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Abstract- We provide feedback control laws to stabilize
formations of multiple, unit speed particles on smooth, convex,

and closed curves with definite curvature. As in previous work
we exploit an analogy with coupled phase oscillators to provide
controls which isolate symmetric particle formations that are

invariant to rigid translation of all the particles. In this work, we
do not require all particles to be able to communicate; rather
we assume that inter-particle communication is limited and
can be modeled by a fixed, connected, and undirected graph.
Because of their unique spectral properties, the Laplacian
matrices of circulant graphs play a key role. The methodology is
demonstrated using a superellipse, which is a type of curve that
includes circles, ellipses, and rounded rectangles. These results
can be used in applications involving multiple autonomous
vehicles that travel at constant speed around fixed beacons.

I. INTRODUCTION

Cooperative control of groups has a number of applica-
tions including the design of mobile sensor networks for
ocean monitoring [1]. Motivated by this work, we derive
feedback control laws to stabilize collective motion of a

group of individuals in symmetric formations. We model the
particles as point masses moving at constant speed in the
plane subject to identical gyroscopic controls, after [2]. In
this setting, the configuration of each particle is described by
its position and direction. As in earlier work, [3], we exploit
an analogy between the particle model and a system of
coupled phase oscillators. We extend this work by providing
controls to isolate symmetric formations of particles on

smooth, closed, and convex curves with definite curvature.
In a phase oscillator model, each phase evolves according

to its natural frequency. A constant natural frequency in the
phase model corresponds to a constant turning rate in the
particle model, which drives the particle around a circle of
fixed radius. In this paper, we derive the non-constant natural
frequency in the phase model that corresponds to the desired
closed curve in the particle model. Indeed, the turning rate
which drives a particle at unit speed along a specific curve

is the local curvature of the desired trajectory.
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Symmetric formations of the particles are configurations
in which the particles are symmetrically distributed around
the same curve as they move. As in our previous work, we

extend our main result by identifying and breaking various
symmetries. In the closed-loop particle model, if the controls
depend only on relative position and direction, then the
system is invariant to rigid translation and rotation of all
the particles [2], [4]. We break the rotation symmetry by
choosing the orientation of the particle (non-circular) orbits.
We break the translation symmetry by introducing reference
beacons about which to stabilize the particle orbits. Lastly,
we break the particle permutation symmetry by limiting each
particle's control law to be a function of the relative positions
and directions of only a few other particles.
The recent control literature on collective motion is quite

extensive. In particular, we have found [5] and [6] to be
closely related to our work on coupled phase models de-
scribed by interconnection graphs. The class of circulant
graphs is significant to our work due to well known prop-

erties of its spectrum, see e.g. [7] and [8]. In other related
work, [9], [10], coordinated controls for a multiple particle
system are developed to track smooth, closed curves of
arbitrary shape using curvature and arc length as feedback.
The outline of the paper is as follows. In Section II, we

introduce the particle model and the relevant graph theory.
In Section III, we define the curve-phase model, which
describes the progress of each particle around a curve by a

phase angle. In Section IV, we provide a translation invariant
control law to steer multiple particles around the same

curve. In Section V, we introduce the design methodology
for controlling curve-phase which is used in Section VI to
isolate symmetric patterns of the particle curve-phases. In
Section VII, we provide a control law to stabilize symmetric
formations of particles on the same curve. In Section VIII, we
describe extensions to the main result and briefly describing
ongoing work.

II. PARTICLE MODEL

Consider the following second-order, planar particle model
in which each particle moves at a constant (unit) speed [2],
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where rk = Xk + iYk EC R2and Ok C S1 are the
kth particle position and direction, respectively, and Uk is the
steering control'. We often refer to the direction of motion
of each particle Ok as its phase. An equivalent description
of the model (1) is a system of N first-order, planar rigid
bodies in which each body moves at constant speed subject
to the non-holonomic constraint that its velocity is strictly
aligned with its heading Ok.

In this paper we do not assume that all particles can
communicate with (or sense) one another. We describe the
particle limited communication topology by a fixed, con-
nected, and undirected graph. Each node (vertex) in the graph
corresponds to a particle and each edge corresponds to a
communication link between two particles. Let dk be the
degree of the kth node in the interconnection graph and
let JVk denote the set of vertices (neighbors) connected to
vertex k. The Laplacian matrix of the interconnection graph
is L = D -A, where the degree and adjacency matrices are
given by D = diag(d) and [A1k,J = 1 if j AJVk and zero
otherwise. Under these assumptions, the Laplacian has the
following properties that we use below [11]:
PI) L = LT is symmetric and all its eigenvalues are real

and non-negative;
P2) rank(L) = N -1 and the eigenvector corresponding

to zero is I = (1, . i.)T C RN;
P3) L = BBT, where B C RNxe is the incidence matrix

of the graph and e is the number of edges in the graph.
Let L be the Laplacian of a connected graph. Using

Properties PI and P2, the quadratic form Q(z) <
z, Lz > vanishes only when z = 1zo [6]. Q(z) defines
a norm on the shape space CNC/ induced by the action of
the group of rigid displacements z H-- z + 1zo [12].

III. CURVE-PHASE MODEL

Let : F - [0, 27), 0 H-4 q(O), be a smooth map and p:
[0, 27) CC, C H-4 p(Q), be a parametrization of a smooth,
closed convex curve, C, with definite curvature. The tan ent
vector to C is dP C (C. The velocity constraint dP dp Ciodq5 d5 dOe
is satisfied if 0 is the angle of the vector tangent to pQ)
The arc length along C, (X: [0, 27) -* R+, is defined by

(q3) dj do3. (2)

For a curve C that satisfies the velocity constraint, the
local curvature of C, 1: [0, 27) -* R, is defined by

,¢5) = i d, (3)

where the sign determines the sense of rotation. By as-
sumption, the curvature of C is bounded and definite, i.e.
0 < ij(z) < oc. Using (2) and (3), we obtain

-1(¢t) = 1 ±,=dr ± dcrdo
'd(o) do do;L do

i dp do (4)

Fig. 1. The curve notation for the kth particle: the position and direction
of the particle are rk and Ok, respectively. The curve is centered at Ck.

Consequently, using (4),

dp
dO

dp do
do dO

: ±cio0- 1 (X) . (5)

We define the curve-phase y to describe a point along the
curve given by

OM) = -(X), (6)

where Q = ur(27) > 0 is the perimeter of the curve [9].
Using (4) and (6), we obtain the curve-phase model,

dt
27 c/r dO 27 -1
Q dO dt Q (7)

Let Pk = p(O(Ok)), Ik= I(/(Ok)), and <k = 0(I(0k))
for k C {1, ... . N}. If curve C satisfies the velocity
constraint for particle k, then the center of the curve is

Ck = rk+T Pk. (8)
Using (5), along solutions of the particle model (1), the
center moves according to

Ck kei (1 _ 1uk)1 (9)

The curve notation is shown in Figure 1 for a particle
traveling counter-clockwise around an ellipse.

Proposition 1: Under the control Uk = k, each particle
travels on curve C with fixed center ck. When all the centers
coincide, this corresponds to c c01, co e C.

Proof: Using (9) with Uk =k gives Ck = 0. If cl
CN = cO, then c = co. C

Remark 1: Using (7) with Uk = k, we obtain = k 2w
for all k C {1, ... , N}. Consequently, particles on the same
curve remain phase-locked with respect to their curve-phases
since kj = 0. This result is intuitive since, by the constant
speed assumption, the arc separation between particles on
the same curve remains constant and, using (6), this implies
that the relative curve-phases remain constant as well.

For illustration of the method, we consider a class
of smooth, closed convex curves known as superellipses,
which includes circles, ellipses, and rounded rectangles. A
parametrization of a superellipse is

I I

p(¢)) = a (cos 0) p + i'b (sin 0) p (10)

'We will use the following notational conventions. We drop the subscript
and use bold to represent a vector of length N such as r = (rl ..., rN)T.
Let < x, y >= Re{x*y}, for x, y C C', n > 0, where * is the conjugate
transpose. The notation Xk7 is used to indicate Xk -x7, e.g. Oki = Ok -07

for p = 1,3,5,.... and a,b > 0. For a > b (resp. a = b),
p = 1 is an ellipse (resp. circle) and p > 3 is a rounded
rectangle (resp. rounded square).
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Fig. 2. Top (left to right): superellipses with p = 1, a = b = 10 (circle);
p = 1, a = 10, b = 5 (ellipse); and p = 3, a = 10, b = 5 (rounded
rectangle). Bottom: curvature, 1sk, as a function of tangent angle, Ok, for
the top panels with the corresponding line style, i.e. solid (circle), dash
(ellipse) and dash-dot (rounded rectangle). Setting 0k = 1'k drives the kth
particle around the corresponding curve with an arbitrary center.

By differentiating (10) and using the velocity constraint,
we obtain tan = _ (cot ) p which can, in turn, be
used to find a(X(), Pk, 'k, and <k (omitted for brevity). For
example, with p 1, we obtain the curvature of an ellipse,

1~~~~~~~~~~~~~
Kk a2b2 (a2 sin2Ok + b2 cos2 Ok) 2 (11)

Setting b = a in (11), one obtains the constant curvature
of a circle with radius a, =K -. The particle orbits and
curvatures for p = 1 and 3 are illustrated in Figure 2 for
positive ('k > 0) rotation2.
Remark 2: Superellipses with p = 1, i.e. ellipses and

circles, have definite curvature. For p > 3, as can be seen in
Figure 2, the curvature 'k is zero for {k 0k = J, j=
0, 1, 2, 3} which is a set of measure zero. All superellipses
are strictly convex, i.e. they are convex curves with no linear
parts. The results in this paper appear (at least in simulation)
to extend to superellipses with p > 3, provided that care is
taken to avoid singularities in computing bk.

IV. CONTROL TO SAME CURVE
In order to drive the particles to orbit the same curve,

we choose a stabilizing control that minimizes the candidate
Lyapunov function [12]

S(r, 0) = Q(c) = I< c,Lc >.
2

(12)

The potential (12) is zero for c = co1, where c0 e C, and
positive otherwise. The time-derivative of S(r, 0) along the
solutions of (1) is

N

S(r, 0) =Lk < e0,L/C > (1-Sk Uk),
k=1

where Lk denotes the kth row of the matrix L. Choosing

Uk = k(1+ Ko < eiOk, LkC >), Ko > 0 (13)

2Without loss of generality, we assume 1sk > 0 in the rest of the paper.

results in S(r,O) KoZEN 1 < eiOk,Lkc >2< 0. Note,
the kth particle control depends only on the relative position
and directions of the other particles to which it is connected
and so the closed-loop system is invariant to rigid translation
of all particles. Lyapunov analysis provides the following.

Theorem 1: All solutions of the particle model (1) with
control (13) converge to the set of trajectories in which each
particle orbits curve C centered at co.

Proof: The potential S(r, 0) is positive definite and
proper in the 2N -2 dimensional (reduced) space of the
relative positions of the curve centers. Since S(r, 0) is
nonincreasing, by the LaSalle Invariance principle, solutions
in the reduced space converge to the largest invariant set
where < eiOk,Lkc >_ 0 for k = 1,...,N. In this set,
Ok = k and ck is constant, which means the invariance
condition holds only if Lc _ 0, i.e. c = co1, where c0 C (C
is determined by initial conditions. The conclusion follows
from Proposition 1. C

V. CURVE-PHASE CONTROL

In previous work [3], we designed gradient controls of a
phase potential to stabilize symmetric patterns of the particle
phases on circular orbits. For the more general class of curves
proposed here, we again design gradient controls of a phase
potential, but instead of the particle phases, 0, we use the
particle curve-phases, b, defined in (6). In this section and its
sequel, we consider the curve-phase model (7) with control
k = Uk = Uk(t), t C N
In order to control the particle relative curve-phase, we

use phase potentials of the form [12]

w () =Q(ci+) = iv >v (14)

Note that the phase potential (14) is zero for +b synchronized,
i.e. ei'= eio1, where b0 C T. The gradient of W1(b) is

owl .i)<ie=,LeLke' >, k = 1,... ,N.

Choosing the (gradient) control law

Uk =/k (+Kj ow), K,i 0

results in

W1(,b) = Kij S < ieik, Lkeili >2,
k=1

where we used Property P3 to obtain

(15)

(16)

(17)

N

Z K<iei, LkeC- 1>=<i(BTeilP), BTei_,=0. (18)
k=1

We show by Lyapunov analysis in Theorem 2 below that
all solutions of the curve-phase model (7) with the control
(16) converge to the set of critical points of Wi(sb), i.e.
the set of configurations for which 9w1 = 0. The following
proposition partially characterizes these critical points.

Proposition 2: [12] Let L be the Laplacian matrix of a
connected graph.
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i. If +b is a critical point of the phase potential Wi (sb)
then there exists a nonnegative, real vector a E IRN
such that

(L -diag(a))ei' = 0. (19)
ii. If e"'i is an eigenvector of L (resp. A) with eigenvalue

A (resp. rT) then b is a critical point of W1(b) with
a = Al (resp. a d -r l).

iii. The Hessian of W1 (sb) evaluated at a critical point, b,
is given by the weighted Laplacian,

Hl (,) = B@(D()B, (20)
where the weight matrix is defined by

d)(+) = diag(cos(BT b)) C Rexe (21)
Proof: (i) Using (15), we observe that b is a critical

point of Wi (,b) if Lkei' = akeif k, for k- 1 ... . N, which
is equivalent to (19). (ii) If Le"'i = Ae'1 (resp. Ae"4'
rTJeO) then (19) can be solved for a. (iii) The Hessian of
Wi (0) is determined by

= dk- <ei, LkeiI) Z<ei,eiXJ > (22)

and, for j k,
02W1

aOjOOk { 0ikei >, oteif wie.
0, otherwise.

Equations (22) and (23) for H1(,) are equivalent to the
weighted Laplacian (20). Let f C {1, ... . e} be the index of
the edge connecting j and k. The corresponding weight is
(Jff =< e k e0io > cos Okj in agreement with (21). U

Theorem 2: All solutions of the curve-phase model (7)
with control (16) converge to the set in which the curve-
phase arrangement, b C TNN is a critical point of W1(sb).
If K1J (4b) < 0 (resp. K1J (4) > 0) then +b is an
asymptotically stable (resp. unstable) critical point that is
isolated in the shape manifold TN/T.

Proof: The potential W1(+b) is positive definite in the
N -1 dimensional space of relative curve-phases, TN/T.
From (17), the evolution of the phase potential Wi(b) is
monotonic along the solutions of (7). In particular, W1(u,)
is nonincreasing (nondecreasing) for K1 < 0 (K1 > 0).
Using the LaSalle Invariance principle, solutions converge
to the largest invariant set A where < ieiVk,Lkeil >_ 0
for k =1,.. ,N. In this set, Ok = k and k= -Q . Using
(15), we see that the invariance condition is satisfied at the
critical points of Wi (4).

Using Proposition 2, if L = BBT is the Laplacian of a
connected graph and b(4') is definite, then H1 (u,) has rank
N-1 with the zero eigenvector 1. The stability result follows
from the fact that the Jacobian of the control (16) is equal to
the Hessian of the phase potential. The condition b(4) < 0
(resp. N4') > 0) implies that all eigenvalues of H1(4') other
than the simple zero eigenvalue are negative (resp. positive)
and the critical point is isolated in the TN/T. U
Remark 3: By Proposition 1, in the particle model (1)

with the control (16), each particle also converges to curve
C centered at Ck.

VI. ISOLATING SYMMETRIC PATTERNS

In this section, we provide control laws to isolate a
particular set of critical points of the curve-phase potential
W1 (sb) composed of symmetric patterns. As in the previous
section, we consider only the curve-phase model (7) with
control Uk = Uk (1).
A symmetric (M, N)-pattern is a curve-phase arrangement

that has M clusters of N synchronized curve-phases, where
M C divN [3]. The curve-phase of cluster I is

(24)

for I = 1, .... M and To C T. For any N > 2 curve-phases,
it is always possible to form at least two (M, N)-patterns:
the synchronized (1, N)-pattern and the splay state (N, N)-
pattern. The splay state is an arrangement in which the curve-
phases are uniformly distributed around the unit circle with
curve-phase differences equal to multiples of 2w. If ei" isN
an (M, N)-pattern with M 1, then b is also balanced, i.e.
lTei= 0 by definition. In fact, b satisfies lTeim) = 0
for m 1, ...,M -1 andlTeiM/ = N [3].

In anticipation of our goal to isolate symmetric patterns
of curve-phases, we restrict the interconnection topology to
do-circulant graphs. All do-circulant graphs are do-regular,
which means that dk = do for all k. Both the adjacency and
Laplacian matrices of a circulant graph are circulant, i.e. they
are completely defined by their first row. Each subsequent
row of a circulant matrix is the previous row shifted one
position to the right with the first element equal to the last
element of the previous row. For example, the complete
graph (all-to-all) is (N -)-circulant and the cyclic graph
(ring topology) is 2-circulant.

Every circulant matrix can be diagonalized by the discrete
(inverse) Fourier Transform matrix, F, which is a unitary
matrix with components [F]k = NAkk l)(j 1)
1, .... N [13]. The eigenvectors of any circulant matrix can
be chosen from the columns of F.

Proposition 3: The curve-phase arrangement +b C TN iS
a symmetric pattern if and only if er" is a column of F.

Proof: (If) Let er" be the jth column of F, with j 7 1.
Note the first column of F is 1 which corresponds to the
(1, N)-pattern. Because F is unitary, we observe that +b is
balanced since lTeiI= 0. We see that 24(i 1)(k-
1), k = 1,...,N. If j-1 C divN, then let M -N1.
otherwise, let M = N. In the case M N, using (24) with
To = 0, each curve-phase k= 2M(k -1) lies in one of
M balanced clusters. In the case M = N, b is the splay
state. The latter claim is proven by contradiction. Suppose
there exists a cluster of size two or more that includes curve-
phases <k and /1. Then <k + 2wn = 01 for n C Z. Using
&= 2(j- 1)(k -1), we obtain n = S N(l-k) which
is a contradiction since n , Z because 1I- k < N and
j- 1 divN.

(Only if) Let +b be an (M, N)-pattern with cluster phases
given by (24) with '% = 0. If M> 1, letting k= 2 (i-
1)(k -1), we find that er" is the jth column of F with
I11 + N. If M = 1, then e4' is the first column of F. U
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Remark 4: Using Theorem 2 and Proposition 3, we c
serve that symmetric patterns are critical points of the curl
phase potential W1(sb) if L is a circulant graph Laplacia
As in previous work, phase potentials with higher harmc

ics are used to isolate these symmetric patterns [3]. In orn
to control higher harmonics of the particle relative curi
phase, we use

Wm(,O) =Q(Icmo)1n
1

2m2 <ei'mlp,~Lei-mlP>, (2
where m C N.

Let M C divN. Consider the curve-phase potential

M

UM,N(1b) Z,KmWm(4), (
ml

where Wm(+b) is given by (25) and Km > 0, for m
1,. .. M-1 and KM < 0. A (gradient) control is

Uk = k(+jauM,NVluc E;l t + (

Hm( +b) = B<>mT )BT, where the weight matrix is defined
by (21). The Hessian of UMN(b) evaluated at +b is

ob-
ve-
in.

on-

der
ve-

HMN() = B (i ')NmDT)) BT, (29)

where Km > O form = 1,...,M -1, andKM < 0. As
in Theorem 2, if L = BBT is the Laplacian of a connected

25) graph and <DM,N(-) K.1 Km b) is definite, then
HMN(b) has rank N -1 with the zero eigenvector 1.
Therefore, b is isolated in the shape space TN /I and is
stable if < bM,N(4) is negative definite.
To complete the proof, we need to find conditions on

26) the gains Ki, m = 1, M, to ensure that <IM,N(4) is
negative definite. For L circulant, it suffices to check that the
diagonal components Of ()M,N(b) corresponding to edges
associated to a single vertex k are negative. Without loss of
generality, we choose k = 1 and b1 = 0. Using (21) and
(29), we obtain the stability condition,

27)

where Km > 0, for m = 1,...,M - and KM < 0.
Lyapunov analysis gives the following result.

Theorem 3: In the curve-phase model (7) under the con-
trol (27), the set of symmetric (M, N)-patterns are asymp-
totically stable if

M-1 Km
KM>M: m >0. (28)

m=l
Proof: The time-derivative of UM,N( b) along solu-

tions of (7) under the control (27) is

MN() = Q SE ?2 <ieimk LkeimC >2
k=1 m=1

Using the compactness of TN, we apply the LaSalle In-
variance principle to find that solutions converge to the
largest invariant set A where < ieim k,LkeimCn >_ 0 for
k 1,...,N and m = 1,...,M. In this set, which is the
set of critical points of (26), k = KIk and =k Q . Next,
we show that every symmetric pattern is a critical point.

If +b is a symmetric (M, N)-pattern, then, by Proposition
3, e'P is also an eigenvector of L. To prove that +b C
A we show that, under multiplication by m, b becomes
a new symmetric pattern with M clusters and, therefore,
emin) is also eigenvalue of L. Using (24), the new cluster
locations are mT4 = 2,Mm( -1). If m C divM then
M = M. Otherwise, M = M and no two clusters arem
synchronized. We prove this, as in the proof of Proposition
3, by contradiction. Suppose two clusters, I and k, are
synchronized after their phases are multiplied by m. Then
27Fm(l -1) + 2wn =27rm(k -1), where n C Z. However,M M
this gives a contradiction since n = M (k- 1) Z because
M , Zand Ik -1 <M.
To show that symmetric patterns are stable critical points,

we follow the same procedure as in Proposition 2. The
Hessian of Wm (,) is given by the weighted Laplacian

Mm 2w
EmCos( TMmj) < °, V j C A,', .Sl m

m=l

(30)

Choosing the gain KM < 0 according to (28) ensures that
condition (30) is satisfied, which concludes the proof. U
Remark 5: Simulations of the curve-phase model (7) with

the control (27) suggest that the choice of gain KM given
in (28) is conservative. For example, simulations show local
convergence to the desired (M, N)-pattern for Kmn = K,
m 1, .... M, which does not satisfy (28). In addition, for
M N, simulations show convergence to the splay state
for Km = 0 for m > KN], which is the largest integer less
than or equal to N

2

VII. STABILIZING SYMMETRIC FORMATIONS

The particles are arranged in a symmetric (M, N)-
formation if each particle orbits a curve C centered at ck
and the curve-phase arrangement +b is an (M, N)-pattern.
To stabilize a symmetric formation with c = co1, c0 C (C,
we choose a stabilizing control that minimizes the potential

V(r,O) = KoQ(c) + 2 UMX (b), KO >0,2w (31)

where the spacing potential Q(c) is given by (12), the phase
potential UM,N ( b) is given by (26). Choosing the control

Uk =SK (1+Ko<eik, LkC > + &auM) (32)

results in V < 0. Lyapunov analysis yields the following.
Theorem 4: Let M C divN. In the particle model (1)

with the control (32) that satisfies (28), the set of symmetric
(M, N)-formations in which each particle orbits curve C
centered at co e C is asymptotically stable.

Proof: The potential V(r, 0) given in (31) is positive
definite in the 3N -3 dimensional (reduced) space consisting
of the relative positions of the curve centers and the relative
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centers using a model with constant non-unit speed particles.
Let s C R+ be the (constant) particle speed and let b C CN
denote the vector of desired curve centers or beacons. To
drive the particles to orbit these beacons in an (M, N)-
pattern, we replace the potential V(r, 0) with

-10 0 10 -yO 0 yO -yO 0 yO V(r,t0) K0f C-

and the control Uk with

b l2 + 5 UAN(O), K0 > 0,

YO XO

-yO -xO -xO

-yO 0 yO -xO 0 xO -xO 0 xO

x x x

Fig. 3. Numerical simulations of the control (34) with KO = 0.1 and
beacon locations b = 0 for a 4-circulant graph and random, local initial
conditions. The simulation time is 8Q, or approximately eight revolutions of
the superellipse. The panels show the six symmetric patterns for N = 12
on a superellipse with p = 3 and M = 1, 2, 3, 4, 6, and 12 clusters.
For each M < N, the gains are Km = 0.1 for m = 1,..., M -1

and KM = -0.1. For M = N = 12, the gains are Km = 0.1 for
m = 1,...,6 and Km = 0 for m > 6. The steady-state curve-phase
differences between the clusters in each simulation are equal to 27.

curve-phases. Since V(r, 0) is nonincreasing along the so-

lutions, by the LaSalle Invariance principle, solutions in the
reduced space converge to the largest invariant set A where

MKm
< e0, LkC > + < lie Lkeimo >_ 0 (33)

m=l

for k 1,...N. In this set, Ok = k, 2-§ and
Ck is constant for all k = 1,... N. It is straightforward to
show that d < ieimk,Lkeimn>= O for any m C N and

2, 1. Therefore, differentiating (33) with respect to time
inA gives <ieiOk,Lkc> 0 for k = N which

can hold only if Lc _ 0, i.e., all particles orbit the same

fixed curve. Thus, the invariance condition (33) becomes
EM1 m < ieimkLkeimln >_ 0. Using Theorem 3, if
'b is a symmetric (M, N)-pattern, then it is an asymptotically
stable point in the set A. V

Simulations suggest a large region of attraction for each
(M, N)-formation for the complete graph but not necessarily
for do-circulant graphs with do < N- 1. To demonstrate
convergence of the closed-loop system with limited com-

munication, we select initial conditions near the desired
(M, N)-formation. The six symmetric patterns for N = 12
on a superellipse with p = 3 are shown in Figure 3 for a

4-circulant graph.

VIII. EXTENSIONS AND ONGOING WORK

In applications that use these control strategies to coordi-
nate a group of autonomous vehicles, it is useful to consider
several extensions of the particle model (1) and the symmet-
ric formation control (32). For example, a useful extension
is to stabilize symmetric formations with prescribed curve

Uk = k (s+Ko <ei0k,ckk bk > + ) . (34)

In this way, one can obtain a local convergence result analo-
gous to Theorem 4 (omitted for brevity) which is illustrated
in Figure 3 for b = 0.

In this paper, we provide feedback control laws to stabilize
collective motion of a group of planar particles. In ongoing
work, we seek to address limitations of the approach pre-

sented here such as the restriction to curves with definite
curvature. In addition, we seek to remove the restriction
to fixed, connected, and undirected interconnection graphs
which is an unrealistic assumption for many mobile sensor

networks. This restriction is removed in [14], which extends
the design of symmetric patterns on circular orbits to time-
varying and/or directed graphs.
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