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Limit Cycles in Replicator-Mutator Network Dynamics

Darren Pais and Naomi Ehrich Leonard

Abstract— The replicator-mutator equations from evolution-
ary dynamics serve as a model for the evolution of language,
behavioral dynamics in social networks, and decision-making
dynamics in networked multi-agent systems. Analysis of the
stable equilibria of these dynamics has been a focus in the
literature, where symmetry in fitness functions is typically
assumed. We explore asymmetry in fitness and show that
the replicator-mutator equations exhibit Hopf bifurcations and
limit cycles. We prove conditions for the existence of stable
limit cycles for the dynamics in the case of circulant fitness
matrices, and illustrate their existence in the noncirculant case.
For decision-making networks, these limit cycles correspond to
sustained oscillations in decisions across the group.

I. INTRODUCTION
In this paper we study the replicator-mutator equations

from evolutionary dynamics; these serve as a model for the
evolution of language [1], for behavior selection in social
networks [2], [3], and also for decision-making dynamics
in networked multi-agent systems [4]. Our main result is to
prove a Hopf bifurcation for these dynamics with certain net-
work interconnection topologies; this implies the existence
of limit cycle behavior. For decision-making networks, the
limit cycles correspond to sustained oscillations in decisions
across the group.

Evolutionary dynamics [5], [6], [7] are, broadly speaking,
an effort to cast the basic tenets of Darwinian natural
selection (replication, competition, strategy dependent fit-
ness, mutation) in a mathematical framework. The set of
replicator equations [8] are the simplest model of evolu-
tionary dynamics for a population divided among a finite
set of N competing strategies (N ≥ 2). The differential
equations model the game theoretic interactions among the
sub-populations, each subscribed to a different competing
strategy, and determine how the different sub-populations
change in size as a consequence of these interactions.

Although the replicator dynamics have proved to be a pow-
erful tool in analyzing a variety of classical games from an
evolutionary perspective, they do not model mutation, a key
ingredient of selection theory. Mutation can be included by
adding the possibility that individuals spontaneously change
from one strategy to another. This yields the replicator-
mutator dynamics [9], which have played a prominent role
in evolutionary theory and have recently been employed
to model social and multi-agent network dynamics [2].
The replicator-mutator dynamics can be interpreted from a
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graph theoretic perspective by representing the strategies as
nodes of the graph, and representing payoffs for interactions
between strategies as graph edge weights [10].

We are motivated in particular by three applications of the
replicator-mutator equations which we now briefly describe.
a) The replicator-mutator dynamics have been used in the

development of a mathematical framework for the evolu-
tion of language [1]. A key result is the bifurcation of the
equilibria from a state where several grammars coexist in
a population to a state of high grammatical coherence as
mutations in the population decrease [11], [12], [13].

b) In a recent paper [2], Olfati-Saber proposed an adaptation
of the replicator-mutator model to look at the role of
dominance in social networks. Simulations of the evo-
lutionary social network model show a transition from
the dominance of a single strategy, to the coexistence of
a few strategies, to eventually the collapse of dominance,
as the extent of mutation in the network increases.

c) We are also motivated by decision-making dynamics in
networked multi-agent systems. In this context, it has
been shown that simple models with pairwise interactions
between agents and noisy imitation of successful strate-
gies evaluate (under certain conditions) to the replicator-
mutator dynamics [14], [15], [16]. Recent papers have
employed the replicator-mutator equations to model wire-
less multi-agent networks [17], [4].

The analysis of the replicator-mutator dynamics in the
literature has focused primarily on stable limiting equilibrium
behavior for undirected payoff graphs. However, the N = 2
analysis in [18] shows that directed graphs yield qualitatively
different bifurcations from undirected graphs. Further, in [19]
the authors illustrate that the replicator-mutator dynamics
exhibit limit cycles and chaos for specific model parameter
values. Motivated by this, we focus our analysis on proving
conditions under which the dynamics converge to stable limit
cycles for N = 3 strategies. We show that the limiting
behaviors of the replicator-mutator dynamics are tied to the
structure of the payoff graph, and that breaking symmetry,
from undirected to directed (particularly circulant) graphs,
yields some of the richer outcomes simulated in [19].

As noted in [19], oscillations appear to be more realis-
tic than stable equilibria for the language dynamics with
timescales on the order of several centuries. Our work shows
that such oscillations can exist in broad regions of payoff
parameter space. For social networks, our results show that
certain directed networks can yield rich behavioral outcomes
such as preference oscillations. For decision making in multi-
agent systems, our results address the exploration versus
exploitation tradeoff: small mutations favor fast convergence



to a decision (exploitation) whereas large mutations favor
exploration of the decision space. Intermediate mutation
strength can lead to limit cycles, which enable efficient
examination of alternative choices.

Section II provides the details of the replicator-mutator
model. Bifurcation plots for the model with N = 2 and
N = 3 strategies are computed in Section III. We prove
the Hopf bifurcations for N = 3 and circulant payoffs in
Section IV and consider non-circulant payoffs in Section V.
In Section VI we conclude and discuss future directions.

II. MODEL

A. Replicator-Mutator Dynamics

For a large population of agents distributed among N
possible strategies Si, i = 1, 2, · · · , N , the replicator-mutator
dynamics are given by

ẋi =
N∑
j=1

xjfj(x)qji − xiφ =: gi(x); φ = fTx. (1)

Here, xi is the fraction of the population with strategy Si
and fitness fi, φ is the average population fitness, and qij
is the probability that agents mutate (spontaneously change)
from strategy Si to Sj . The fitness of agents with strategy
Si is given by

fi =
N∑
k=1

bikxk, or in matrix form, f = Bx. (2)

B = [bij ] ∈ RN×N is known as the payoff matrix where
bij ≥ 0 represents the payoff to an agent with strategy
Si on interacting with an agent with strategy Sj . We as-
sume that payoffs are all nonnegative and that agents get a
maximal payoff (normalized to 1) on interacting with others
subscribed to the same strategy. Hence B satisfies

bii = 1 and bij ∈ [0, 1) for i 6= j. (3)

As noted in [2], the payoff matrix B can be interpreted
from a graph theoretic perspective as the adjacency matrix
of a directed graph. The diagonal elements of B (bii = 1)
correspond to self cycles at each node. Symmetric payoff
matrices B correspond to undirected graphs.

Condition 1: Every row and column of B has at least one
nonzero off diagonal element.
From the graph theoretic perspective, Condition 1 requires
that every node of the graph has at least one outgoing and
one incoming link; this ensures that there are no isolated
disconnected nodes of the payoff graph. We will restrict to
examining graphs that satisfy Condition 1.

Since
∑
j

qij = 1, the mutation matrix Q = [qij ] is row

stochastic. In this paper, we define the mutation probabilities
qij as a function of the mutation strength µ as follows:

qii = (1− µ), qij =
µbij∑
i 6=j bij

for i 6= j. (4)

The parameter µ ∈ [0, 1] represents the probability of error
in replication. For example, µ = 0 denotes perfect replication

and no mutation whereas µ = 1 denotes pure mutation.
The choice of mutation propabilities qij in (4) is motivated
by the graph theoretic perspective on the replicator-mutator
dynamics and is a generalization of the structured mutational
models in [10], [18]. Intuitively, this model implies that
spontaneous mutation to alternative strategies is weighted in
favor of strategies that yield higher payoff. Note that the
mutation models in [2], [10], [12], [1] are special cases of
(4) in which the payoff matrices B are symmetric.

The strategies Si and payoffs bij can be interpreted in each
of our motivating contexts:
a) For the evolution of language, each Si is a specific

grammar in the population and bij is the probability that a
sentence spoken at random by individuals with grammar
Sj can be parsed by individuals with grammar Si.

b) In social networks, each Si represents a particular behav-
ior in a population and bij represents the degree to which
agents with behavior Si are attracted to behavior Sj .

c) In multi-agent decision making, each Si represents an
alternative choice for the group and the bij represent
the perceived relative advantage of choice Sj for agents
currently subscribed to choice Si.

In [19] the authors consider specific instances of asymmet-
ric payoff matrices and, using simulations, illustrate stable
limit cycles and chaotic attractors for the replicator-mutator
dynamics as a consequence. In this work we explore this
effect and prove Hopf bifurcations for circulant asymmetric
graphs in the case N = 3.

B. Dynamics on Simplices

Let g(x) : RN → RN be g(x) = [g1(x), · · · , gN (x)]T .
Define the n-simplex as

∆n =
{
x ∈ Rn+1 | xi ≥ 0, xT1 = 1

}
,

where 1 is a vector of ones of appropriate dimension. Note
that xT1 = 1 =⇒ 1Tg(x) = 0. Hence xT1 is an invariant
hyperplane for the dynamics. Further, the positive orthant
RN is a trapping region for the dynamics; this follows from
the fact that ẋi|xi=0 ≥ 0. The intersection of the invariant
hyperplane and the positive orthant of RN is the simplex
∆N−1. Hence ∆N−1 is a trapping region for the replicator-
mutator dynamics (1).

Given the restriction to the simplex ∆N−1, the N -
dimensional dynamics can be reduced to an (N − 1)-
dimensional system of equations:

ẋi = hi(x̃), i ∈ {1, 2, · · · , N − 1},

hi(x̃) := gi

x1, x2, · · · , xN−1, 1−
N−1∑
j=1

xj

 ,
(5)

where x̃ = [x1, · · · , xN−1]T and h : RN−1 → RN−1.

III. DYNAMICS AND BIFURCATION PLOTS

In this section we compute the bifurcations of the dy-
namics (1) as a function of the bifurcation parameter µ for
N = 2 and N = 3 strategies. We show a transition from



multiple stable dominant equilibria to a unique stable mixed
equilibrium for increasing µ, as well as stable limit cycles
for N = 3.

A. Two Strategies N = 2
We summarize the results from [18] for dynamics (1) with

two strategies. To simplify notation, define b1 := b12 and
b2 := b21. With this notation and following the reduction
(5), we have the one-dimensional system

ẋ1 = h1(x1) = x1f1q11 + x2f2q21 − x2
1f1 − x1x2f2

= x1 [b1 + x1(1− b1)] (1− µ− x1)
+ (1− x1) [1 + x1(b2 − 1)] (µ− x1).

(6)

Figure 1 shows the equilibria of the dynamics (6), and their
stability, as a function of the bifurcation parameter µ. The
bifurcation plot shows a transition from bistability to a mixed
equilibrium via a pitchfork bifurcation in the case b1 = b2.
The pitchfork bifurcation is structurally unstable: for b1 6=
b2 a saddle-node bifurcation occurs at a critical value µc
as shown in Figure 1. Three branches of equilibria exist.
One of the branches remains stable for all µ and approaches
x1 = 0.5 as µ approaches 1. The other two branches exist
for µ < µc and collide in a saddle-node bifurcation at µc.
Note that b1 6= b2 corresponds to a directed payoff graph
between the two nodes.

Fig. 1. Three bifurcation plots for N = 2 nodes with parameters b1 = 0.2
and b2 = 0.2, 0.25 and 0.5. Blue curves are the stable equilibria and the
red curves are the unstable equilibria. Similar to Figure 14 of [18].

B. Three Strategies N = 3
Here we consider the three strategy version of the dynam-

ics (1) and constrain the payoff parameters bij in (3) to be
either 0 or equal to a constant value b > 0. For N = 3,
the phase space is planar allowing for the visualization of
the codimension-one bifurcations in three dimensions. There
are five non-isomorphic graph topologies with three nodes
that satisfy the connectivity specified by Condition 1 and
have edges of identical weight; these are shown in Figure
2. Figure 2 also shows the bifurcation plots for each of the
topologies as a function of the mutation probability µ. Note
that for µ = 0 the only stable equilibria for the replicator-
mutator system with payoffs (3) are the three pure strategy
equilibria. The payoff and mutation matrices for each graph
topology are given by (3) and (4) respectively.

1) All-to-all Interconnection: The replicator-mutator dy-
namics with symmetric all-to-all interconnection and identi-
cal weights are studied in detail in [12]. The bifurcation plot
Figure 2A has two bifurcation points

µC1 =
2(1− b)
3(2 + b)

and

µC2 =
6 + 2b
1− b

−

√(
6 + 2b
1− b

)2

− 4.

(7)

At µ = µC1 the equilibrium xmix = 1
31 changes stability

via an S3-symmetric transcritical bifurcation [12]. At µ =
µC2 six equilibria disappear via three symmetric saddle-
node bifurcations. Thus for µ > µC2 the only remaining
equilibrium is the stable xmix.

2) Limited Interconnections: The bifurcation plots for
graphs in Figures 2B-2D each have a stable branch of
equilibria for all µ. They also have two other stable and
four unstable equilibria at µ = 0 which disappear in saddle-
node bifurcations as µ increases. Small perturbations of the
symmetric all-to-all case above yield bifurcations that are
qualitatively similar to the limited interconnection cases here
and also to the N = 2 bifurcations in Figure 1.

3) Directed Cycle Interconnection: The bifurcation plot
in Figure 2E corresponds to a directed cycle interconnection
among nodes. The equilibrium xmix = 1

31 exists for all
values of µ ∈ [0, 1]. The eigenvalues of the Jacobian of the
reduced system (5) evaluated at (x1, x2) = (1

3 ,
1
3 ) are

λ1,2 =
1
3
− µ− b

6
± i

2
√

3
(2µ− b+ 2bµ). (8)

At µ = µC1 three symmetric saddle-node bifurcations
occur and stable limit cycles appear about xmix. These are
followed by a Hopf bifurcation at µ = µC2, where xmix

changes stability from an unstable to a stable focus and the
limit cycles disappear. The location of the Hopf bifurcation
can be computed from the stability of the eigenvalues (8) as

µC2 =
1
3
− b

6
. (9)

IV. HOPF BIFURCATION FOR N = 3
In this section we formally study the Hopf bifurcation ob-

served in Figure 2E that leads to stable limit cycle behavior.
We prove that stable limit cycles of the dynamics exist in a
wide region of parameter space for circulant payoff matrices
B, for which the directed cycle topology in Figure 2E is
a special case. Theorem 1 provides necessary conditions
for the existence of limit cycles for (1) with N = 3 and
circulant B. Lemma 3 shows the existence of the equilibrium
xmix = 1

N 1 for circulant B. Theorem 2 provides sufficient
conditions for Hopf bifurcations and stable limit cycles.

A. Necessary conditions for limit cycles

Since the N = 3 replicator-mutator dynamics are two-
dimensional, Bendixson’s Criterion [20] can be used to
obtain necessary conditions for the existence of limit cycles.
In order to do so we first need to compute the divergence of
the vector field, which is given in Lemma 1.



Fig. 2. Bifurcation plots for the N = 3 case of dynamics (1) and constant edge weights b = 0.2. The x-axis in each plot is the mutation strength µ,
blue and red curves are stable and unstable equilibria, respectively, and the magenta curves are stable limit cycles. The three node graphs in each subplot
have adjacency matrix B with self-cycles (not shown) at each node.

Lemma 1: The divergence of the vector field g(x) re-
stricted to the simplex ∆N−1 is given by

∇ · g(x)
∣∣∣
x∈∆N−1

= ∇ · h(x̃)

= 1T
[
(1− µ)B + ST

]
x− xT

[
NB +BT

]
x,

where S := Q ◦B, the element-wise product of Q and B.
Proof: The divergence is given by

∇ · h(x̃) =
N−1∑
i=1

∂hi
∂xi

=
N∑
i=1

∂gi
∂xi
−

N∑
i=1

∂gi
∂xN

. (10)

We substitute for gi(x) from (1) in the first term of the
difference in (10) and using (3) and (5) we have

N∑
i=1

∂gi
∂xi

=
∑
i

∂

∂xi

xi(fiqii − φ) +
∑
j 6=i

xjfjqji


=
∑
i

fiqii + xiqii
∂fi
∂xi
− φ− xi

∂φ

∂xi
+
∑
j 6=i

xjqjibji


= (1−µ)1TBx+(1−µ)−Nφ−xT (B+BT )x+

∑
i

∑
j 6=i

xjsji

= 1T
[
(1− µ)B + ST

]
x− xT

[
(N + 1)B +BT

]
x. (11)

where the last equality follows from the identity∑
i

∑
j 6=i

xjsji = 1TSTx− (1− µ). Computing the second

term in the difference in (10) we have

N∑
i=1

∂gi
∂xN

=
∂

∂xN

 N∑
i=1

N∑
j=1

xjfjqji − xiφ


=

∂

∂xN

[
(1−

N∑
i=1

xi)φ

]
= −φ = −xTBx.

(12)

Substituting (11) and (12) in (10) we get the desired result.

The remainder of this section specializes to circulant
payoff matrices B. A circulant matrix B is fully specified by
its first row; the subsequent rows are cyclic permutations of
the first row to the right with offset given by the row index.
We assume that B is invertible; an N×N circulant matrix B

of the form (3) is always invertible for N prime [21]. Using
the divergence calculation from Lemma 1, Lemma 2 gives a
necessary condition for the divergence to be negative semi-
definite on ∆N−1 when B is circulant and invertible. For a

circulant matrix B, we define the row sum as rB :=
N∑
j=1

bij

for any row i.
Lemma 2: Let B be circulant and invertible. Then the

divergence ∇ · h(x̃) ≤ 0 on the simplex ∆N−1 if

µ ≥ (N − rB)(rB − 1)
N (r2

B − rB◦B)
.

Proof: From Lemma 1, the divergence ∇ · h(x̃) is
negative semi-definite on the simplex if

max
x∈∆N−1

1T
[
(1−µ)B+ST

]
x ≤ min

x∈∆N−1
xT
[
NB+BT

]
x. (13)

The term on the left hand side (LHS) of (13) is the maximum
of a convex combination of nonnegative scalars and hence
evaluates to

LHS = max
i

N∑
j=1

(1− µ)bji + sij

= (1− µ) max
i

N∑
j=1

bji + (1− µ) + µmax
i

[∑
j 6=i b

2
ij∑

j 6=i bij

]

= (1− µ)(1 + rB) + µ

(
rB◦B − 1
rB − 1

)
. (14)

The term on the right hand side (RHS) of (13) is the
minimum of a quadratic form that is positive on the simplex.
Given that B is circulant and invertible, this quadratic form
has an isolated minimum at xmix = 1

N 1. Thus,

RHS = min
x∈∆N−1

xT
[
NB +BT

]
x

=
N + 1
N2

1TB1 =
N + 1
N

rB . (15)

Substituting (15) and (14) in (13) gives the desired result.

Denote the 3× 3 circulant payoff matrix B as BC3:

BC3 =

 1 α β
β 1 α
α β 1

, {α, β} ∈ [0, 1) and α+ β > 0. (16)



Theorem 1 gives a simple necessary condition for the exis-
tence of stable limit cycles of the dynamics (1) with N = 3
and payoff matrix BC3.

Theorem 1: The dynamics (1) with payoff matrix BC3

have no closed orbits in the simplex ∆2 for

µ >
(2− α− β)(α+ β)

6(α+ β + αβ)
=: µ0.

Proof: The simplex ∆2 (a simply connected subset of
R2) is a trapping region for the dynamics (1) (see section
II-B). Using Lemma 2 and substituting rB = (1 + α + β)
and rB◦B = (1+α2 +β2), the divergence of the vector field
on ∆2 is negative semi-definite for µ > µ0. It is easy to
check from Lemma 1 that the divergence is not identically
equal to zero on ∆2. Bendixson’s Criterion (Theorem 1.8.2
of [20]) then states that no closed orbits can lie in ∆2 for
µ > µ0.

The all-to-all interconnection topology of Section III-B.1
is a special case of BC3 with α = β = b. Further, the directed
cycle case in Section III-B.3 corresponds to α = b, β = 0. In
each of the cases, the µ0 threshold from Theorem 1 evaluates
exactly to the critical points µC1 (7) and µC2 (9) respectively.

B. Sufficient conditions for limit cycles

We are now ready to state and prove the main result
in Theorem 2 that provides sufficient conditions for the
existence of stable limit cycles of the dynamics (1) with
payoff matrix BC3. First we show the existence of the
equilibrium xmix for circulant B.

Lemma 3: If the payoff matrix B is circulant, then
xmix = 1

N 1 is an equilibrium of the replicator-mutator
dynamics (1).

Proof: Suppose B is circulant. Then 1 is an eigenvector
of B with eigenvalue rB , i.e., B1 = rB1. Matrix Q is
also circulant by construction from (4). This means that
N∑
j=1

qji =
N∑
j=1

qij = 1. Let x = xmix = 1
N 1. Then f =

Bxmix = 1
NB1 = rB

N 1. From (1),

ẋi

∣∣∣
xmix

=
1
N

N∑
j=1

fj

(
qji −

1
N

)
=
rB
N2

N∑
j=1

qji −
rB
N2

= 0,

and xmix = 1
N 1 is an equilibrium.

Theorem 2: Equilibrium xmix of the dynamics (1) with
N = 3 strategies, payoff matrix BC3, mutation matrix (4)
and bifurcation parameter µ, undergoes a supercritical Hopf
bifurcation at µ = µ0 leading to stable limit cycles for µ <
µ0 when the following conditions are satisfied:

α 6= β (C1a)

2α+ 2β + 5αβ + α2 + β2 6= 2. (C1b)
Proof: This proof relies on satisfying the conditions

of the two-dimensional Hopf bifurcation theorem (Theorem
3.4.2 from [20]). The stability term `1(α, β) is the first
Lyapunov coefficient [22] of the dynamics.

For N = 3, the dynamics (1) evolve on ∆2 ⊂ R2 and are
denoted ẋi = hi(x1, x2), i ∈ {1, 2} as in (5). From Lemma

3 we have that (x1, x2) = ( 1
3 ,

1
3 ) =: x0 is an equilibrium

of the dynamics since BC3 is circulant. The Jacobian of the
vector field h evaluated at x0 has eigenvalues

λ(α, β, µ) =
[

1
3
− µ− 1

6
(α+ β)− αβ

α+ β
µ

]
± i
[

1
2
√

3
α− β
α+ β

{(α+ β − 2µ(1 + α+ β)}
]
.

Let µ̃ = α+β
2(1+α+β) . The eigenvalues λ(α, β, µ) satisfy the

following:

Re [λ(α, β, µ)] = 0 ⇐⇒ µ = µ0

Im [λ(α, β, µ)] 6= 0 ⇐⇒ µ 6= µ̃ and α 6= β.

The conditions α 6= β and µ̃ 6= µ0 are precisely (C1a) and
(C1b) respectively, which together imply that λ(α, β, µ0) are
purely imaginary. This satisfies property (H1) of the Hopf
bifurcation theorem.

Property (H2) of the theorem requires that the complex
eigenvalues cross the imaginary axis with nonzero velocity
v0. This is also satisfied since

v0 :=
d

dµ
(Re λ(α, β, µ))

∣∣∣
µ=µ0

=
−(α+ β + αβ)

α+ β
6= 0.

Since (C1a) and (C1b) imply that (H1) and (H2) of the
Hopf bifurcation theorem are satisfied, we conclude that the
dynamics undergo a Hopf bifurcation at µ = µ0. The limit
cycles arising out the Hopf bifurcation are stable if the first
Lyapunov coefficient `1(α, β) evaluated at x0 and µ0 is
negative. We compute `1(α, β) = 3(α+β−2)

ω0
, where,

ω0 = |ω̃|, ω̃ =
(α− β)(α2 + β2 + 2α+ 2β + 5αβ − 2)

6
√

3(α+ β + αβ)
.

This implies (C1a) and (C1b) ⇐⇒ `1(α, β) < 0.
From Theorem 1 we know that the dynamics have no limit

cycles for µ > µ0. Thus we have proved the existence of
stable limit cycles for µ < µ0.

Fig. 3. Bifurcation plots for the dynamics (1), payoff matrix BC3 and
parameters α and β as shown. The existence of Hopf bifurcations and stable
limit cycles for the set of parameter choices follows from Theorem 1. Note
the coexistence of stable equilibria with stable limit cycles in Figure 3b.

Figure 2E shows limit cycles for a specific case of BC3

with α = b and β = 0. Figure 3 shows three more limit
cycle bifurcation plots for nonzero α and β. Interestingly,
for selected parameter values in Figure 3b stable limit cycles
coexist with multiple stable equilibria. This coexistence of
stable equilibria and stable limit cycles implies that different
initial conditions can yield qualitatively distinct limiting
behavior even with fixed parameters for the dynamics (i.e.
without bifurcations).



V. BEYOND CIRCULANT PAYOFFS
It is important to note that studying the fully general model

(1), even with N = 3 strategies, is highly complex. This
complexity motivated our restriction to payoff matrices of
the form BC3 which can be fully characterized in terms of
just two parameters and allowed for a careful bifurcation
analysis of the dynamics as presented in the previous section.
Nonetheless, the analysis in Section IV might lead one to
conclude that the circulant structure of payoff matrix BC3 is
a necessary condition for Hopf bifurcations of the dynamics.
In this section we illustrate that this is not the case. We show
examples of limit cycles for selected non-circulant payoff
matrices. Consider 3 × 3 payoff matrices B satisfying (3)
and Condition 1 that have have directed links of two kinds:
strong links with weights b and weak links with weights εb
where b ∈ (0, 1) and 0 < ε� 1. There are 73 corresponding
non-isomorphic graph topologies. Figure 4 shows stable limit
cycles for four topologies in this set corresponding to non-
circulant payoff matrices.

Fig. 4. Limit cycles for non-circulant payoff matrices B. The solid arrows
in the graphs are strong links with weight b and the dashed arrows are weak
links with weight εb. Parameters for all plots are b = 0.2 and ε = 0.1.

VI. FINAL REMARKS
Much of the analysis of the replicator-mutator dynamics

has been focused on stable equilibrium limiting behavior. The
analysis has also primarily considered payoff and mutation
matrices that are symmetric, which corresponds to undirected
graph topologies between strategy nodes. Recent work [10]
on a graph theoretic model of the language dynamics has
shown that the graph connectivity plays a critical role in de-
termining the location of bifurcation points in the dynamics,
but the restriction to undirected graphs confines the range of
limiting behavior to stable equilibria. The paper by Mitchener
and Nowak [19] has served as important motivation for this
work. The authors show that considering asymmetric payoff
and mutation matrices (corresponding to directed graphs)
can yield limit cycle behavior and even chaos for replicator-
mutator dynamics. Here we prove conditions such that stable
limit cycles arise as a consequence of Hopf bifurcations for
N = 3 strategies and circulant payoff matrices. From a graph
perspective, we show how breaking symmetry by considering
directed graphs allows for oscillatory limiting behavior for
the replicator-mutator dynamics.

We emphasize that the limit cycles are not restricted to
circulant payoffs or to N = 3, but can exist for non-circulant
payoffs as shown in Section V, and for larger networks with
random payoffs as shown in Figure 5. A Hopf bifurcation
analysis of these more general cases is an intended future
direction.

(a) µ = 0.01 (b) µ = 0.15 (c) µ = 0.4

Fig. 5. Simulation of the dynamics (1) for N = 20 nodes and bij ∈ [0, 1)
chosen randomly. Notice the transition from a highly coherent state for small
µ, to oscillating dominance for intermediate µ and eventually to a mixed
state for large µ.
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