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Abstract— This paper investigates the effect of coupling in
a collective decision-making scenario, in which the task is to
correctly identify a (noisy) stimulus between two known al-
ternatives. Multiple interconnected decision-making units, each
represented by a Drift-Diffusion Model (DDM), accumulate
evidence toward a decision. A number of different graph topolo-
gies among the DDM’s are considered, and their effect on the
accuracy of the decision is investigated. It is deduced that, for
the same stimuli, the average of the collected evidence increases
linearly with time toward the correct decision regardless of the
communication topology. However, the uncertainty associated
with the process is affected by the interconnection graph,
implying that certain topologies are better than others.

I. I NTRODUCTION

Choosing between two alternatives represents a large class
of real-world decision-making problems faced by humans
and animals in their natural environments.Two-Alternative
Forced-Choice (TAFC) tasks offer the prospect of a princi-
pled understanding of the dynamics of such decision-making
behaviors. This can be achieved through the introduction of
mathematical models amenable to tractable analysis, which,
under reasonable assumptions, can faithfully describe and
predict key aspects of TAFC tasks.

A wealth of behavioral data is available in humans per-
forming simple TAFC tasks; see [9], [2] and references
therein. Recently, direct recordings of neural firing patterns
in visual and motor areas in primates performing such tasks
permitted relating task performance to neuronal activity; see
for instance [5], [10]. Both behavioral and neural data pro-
vide evidence supporting theDrift-Diffusion Model (DDM),
and variants of it, as a plausible model for formally investi-
gating the mechanisms governing simple TAFC tasks. More
specifically, variations of the DDM have been employed to
fit accuracy and reaction time in a variety of behavioral data
in [9]. In addition, the DDM has been used successfully to
describe neural firing rates in sensorimotor brain areas during
TAFC tasks in [5] and [10], for example.

The DDM emerges in the relevant literature in a variety of
ways. The work in [2] offers a unified framework, in which
the DDM is put into perspective relative to behavioral and
neurophysiological data obtained in simple TAFC tasks. It
is shown that the DDM is equivalent —in an appropriate
sense— to a continuum limit of the discrete Sequential
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Probability Ratio Test (SPRT) widely employed in decision
making. In a different context, it is also shown in [2] that
the DDM can be derived through appropriate reductions in
models of competing leaky accumulators representing two
neuronal populations, whose activities provide evidence for
the two alternatives in a TAFC task.

In this paper, we depart from the pure DDM representing
a single decision-making unit, to consider the more general
setting of multiple such units interconnected according to
particular communication topologies. Our purpose is to in-
vestigate the effect of coupling in enhancing the accuracy of
decisions in simple TAFC tasks. The results presented here
provide a first step toward a unified framework for studying
collective decision making in biological and engineered
systems. The framework adopted in this article differs from
[8], which also investigates collective decision making, in
that here coupling is introduced at the level of the DDM’s.
Finally, similar models to the ones used in this work are
investigated in [7], albeit in multiple alternatives.

The structure of this paper is as follows. In Section II, the
DDM as a model for individual decision making in TAFC
tasks is first reviewed and then extended in a collective
decision-making setting. Sections III and IV include results
for a number of communication topologies, which are then
compared in Section V in terms of their performance in the
decision-making task considered.

II. D RIFT-DIFFUSION MODELS FORTAFC TASKS

The TAFC task –see [2] for an extensive account– is a
canonical behavioral experiment, in which each trial involves
correctly identifying a noisy stimulus drawn at random
between two possibilities. In this section, the Drift-Diffusion
Model (DDM), commonly used as a mathematical descrip-
tion of the phenomenology of such decision-making tasks, is
reviewed and extended in a scenario where multiple decision-
making units participate.

A. Individual Decision Making in the TAFC Paradigm

The dynamics of decision making in the TAFC paradigm
can be captured by a DDM under the assumption that the
difference between the amounts of evidence supporting each
alternative is integrated over each trial. A decision is then
reached when, either a threshold is crossed by the accu-
mulated evidence, or a fixed time has passed after stimulus
onset. The latter corresponds to theforced-response protocol,
in which the subjects are instructed to respond when a cue
is presented; the former corresponds to thefree-response
protocol, in which the subjects respond in their own time.
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In the pure DDM, the process starts with unbiased initial
conditions and accumulates evidence according to

dx = βdt + σdW, x(0) = 0, (1)

wherex(t) denotes the accumulated value at timet of the
difference in the information favoring one choice over the
other;x = 0 means that the amounts of integrated evidence
are equal. In (1), the constant driftβ represents increase
in the evidence supporting the correct decision andσdW
are increments drawn from a Wiener process with standard
deviationσ. The probability density of solutions of (1) att
is normally distributed with meanE[x(t)] = βt and variance
Var(x(t)) = σ2t, i.e. p(x, t) = N(βt, σ2t); see [1] and [2].

In this work, we focus on the TAFC task administered
under the forced-response protocol, in which the process
evolves until a pre-specified cue time,Tdec, is reached. The
sign of x(Tdec) determines the response. Ifβ > 0 (resp.
β < 0) and x(Tdec) > 0 (resp.x(Tdec) < 0) the correct
choice is made. The opposite case corresponds to an error;
see Fig. 1. The quality of the decision is measured by the
error rate (ER), [2]; i.e., the probability that, at timeTdec,
the individual picks the wrong decision. Forβ > 0,

ER := P[x(Tdec) < 0] =

∫ 0

−∞

p(x, Tdec)dx. (2)
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Fig. 1. The TAFC task under the forced-response protocol;β > 0. The
vertical line corresponds to the cue timeTdec. One sample path (continuous
line) results in the correct choice, the other (dashed line) does not.

B. Collective Decision Making in the TAFC Paradigm

The objective of this study is to analyze the effect of
interconnection in improving decision making in the TAFC
task administered under the forced-response protocol. To
this effect, we consider a generalized scenario in whichn
decision-making units are presented with the same stimulus,
partially buried in noise, and are asked to correctly identify it
between two alternatives. The units collect evidence accord-
ing to the DDM (1) modified to include coupling among
them according to particular communication topologies. We
investigate a scenario in which the decision is made by the
node having the least uncertainty in accumulating evidence.

Considern copies of (1) coupled as follows

dxk =



β +

n
∑

j=1

αkj(xj − xk)



 dt + σdWk, (3)

k = 1, 2, . . . , n. In (3), β denotes the drift term (bias)
leading to the correct decision, which is constant for allk

to reflect the fact that all units are presented with the same
stimulus, andσdWk are increments of independent Wiener
processes with standard deviationσ. Finally, αkj ≥ 0 are
the elements of an adjacency matrix corresponding to the
coupling topology. The notation used here corresponds to a
“sensing” convention, i.e. given a pair of nodesk, j, αkj > 0
implies the existence of a directed edge fromk to j in the
corresponding interconnection graph. In addition, we assume
that there are no self-loops, i.e.αkk = 0 for everyk.

In matrix form (3) can be rewritten as

dx = [b − Lx]dt + CdW, (4)

wherex := col(x1, . . . , xn), b := β1
1, C := σI anddW :=

col(dW1, . . . , dWn). In (4), L is the graph Laplacian:

lkj :=











n
∑

i=1,i6=k

αki, k = j,

−αkj , k 6= j.

(5)

The following theorem characterizes the statistics of the
random process{x(t) : t ≥ 0} produced by (4) given
deterministically zero initial conditions, i.e.Cov(x0, x0) = 0
andE[x0] = 0, corresponding to unbiased decision making.

Theorem 1: Let x(0) = 0 with probability 1. Then, the
general solution of (4) is

x(t) =

∫ t

0

e−L(t−τ)bdτ +

∫ t

0

e−L(t−τ)CdW, (6)

in which the stochastic integral is interpreted in the Itô sense.
In addition,

1) the mean and covariance of (6) are given by

E[x(t)] =

∫ t

0

e−L(t−τ)bdτ = (βt) 1 (7)

and

Cov(x(t), x(t)) = σ2

∫ t

0

e−L(t−τ)e−LT(t−τ)dτ , (8)

respectively;
2) the stochastic process{x(t) : t ≥ 0} is Gaussian.

The proof of Theorem 1 is a straightforward consequence of
the results in [1, pp. 131–132]. It is only mentioned that (7)
is a consequence of the fact that the exponential of the graph
Laplacian is a stochastic matrix.

Before continuing with specializing to various graphs, the
following important remarks are in order.

Remark 1: Theorem 1 implies that, for the simplified
setting discussed here, the mean of the solution increases
linearly with timeregardless of the communication topology.
However, the covariance, which represents the uncertainty of
the process,does depend on the interconnection.

Remark 2: In general, not every node in the graph has the
same uncertainty in accumulating evidence. This raises the
question of how the decision will be made. In the setting
adopted here, it is assumed that the decision made when
the cue time is reached will be determined by a single

1Notation:1 is the column vector[1, . . . , 1]T of appropriate dimension.
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node, namely the one with the least uncertainty associated
with its state. One of the objectives of the analysis in the
following sections is to identify such node. This assumption,
combined with the fact thatx is a Gaussian random vector
andE[xk(t)] = βt for all k, results in

ER :=
1

2

[

1 − erf

(

βt
√

2 mink[Var(xk(t))]

)]

, (9)

which corresponds to the (marginal) probability that the node
with the least integrated variance selects the wrong choice.
In (9), erf(·) is the error function integral,

erf(x) :=
2

π

∫ x

0

e−u2

du. (10)

Defining the ER according to (9) implies that only the
variance influences the error rate. Accordingly, we adopt the
variance as a measure of performance in terms of accuracy.

III. N ORMAL GRAPHS

An important class of graphs, including all the undirected
graphs, can be described by Laplacians that are normal; i.e.,
matrices that commute with their transpose, [6, Sec. 2.5]. In
such cases, a simplified expression for the covariance matrix
can be derived. SinceL is normal, there exists a unitary
matrix S, such thatS†LS = Λ, whereS† is the Hermitian
transpose ofS and Λ is a diagonal matrix containing the
eigenvalues ofL. Substitution in (8) results in

Cov(x(t), x(t)) = σ2
(

S G(t) S†
)

, (11)

where

G(t) :=

∫ t

0

exp[−
(

Λ + Λ̄
)

(t − τ)]dτ . (12)

Equation (11) can be used to derive an expression for the
covariance matrix as the following lemma shows.

Lemma 1: Consider (4). SupposeL is normal and the
underlying graph is connected2. Let v(p) be the normalized
eigenvector corresponding to thep-th eigenvalueλp of L.
Then, the elements of the covariance matrix are given by

[Cov(x(t), x(t))]kj = σ2 t

n
+σ2

n
∑

p=2

1 − e−2Re(λp)t

2Re(λp)
v
(p)
k v̄

(p)
j ,

(13)
whereRe(λp) denotes the real part of the eigenvalueλp and
v̄
(p)
k is the complex conjugate of thek-th componentv(p)

k of
the p-th eigenvector.

Proof: Let S = [v(1)| . . . |v(n)]. Then, (11) gives

[Cov(x(t), x(t))]kj = σ2
n
∑

p=1

gpp(t)v
(p)
k v̄

(p)
j , (14)

in which gpp(t) denotes thep-th element of the diagonal
matrix G(t) and is computed by (12) as

gpp(t) =
1 − e−2Re(λp)t

2Re(λp)
. (15)

2Definition: The graphG is connected if it contains a globally reachable
nodek, i.e., there exists a nodek such that, for every nodej, there exists
a path inG from j to k.

Since the graph is assumed to be connected,1 spans the
kernel of L, i.e. L1 = 0, implying that v(1) = (1/

√
n)1

is the normalized eigenvector corresponding to the zero
eigenvalueλ1, thus resulting in (13).

Remark 3: According to Lemma 1, the variance associ-
ated with the state of each node is given by

Var(xk(t)) = σ2 t

n
+ σ2

n
∑

p=2

1 − e−2Re(λp)t

2Re(λp)

∣

∣v
(p)
k

∣

∣

2
, (16)

obtained from (13) fork = j. In view of the fact that
Re(λp) > 0, p ∈ {2, ..., n}, for connected graphs, (16)
implies that the uncertainty associated with the evidence
collected by each node cannot be smaller thanσ2t/n.

Remark 4: An interesting limiting case is obtained from
(13) if, for finite t > 0 as is the case in the forced-response
protocol,Re(λp), p ∈ {2, ..., n}, is very large, in the limit
infinite. In this case, which corresponds to strong coupling
among the nodes of the graph, the covariance matrix becomes

K(t) = σ2 t

n
11

T. (17)

It is noted that, as was mentioned in Remark 3,σ2t/n
corresponds to the smallest achievable variance. Since
rank{11

T} = 1, the dimension of the nullspaceN (K(t))
of the limiting covariance matrix isn − 1 implying that the
solutionx is a singular random vector. Definingn − 1 new
variables by

yk := xk − 1

n − 1

n
∑

j=1,j 6=k

xj , (18)

results in E[yk] = 0 and Var(yk) = 0, i.e., yk is a
deterministic variable. In words, in this limiting case, the
evidence collected by any arbitrary node of the graph is equal
with probability 1 to the average of the evidence collected
by all other nodes.

In the remainder of this section, (16) is particularized
to special classes of connected normal graphs. This allows
to compare the performance in terms of accuracy of the
decision-making task described in Section II-B as a function
of the communication topology.

A. Circulant Graphs

A particular class of normal graphs can be represented by
Laplacian matrices that are circulant. Examples of circulant
graphs include the complete graph (all-to-all communica-
tion), and the directed and undirected ring topologies. Let
L0 be a Laplacian matrix that is also circulant and defineL
in (4) by

L = α L0, (19)

whereα > 0 is a parameter representing the strength of the
communication links, andL0 is defined by its row elements
{d0, d1, ...dn−1} satisfying

∑n−1
j=0 dj = 0 through circulant

shifts, see [4].
Many properties of circulant matrices can be derived

in closed form; most notably, exact expressions for the
eigenvalues and eigenvectors of such matrices are known, see
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for instance [4]. Assuming a connected graph and applying
Lemma 1 in view of results in [4], the following expression
is derived for the diagonal elements of the covariance matrix

Var(xk(t)) = σ2 t

n
+ σ2 1

n

n
∑

p=2

1 − e−2Re(λp)t

2Re(λp)
, (20)

whereRe(λp) denotes the real part of thep-th eigenvalue

λp = α

n−1
∑

ℓ=0

dℓe
−i

2πℓ(n+1−p)
n . (21)

of the LaplacianL.
It is readily seen from (20) that the variance associated

with the state of each node is the same for all nodes. This
observation implies that, for circulant graphs, all the nodes
have the same uncertainty in collecting evidence toward the
correct decision. Hence, any one of them could be used to
make a decision. Furthermore, for finite values oft > 0 and
α > 0, this uncertainty decreases as the cardinality of the
graph increases. In fact, if the number of nodesn ≥ 2 is
very large, the process becomes nearly deterministic.

Remark 5: The fact that the variance associated with the
state of each node decreases with the number of nodes can be
used to improve the precision of decision making. Given any
specificationǫ > 0 for the precision and a fixed decision time
t = Tdec > 0, (20) can be used to find the smallest number
of nodesn that is required in order to haveER < ǫ, with
the error rate defined in Remark 2.

B. Undirected Path Topology

In this section we consider the case of an undirected path
graph, see Fig. 2. The corresponding Laplacian is

L =























α −α 0 0 · · · 0 0 0

−α 2α −α 0 · · · 0 0 0

0 −α 2α −α · · · 0 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · −α 2α −α

0 0 0 0 · · · 0 −α α























,

(22)
which has the structure of a symmetric tridiagonal matrix.

Since symmetric matrices are normal, the results in
Lemma 1 apply to connected undirected paths. As in the
case of circulant matrices, closed-form expressions for the
eigensystems of special classes of tridiagonal matrices, such
as (22), can be found in the literature; see for instance [3]. As
a result, the following expression for the diagonal elements
of the covariance matrix can be derived

Var(xk(t))=σ2 t

n

+σ2 2

n

n
∑

p=2

1 − e−2λpt

2λp

cos2
[

π

n
(p − 1)(k − 1

2
)

]

,

(23)
where

λp = 2α
(

1 − cos
[π

n
(p − 1)

])

(24)

is thep-th eigenvalue of the Laplacian.
By way of contrast to the circulant graphs in Section III-A,

the variances associated with the states of the nodes arenot
equal. From (23) it can be seen that nodes symmetrically
located with respect to the mid-point of the path, i.e., the
pairs(k, n−k+1) for k = 1, 2, ..., n have the same variance.
Moreover, the closer a node is to the midpoint of the path,
the smallest is its variance. This situation is depicted in Fig.
2, which shows the variances of the nodes in an undirected
path graph forn = 3 and n = 6. It is therefore natural to
restrict attention to nodes that are the closest to the midpoint
of the path, i.e. node 2 forn = 3 and either of the nodes 3
and 4 forn = 6 as Fig. 2 suggests.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Time

V
a

ri
a

n
ce

n = 3

n = 6

n = 3n = 6

1

3

6

1

22

3

4

5

Fig. 2. Diagonal elements of the covariance matrix for the undirected path
graphs on the left;n = 3 (dashed) andn = 6 (continuous);Tdec = 1 s,
α = 1 andσ = 1. The upper dashed line showsVar(x1(t)) = Var(x3(t)),
the lower showsVar(x2(t)) (mid-point of the path). The upper continuous
line showsVar(x1(t)) = Var(x6(t)), the middle showsVar(x2(t)) =
Var(x5(t)) and the lower showsVar(x3(t)) = Var(x4(t)).

C. Undirected Star Topology

In this section, the communication topology depicted in
Fig. 3(a) is considered. It corresponds to an undirected star
graph, whose Laplacian is given by

L =

[

(n − 1)α −α 1
T

−α1 αI

]

. (25)

The following expression for the covariance matrix can be
derived using (8) through the explicit computation of powers
of the Laplacian and substitution in the exponential series,

Cov(x(t), x(t)) = σ2

[

c1 c2 1
T

c2 1 c3 I + c411
T

]

, (26)

where

c1(t, n, α) =
t

n
+

n − 1

2αn2

(

1 − e−2nαt
)

,

c2(t, n, α) =
t

n
− 1 − e−2nαt

2n2α
,

c3(t, α) =
1 − e−2αt

2α
,

c4(t, n, α) =
t

n
− 1 − e−2αt

2(n − 1)α
+

1 − e−2nαt

2n2(n − 1)α
.

(27)

It can be shown based on (27) that the variance associated
with the center node is smaller than that of the rest of the
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nodes, suggesting that it is reasonable to decide based on its
state. Furthermore, from (27) for fixedt and α, increasing
the numbern of nodes will decrease the variance of the
center node to an arbitrarily small number —thus increasing
precision as Remark 5 suggests— while the variance of the
other nodes cannot become smaller thanc3. Finally, it should
be mentioned that as time increases, the difference between
the variances of the center and of the other nodes approaches
a constant, which can be computed as

lim
t→∞

[Var(x1(t)) − Var(xk(t))] = −
(

1 − 2

n

)

1

2α
, (28)

for k = 2, ..., n. This is consistent with what was mentioned
in Remark 4; the larger the coupling strengthα the closer
the two variances become, both approachingσ2t/n.

IV. EXAMPLES OF NON-NORMAL GRAPHS

It is of interest to consider examples of non-normal
graphs. In particular, the disconnected exploding star and
the imploding star graphs are studied below.

A. Exploding Star Topology

In this section, the exploding star graph depicted in Fig.
3(b) is considered. It is an example of a disconnected directed
graph, and the corresponding Laplacian is

L =

[

(n − 1)α −α 1
T

0 0

]

. (29)

The relatively simple form of (29) allows for explicit
computation of the covariance matrix, which is found to be

Cov(x(t), x(t)) = σ2

[

c1 c2 1
T

c2 1 t I

]

, (30)

where

c1(t, n, α) = − 2

(n − 1)2α
+

t

n − 1
+

2

(n − 1)2α
e−(n−1)αt

+
n

2(n − 1)2α

(

1 − e−2(n−1)αt
)

,

c2(t, n, α) = − 1

(n − 1)2α
+

t

n − 1
+

1

(n − 1)2α
e−(n−1)αt.

(31)
It is apparent from (31) that the variances associated with

the state of each node are not equal; the variance of the center
node, perceived as theinformed node, is smaller than that
of the rest, perceived as theuninformed nodes. Furthermore,
for finite t and α, the larger the numbern of nodes the
smallerc1 will be, implying that the uncertainty associated
with the state of the informed node can be made arbitrarily
small by increasingn, as was the case in normal graphs; see
Remark 5. It is evident from this discussion that, in such an
“informed/uninformed” decision hierarchy, it makes sense to
make a decision based on the state of the informed node.

As a final remark, (31) implies that, for fixedt andn, in
the limit asα → ∞ the covariance matrix becomes

K(t) = σ2

[

t
n−1

t
n−1 1

T

t
n−1 1 t I

]

. (32)

Notice in (32) that the relative role of “informed/uninformed”
nodes is preserved as the coupling strength increases; the
variance of the center node isσ2t/(n−1) and is smaller than
the variance of all the other nodes. Note that the limiting
covariance matrix is singular anddim[N (K(t))] = 1. To
provide insight into the singular nature of the random vector
x(t), consider the new variable

y = x1 −
1

n − 1

n
∑

j=2

xj , (33)

wherex1 is the state of the informed node. Then,E[y(t)] = 0
and Var(y(t)) = 0 meaning thaty is deterministic. Hence,
in this case, the evidence accumulated by the informed node
is equal with probability 1 to the average of the evidence
collected by all the other nodes. Essentially, the informed
node “computes” the average of the collected evidence of
the uninformed nodes.

B. Imploding Star Topology

In this section, a communication topology that is com-
plementary to the exploding star graph is considered. This
situation is depicted in Fig. 3(c) and corresponds to an
imploding star directed graph. It is known, see for instance
[11], that such graphs provide the fastest rate of convergence
to the consensus state for linear consensus dynamics. The
corresponding Laplacian matrix is

L =

[

0 0

−α1 αI

]

. (34)

After some algebraic manipulations using (8) the elements
of the covariance matrix are found to be

Cov(x(t), x(t)) = σ2

[

t c11
T

c11 c211
T + c3I

]

, (35)

where

c1(t, α) = t − 1 − e−αt

α
,

c2(t, α) = − 3

2α
+ t +

2e−αt

α
− e−2αt

2α
,

c3(t, α) =
1

2α
− e−2αt

2α
.

(36)

It is important to note that, contrary to all the graphs studied
above, the coefficientsc1, c2 andc3 in (36) areindependent
of the numbern of the nodes. This should be expected based
on the structure of the imploding star; since the information
flows to the nodes from the center node but not in the other
direction, the pairs formed by each node together with the
center node are decoupled.

It is evident from (35) that the variance associated with
the state of the center node corresponds to that of a single
DDM, and is always larger than the variance associated with
the state of each of the other nodes. The difference between
Var(x1(t)) and Var(xk(t)) for k ∈ {2, ..., n} as t grows
eventually approaches the constant1/α, which decreases
as the coupling strengthα increases. Hence, for strong
coupling, the variance associated with each node deteriorates,
approachingσ2t, which is the variance of a single DDM.
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Center node

(a) Undirected star.

Informed node

(b) Exploding star.

Reference node

(c) Imploding star.

Fig. 3. Star graph topologies. The arrows follow the “sensing” convention: an arrow fromk to j denotes that nodek “sees” nodej.

V. A COMPARISON OFDIFFERENT GRAPHS

In the previous sections, the performance in terms of accu-
racy for a number of graphs in the decision-making scenario
described in Section II-B has been analyzed based on the
relative significance of the nodes in collecting evidence, their
number and the coupling strength among them.

It was observed that the variance associated with the state
of each node is not constant among nodes, with the notable
exception of circulant graphs. Furthermore, in the normal
graphs examined in Section III, increasing the cardinality of
the graph decreases the uncertainty associated with all the
nodes. In the exploding star graph however, only the variance
associated with the state of the center node is decreased,
while, in the imploding star, the variances do not depend on
the number of nodes. Finally, in the limiting case of strong
communication, it was deduced that the variance associated
with the states of all the nodes closely approximates the least
achievable varianceσ2t/n in all normal graphs. This is not
the case for the non-normal graphs studied in Section IV:
in the exploding star, only the variance of the center node
approximatesσ2t/(n−1), the rest remain unchanged, while
in the imploding star all the variances approach the variance
of the solution of a single DDM, which is the worst case.

Let the “best” node in each graph be the one with the least
variance integrated over time. Fig. 4 compares the various
graphs studied above in terms of the time evolution of the
variance associated with their best node forn = 10. As
shown, every graph is better than a single DDM, even the
imploding star, in which the covariance matrix is independent
of the number of nodes. Interestingly, Fig. 4 shows that the
disconnected exploding star nearly achieves the performance
of the complete graph, albeit with fewer communication
links. An issue arises, however, with respect to the robustness
under node failure in this graph: if the center node fails,
then the graph behaves asn− 1 disconnected DDM’s. Such
case would not be present, for instance, in complete graphs,
suggesting the consideration of robustness measures together
with accuracy in assessing the performance of each graph.
This issue will be addressed in a future publication.

VI. CONCLUSION

Motivated by a vast amount of behavioral and neuro-
physiological data suggesting the DDM as a model that
captures the dynamics of decision making in TAFC tasks, we
proposed and analyzed a collective scenario in which mul-
tiple units, coupled according to particular communication
topologies, collect information toward the correct decision.
The performance of each graph in enhancing the accuracy of
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Fig. 4. Minimum variance for the graphs of Sections III and IV. The grey
lines correspond to the variance of a single DDM (σ2t) and the minimum
achievable variance (σ2t/n); all graphs are between these lines with the
complete, undirected star and exploding star graphs approachingσ2t/n.

decision making was discussed. This paper should be viewed
as a first step toward a common framework for studying
collective decision making in TAFC tasks in groups involving
biological and engineered systems.
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