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Coupled Stochastic Differential Equations and Collective Decision
Making in the Two-Alternative Forced-Choice Task

loannis Poulakakis, Luca Scardovi and Naomi Ehrich Leonard

Abstract— This paper investigates the effect of coupling in Probability Ratio Test (SPRT) widely employed in decision
a collective decision-making scenario, in which the task is to making. In a different context, it is also shown in [2] that
correctly identify a (noisy) stimulus between two known al- -~ yhe DDM can be derived through appropriate reductions in

ternatives. Multiple interconnected decision-making units, each dels of ting leak lat ting t
represented by a Drift-Diffusion Model (DDM), accumulate models of competling leaky accumulators representing two

evidence toward a decision. A number of different graph topolo- neuronal populations, whose activities provide evidence for
gies among the DDM's are considered, and their effect on the the two alternatives in a TAFC task.

accuracy of the decision is investigated. It is deduced that, for In this paper, we depart from the pure DDM representing
the same stimuli, the average of the collected evidence increases single decision-making unit, to consider the more general

linearly with time toward the correct decision regardless of the ti f itiol h its int ted ding t
communication topology. However, the uncertainty associated Ssetung of multipie such units Iinterconnected according to

with the process is affected by the interconnection graph, Particular communication topologies. Our purpose is to in-
implying that certain topologies are better than others. vestigate the effect of coupling in enhancing the accuracy of

decisions in simple TAFC tasks. The results presented here
provide a first step toward a unified framework for studying
Choosing between two alternatives represents a large clagsilective decision making in biological and engineered
of real-world decision-making problems faced by humansystems. The framework adopted in this article differs from
and animals in their natural environmentsvo-Alternative  [8], which also investigates collective decision making, in
Forced-Choice (TAFC) tasks offer the prospect of a princi- that here coupling is introduced at the level of the DDM's.

pled understanding of the dynamics of such decision-makir@nally, similar models to the ones used in this work are
behaviors. This can be achieved through the introduction givestigated in [7], albeit in multiple alternatives.
mathematical models amenable to tractable analysis, which,The structure of this paper is as follows. In Section II, the

under reasonable assumptions, can faithfully describe apbM as a model for individual decision making in TAFC

predict key aspects of TAFC tasks. tasks is first reviewed and then extended in a collective
A wealth of behavioral data is available in humans perdecision-making setting. Sections Ill and IV include results

forming simple TAFC tasks; see [9], [2] and referencesor a number of communication topologies, which are then

therein. Recently, direct recordings of neural firing patternsompared in Section V in terms of their performance in the
in visual and motor areas in primates performing such taskfcision-making task considered.

permitted relating task performance to neuronal activity; see
for instance [5], [10]. Both behavioral and neural data pro- !l. DRIFT-DIFFUSIONMODELS FORTAFC TASKS

vide evidence supporting therift-Diffusion Model (DDM), The TAFC task —see [2] for an extensive account— is a
and variants of it, as a plausible model for formally investicanonical behavioral experiment, in which each trial involves
gating the mechanisms governing simple TAFC tasks. Morgorrectly identifying a noisy stimulus drawn at random
specifically, variations of the DDM have been employed t@etween two possibilities. In this section, the Drift-Diffusion
fit accuracy and reaction time in a variety of behavioral datModel (DDM), commonly used as a mathematical descrip-
in [9]. In addition, the DDM has been used successfully t¢on of the phenomenology of such decision-making tasks, is

describe neural firing rates in sensorimotor brain areas duripgviewed and extended in a scenario where multiple decision-
TAFC tasks in [5] and [10], for example. making units participate.

The DDM emerges in the relevant literature in a variety of N o o _
ways. The work in [2] offers a unified framework, in whichA. Individual Decision Making in the TAFC Paradigm
the DDM is put into perspective relative to behavioral and The dynamics of decision making in the TAFC paradigm
neurophysiological data obtained in simple TAFC tasks. kéan be captured by a DDM under the assumption that the
is shown that the PDM Is .eq.uwalent —In an appropriatlifference between the amounts of evidence supporting each
sense— to a continuum limit of the discrete Sequentialiternative is integrated over each trial. A decision is then

, reached when, either a threshold is crossed by the accu-
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In the pure DDM, the process starts with unbiased initiao reflect the fact that all units are presented with the same
conditions and accumulates evidence according to stimulus, andsdW;, are increments of independent Wiener
processes with standard deviatien Finally, ax; > 0 are
dz = fdt + odW, =(0) =0, (1) the elements of an adjacency matrix corres;)onding to the
wherez(t) denotes the accumulated value at timef the coupling topology. The notation used here corresponds to a
difference in the information favoring one choice over thésensing” convention, i.e. given a pair of nodesj, ay; > 0
other;z = 0 means that the amounts of integrated evidendenplies the existence of a directed edge frénto j in the
are equal. In (1), the constant drift represents increase corresponding interconnection graph. In addition, we assume
in the evidence supporting the correct decision amd” that there are no self-loops, i.ex, = 0 for everyk.
are increments drawn from a Wiener process with standardin matrix form (3) can be rewritten as
deviationo. The probability density of solutions of (1) at
is normally distributed with meaR[z(t)] = 4t and variance dz = [b— Lajdt + CdW, )
Var(z(t)) = o°t, i.e. p(x,t) = N(6t,0°t); see [1] and [2]. wherez := col(z, ..., x,), b:= 1%, C := oI anddW :=
In this work, we focus on the TAFC task administered;ol(dwh ...,dW,,). In (4), L is the graph Laplacian:
under the forced-response protocol, in which the process

evolves until a pre-specified cue timE,.., is reached. The Z ari, k=7,
sign of z(T4e.) determines the response. #f > 0 (resp. lij =S =Tk (5)
B < 0) and x(Tgec) > 0 (resp.z(Tyec) < 0) the correct —an;, kA

90 .

choice is made. The opposite case corresponds to an error;
see Fig. 1. The quality of the decision is measured by the The following theorem characterizes the statistics of the
error rate (ER), [2]; i.e., the probability that, at tim&,.., random procesqz(¢) : ¢ > 0} produced by (4) given

the individual picks the wrong decision. F6r> 0, deterministica”y zero initial conditions, i.é}OV(Io, IQ) =0
0 andE|[xo] = 0, corresponding to unbiased decision making.
ER := P[z(Tyec) < 0] :/ p(z, Taec)d. (2) Theorem 1. Let 2(0) = 0 with probability 1. Then, the
—o0 general solution of (4) is
t t
A z(t) = / e Mpdr + / e HE=Ncaw, ()
Correct 0 0
(V]
g in which the stochastic integral is interpreted in the 1td sense.
20 . In addition,
e A Time ; ;
% A T ™ —> 1) the mean and covar:ance of (6) are given by
8 AN ‘\N'\‘ E[(E(t)] — / e*L(th)de _ (ﬁt) 1 (7)
Incorrec{ 0
and

Fig. 1. The TAFC task under the forced-response protg@ols 0. The t
vertical line corresponds to the cue tirfig... One sample path (continuous Cov(z(t), z(t)) = o2 [ e~ Lt=7) =L (t=7) 4 (8)
line) results in the correct choice, the other (dashed line) does not. ’ 0 ’

) o o i respectively;
B. Collective Decision Making in the TAFC Paradigm 2) the stochastic procegs(¢) : ¢ > 0} is Gaussian.

The objective of this study is to analyze the effect offhe proof of Theorem 1 is a straightforward consequence of
interconnection in improving decision making in the TAFCthe results in [1, pp. 131-132]. It is only mentioned that (7)
task administered under the forced-response protocol. T®a consequence of the fact that the exponential of the graph
this effect, we consider a generalized scenario in which Laplacian is a stochastic matrix.
decision-making units are presented with the same stimulus,Before continuing with specializing to various graphs, the
partially buried in noise, and are asked to correctly identify ifollowing important remarks are in order.
between two alternatives. The units collect evidence accord-Remark 1: Theorem 1 implies that, for the simplified
ing to the DDM (1) modified to include coupling amongsetting discussed here, the mean of the solution increases
them according to particular communication topologies. Wenearly with timeregardless of the communication topology.
investigate a scenario in which the decision is made by thgowever, the covariance, which represents the uncertainty of
node having the least uncertainty in accumulating evidencthe processgoes depend on the interconnection.

Considern copies of (1) coupled as follows Remark 2: In general, not every node in the graph has the

" same uncertainty in accumulating evidence. This raises the
dry = ﬁ+zakj($j — )| dt + cdW, 3) question of how t_he decision will be mad(_e._ln the setting
adopted here, it is assumed that the decision made when

. . the cue time is reached will be determined by a single
k = 1,2,...,n. In (3), 8 denotes the drift term (bias)

leading to the correct decision, which is constant forkall  !Notation: 1 is the column vectofl, .. ., 1]T of appropriate dimension.

j=1
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node, namely the one with the least uncertainty associat&ihce the graph is assumed to be connecledpans the
with its state. One of the objectives of the analysis in th&ernel of L, i.e. L1 = 0, implying thatv = (1/y/7n)1
following sections is to identify such node. This assumptioris the normalized eigenvector corresponding to the zero

combined with the fact that is a Gaussian random vector eigenvalue), thus resulting in (13). [ ]
andE[z(t)] = St for all k, results in Remark 3: According to Lemma 1, the variance associ-
1 5t ated with the state of each node is given by
ER = [1 er < )] , (9 n —2Re(\p)t
2 miny [V: t _ ol 2 l—e Y ()2
Vaming Var e (1) V)= ot 2 Tomayy I 69

which corresponds to the (marginal) probability that the node =2

with the least integrated variance selects the wrong choicgptained from (13) fork = j. In view of the fact that

In (9), erf(-) is the error function integral, Re(\,) > 0, p € {2,..,n}, for connected graphs, (16)
S implies that the uncertainty associated with the evidence
erf(z) = ;/O e " du. (10)  collected by each node cannot be smaller thatyn.

Remark 4: An interesting limiting case is obtained from

Defmmg .the ER according to (9) |mpl|e.s that only the (el3) if, for finite ¢ > 0 as is the case in the forced-response
variance influences the error rate. Accordingly, we adopt th ; . o
rotocol,Re(\,), p € {2,...,n}, is very large, in the limit

variance as a measure of performance in terms of accuraBry. ) . . .
irffinite. In this case, which corresponds to strong coupling

I1I. NORMAL GRAPHS among the nodes of the graph, the covariance matrix becomes
An important class of graphs, including all the undirected N
graphs, can be described by Laplacians that are normal; i.e., K{t)=o 511 ‘ (17)

matrices that commute with their transpose, [6, Sec. 2.5]. Ilrt1 is noted that, as was mentioned in Remarko3t/n

such cases, a simplified expression for the covariance matrix . . .
. . . ) . corresponds to the smallest achievable variance. Since
can be derived. Sincé is normal, there exists a unitary

matrix S, such thatSTLS = A, where ST is the Hermitian rank{11"} = 1, the dimension of the nulispact’ (K(t))

) ) ; - of the limiting covariance matrix is — 1 implying that the
transpose ofS and A is a diagonal matrix containing the . . ; 7
. L . solutionz is a singular random vector. Defining— 1 new
eigenvalues of_. Substitution in (8) results in

variables by
Cov(z(t),z(t)) = o® (S G(t) ST), (11) ) n
where Yk = Tp =y >, (18)
¢ ) =157k
G(t) == /O exp[— (A +A) (t —7)]dr. (12)  results inE[y,] = 0 and Var(yx) = 0, ie., y, is a

. . . deterministic variable. In words, in this limiting case, the
Equation (11) can be used to derive an expression for the g

: . . evidence collected by any arbitrary node of the graph is equal
covariance matrix as the following lemma shows. with probability 1 to the average of the evidence collected
Lemma 1. Consider (4). Supposé is normal and the P y g

underlying graph is connectéd_et v(?) be the normalized by all other nodes.

. . . In the remainder of this section, (16) is particularized
eigenvector corresponding to theth eigenvalue), of L. ; .
i . . to special classes of connected normal graphs. This allows
Then, the elements of the covariance matrix are given by

to compare the performance in terms of accuracy of the

ot a1 —e et ) ) decision-making task described in Section II-B as a function
[Cov(z(t), 2(t)]k; = 0 nt? 2 2Re(\) U Y5 of the communication topology.
(13) A Circulant Graphs

whereRe()\,) denotes the real part of the eigenvalyeand
ﬁ,ip) is the complex conjugate of theth component;,(f) of
the p-th eigenvector.

Proof: Let S = [v(]...[v(™)]. Then, (11) gives

A particular class of normal graphs can be represented by
Laplacian matrices that are circulant. Examples of circulant
graphs include the complete graph (all-to-all communica-
tion), and the directed and undirected ring topologies. Let

- Ly be a Laplacian matrix that is also circulant and define
[Cov(a(t) 2]y = o> 3 am@olo” A Wy
p=1 L=a Ly, (19)

in which g¢,,(t) denotes thep-th element of the diagonal . )
matrix G(¢) and is computed by (12) as wherea > 0 is a parameter representing the strength of the

communication links, and,, is defined by its row elements
. . n—1 .
Gpp(t) = _ (15) {dp,dl, ..dy—1} satisfyingy;— d; = 0 through circulant
2Re(Ap) shifts, see [4].
Many properties of circulant matrices can be derived

2Definition: The graphg is connected if it contains a globally reachable . | y dp f P . bl . f h
nodek, i.e., there exists a node such that, for every nodg, there exists 'n_ close orm, mOSt notably, exact expressmns or the
a path ingG from j to k. eigenvalues and eigenvectors of such matrices are known, see

1— e—QRe()\p)t
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for instance [4]. Assuming a connected graph and applyirig the p-th eigenvalue of the Laplacian.
Lemma 1 in view of results in [4], the following expression By way of contrast to the circulant graphs in Section IlI-A,
is derived for the diagonal elements of the covariance matrike variances associated with the states of the nodesoare
; L ] o—2Re() equal. From (23) it can be seen that nodes symmetrically
Var(zx (1)) = 02— + 02 = Z - (20) located with respect to the mid-point of the path, i.e., the
n N 2Re(Ap) pairs(k,n—k+1) for k = 1,2, ...,n have the same variance.
Moreover, the closer a node is to the midpoint of the path,
the smallest is its variance. This situation is depicted in Fig.
2, which shows the variances of the nodes in an undirected

whereRe(),) denotes the real part of theth eigenvalue

_;2mlnt1=p) )
Ap =« Z dee . (21)  path graph fom = 3 andn = 6. It is therefore natural to
restrict attention to nodes that are the closest to the midpoint
of the LaplacianL. of the path, i.e. node 2 far = 3 and either of the nodes 3

It is readily seen from (20) that the variance associate@nd 4 forn = 6 as Fig. 2 suggests.
with the state of each node is the same for all nodes. This
observation implies that, for circulant graphs, all the nodes

0.5

have the same uncertainty in collecting evidence toward the ¢ Q@
correct decision. Hence, any one of them could be used tg 04
make a decision. Furthermore, for finite values of 0 and v os S
a > 0, this uncertainty decreases as the cardinality of the? g
graph increases. In fact, if the number of nodes> 2 is s S 02
very large, the process becomes nearly deterministic.

Remark 5: The fact that the variance associated with the, 2 oty 2 n=6
state of each node decreases with the number of nodes can b% P
used to improve the precision of decision making. Given any' ‘n_3 % 02 o4 06 08 1

specificatiore > 0 for the precision and a fixed decision time

t = Tyec > 0, (20) can be used to find the smallest numbetig. 2. Diagonal elements of the covariance matrix for the undirected path
of nodesn that is required in order to haBR < ¢, with  graphs on the leftn = 3 (dashed) andx = 6 (continuous);Tgec = 15,

; ; a = 1ando = 1. The upper dashed line showar(x1(t)) = Var(zs(t)),
the error rate defined in Remark 2. the lower showsVar(z2(t)) (mid-point of the path). The upper continuous
. line showsVar(z1(t)) = Var(ze(t)), the middle showsVar(z2(t)) =
B. Undirected Path Topology Var(zs(1)) and the lower showSar(a3(t)) = Var(za(t)).

In this section we consider the case of an undirected path

graph, see Fig. 2. The corresponding Laplacian is C. Undirected Star Topology

[ —a 0 o0 - 0 0 0] In this section, the communication topology depicted in
-a 2a¢ —a 0 - 0 0 0 Fig. 3(a) is considered. It corresponds to an undirected star
0 —-a 2a —a --- 0 0 0 graph, whose Laplacian is given by
L= ’ n—1a -« IT]
: : : : - : L= . (25)
0 0 0 0 - —-a 2 -a —al ol
0 0 0 0 -+ 0 —-a « The following expression for the covariance matrix can be

" (22) derived using (8) through the explicit computation of powers
which has the structure of a symmetric tridiagonal matrix. of the Laplacian and substitution in the exponential series,

Since symmetric matrices are normal, the results in [01 cy 1T
2
g

Lemma 1 apply to connected undirected paths. As in the Cov(z(t),z(t)) =
col c3 I+C411T

case of circulant matrices, closed-form expressions for the
eigensystems of special classes of tridiagonal matrices, sughere

] ,  (26)

as (22), can be found in the literature; see for instance [3]. As t n-1 et
a result, the following expression for the diagonal elements €1 (t,n,a) = " + Sam? (1 —e ) 5
of the covariance matrix can be derived t 1 _ e—2nat
.t albme) = e
Vara(f) =" T o (27)
21— e 2t T 1 cs(t, o) = CY
2 2 «
Z - - Zp—1(k—-=
e N T
= c n,o)=——
(23) an n 2n-Da  2n02(n-1)a
where It can be shown based on (27) that the variance associated

™
Ap =20 (1 — Cos [E(P - 1)D (24)  with the center node is smaller than that of the rest of the
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nodes, suggesting that it is reasonable to decide based onNistice in (32) that the relative role of “informed/uninformed”
state. Furthermore, from (27) for fixedand «, increasing nodes is preserved as the coupling strength increases; the
the numbern of nodes will decrease the variance of thevariance of the center noded$t/(n—1) and is smaller than
center node to an arbitrarily small number —thus increasinpe variance of all the other nodes. Note that the limiting
precision as Remark 5 suggests— while the variance of thvariance matrix is singular anéim[A (K(¢))] = 1. To
other nodes cannot become smaller tharFinally, it should provide insight into the singular nature of the random vector
be mentioned that as time increases, the difference betweeft), consider the new variable

the variances of the center and of the other nodes approaches 1o
a constant, which can be computed as y=x; — —— ij, (33)
n—1 =
. 2\ 1
Jim [Var (a1 (8)) — Var(zy ()] = — (1 - ﬁ) 5o (28 wheres, is the state of the informed node. Théy(t)] = 0

o . . . and Var(y(t)) = 0 meaning thaty is deterministic. Hence,
for k=2, ...,n. This is consistent with what was mentioned, s case, the evidence accumulated by the informed node
in Remark 4; the larger the coupling strengththe closer g gqual with probability 1 to the average of the evidence
the two variances become, both approachifg/n. collected by all the other nodes. Essentially, the informed
IV. EXAMPLES OF NON-NORMAL GRAPHS node “computes” the average of the collected evidence of

. . . he uninformed nodes.
It is of interest to consider examples of non—norma‘

graphs. In particular, the disconnected exploding star ar@l Imploding Star Topology

the imploding star graphs are studied below. In this section, a communication topology that is com-

plementary to the exploding star graph is considered. This

] ] ) ) . situation is depicted in Fig. 3(c) and corresponds to an
In this section, the exploding star graph depicted in Figmsi0ding star directed graph. It is known, see for instance

3(b) is considered. It is an example of a disconnected dlrect?ﬁ]’ that such graphs provide the fastest rate of convergence

A. Exploding Sar Topology

graph, and the corresponding Laplacian is to the consensus state for linear consensus dynamics. The
(n—Da —a1T corresponding Laplacian matrix is
L=1"y 0 (29) 0 0
- [ ] | )
The relatively simple form of (29) allows for explicit —al ol

computation of the covariance matrix, which is found to be After some algebraic manipulations using (8) the elements
of the covariance matrix are found to be

Coviat) (1) = o* | 21 (30) ! 11
ov(z(t),z(t)) = o ;
col t1 Cov(z(t),z(t)) = o? C}F ; (35)
011 0211 +031
where where
ci(t,n,a) = — 2 + t + 2 o (n—1)at 1 — e—ot
o (n—12a n-1 (n-1)%« a(t,a) =t— —
n
S — (1 — *2("*1)0‘25)’ 2 —at —2at
2(n —1)%« ‘ 02(15,04):—2i i+ = —62 ; (36)
! « «
C2(t n a) — 1 + t + 1 e*(nfl)at' 1 e—2at
B mn=12a n-1 (n-1)>2« cs(t,) = 5— — .
(31) 2c 2c0

It is apparent from (31) that the variances associated withiS important to note that, contrary to all the graphs studied
the state of each node are not equal; the variance of the cerf@pVve, the coefficients,, c; andc; in (36) areindependent
node, perceived as thaformed node, is smaller than that of the numbenr of the nodes. This should be expected based
of the rest, perceived as thminformed nodes. Furthermore, N the structure of the imploding star; since the information
for finite ¢ and «, the larger the numben of nodes the flows to the nodes from the center node but not in the other
smallerc; will be, implying that the uncertainty associateddirection, the pairs formed by each node together with the
with the state of the informed node can be made arbitrarilenter node are decoupled. _ _ _
small by increasing, as was the case in normal graphs; see It is evident from (35) that the variance associated with

Remark 5. It is evident from this discussion that, in such af{!® State of the center node corresponds to that of a single
“informed/uninformed” decision hierarchy, it makes sense t®PM, and is always larger than the variance associated with
make a decision based on the state of the informed nodelhe state of each of the other nodes. The difference between

As a final remark, (31) implies that, for fixedandn, in ~ Var(z1(t)) and Var(zy(t)) for k € {2,..,n} ast grows

the limit asa — oo the covariance matrix becomes eventually approaches the constdnf, which decreases
; ¢ AT as the coupling strengtlx increases. Hence, for strong
K(t) =o? [ vtz—l n—1 ] (32) coupling, Fhe variance a_ssouated_ with each n.ode deteriorates,
1 tI approachingr2t, which is the variance of a single DDM.
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Center node Informed node Reference node
(a) Undirected star. (b) Exploding star. (c) Imploding star.

Fig. 3. Star graph topologies. The arrows follow the “sensing” convention: an arrow&rtary denotes that nodg “sees” nodej.

V. A COMPARISON OFDIFFERENT GRAPHS 5
. . . o —— Complete
In the previous sections, the performance in terms of accu- b —— Undirected Ring
racy for a number of graphs in the decision-making scenario Sisl - Directed Ring Single DDM
described in Section 1I-B has been analyzed based on the 7 _"E';‘;'gjl':g::::
relative significance of the nodes in collecting evidence, their —— Undirected Star Lt
number and the coupling strength among them. 1 Unirected Path

It was observed that the variance associated with the state
of each node is not constant among nodes, with the notable
exception of circulant graphs. Furthermore, in the normal
graphs examined in Section I, increasing the cardinality of
the graph decreases the uncertainty associated with all the 0 : ‘ Min achievable Var
nodes. In the exploding star graph however, only the variance 0 03 Ti:ne 15 2
associated with the state of the center node is decreased,
while, in the imploding star, the variances do not depend oflg. 4. Minimum variance for the graphs of Sections Ill and IV. The grey
the number of nodes. Finally, in the Iimiting case of Stron%nes correspond to the variance of a single DD&#¢) and the minimum

P - . ._achievable varianceoft/n); all graphs are between these lines with the
communication, it was deduced that the variance associatggl
with the states of all the nodes closely approximates the least
achievable variance?t/n in all normal graphs. This is not
the case for the non-normal graphs studied in Section I\@ecision making was discussed. This paper should be viewed
in the exploding star, only the variance of the center nodes a first step toward a common framework for studying
approximates?t/(n — 1), the rest remain unchanged, whilecollective decision making in TAFC tasks in groups involving
in the imploding star all the variances approach the variandgological and engineered systems.
of the solution of a smgle DDM, which is the WO!’St case. ACKNOWLEDGMENT
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