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Abstract. The replicator-mutator equations from evolutionary dynamics serve as a model for
the evolution of language, behavioral dynamics in social networks, and decision-making dynamics
in networked multi-agent systems. Analysis of the stable equilibria of these dynamics has been
a focus in the literature, where symmetry in fitness functions is typically assumed. We explore
asymmetry in fitness and show that the replicator-mutator equations exhibit Hopf bifurcations and
limit cycles. We prove conditions for the existence of stable limit cycles arising from multiple distinct
Hopf bifurcations of the dynamics in the case of circulant fitness matrices. In the noncirculant case
we illustrate how stable limit cycles of the dynamics are coupled to embedded directed cycles in the
payoff graph. These cycles correspond to oscillations of grammar dominance in language evolution
and to oscillations in behavioral preferences in social networks; for decision-making systems, these
limit cycles correspond to sustained oscillations in decisions across the group.
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1. Introduction. Evolutionary dynamics [32, 19, 7, 31] are, broadly speaking,
an effort to cast the basic tenets of Darwinian natural selection (replication, competi-
tion, strategy dependent fitness, mutation) in a mathematical framework that can be
simulated, interpreted, and often rigorously analyzed. John Maynard Smith’s pioneer-
ing work [25] made formal connections between classical game theory and evolutionary
dynamics. Particularly important was Maynard Smith’s definition of evolutionarily
stable strategies (ESS’s), which are equilibria of an evolutionary dynamical system
that are uninvadable by other competing strategies in the environment, and hence
stable in an evolutionary sense. From a game theoretic perspective, ESS’s are a sub-
set of the Nash equilibria of a game: they satisfy both the Nash best reply condition
and evolutionary uninvadability.

The replicator dynamics [27] are the simplest model of evolutionary dynamics for
a large population comprised of N sub-populations, each subscribed to a different
competing strategy. These differential equations model the game theoretic interac-
tions among the sub-populations and determine how each sub-population changes in
size as a consequence of these interactions. Lyapunov stable equilibria of the replica-
tor dynamics are Nash equilibria of the corresponding game [34]. Further, all ESS’s
of the replicator dynamics are asymptotically stable [34].

Although the replicator dynamics have proved to be a powerful tool in analyzing
a variety of classical games from an evolutionary perspective, they do not model
mutation, a key ingredient of selection theory. Mutation can be included by adding the
possibility that individuals spontaneously change from one strategy to another. This
yields the replicator-mutator dynamics [2, 21], which have played a prominent role in
evolutionary theory and contain as limiting cases many other important equations in
biology [10]; these include models of language evolution [17], autocatalytic reaction
networks [26], and populations genetics [5]. The dynamics have also recently been
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employed to model social and multi-agent network interactions [20]. The replicator-
mutator equations have been shown in [21] to be equivalent to the generalized Price
equation from evolutionary genetics [23, 24]. The standard replicator dynamics can
be obtained from the replicator-mutator dynamics in the limit of zero mutation.

In this paper we study a form of the replicator-mutator dynamics and prove con-
ditions for Hopf bifurcations and stable limit cycles for N ≥ 3 competing strategies.
Stable limit cycles correspond to sustained oscillations in strategy dominance across
some or all of the population. The form of the dynamics considered, and the inter-
pretation of the oscillations, depends on the applications of interest; the following are
three motivating applications.

a) The replicator-mutator dynamics have been used in the development of a mathe-
matical framework for the evolution of language [17]. For a large population, the
strategies represent different grammars in the population and mutations reflect er-
rors in grammar transmission or learning from one generation to the next. A key
result is the bifurcation of the equilibria from a state where several grammars co-
exist in a population to a state of high grammatical coherence as mutations in the
population decrease (or equivalently, the fidelity of learning increases) [12, 3, 15].
Limit cycles of the replicator-mutator dynamics correspond to oscillations in the
dominance of the different grammars in the population. As noted in [16], oscilla-
tions appear to be more realistic than stable equilibria for the language dynamics
with timescales on the order of several centuries.

b) The replicator-mutator dynamics were recently proposed [20, 9] as a model for
behavior adoption in social networks, with a focus on the emergence of dominance
of particular behaviors in these networks. Simulations of the evolutionary social
network model show a shift from the dominance of a single strategy (behavior),
to the coexistence of a few strategies, to eventually the collapse of dominance,
as the extent of mutation in the network increases. Limit cycles of the replicator-
mutator dynamics correspond to oscillations of behavior preference in this context,
for example cycles in trends or fashions.

c) The replicator-mutator dynamics can also be used to model decision-making dy-
namics in networked multi-agent systems. It has been shown that simple mod-
els with pairwise interactions between agents and noisy imitation of successful
strategies evaluate (under certain conditions) to the replicator-mutator dynam-
ics [6, 1, 30, 29]. Recent papers have employed the replicator-mutator equations
to model wireless multi-agent networks [33, 28]. Hopf bifurcations of replicator-
mutator dynamics in this context address the exploration versus exploitation trade-
off: few mutations favor fast convergence to a decision (exploitation) whereas
extensive mutations favor exploration of the decision space. In an intermediate
range, mutations can lead to limit cycles, which enable dynamic examination of
alternative choices.

The analysis of the replicator-mutator dynamics in the literature has focused
primarily on stable limiting equilibrium behavior where the fitness terms are assumed
to have a lot of symmetry (e.g. [3, 17, 20]). However, the recent N = 2 analysis in [11]
shows that the symmetric case is structurally unstable and that breaking symmetry
in fitness yields qualitatively different bifurcations of the dynamics. Further, in [16]
the authors illustrate that the replicator-mutator dynamics exhibit limit cycles and
chaos for specific model parameter values.

In this paper, we show that the limiting behaviors of the replicator-mutator dy-
namics are tied to the structure of the fitness model, and we prove how breaking
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symmetry yields some of the richer outcomes simulated in [16]. It is known that
the replicator dynamics for N ≥ 4 can generate limit cycles and chaos for particu-
lar choices of fitness [16, 26, 18]. Here we investigate the role that both fitness and
mutation play in generating limit cycles for the replicator-mutator dynamics. With
mutation strength as the bifurcation parameter, we prove Hopf bifurcations for the
replicator-mutator dynamics with N ≥ 3 and characterize the existence of stable limit
cycles using an analytical derivation of the Hopf bifurcations points and the corre-
sponding first Lyapunov coefficients [4, 13]. We focus on a class of circulant fitness
matrices for our analytical calculations, and explore bifurcations and limit cycles for
more general non-circulant fitness matrices using simulations. While circulant fitness
matrices may be explicitly relevant for the applications identified, we also expect that
more general fitness matrices are relevant. Accordingly, we motivate our focus on
circulant matrices as a step towards better understanding the influence of cycles in
the more general cases.

In §2 we provide the details of the replicator-mutator dynamics and the simplex
phase space on which the dynamics evolve. In §3 we show motivating simulations and
illustrate bifurcations of the dynamics for N = 3 strategies, summarizing our previous
work in [22]. In §4 we present our main result proving Hopf bifurcations for N ≥ 3
strategies and a two-parameter family of circulant fitness matrices. We examine one-
parameter circulant fitness matrices in §5 and consider noncirculant cases in §6. In
§7 we conclude and discuss future directions.

2. Replicator-Mutator Dynamics. Consider a large population of agents and
N distinct strategies Si, i = 1, 2, · · · , N . Let strategy frequency xi ∈ [0, 1] be the

fraction of individuals in the population with strategy Si such that
N∑
i=1

xi = 1. Let

the population distribution vector x = [x1 , · · · , xN ]T . The fitness fi of agents with
strategy Si is given by

fi =
N∑
k=1

bikxk.

Let f = [f1 , · · · , fN ]T . Then f = Bx, where B = [bij ] ∈ RN×N , and the average
population fitness is φ = fTx = xTBx. B is known as the payoff matrix where
bij ≥ 0 represents the payoff to an agent with strategy Si on interacting with an
agent with strategy Sj .

We assume that payoffs are all non-negative and that agents get a maximal payoff
(normalized to 1) on interacting with others subscribed to the same strategy. Hence
B satisfies

bii = 1 and bij ∈ [0, 1) for i 6= j. (2.1)

As noted in [20], the payoff matrix B can be interpreted from a graph theoretic
perspective as the adjacency matrix of a directed graph. The nodes of the graph
correspond to the strategies Si. The diagonal elements of B (bii = 1) correspond to
self-cycles at each node. Each of the non-zero off-diagonal elements bij corresponds to
the weight of a directed edge from node Si to node Sj . Symmetric payoff matrices B
correspond to undirected graphs. This graph theoretic viewpoint is important in our
work, particularly as a tool to visualize the structure of the payoff matrix. Consider
the following condition:
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Condition 1. Every row and column of B has at least one non-zero off diagonal
element.
From the graph theoretic perspective, Condition 1 requires that every node of the
graph has at least one outgoing and one incoming link; this ensures that there are no
isolated disconnected nodes of the payoff graph. We will restrict to examining graphs
that satisfy Condition 1.

Next we define qij to be the probability that agents with strategy Si mutate
(spontaneously change) to strategy Sj . Note that since

∑
j

qij = 1, the mutation

matrix Q = [qij ] is row stochastic. The elements of the mutation matrix Q are defined
in terms of a mutation parameter µ ∈ [0, 1]. The mutation parameter represents the
probability of error in replication. For example, µ = 0 denotes perfect replication and
no mutation whereas µ = 1 denotes pure mutation.

In this paper, we use two specific models for the mutation matrix Q. The first
model defines the mutation probabilities qij as a function of the payoffs bij and the
mutation strength µ as follows:

qii = (1− µ), qij =
µbij∑
i6=j bij

for i 6= j. (Q1)

The form of qij in (Q1) is motivated by the graph theoretic perspective on the
replicator-mutator dynamics and is a generalization of the structured mutational mod-
els in [14, 11]. Intuitively, this model implies that spontaneous mutation to alternative
strategies is weighted in favor of strategies that yield higher payoff. The mutation
models in [20, 14, 3, 17] are special cases of (Q1) in which the payoff matrix B is
symmetric. We call (Q1) the dependent mutation model since (Q1) is dependent on
B.

The second mutation model we consider corresponds to a uniform random prob-
ability of mutating to alternative strategies as follows:

qii = (1− µ), qij =
µ

N − 1
for i 6= j. (Q2)

We call (Q2) the independent mutation model since (Q2) is independent of B.
There are several alternative possibilities for the mutation matrixQ. Our choice of

(Q1) and (Q2) enables a comparison between independent and dependent mutation
models, and represents two generic models that are popular in the literature and
meaningful in the context of our motivating applications.

The strategies Si, payoffs bij and mutation probabilities qij can be interpreted in
each of our motivating contexts:
a) For the evolution of language, each Si is a specific grammar in the population

and bij is the probability that a sentence spoken at random by individuals with
grammar Sj can be parsed by individuals with grammar Si. Higher values of the
diagonal terms qii = 1− µ of the mutation matrix Q correspond to more effective
language transmission or learning, and the off-diagonal terms qij correspond to
mutation probabilities to alternative grammars.

b) In social networks, each Si represents a particular behavior in a population and bij
represents the degree to which agents with behavior Si are attracted to behavior Sj .
Higher values of the mutation probabilities qij correspond to a greater tendency
for individuals to explore and adopt alternative behaviors in the population.
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c) In multi-agent decision making, each Si represents an alternative choice for the
group and the bij represent the perceived relative advantage of choice Sj for agents
currently subscribed to choice Si. The mutation terms qij model errors in the
decision-making process.
The replicator-mutator dynamics describe the dynamics of the population distri-

bution x as a result of replication driven by fitness f and mutation driven by Q:

ẋi =
N∑
j=1

xjfj(x)qji − xiφ =: gi(x); φ = fTx. (2.2)

The replicator-mutator dynamics (2.2) can be derived as the limit of a simple
stochastic error-prone imitation process, where agents imitate successful strategies
proportional to relative payoffs (fi/φ) and mutate to alternative strategies with prob-
abilities qij ; see [6, 1, 30] for details. As illustrated in [30, 1], there exist several
possible microscopic imitation mechanisms that yield alternatives to the replicator-
mutator dynamics in the limit. For this paper, we focus on the replicator-mutator
dynamics as these are popular in the literature and hence allow for comparisons with
past work [3, 20, 14, 16].

The dynamics (2.2) evolve on the (N − 1)-dimensional simplex phase space as
follows. Define the n-simplex as

∆n =
{
x ∈ Rn+1 | xi ≥ 0, xT1 = 1

}
,

where 1 is a column vector of ones of appropriate dimension. Let g(x) : RN → RN

be g(x) = [g1(x), · · · , gN (x)]T where gi(x) is defined in (2.2). One can compute
directly from (2.2) that xT1 = 1 =⇒ 1Tg(x) = 0. Hence xT1 = 1 is an invariant
hyperplane for the dynamics. Further, the non-negative orthant of RN is a trapping
region for the dynamics; this follows from the fact that ẋi|xi=0 ≥ 0. The intersection
of the invariant hyperplane and the non-negative orthant of RN is the simplex ∆N−1.
Hence ∆N−1 is a trapping region for the replicator-mutator dynamics (2.2).

Given the restriction to the simplex ∆N−1, the N -dimensional dynamics (2.2)
can be reduced to an (N − 1)-dimensional system of equations:

ẋi = hi(x̃), i ∈ {1, 2, · · · , N − 1},

hi(x̃) := gi

x1, x2, · · · , xN−1, 1−
N−1∑
j=1

xj

 ,
(2.3)

where x̃ = [x1, · · · , xN−1]T and h : RN−1 → RN−1.

3. Motivating Simulations and Analysis. Our motivation to prove the ex-
istence of limit cycles in replicator-mutator dynamics comes in part from simulations
of the dynamics (2.2) for random payoff matrices B (bij chosen from the uniform dis-
tribution on the interval [0, 1) for i 6= j), which frequently exhibit oscillations. Figure
3.1 shows one simulation of the dynamics that is typical for mutation matrix (Q1) or
(Q2). The dynamics in this simulation illustrate the shift from dominance of a single
strategy (Figure 3.1(a)), to the coexistence of several strategies (Figure 3.1(b)), to
eventually the collapse of dominance (Figure 3.1(c)), as the extent of mutation (pa-
rameterized by µ) increases. The study of the collapse of dominance, as a consequence
of a bifurcation in the dynamics, has received significant attention in the literature
(e.g. [3, 17, 12, 14]).
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(a) µ = 0.01 (b) µ = 0.15 (c) µ = 0.4

Fig. 3.1. A first typical simulation of the dynamics (2.2) for N = 20 nodes and bij ∈ [0, 1)
chosen randomly from the uniform distribution. The dynamics shift from (a) a highly coherent state
for small µ, to (b) a less coherent state for intermediate µ, and eventually collapse to (c) a mixed
state for large µ.

Figure 3.2 shows another simulation of the replicator-mutator dynamics that is
also typical for mutation matrix (Q1) or (Q2). The dynamics in this simulation also
transition from dominance of a single strategy (Figure 3.2(a)) to collapse of dominance
(Figure 3.2(c)). However, unlike the first simulation, the dynamics exhibit sustained
oscillations in strategy dominance at intermediate values of mutation strength µ (Fig-
ure 3.2(b)). In [16], the authors consider specific asymmetric payoff matrices and,
using simulations, illustrate stable limit cycles for the replicator-mutator dynamics
that result.

(a) µ = 0.01 (b) µ = 0.15 (c) µ = 0.4

Fig. 3.2. A second typical simulation of the dynamics (2.2) for N = 20 nodes and bij ∈ [0, 1)
chosen randomly from the uniform distribution. The dynamics transition from (a) a highly coherent
state for small µ, to (b) oscillating dominance for intermediate µ, and eventually to (c) a mixed
collapse of dominance for large µ.

3.1. Analysis for N = 3 Strategies. To build intuition for our general results
in §4, we summarize here the main results from our recent paper [22], which focuses on
the bifurcations of the dynamics (2.2) as a function of the bifurcation parameter µ for
N = 3 strategies. Because the simplex is two-dimensional for N = 3 (2.3), it is easier
than in higher dimensions to prove necessary and sufficient conditions for limit cycles
and to visualize codimension-one bifurcations. We show a transition from multiple
stable dominant equilibria to a unique stable mixed equilibrium for increasing µ, and
prove conditions for stable limit cycles to exist over an intermediate range of µ.

Consider the dynamics (2.2) with N = 3 and with the payoff parameters bij
in (2.1) set to be either 0 or equal to a constant value b > 0. There are five non-
isomorphic graph topologies with three nodes that satisfy the connectivity specified
by Condition 1 and have edges of identical weight b; these are shown in Figure 3.3.
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Figure 3.3 also shows the analytically computed1 bifurcation plots for each of the
topologies as a function of the mutation strength µ for mutation matrix (Q1) and
payoff matrix (2.1). The corresponding plots for mutation matrix (Q2) are shown in
Figure 3.4.

Fig. 3.3. Bifurcation plots for the N = 3 case of dynamics (2.2), constant edge weights b = 0.2
and mutation matrix (Q1). The x-axis in each plot is the mutation strength µ, blue and red curves
are stable and unstable equilibria, respectively, and the magenta curves are stable limit cycles. The
three-node graphs in each subplot have adjacency matrix B with self-cycles (not shown) at each node.

Fig. 3.4. Bifurcation plots for the N = 3 case of dynamics (2.2), constant edge weights b = 0.2
and mutation matrix (Q2). The x-axis in each plot is the mutation strength µ, blue and red curves
are stable and unstable equilibria, respectively, and the magenta curves are stable limit cycles. The
three-node graphs in each subplot have adjacency matrix B with self-cycles (not shown) at each node.

Note that for µ = 0 the only stable equilibria for the replicator-mutator dynamics
with payoffs (2.1) are the three (dominant) pure strategy equilibria at the corners
of the triangle simplex. In all the subplots in Figures 3.3 and 3.4, bifurcations yield
a unique mixed strategy equilibrium in the interior of the simplex, for increasing µ.
The transition from the dominant equilibria to the mixed equilibrium for increasing
µ depends strongly on the topology of the payoff graph B under consideration. In the
case of all-to-all interconnections in Figure 3.3(a) and 3.4(a), the mixed equilibrium

1Equilibria and nullclines are solved using the MATLAB R© symbolic toolbox.
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xmix,3 = 1
313 changes stability via an S3-symmetric transcritical bifurcation (see

[3] for details). The bifurcation plots for graphs in Figures 3.3(b)-(d) and 3.4(b)-(d)
each have a stable branch of equilibria for all µ. They also have two other stable
and four unstable equilibria at µ = 0 which disappear in saddle-node bifurcations
as µ increases. We note that these bifurcations are qualitatively representative of
bifurcations generally observed in small perturbations of the structurally unstable
symmetric all-to-all case. The bifurcations in Figures 3.3(b)-(d) and 3.4(b)-(d) are
also comparable to the saddle-node bifurcations for the N = 2 dynamics studied in
[11].

The bifurcation plots in Figures 3.3(e) and 3.4(e) correspond to a directed cycle
interconnection among nodes in the payoff graph. The equilibrium xmix,3 exists for
all values of µ ∈ [0, 1]. In Figure 3.3(e), three symmetric saddle-node bifurcations
occur at µ = µC1 and stable limit cycles appear about xmix,3. These are followed by
a Hopf bifurcation at µ = µC2, where xmix,3 changes stability from an unstable to a
stable focus and the limit cycles disappear. Figure 3.5 shows phase portraits of the
dynamics for various choices of µ, illustrating the Hopf bifurcation.

(a) µ = 0 (b) µ = 0.1 < µC1

(c) µ = 0.25 ∈ (µC1, µC2) (d) µ = 0.35 > µC2

Fig. 3.5. Phase portraits for dynamics (2.2) and with directed cycle topology as in Figure 3.3(e)
and mutation matrix (Q1). The figure on the left of each of the four sub-figures shows nullclines
(red, green and magenta), vector field (grey arrows) and equilibria (filled circles are stable, unfilled
circles are unstable). The figure on the right of each of the four sub-figures shows sample trajectories
for randomly chosen initial conditions. The color scale indicates the magnitude of the flow (vector
field) with hot colors corresponding to fast flow. b = 0.2 for this set of plots which gives µC1 = 0.212
and µC2 = 0.3. See accompanying animation phasecyc.mpg [3.1MB].

In [22] we proved that stable limit cycles of the dynamics exist in a wide region of
parameter space for circulant payoff matrices B, for which the directed cycle topology
in Figure 3.3(e) is a special case. Here we state two of the main results from [22] that
provide necessary and sufficient conditions for the existence of stable limit cycles for
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(2.2) with circulant payoff matrix given by

B := BC,3 = Circulant(1, α, β) =

 1 α β
β 1 α
α β 1

, {α, β} ∈ [0, 1) and α+ β > 0.

Lemma 3.1 provides necessary conditions for the existence of limit cycles for (2.2)
with N = 3 and payoff matrix BC,3. Corollary 3.2 provides sufficient conditions for
Hopf bifurcations and stable limit cycles and is a special case of the more general
result in Theorem 4.5 to follow in §4.

Lemma 3.1. The dynamics (2.2) with payoff matrix BC,3 have no closed orbits
in the simplex ∆2 for

µ >
(2− α− β)(α+ β)

6(α+ β + αβ)
=: µ01 for mutation (Q1), and

µ >
2(2− α− β)
3(4 + α+ β)

=: µ02 for mutation (Q2).

Proof. Follows from a straightforward application of Bendixson’s Criterion; refer
to [22] for details.

Corollary 3.2. Equilibrium xmix,3 of the dynamics (2.2) with N = 3 strate-
gies, payoff matrix BC,3, mutation matrix (Qi) (i = 1, 2) and bifurcation parameter
µ, undergoes a supercritical Hopf bifurcation at µ = µ0i leading to stable limit cycles
for µ < µ0i if α 6= β and additionally if 2α + 2β + 5αβ + α2 + β2 6= 2 for mutation
matrix (Q1).

Proof. The proof relies on satisfying the conditions of the Hopf Bifurcation The-
orem 4.3. This is shown for N ≥ 3 in Theorem 4.5. For N = 3, the first Lyapunov
coefficient is given by `1(α, β) = 3(α+β−2)

ω0i
, where,

ω0i = |ω̃i|, ω̃i =


(α−β)(α2+β2+2α+2β+5αβ−2)

6
√

3(α+β+αβ)
i = 1

(α−β)(1+α+β)√
3(4+α+β)

i = 2.

This follows from the calculation of `1 in Lemma 4.6. Supercriticality follows from
ω0i 6= 0 =⇒ `1 < 0.

Figure 3.3(e) shows limit cycles for the specific case of BC,3 with α = b and β = 0.
Figure 3.6 shows three more limit cycle bifurcation plots for non-zero α and β and
mutation matrix (Q1). Interestingly, for the parameter values selected in Figure 3.6(b)
stable limit cycles coexist with multiple stable equilibria. This coexistence of stable
equilibria and stable limit cycles implies that different initial conditions can yield
qualitatively distinct limiting behavior even with fixed parameters for the dynamics
(i.e., without bifurcations).

4. Hopf Bifurcation Analysis. In §3 we looked at Hopf bifurcations for the
replicator-mutator dynamics (2.2) with N = 3 strategies and circulant payoff matrix
BC,3. While the focus on three strategies was convenient for visualization, the sim-
ulations in Figure 3.2 indicate that the dynamics have stable limit cycles in higher
dimensions as well (N ≥ 4). In this section we show that this is indeed the case by
proving two main results. Theorem 4.5 shows that the dynamics undergo multiple
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Fig. 3.6. Bifurcation plots for the dynamics (2.2), payoff matrix BC,3 and parameters α and β
as shown. The existence of Hopf bifurcations and stable limit cycles for the set of parameter choices
follows from Corollary 3.2. Note the coexistence of stable equilibria with stable limit cycles in panel
(b).

Hopf bifurcations at distinct bifurcation points, and Lemma 4.6 provides analytical
conditions for the stability of the limit cycles arising from these Hopf bifurcations.

We focus on the dynamics with circulant payoff matrix BC,N ∈ RN×N , N ≥ 3
given by

BC,N := Circulant (1, α, 0, · · · , 0, β) , {α, β} ∈ [0, 1) and α+ β > 0, (4.1)

and mutation matrices (Q1) and (Q2). The directed graph induced by the payoff
matrix BC,N is illustrated in Figure 4.1.

1 2

3

4

N

N−1

BC,N =



1 α 0 · · · 0 β
β 1 α 0

0 β 1 α
...

...
. . . . . . . . . 0

0 β 1 α
α 0 · · · 0 β 1



α
β

 .  .  . 

Fig. 4.1. Graph topology corresponding to the two-parameter payoff matrix BC,N from (4.1).

We have chosen to study the circulant two-parameter payoff structure BC,N both
for purposes of tractability and to gain important insights regarding Hopf bifurcations
of the dynamics in N dimensions. In particular, we show the existence of multiple
Hopf bifurcations as several distinct pairs of eigenvalues cross the imaginary axis with
increasing mutation parameter µ. Further, the criticality of the bifurcations, and cor-
respondingly the existence of stable limit cycles, depends on the choice of parameters
α and β, unlike the N = 3 case where all existing bifurcations are supercritical. The
analysis also shows that the choice of the mutation matrix (Q1) and (Q2) plays an
important role in determining the existence and criticality of the Hopf bifurcations.

For payoff matrix BC,N , the equilibrium xmix,N = 1
N 1N =

[
1
N · · · 1

N

]T ∈ RN
undergoes the Hopf bifurcations. Lemma 4.1 shows that xmix,N is always an equi-
librium of (2.2) for circulant B.

Lemma 4.1. If the payoff matrix B is circulant, then xmix,N is an equilibrium
of the replicator-mutator dynamics (2.2).



LIMIT CYCLES IN EVOLUTIONARY NETWORK DYNAMICS 11

Proof. Suppose B is circulant. Then 1 is an eigenvector of B with eigenvalue

rB =
N∑
j=1

b1j , i.e., B1 = rB1. Matrix Q is also circulant by construction from (Q1)

and (Q2). This means that
N∑
j=1

qji =
N∑
j=1

qij = 1. Let x = xmix,N . Then f =

Bxmix,N = 1
NB1 = rB

N 1. From (2.2),

ẋi

∣∣∣
xmix,N

=
1
N

N∑
j=1

fj

(
qji − 1

N

)
=
rB
N2

N∑
j=1

qji − rB
N2

= 0,

and xmix,N is an equilibrium.
To proceed with the analysis, we start by calculating Dxg|xmix,N

, the Jacobian
matrix of the dynamics evaluated at the equilibrium point xmix,N . We then prove
conditions for the existence of bN−1

2 c pairs of complex conjugate eigenvalues of the
Jacobian. We prove that each of these pairs of complex eigenvalues has distinct
real part and hence each pair crosses the imaginary axis at different values of the
bifurcation parameter µ. We show that each such crossing satisfies the conditions of
the Hopf Bifurcation Theorem 4.3. We then derive an analytic expression for the sign
of the first Lyapunov coefficient `1 for each of the Hopf bifurcations in terms of the
payoff parameters α and β, the eigenvalues of the mutation matrix Q, the Jacobian
Dxg|xmix,N

, and the particular critical µ at which the bifurcation occurs.

4.1. Hopf Bifurcation Calculation. By Lemma 4.1, xmix,N is an equilibrium
for the replicator-mutator dynamics (2.2) with circulant payoff BC,N . The (i, j) entry

of the Jacobian Dxg|xmix,N
, denoted

[
Dxg|xmix,N

]
ij

, is given by

1
N

[
(2 + α+ β) qji + αqj−1,i + βqj+1,i −

(
2
N

+ δij

)
(1 + α+ β)

]
, (4.2)

where δij is the Kronecker delta and the indices i, j are denoted modulo N , i.e.
1 ≡ N + 1, 0 ≡ N , etc. For circulant fitness B, the Jacobian Dxg|xmix,N

is also
circulant.

Let ωN = cos
(

2π
N

)
+ i sin

(
2π
N

)
be a complex, primitive N th root of unity. Let

ωN,k = ωkN = cos
(

2π
N k
)

+ i sin
(

2π
N k
)

for any integer k. For a circulant matrix
M = [mij ] ∈ RN×N , let

λk(M) =
N∑
j=1

m1j ω
j−1
N,k . (4.3)

Then, the N eigenvalues of M are {λk(M), λk+1(M), · · · , λN+k−1(M)} for any k [8].
Lemma 4.2 provides necessary and sufficient conditions for the existence of complex
eigenvalues for the Jacobian Dxg|xmix,N

.
Lemma 4.2. The Jacobian Dxg|xmix,N

has
⌊
N−1

2

⌋
pairs of complex conjugate

eigenvalues if and only if α 6= β and

µ 6= α+ β

2 (1 + α+ β)
for mutation (Q1), or, µ 6= N − 1

N
for mutation (Q2).



12 D. PAIS, C. H. CAICEDO-NÚÑEZ, AND N. E. LEONARD

Proof. The proof relies on the cyclic properties of complex roots of unity. Details
are in Appendix A.

Note that if the conditions in Lemma 4.2 are not satisfied (neither for the mutation
(Q1) nor for the mutation (Q2)), then the eigenvalues of the Jacobian are strictly real.
When the conditions are satisfied, ωN,k is complex if and only if λk

(
Dxg|xmix,N

)
is

complex. There are
⌊
N−1

2

⌋
complex conjugate pairs among the ωN,k for k = 1, · · · , N .

For N = 3, the one complex pair is associated with the unique Hopf bifurcation point
as seen in Figures 3.3(e), 3.4(e) and 3.6.

For notational consistency, we state the Hopf bifurcation theorem (Theorem 3.4.2
from [4]) which will be used to prove the existence of stable limit cycles for the
dynamics.

Theorem 4.3. Suppose that the system ẋ = f(x, µ), x ∈ RN , µ ∈ R, has an
equilibrium (x0, µ0) and the following properties are satisfied:

• (H1) The Jacobian Dxf |(x0,µ0)
has a simple pair of pure imaginary eigen-

values λ(µ0) and λ(µ0) and no other eigenvalues with zero real parts,
• (H2) d

dµ (Re λ(µ))
∣∣∣
(µ=µ0)

6= 0.

Then the dynamics undergo a Hopf bifurcation at (x0, µ0) resulting in periodic solu-
tions. The stability of the periodic solutions is given by the sign of the first Lyapunov
coefficient of the dynamics `1|(x0,µ0)

. If `1 < 0 then these solutions are stable limit
cycles and the Hopf bifurcation is supercritical, while if `1 > 0 the periodic solutions
are repelling. Details of the calculation of the Lyapunov coefficient `1 are provided
in Appendix B.

To prove the existence of Hopf bifurcations we need to show that conditions (H1)
and (H2) of Theorem 4.3 are satisfied. We begin by calculating critical values of the
bifurcation parameter µ corresponding to pairs of eigenvalues crossing the imaginary
axis. Since mutation matrices (Q1) and (Q2) have entries that are linear in µ, the
entries of the Jacobian Dxg|xmix,N

are also all linear in µ. In order to simplify the
notation, we set [

Dxg|xmix,N

]
1j

= γj + µηj , j = 1, · · · , N, (4.4)

where both γj and ηj are independent of µ. Using this notation, we compute the
bifurcation points for the dynamics in Lemma 4.4.

Lemma 4.4. The pair of complex conjugate eigenvalues λr, λN−r of the Jacobian
Dxg|xmix,N

, for each r = 1, · · · , bN−1
2 c, is purely imaginary if and only if

µ = −
 N∑
j=1

γj cos
(

2π
N

(j − 1)r
) N∑

j=1

ηj cos
(

2π
N

(j − 1)r
)−1

=: µ0,r, (4.5)

and µ0,r satisfies the conditions of Lemma 4.2. Further, the bifurcation points µ0,r

are distinct, i.e. µ0,k 6= µ0,l when k 6= l.
Proof. The proof is in Appendix C.
From Lemma 4.4, a unique pair of eigenvalues of Dxg|(xmix,N ,µ0,r) is purely

imaginary at each µ0,r; this implies condition (H1). Lemma 4.4 also implies that
d
dµRe (λr) =

∑N
j=1 ηj cos

(
2π
N (j − 1)r

) 6= 0, which is condition (H2). We can now
collect these results and state our main theorem.



LIMIT CYCLES IN EVOLUTIONARY NETWORK DYNAMICS 13

Theorem 4.5. The equilibrium point xmix,N with payoff matrix BC,N undergoes
bN−1

2 c Hopf bifurcations, with the rth
(
r = 1, · · · , bN−1

2 c
)

of such bifurcations located
at µ0,r given by (4.5), if α 6= β and

µ0,r 6= α+ β

2 (1 + α+ β)
for mutation (Q1), or, µ0,r 6= N − 1

N
for mutation (Q2).

Remark 1. Equation (4.5) gives an analytic expression for µ0,r corresponding
to a unique pair of purely imaginary eigenvalues of the Jacobian. However, not all
values of µ0,r are feasible. That is, there might be pairs (α, β) ∈ [0, 1) × [0, 1) that
yield bifurcation points µ0,r outside the feasible parameter range 0 ≤ µ0,r ≤ 1 of our
model.

4.2. Criticality of the Hopf Bifurcation. In Theorem 4.5 we proved condi-
tions for the existence of Hopf bifurcations for the replicator-mutator dynamics with
payoff BC,N . In this section we study the criticality of the bifurcations (and corre-
spondingly the existence of stable limit cycles for the dynamics) by computing an
analytical expression for the first Lyapunov coefficient `1|(xmix,N ,µ0,r) in Lemma 4.6.

Lemma 4.6. Let A0 = Dxg|(xmix,N ,µ0,r). Then A0 has a pair of purely imaginary
eigenvalues λr (A0) = i ω̂ and λN−r (A0) = −i ω̂, where ω̂ ∈ R is calculated from (4.3).
Define t = r sign (ω̂) and ω0 = |ω̂|. The first Lyapunov coefficient of the dynamics
(2.2) with payoff BC,N evaluated at the fixed point xmix,N and bifurcation point µ0,r

is given by

`1|(xmix,N ,µ0,r) =
1

2ω0
Re (T1 + T2) , where,

T1 = −2N
[
2 + (α+ β)(ωtN + ω−tN )

]
and

T2 =
2λt(QT ) λ2t(QT )
2 iω0 − λ2t(A0)

(
1 + αωtN + βω−tN

) [
2 +

(
1 + ω3t

N

) (
βω−2t

N + αω−tN
)]
.

Proof. The function λk(M) is defined for general integer k and square matrix M
in (4.3). We exploit the circulant structure of the dynamics to obtain this analytical
result. Details of the calculation are in Appendix D.

Lemma 4.6 allows us to study the criticality of the Hopf bifurcations at each of
the bifurcation points µ0,r as a function of the parameters (α, β) ∈ [0, 1) × [0, 1).
In Figure 4.2 we plot regions of positive and negative `1 as a function of α and
β. For each of the subplots in Figure 4.2, black denotes negative l1 (supercritical
Hopf bifurcation, stable limit cycles) and white denotes positive l1 (subcritical Hopf
bifurcation, repelling periodic solutions). Gray denotes the unfeasibility region for
µ0,r (either µ0,r < 0 or µ0,r > 1, see Remark 1). The red curves correspond to critical
points µ0,r that do not satisfy the conditions of Lemma 4.2.

Figure 4.2 illustrates the effect of the number of strategies N and payoff param-
eters α and β on the existence and criticality of Hopf bifurcations for the dynamics.
Several different cases exist. For example, there are cases corresponding to a super-
critical bifurcation throughout (α, β) ∈ [0, 1) × [0, 1) (as when N = 3), and cases
for which the bifurcation is subcritical on a subset of the parameter space (as when
N = 4 with mutation matrix (Q2)). The regions corresponding to infeasible critical
points (µ0,r outside the range [0, 1]) can be connected as when N = 8, r = 3, or
disconnected, as when N = 6, r = 1 with mutation matrix (Q1). Some cases are
illustrated in §4.3.
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Fig. 4.2. Criticality of the Hopf bifurcations as a function of parameters α and β.

4.3. Illustrations of Hopf Bifurcations. The existence and criticality of Hopf
bifurcations computed in Lemma 4.4 and Theorem 4.5 vary as a function of parameters
α and β in ways that may not be immediately obvious. In this subsection, we explore
the parameter dependence of the Hopf bifurcations using a set of selected simulations
to help illustrate this variation.

Figure 4.3 (and accompanying animation slice.mpg [1.8MB]) shows bifurcation
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Fig. 4.3. Effect of parameters α and β on bifurcations. Subplots labeled (a)–(e) are bifurcation
plots for the dynamics with N = 3 strategies, mutation matrix (Q1), α = 0.1 and β as shown.
The top left subplot shows the criticality and existence of the Hopf bifurcations (taken from Figure
4.2: N = 3, (Q1)) with parameters corresponding to subplots (a)–(e) marked. The amplitude of
oscillations gets smaller as β → α (approaching subplot (b)) and as 2α+ 2β + 5αβ + α2 + β2 → 2
(approaching subplot (d)). See accompanying animation slice.mpg [1.8MB].

Fig. 4.4. Bifurcation plots for the dynamics with N = 6 strategies, parameters α = 0.8,
β = 0.05, and mutation matrix as indicated on each subplot. In the case of the left subplot with
mutation matrix (Q1), the Hopf bifurcation point µ0,1 = 1.24 lies outside the feasible range µ ∈ [0, 1].

plots for the dynamics with N = 3 and mutation matrix (Q1). Parameter α is set
to 0.1 and β is varied between 0 and 1. Looking at the corresponding criticality
plot in Figure 4.3 (reproduced from Figure 4.2), we expect that the bifurcation is
supercritical for all β except at two points labeled (b) and (d). These are precisely
the points that violate the conditions of Lemma 4.2 and Theorem 4.5. i.e., at (b),
α = β = 0.1 and at (d), µ0,1 = α+β

2(1+α+β) for α = 0.1 and β = 0.58. As a result,
the bifurcation plots show the existence of stable limit cycles for all values of β along
the line α = 0.1, except at the points (b) and (d). Stable limit cycles are apparent
in Figures 4.3(a), 4.3(c) and 4.3(e), but not in Figures 4.3(b) and 4.3(d). The payoff
topology corresponding to the parameters in Figure 4.3(b) is fully symmetric, with a
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bifurcation plot analogous to Figure 3.3(a).
Figure 4.4 shows the bifurcation plots for the dynamics with N = 6, α = 0.8,

β = 0.05, and mutation matrices (Q1) and (Q2). The corresponding criticality plots
in Figure 4.2 show that the supercritical Hopf bifurcation point µ0,1 lies outside the
feasible range µ ∈ [0, 1] for (Q1) and inside the feasible range for (Q2), for the chosen
parameters. This is illustrated in Figure 4.4; the left plot shows a Hopf bifurcation at
µ = 1.249 while the right plot shows a Hopf bifurcation at µ = 0.363. The left plot
in Figure 4.4 also illustrates that infeasible supercritical bifurcation points can yield
stable limit cycles within the range of feasible µ.

5. N ≥ 4 One Parameter Circulant. In §4 we focused on a particular two-
parameter circulant payoff structure given by (4.1) and illustrated in Figure 4.1. In
this section we leverage the results from §4 to study the dynamics corresponding to
a class of circulant payoff structures with each node having a single outgoing edge.
For simplicity of presentation, we consider only mutation matrix (Q1) in this section.
We show that for a particular set of topologies in this class, the dynamics exhibit
multiple simultaneous Hopf bifurcations about distinct fixed points. The analysis in
this section points to the fact that the dynamics with payoff graphs having multiple
embedded cycles can have multiple distinct stable limit cycle attractors; we explore
these multi-cycle dynamics more generally in §6.

Fig. 5.1. Graph topologies corresponding to circulant payoff matrix BN,k from (5.1) for N =
5, 6, 15. Three cases are shown, Case 1 corresponds to simple cycles, Case 2 to multiple cycles, and
Case 3 to connected pairs of vertices (only exists for N even). Note that multiple values of k can
yield the same graph topology modulo a vertex relabeling; non-isomorphic topologies have distinct d.

Consider the dynamics (2.2) where the payoff matrix B is given by

B := BN,k = Circulant (1, a1, · · · , aN−1) , with ak = α and as = 0 for s 6= k. (5.1)

Let gcd(a, b) denote the greatest common divisor of a and b. Two graphs with payoff
matrices BN,k1 and BN,k2 are isomorphic if and only if gcd(N, k1)=gcd(N, k2). Hence,
among the payoff matrices BN,k, the set of matrices BN,d where d belongs to the set
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of proper divisors of N , corresponds to a set of non-isomorphic graph topologies. We
split the set of graph topologies with payoff BN,d (d a proper divisor of N) into three
distinct cases as described below:
(1) d = 1, the graph is a directed cycle containing all vertices
(2) 1 < d < N/2, the graph consists of d disjoint cycles, each of length N/d
(3) d = N/2, the graph consists of N/2 disjoint pairs of connected vertices. This

case exists only for N even.
Figure 5.1 illustrates the three cases of graph topologies for N = 5, 6, and 15.

In addition to xmix,N , the dynamics with payoff matrix BN,d and mutation
matrix (Q1) have d equilibria denoted xj,d,N and given by

xj,d,N =
[

0Tj−1
d
N 0Td−j · · · 0Tj−1

d
N 0Td−j

]T ∈ RN , j = 1, · · · , d. (5.2)

In Case 1, d = 1, and correspondingly j = 1, and x1,1,N = xmix,N . For a given
N and d 6= 1, the d equilibria xj,d,N are cyclically and symmetrically spaced around
xmix,N . Case 1 is studied in detail in §4 and obtained by setting β = 0 (a simple
one-parameter cycle). For the topology with pairs of connected nodes in Case 3, the
Jacobian of (2.2) evaluated at the equilibrium xmix,N , or also at any of the equilibria
xj,N/2,N , is real and symmetric and therefore has only real eigenvalues. Thus the
system cannot have Hopf bifurcations for these equilibria in this case. We now focus
on Case 2 and study the dynamics with payoff topologies comprising multiple cycles.

5.1. Case 2 Analysis. We begin the analysis of the dynamics with multi-cycle
graph topologies by first looking at the case N = 6, d = 2 (payoff B6,2), before
generalizing to higher dimensions. The two disjoint cycles in the graph corresponding
to B6,2 suggest that the behavior of the system might be similar to that observed
for the N = 3 cycles in §3. Indeed, simulations of the dynamics shown in Figure 5.2
suggest the existence of two stable limit cycle attractors, each dominated exclusively
by three strategies, corresponding to the connected nodes of the graph. Further,
simulations of the phase space for 50 different randomly selected initial conditions, as
in Figure 5.2(b), indicate that the two limit cycles are the only stable attractors for
the dynamics for an appropriate range of bifurcation parameter µ.

The linearization of the system at equilibrium xmix,6 violates condition (H1) of
Theorem 4.3 (i.e., complex eigenvalues of the Jacobian have algebraic multiplicity
greater than one). However the dynamics with payoff B6,2 have two other equilibria
(as in (5.2)) given by

x1,2,6 =
[

1/3 0 1/3 0 1/3 0
]T ,

x2,2,6 =
[

0 1/3 0 1/3 0 1/3
]T
.

The simulations in Figure 5.2 suggest that the dynamics undergo Hopf bifurcations
at each of these equilibria. In Corollary 5.1, which follows from Corollary 3.2, we
prove that this is indeed the case by showing that x1,2,6 and x2,2,6 undergo two
simultaneous Hopf bifurcations at the critical point µ = 2−α

6 .
Corollary 5.1. The system (2.2) with payoff matrix B6,2 and mutation matrix

(Q1) has equilibria x1,2,6 and x2,2,6 that undergo supercritical Hopf bifurcations at
the critical point µ = 2−α

6 with α 6= √3− 1.
Proof. Here we analyze the equilibrium x1,2,6. The analysis for x2,2,6 is similar.
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Fig. 5.2. Simulations of the dynamics (2.2) for N = 6, d = 2, payoff matrix B6,2, and µ = 0.25.
The top row of plots shows two typical trajectories of the system for two different random initial
conditions. The bottom row illustrates the corresponding limit cycle attractors of the dynamics in a
decoupled phase space with 50 trajectories initialized randomly. The two stable limit cycle attractors
are each dominated strictly by three strategies. The red trajectories correspond to the components
x1, x3 and x5, and the blue trajectories correspond to x2, x4 and x6, in both rows.

The Jacobian Dxg|x1,2,6
is given by

Dxg|x1,2,6
=



1−2α−6µ
9 0 −2+α−3αµ

9 0 3αµ+6µ−2−2α
9 0

0 −α−1
3 0 0 0 0

3αµ+6µ−2−2α
9 0 1−2α−6µ

9 0 −2+α−3αµ
9 0

0 0 0 −α−1
3 0 0

−2+α−3αµ
9 0 3αµ+6µ−2−2α

9 0 1−2α−6µ
9 0

0 0 0 0 0 −α−1
3

 .

Permuting rows and columns (i.e. reindexing the nodes), this matrix can be rewritten
as the block matrix M6,2 given by

M6,2 =


1−2α−6µ

9
−2+α−3αµ

9
3αµ+6µ−2−2α

9
3αµ+6µ−2−2α

9
1−2α−6µ

9
−2+α−3αµ

9−2+α−3αµ
9

3αµ+6µ−2−2α
9

1−2α−6µ
9

03×3

03×3 − 1+α
3 I3×3

 , (5.3)

which has the same eigenvalues as Dxg|x1,2,6
. The upper diagonal block of M6,2 is the
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same as the Jacobian of the system (2.2) for N = 3, payoff BC,3 with β = 0, mutation
(Q1) and evaluated at equilibrium

[
1/3 1/3 1/3

]T . The lower diagonal block is a
Hurwitz matrix. Also the two blocks are decoupled, hence the eigenvalues of M6,2 are
given by the union of the sets of eigenvalues of each block. A pair of the eigenvalues
crosses the imaginary axis resulting in a Hopf bifurcation for precisely the conditions
given in Corollary 3.2 with β = 0 and mutation matrix (Q1) (i.e., a critical point
µ = 2−α

6 and complex eigenvalue condition α 6= √3− 1). In Appendix E, we leverage
the reindexing and decoupling (as in M6,2) to compute the first Lyapunov coefficient
for the dynamics and show that the Hopf bifurcations in this case are supercritical.

Following the intuition developed from the analysis of the two-cycle dynamics for
N = 6 above, and the illustrations in Figure 5.2, we now extend the analysis to general
N . Just as in the N = 6 case, a decoupling in the Jacobian allows us to prove the
existence of multiple Hopf bifurcations about the d fixed points xj,d,N . The (m,n)
entry for the Jacobian of the system (2.2) with payoff BN,d and mutation matrix (Q1)
is given by

[Dxg]mn = (2xn + αxn+d) qnm + αxn−dqn−d,m − xm [2xn + α (xn−d + xn+d)]

−
(

N∑
k=1

x2
k + α

N∑
k=1

xkxk+d

)
δmn. (5.4)

Evaluating the Jacobian from (5.4) at the equilibrium xj,d,N , and rearranging its
rows and columns analogous to (5.3), we obtain the matrix

MN,d =

 AN1×N1 0N2×N1

0N1×N2 − 1+α
N1

IN2×N2

 , where N1 =
N

d
, N2 = N −N1,

and A is the Jacobian of the system (2.2) with payoff BN1,1 (simple cycle), mutation
(Q1) and evaluated at equilibrium x1,1,N1 = 1

N1
1N1 = xmix,N1 .

MN,d has a block diagonal structure with N − N1 eigenvalues equal to − 1+α
N1

.
Its remaining N1 eigenvalues are given by the eigenvalues of the circulant matrix A.
The Jacobian (5.4) evaluated at each of the d equilibria xj,d,N is similar to MN,d,
hence making the Hopf bifurcation analysis of all of these equilibria equivalent. The
matrix A is precisely the Jacobian studied in §4 for the case N = N1 and β = 0;
hence the existence of Hopf bifurcations follows from Theorem 4.5. The criticality of
each of these d simultaneous Hopf bifurcations of equilibria xj,d,N is analogous to the
criticality calculations in §4.2 and is computed in Appendix E. Corollary 5.2 below
summarizes the bifurcation result described above and is the multi-cycle extension to
Theorem 4.5. To simplify notation, analogous to (4.4) we set [A]1n = γn + µηn.

Corollary 5.2. The system (2.2) with payoff matrix BN,d (with N ≥ 6, d =
1, · · · , N/2, d a proper divisor of N) and mutation matrix (Q1) has d equilibria xj,d,N

(j = 1, · · · , d) that concurrently undergo
⌊
N−d
2d

⌋
Hopf bifurcations, with the rth of such

bifurcations located at

µ0,r = −
N/d∑
n=1

γn cos
(

2π
N

(n− 1)rd
)N/d∑

n=1

ηn cos
(

2π
N

(n− 1)rd
)−1

for r = 1, · · · , bN−d2d c, if α 6= β and µ0,r 6= α
2(1+α) .
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In this section we have shown the coexistence of multiple stable limit cycles for
the dynamics, when the underlying circulant payoff graph topologies have multiple
distinct cycles. In the following section we investigate the connections between cycles
in the payoff graph topology and limit cycles in the dynamics for more general payoff
structures.

6. Extensions. Studying the fully general model (2.2), even with N = 3 strate-
gies, is highly complex. This complexity motivated our restriction to circulant payoff
matrices of the form BC,N (4.1) and BN,d for the analysis in §4 and §5. These results

Fig. 6.1. Limit cycles for noncirculant payoff matrices B, N = 3, and mutation matrix (Q1).
The solid arrows in the graphs are strong links with weight b and the dashed arrows are weak links
with weight εb. Parameters for all plots are b = 0.2 and ε = 0.1.

might lead one to conclude that the circulant structure of payoff matrix B is a nec-
essary condition for Hopf bifurcations of the dynamics. In this section we illustrate
that this is not the case. We show examples of limit cycles for selected noncirculant
payoff matrices, first for N = 3 strategies, and then for N ≥ 4. The simulations in
this section illustrate a tight connection between the topology of the payoff graphs
and the existence of stable limit cycles for the dynamics. In particular, embedded
cycles in the payoff graph appear to be necessary for (and often lead to) the existence
of limit cycles, and amplitude and frequency of limit cycles appear to be related to
symmetries in the graph.

Consider 3 × 3 payoff matrices B satisfying (2.1) and Condition 1 that have
directed links of two kinds: strong links with weights b and weak links with weights
εb where b ∈ (0, 1) and 0 < ε� 1. There are 73 corresponding non-isomorphic graph
topologies in the set [22]. Figure 6.1 shows stable limit cycles for four topologies in
this set corresponding to noncirculant payoff matrices. Each of these topologies has
an embedded directed cycle.

We next look at selected noncirculant payoff topologies with N ≥ 4 nodes in Fig-
ure 6.2. The bifurcation plots (middle panel in Figure 6.2) are obtained by simulating
the dynamics for a range of different values of mutation parameter µ and random
initial conditions. Stable equilibria are marked blue and limit cycles are marked ma-
genta. Also shown in the right panel of the figure are limit cycle trajectories of the
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Fig. 6.2. Limit cycles for the dynamics (2.2) with noncirculant payoff graph topology. The
left panel shows the payoff graph; all edges have equal weight b = 0.7. The center panel show the
bifurcation plot for each topology and mutation matrix (Q1) or (Q2) as indicated. The bifurcation
plot is obtained by simulating the dynamics for 120 values of the mutation parameter µ in the range
shown on the x-axis of each plot. For each µ, the dynamics are simulated for 12 randomly chosen
initial conditions and the limiting set (stable equilibria or limit cycles) is obtained. Stable equilibria
are plotted in blue and limit cycles are plotted in magenta. The right panel shows trajectory plots
of the dynamics for a value of µ chosen in the magenta (limit cycle) range of the bifurcation plot
(µ = 0.2 in (a), (b) and (c) (Q2); µ = 0.4 in (c) (Q1)). The colors of each trajectory match the
colors of the nodes on the corresponding payoff graph. For topology (b), the two trajectory plots
correspond to different initial conditions.
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dynamics for specific chosen values of µ in the magenta range. The colors of the nodes
in the topologies (left panel) match the colors of the corresponding trajectories.

Several interesting features can be observed in the plots in Figure 6.2. In topology
(a), the connection between the amplitude of oscillation of a given strategy in the
trajectory plot and the location of the corresponding node on the graph is apparent.
In particular, the cyan node, which is part of two directed cycles, has a significantly
higher oscillation amplitude than the green node, which is part of only one directed
cycle. The symmetry of topology (b) about the red node leads to the existence of
two stable limit cycle attractors, much like the illustrations in §5. On the other hand,
topology (c) has two embedded cycles but only one limit cycle attractor for both (Q1)
and (Q2) mutation matrices.

Fig. 6.3. Limit cycles for the dynamics (2.2) with random payoff graphs. The left panel shows
the payoff graph with two types of edges: strong edges (solid lines) with a weight of b and weak edges
(dashed lines) with a weight of εb; here b = 0.7 and ε = 0.1. The center panel shows the resulting
trajectories with mutation (Q2) and suitable µ (0.2 in (a), 0.25 in (b) and 0.27 in (c)). The right
panel highlights the interconnection between nodes corresponding to the dominant components of the
limit cycle trajectories. The color of each of the nodes on the payoff graph matches the color of
the corresponding trajectory in the center panel. In each case, it is observed that there is a directed
cycle between the dominant component nodes.

In Figure 6.3, we go a little further and consider random payoff graph topologies
having strong links with weight b and weak links with payoff εb, much like in Figure
6.1. We simulate the dynamics for a set of different random graphs and a range of
values for the mutation parameter µ, and focus specifically on graphs and parameters
that induce a limit cycle oscillation for the dynamics. We show three such examples in
Figure 6.3. For each set of simulated limit cycle trajectories, the dominant components
are obtained; dominant components are defined as those having a relatively high
oscillation amplitude or correspondingly a trajectory with standard deviation above
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a set threshold. The main observation we make here is that the existence of limit
cycles for the dynamics is tied to the existence of a directed cycle between nodes
of the payoff graph. In all our simulations of random graphs, for both mutation
matrices (Q1) and (Q2), we consistently find that the dominant components of stable
limit cycles correspond to the existence of at least one directed cycle between the
corresponding nodes of the payoff graph, as illustrated in the right panel of Figure
6.3.

The purpose of the simulations in this section is to illustrate that one can break
symmetry in the payoff graph significantly (as compared to the modest symmetry
breaking that yields the circulant structures analyzed in this paper) and get stable
limit cycles for the dynamics, even in the case of random graph topologies, as long
as the topologies have at least one embedded cycle. In addition to limit cycles, the
dynamics can also have chaotic attractors as studied in [15, 16]. We have not seen
chaotic attractors for the payoff topologies and mutation matrices (Q1) and (Q2)
studied in this paper; we conjecture that studying alternative mutation models as the
one used in [16] will yield chaotic dynamics.

7. Final Remarks. The replicator-mutator dynamics define a canonical model
from evolutionary theory and have been recently applied to model the evolution of
language. The dynamics also provide a simple model for the analysis of behavior
dominance in social networks where replication is akin to imitation of individuals
subscribed to successful behaviors in a population, and mutation is akin to random
error in behavior selection. In networked multi-agent systems, the dynamics model
the exploration versus exploitation tradeoff.

Much of the existing analysis of the replicator-mutator dynamics has been fo-
cused on stable equilibrium limiting behavior. The analysis in the literature has also
primarily considered payoff and mutation matrices that are symmetric, which corre-
spond to undirected payoff graph topologies. Recent work [14] on a graph theoretic
model of language dynamics has shown that the graph connectivity plays a criti-
cal role in determining the location of bifurcation points in the dynamics, but the
restriction to undirected graphs confines the range of limiting behavior to stable equi-
libria. In [16], it is shown that considering asymmetric payoff and mutation matrices
(corresponding to directed graphs) can yield limit cycle behavior and even chaos for
replicator-mutator dynamics.

Here we prove conditions such that stable limit cycles in the replicator-mutator
dynamics arise as a consequence of Hopf bifurcations for N ≥ 3 strategies and cir-
culant payoff matrices. From a graph perspective, we show how breaking symmetry
by considering directed graphs allows for oscillatory limiting behavior. We empha-
size that the limit cycles are not restricted to circulant payoffs, but can exist for
noncirculant payoffs as shown in §6. The simulations in §6 illustrate the connection
between embedded directed cycles in the payoff graph and the existence of stable limit
cycles for the dynamics. A Hopf bifurcation analysis of these more general cases is
an intended future direction. We also intend to explore the effect of the structure
of the mutation matrix, beyond (Q1) and (Q2) considered here, as a step towards
understanding the transition to chaos illustrated in [16].

A further future direction is the application of such evolutionary models to the
design of decision-making protocols in multi-agent robotic systems. In this case the
mutation parameter µ can be interpreted as a controlled design term that can be varied
to get a range of emergent system-level behavior, including dominance, oscillations
and mixed collapse.
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Appendix A. Proof of Lemma 4.2.
Proof. To simplify notation in this proof, we denote the Jacobian Dxg|xmix,N

as
matrix A. Since A is circulant, its eigenvalues are given by (4.3). From (4.3) we see
that the eigenvalue λk(A) cannot be complex when ωkN is real. To guarantee complex
ωkN let k be given by

k ∈
{
{1, · · · , N − 1} N odd
{1, · · · , N − 1} \ {N2 } N even.

One can verify that λN−k(A) = λk(A). Hence, as long as the λk(A) are complex,
A has

⌊
N−1

2

⌋
complex conjugate pairs of eigenvalues. Now we compute Im (λk(A))

and hence obtain conditions for the existence of complex λk(A). The calculations
differ slightly between mutation matrices (Q1) and (Q2) as shown below. We obtain
a simplified expression for the imaginary component of the eigenvalues by grouping

identical terms of A and using the identity
N∑
j=1

ωjkN = 0.

• Mutation (Q1):

Im (λk(A)) =

{
(a12 − a1N ) sin

(
2π
N k
)

N = 3, 4, 5
(a12 − a1N ) sin

(
2π
N k
)

+ (a13 − a1,N−1) sin
(

2π
N 2k

)
N ≥ 6

• Mutation (Q2):

Im (λk(A)) = (a12 − a1N ) sin
(

2π
N
k

)
N ≥ 3

Substituting for the aij terms from (4.2),

Im (λk(A)) = 0 ⇐⇒
(α− β)

(
1− µ− µ (2+α+β)

α+β

)
= 0 mutation (Q1)

(α− β)
(

1− µ− µ
N−1

)
= 0 mutation (Q2).

(A.1)

The conditions of the Lemma follow from the expressions in (A.1).

Appendix B. First Lyapunov Coefficient. As stated in Theorem 4.3, the
sign of the first Lyapunov coefficient `1|(x0,µ0)

evaluated at the fixed point x0 and
bifurcation point µ0 determines the criticality of the Hopf bifurcation. What follows
are the expressions for calculating `1|(x0,µ0)

as presented in [13].
Consider the N -dimensional dynamical system ẋ = f(x, µ) where x ∈ RN and

µ ∈ R. Let A0 = Dxf |(x0,µ0)
, where x0 ∈ RN , µ0 ∈ R. A0 has two purely imaginary

complex conjugate eigenvalues, given by ±iω0, where ω0 > 0. Define T1, T2 and T3

as

T1 = 〈p,C (q, q, q)〉
T2 =

〈
p,B

(
q, (2iω0 −A0)−1

B (q, q)
)〉

T3 = −2
〈
p,B

(
q, A−1

0 B (q, q)
)〉
.

Here 〈r, s〉 = r · s is the complex inner product between two complex vectors, and
q and p are respectively the normalized eigenvector and adjoint-eigenvector of A0
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satisfying A0q = iω0q, A
T
0 p = −iω0p, and normalization 〈p, q〉 = 1. B and C are

high dimensional tensors given by

B (r, s) =


B1 (r, s)
B2 (r, s)

...
BN (r, s)

 , Bi (r, s) =
∑
k,l

∂2fi
∂xk∂xl

∣∣∣∣
x=x0

rksl

C (r, s, t) =


C1 (r, s, t)
C2 (r, s, t)

...
CN (r, s, t)

 , Ci (r, s, t) =
∑
k,l,m

∂3fi
∂xk∂xl∂xm

∣∣∣∣
x=x0

rksltm

The first Lyapunov coefficient `1|(x0,µ0)
is given by

`1|(x0,µ0)
=

1
2ω0

Re (T1 + T2 + T3) .

Appendix C. Proof of Lemma 4.4.
Proof. To simplify notation in this proof, we denote the Jacobian Dxg|xmix,N

as matrix A. From Lemma 4.2, for r = 1, · · · , ⌊N−1
2

⌋
, λr(A) is complex. Using the

notation a1j = γj + µηj we obtain

Re (λr(A)) =
N∑
j=1

γj cos
(

2π
N

(j − 1)r
)

+ µ

N∑
j=1

ηj cos
(

2π
N

(j − 1)r
)

which is zero if and only if

µ = −
 N∑
j=1

γj cos
(

2π
N

(j − 1)r
) N∑

j=1

ηj cos
(

2π
N

(j − 1)r
)−1

=: µ0,r. (C.1)

Before we proceed, we need to establish that µ0,r is indeed well defined; that is,
the denominator in (C.1) is non-zero. Let dr denote the denominator of µ0,r. For
N = 3, dr = 6(α + β + αβ) 6= 0 for mutation (Q1) and dr = 3(4 + α + β) 6= 0
for mutation (Q2); for N = 4, dr = 2(α + β + 2αβ) 6= 0 for mutation (Q1) and
dr = 4(2 + α + β) 6= 0 for mutation (Q2). For N ≥ 5, by grouping identical terms,

using the identity
N∑
j=1

ωjrN = 0 and replacing the expressions for ηj in terms of α and

β we have,

dr 6= 0 ⇐⇒
{

2 (α+ β)
(
cos
(

2π
N r
)− 1

)
+ 2αβ

(
cos
(

2π
N 2r

)− 1
) 6= 0 mutation (Q1)

cos
(

2π
N r
) 6= − 2+α+β

α+β mutation (Q2).

The conditions above can be verified to always hold given that the cosine function is
bounded between −1 and 1 and α and β satisfy the conditions in (4.1).

Finally, we establish that if r, s = 1, · · · ⌊N−1
2

⌋
, r 6= s then µ0,r 6= µ0,s, i.e. the

bifurcation points are distinct. If N = 3, 4, Lemma 4.2 establishes that there is only
one bifurcation point. For N = 5, the two critical points can be shown to be distinct
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by a direct calculation. Here we show the distinctness of the critical points in the
cases N ≥ 6. Using (C.1),

µ0,r 6= µ0,s ⇐⇒
∑N
j=1 γj cos

(
2π
N (j − 1)r

)∑N
j=1 ηj cos

(
2π
N (j − 1)r

) 6= ∑N
j=1 γj cos

(
2π
N (j − 1)s

)∑N
j=1 ηj cos

(
2π
N (j − 1)s

) . (C.2)

By grouping identical terms, using the identity
N∑
j=1

ωjrN = 0 and replacing the

expressions for γj and ηj in terms of α and β,

(C.2) ⇐⇒



(1 + α+ β + 2αβ) (α+ β)
+2αβ

[
cos
(

2π
N r
)

+ cos
(

2π
N s
)]

+2 (α+ β)αβ
[
cos
(

2π
N r
)

cos
(

2π
N s
)] 6= 0 mutation (Q1)

cos
(

2π
N r
) 6= cos

(
2π
N s
)

mutation (Q2)

(C.3)

For mutation (Q1), the left hand side of the inequality in (C.3) can be bounded
below by (α− β)2 + (α+ β) > 0. For mutation (Q2), the condition in (C.3) is
equivalent to the initial hypothesis of r 6= s. The distinctness result now follows.

Appendix D. Proof of Lemma 4.6.
Proof. Here we compute the terms T1, T2 and T3 from Appendix B to obtain a

simplified analytical expression for the first Lyapunov coefficient `1|(xmix,N ,µ0,r). For
a circulant matrix M ∈ RN×N , let {(λk,vk)} be an eigenvalue–right eigenvector pair
(Mvk = λkvk), where

vk =
[

1 ωkN ω2k
N · · · ω

(N−1)k
N

]T
and λk (M) =

N∑
j=1

m1j ω
(j−1)k
N . (D.1)

We compute `1|(xmix,N ,µ0,r) as a function of the parameters α and β. From Appendix
B, the Jacobian Dxg|(xmix,N ,µ0,r) is denoted by A0 with eigenvalues λr(A0) = i ω̂ and
λN−r(A0) = −i ω̂. Let ω0 = |ω̂|, t = r sign (ω̂), and q = vt. Note that A0q = iω0q.

Computing T1. Direct calculation and simplification gives

Ci (q, q, q) = −2N
[
2 + (α+ β)ωtN + (α+ β)ω−tN

]
ω

(i−1)t
N .

Hence

C (q, q, q) = −2N
[
2 + (α+ β)ωtN + (α+ β)ω−tN

]
q,

which leads to

T1 = 〈p,C (q, q, q)〉 = −2N
[
2 + (α+ β)ωtN + (α+ β)ω−tN

] 〈p, q〉
= −2N

[
2 + (α+ β)

(
ωtN + ω−tN

)]
. (D.2)
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Computing T2. We compute

B (q, q) = 2
[
1 + αωtN + βω−tN

]
QTv2t.

Since Q is circulant, so is QT and v2t is a right eigenvector. Then

B (q, q) = 2
[
1 + αωtN + βω−tN

]
λ2t

(
QT
)
v2t.

For each eigenvalue-eigenvector pair λ,v of A0, 1/ (2iω0 − λ) is the corresponding
eigenvalue for the eigenvector v of (2iω0I −A0)−1, where I denotes the identity
matrix. Then,

(2iω0I −A0)−1
B (q, q) = 2

[
1 + αωtN + βω−tN

]
λ2t

(
QT
)

2iω0 − λ2t (A0)
v2t.

Since B (x, κy) = κB (x,y) for any κ ∈ C, then

B
(
q, (2iω0 −A0)−1

B (q, q)
)

= 2

[
1 + αωtN + βω−tN

]
λ2t

(
QT
)

2iω0 − λ2t (A0)
B (q,v2t) .

A calculation similar to that for B (q, q) gives

Bi (q,v2t) =
[
βω−2t

N + αω−tN + 2 + βωtN + αω2t
N

] N∑
j=1

qji ω
(j−1)t
N .

Hence

B (q,v2t) =
(
βω−2t

N + αω−tN + 2 + βωtN + αω2t
N

)
λt
(
QT
)
q.

This implies

B
(
q, (2iω0 −A0)−1

B (q, q)
)

=
2λt

(
QT
)
λ2t

(
QT
)

2iω0 − λ2t (A0)
(
1 + αωtN + βω−tN

) [
βω−2t

N + αω−tN + 2 + βωtN + αω2t
N

]
q

and

T2 =
〈
p,B

(
q, (2iω0 −A0)−1

B (q, q)
)〉

=
2λt

(
QT
)
λ2t

(
QT
)

2iω0 − λ2t (A0)
(
1 + αωtN + βω−tN

) [
βω−2t

N + αω−tN + 2 + βωtN + αω2t
N

]
. (D.3)

Computing T3. We show that B (q, q) = 0.

Bi (q, q) = −2− (α+ β)
(
ωtN + ω−tN

)
+
[
2 + (α+ β)

(
ωtN + ω−tN

)] N∑
j=1

qji

=
[
2 + (α+ β)

(
ωtN + ω−tN

)] −1 +
N∑
j=1

qji

 = 0, (D.4)
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where the last equality comes from the fact that Q is a doubly-stochastic matrix. This
implies

T3 = −2
〈
p,B

(
q, A−1

0 B (q, q)
)〉

= −2 〈p,B (q,0)〉 = 0.

Combining the previous expressions for T1, T2 and T3, the result follows.

Appendix E. Criticality analysis for Corollaries 5.1 and 5.2.

In this section we establish that the Lyapunov coefficient at each of the d concur-
rent Hopf Bifurcations of the equilibria xj,d,N is identical to that at the equilibrium
xmix,N/d for the simple cycle payoff BC,N/d with β = 0 (i.e. BN/d,1). The mutation
matrix used is (Q1). Let N/d = N1 and N2 = N −N1.

In order to simplify the calculations, consider the payoff matrix B̂N,d given by

B̂N,d =


BN1,1 0N1×N1 · · · 0N1×N1

0N1×N1 BN1,1 · · · 0N1×N1

...
...

. . .
...

0N1×N1 0N1×N1 · · · BN1,1

 .

B̂N,d is obtained by relabeling the graph nodes corresponding to BN,d such that
index labels for connected nodes are consecutive. The payoff graph topology induced
by B̂N,d is isomorphic to that of BN,d, see Figure 5.1. The dynamics (2.2), with payoff

B̂N,d and mutation (Q1) have equilibria x̂j =
[
0TN1(j−1)

1
N1

1TN1
0TN1(d−j)

]T
, which

correspond to the equilibria xj,d,N . The Jacobian of the system above evaluated
at the equilibrium x̂1 is precisely MN,d in (5.3). Using this definition of payoff, we
compute the first Lyapunov coefficient as described in Appendix B. We focus on
equilibrium x̂1; the analysis for the other x̂j is equivalent.

The eigenvalues λk and eigenvectors vk of a circulant matrix are defined in (D.1).
Let the Jacobian MN,d evaluated at the critical point µ0,r (defined in Corollary 5.2)
be denoted as

Â0 =

 A0 0N2×N1

0N1×N2 − 1+α
N1

IN2×N2

 ,
with a purely complex conjugate pair of eigenvalues λr(A0) = i ω̂ and λN−r(A0) =

−i ω̂. Let ω0 = |ω̂|, t = r sign(ω̂), q = vt (A0), q̂ =
[
qT 0Td(N1−1)

]T
and 〈p̂, q̂〉 = 1.

Note that A0q = iω0q and hence Â0q̂ = iω0q̂. Let Q be the (Q1) mutation matrix
corresponding to BN,d and Q̂ be the (Q1) mutation matrix corresponding to B̂N,d.

With these definitions, we follow the calculations in Appendix B and compute
each of the terms T1, T2 and T3 given below. A comparison of each of these terms,
to the corresponding terms in Appendix D shows that the Lyapunov coefficient is
identical (when N 7→ N1, β 7→ 0 in (D.2), (D.3) and (D.4)).
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T1 =
〈
p̂,C

(
q̂, q̂, q̂

)〉
= −2N1

[
2 + αωtN1

+ αω−tN1

]
T2 =

〈
p̂,B

(
q̂,
(

2iω0 − Â0

)−1

B (q̂, q̂)
)〉

=
2λt

(
QT
)
λ2t

(
QT
)

2iω0 − λ2t (A0)
(
1 + αωtN1

) [
αω−tN1

+ αω2t
N1

+ 2
]

T3 = −2
〈
p̂,B

(
q̂, Â−1

0 B
(
q̂, q̂

))〉
= 0
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