinfection: βjk = 0.5, β̂jk = 0.1. Agents 1 and 20 (gray) are
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Figure 10.5: Left. Network of twenty agents with weak mixed immunity in bistable
regime. Agents in dark gray acquire partial immunity to reinfection: βjk = 0.5,

β̂jk = 0.1. Agents in gray are stubborn: βjk = β̂jk = 0.5. Agents in light gray

acquire compromised immunity to reinfection: βjk = 0.5, β̂jk = 0.875. Γ = I. Right.
Simulations of p̄I for no vaccination (solid black), and vaccinations of agents 2,3,5,7
(dotted blue), agent 11 (dashed orange), agents 7, 11 (point-dashed green), and agents
7, 11, 13 (violet dashed). Initial conditions are pI1(0) = pI20(0) = 0.5 and pIj (0) = 0.05
for j 6= 1, 20.

stubborn: βjk = β̂jk = 0.5. Agents 4, 6, 8, 9, 10, 12, 14, 16, and 18 (light gray)

acquire compromised immunity to reinfection: βjk = 0.5, β̂jk = 0.875. Γ = I.

In Figure 10.5, we plot simulations of the average infected state p̄I = 1TpI/N

versus t for no vaccinations (solid black) and for different sets of vaccinated agents:

agents 2, 3, 5, and 7 (dotted blue), agent 11 (dashed orange), agents 7 and 11 (point-

dashed green), and agents 7, 11, and 13 (violet dashed). Vaccinating agent 11 has

the strongest effect. The infection appears to be eradicated by vaccinating agents 7,

11, and 13. The other vaccination cases delay the epidemic, which provides time for

treatments or other control interventions.

10.9 Conclusion and Future Directions

Many proposed control methodologies for contagion processes focus on mechanisms

that affect R0 via changes to the network structure and the system parameters [72,

74]. Example mechanisms include optimal node removal, optimal link removal, and

budget-constrained allocation [73, 74, 147, 148]. Under the assumption of perfect

knowledge of the network structure and the system parameters, these same mech-
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anisms could be used to derive control strategies for the network SIRI model that

affect the value of the basic and extreme basic reproduction numbers: Rmax, Rmin,

R0, and R1. However, optimal node and link removal have been shown to be NP-

complete and NP-hard problems, respectively [74, 149]. Alternatives include the use

of centrality measures to select the nodes that should be removed first. Moreover, if

knowledge of the network structure or system parameters is uncertain or not avail-

able, these control strategies are not viable. Instead, distributed control strategies

that affect the system parameters are required. Our network SIRI model results invite

an interpretation of the changes in susceptibility by the individuals in the network as

a distributed heuristic feedback policy: individuals assess the quality of the process

spreading through the network and adjust their susceptibility accordingly, leading to

the eradication or spread of the infection. Future studies could exploit our results for

the network SIRI model and use centrality measures for contagion processes to derive

necessary and sufficient conditions on the reinfection and/or recovery rates of a small

number of selected agents that would guarantee that the infection dies out or spreads

through the network. Our results where obtained on a reduced model based on the

IBMF approach [72, 75]. Previous work has shown that solutions in an IBMF model

converge to an infection-free equilibrium, then the stochastic Markov model reaches

the infection-free absorbing state in sublinear time with respect to the size of the

network in expectation [74]. The bistable regime in the network SIRI model suggests

that bistability in stochastic Markov models may be highly sensitive to noise. Future

work will focus on extending the results to cases in which the network is weakly con-

nected and designing control strategies that leverage the adaptation of agents to the

infection.
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