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Abstract— This paper brings into focus the relationship
between the location of a decision-making unit in a network
of decision makers and its certainty in integrating information
toward a decision. A collection of units, each represented by a
Drift-Diffusion Model (DDM), accrues evidence in continuous
time by observing a (noisy) stimulus. Their task is to make a
decision that depends on accurately identifying the stimulus ob-
served. It is shown that common structural centrality measures
based on nodal degree or geodesic distance cannot be used
to rank the units according to their certainty in integratin g
information. Instead, the variance associated with the state of
a decision-making unit depends on the communication topology
in a way that incorporates all possible paths connecting that
unit with the rest.

I. I NTRODUCTION

In collective implementations of decision-making tasks
that depend on noisy measurements of a stimulus, informa-
tion sharing can significantly impact the certainty of each
unit as it accumulates evidence toward a decision. Depending
on the structural properties of the underlying communication
architecture, units that are more “central” than others may
emerge as potentially more powerful decision makers. The
goal of this work is to identify such units in a restricted,
albeit common, decision-making scenario.

The complexity of the mechanisms governing the capacity
of humans or animals to make accurate and fast decisions in
multi-scale, time-varying, highly uncertain environments can
be daunting. Nonetheless, certain decision-making scenarios
can be understood on a phenomenological level through the
introduction of archetypical reductive mathematical models
[1], [2]. An example of such a scenario is theTwo-Alternative
Forced-Choice (TAFC) task; see [2] for an extensive account.
The TAFC task represents a canonical behavioral experiment,
in which each trial involves correctly identifying a noisy
stimulus drawn at random between two possibilities. Both
behavioral data in humans [2], [3], and direct recordings of
neural firing rates in sensorimotor brain areas of primates
[4], [5], performing simple TAFC tasks provide evidence
supporting theDrift-Diffusion Model (DDM), as a plausible
model for formally investigating such tasks.
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We turn our attention to exploring the role of informa-
tion sharing in a network of interconnected drift-diffusion
decision makers. Assessing the consequences of the overall
network structure on each individual unit naturally leads to
the notion of centrality [6]. Centrality measures typically
assign to each node a quantity that reflects its location in
the network. Based on shortest paths, a family of such
measures has been introduced in [7]. This choice, however,
does not incorporate information transmitted between pairs
of nodes through non-geodesic pathways. A centrality index
that makes use of all possible paths connecting any pair of
nodes has been proposed by Stephenson and Zelen in [8],
where it was applied to interpret the spread of an infectious
disease in a network of interconnected individuals.

In this work, we examine the relationship between the
location of a node in the underlying communication topology
and its certainty as it collects and exchanges information
with its neighbors. Assuming that evidence is accumulated in
continuous time according to the drift-diffusion paradigm, we
provide a formal connection between the variance of the state
of each unit and the notion of information centrality proposed
by Stephenson and Zelen in [8]. Our result demonstrates that
collective evidence accumulation in the context of coupled
DDMs is a total network process: the entirety of paths—
including those that are not geodesic—connecting a unit
with the rest of the network affect the unit’s certainty as it
integrates noisy information in the pursuit of a decision. This
result provides a classification of nodes by their certaintyas
a function of the network topology. Such classification can
be used to improve collective decision-making performance,
e.g. by suitably weighting the information supplied—or the
decision made [9]—by each unit in the network.

The structure of this paper is as follows. In Section II, the
DDM is introduced and extended to a collective evidence
accumulation setting. In Section III a node certainty indexis
defined. Our main result that interprets the node certainty
index in terms of information centrality is presented in
Section IV. Section V concludes the paper.

II. M ODEL AND PROBLEM STATEMENT

A. Decision Making and Drift-Diffusion Models

The DDM describes the integration of information based
on observations of a noisy stimulus. It has been used ex-
tensively as a model of evidence accumulation in decision-
making tasks, including the TAFC task that is commonly
employed in human and animal behavioral experiments
[2]. Under the assumption that the difference between the
amounts of evidence supporting each of the two choices is



integrated over each trial, and for unbiased initial conditions,
the standard DDM accumulates evidence according to

dx = βdt + σdW, x(0) = 0, (1)

wherex(t) denotes the accumulated value at timet of the
difference in the information favoring one choice over the
other;x = 0 means that the amounts of integrated evidence
are equal. In (1), the constant driftβ represents an increase
in the evidence supporting the correct decision andσdW
are increments drawn from a Wiener process with standard
deviationσ. The probability density of solutions of (1) att
is normally distributed with meanE[x(t)] = βt and variance
Var(x(t)) = σ2t, i.e. p(x, t) = N(βt, σ2t); see [10].

In the relevant literature, (1) arises in a variety of ways.
For example, it is shown in [2] that under the assumption
of infinitesimal increments of information arriving at each
moment in time, (1) is the (weak) limit of the logarithmic
likelihood ratio in typical binary hypothesis tests. In a
different context, it is also shown in [2] that the DDM
can be derived through appropriate reductions in models
of competing leaky accumulators representing two neural
populations with activities that provide evidence for the two
alternatives in a TAFC task. More recently, [11] established
a connection between (1) and the long-time behavior of an
integrated Ornstein-Uhlenbeck velocity process obtainedas
the (weak) limit of an excitatory-inhibitory shot noise pair
at high intensities. The work in [11] provides a quantitative
link from the microscopic, short-time statistics of neuronal
representations to the macroscopic, long-time statisticsof
information accumulation processes.

B. Networks of Interconnected DDMs

The objective of this work is to analyze the role of
exchanging information in reducing uncertainty in a network
of agents observing a signal corrupted by noise. A collection
of n agents coupled according to certain communication
topologies is considered, and the drift-diffusion paradigm (1)
is adopted and extended to model evidence accumulation at
each agent in the presence of information received from its
neighbors. Mathematically, for eachk = 1, . . . , n, the state
xk of the k-th agent evolves according to

dxk =



β +

n
∑

j=1

αkj(xj − xk)



 dt + σdWk, (2)

where, in analogy with (1),β represents a constant drift
term and σdWk corresponds to increments drawn from
independent Wiener processes with standard deviationσ. In
(2), αkj ≥ 0 denotes the attention paid by the agentk to the
difference between its statexk and the statexj of the j-th
agent;αkj = 0 implies thatk andj do not communicate.

The model (2) can be directly associated with a collective
decision-making scenario, in whichn decision-making units
are presented with a stimulus (e.g., a deterministic signal)
partially buried in noise, and are asked to correctly identify
it between two alternatives [12]. Continuous-time models
described by (2) withβ = 0 have been used to provide

sufficient and necessary conditions for mean-square average
consensus under measurement noise [13], and to analyze
robustness in linear consensus algorithms in the presence of
(white) noise [14].

It is natural to identify the communication topology with a
graphG = (V , E , A) with vertex setV containing the agents
and edge setE containing the communication links among
them according to the adjacency matrixA with elementsαkj .
Then, (2) takes the form

dx = (b − Lx) dt + HdW, (3)

where1 x := col(x1, . . . , xn), b := β1n, H := σIn, dW :=
col(dW1, . . . , dWn), and L is the Laplacian matrix of the
interconnection graph,G, defined by

Lkj :=











n
∑

i=1,i6=k

αki, k = j,

−αkj , k 6= j.

(4)

C. Basic Properties of the Model

It is known that the solution{x(t) : t ≥ 0} of (3) is a
Gaussian process [10]. Under deterministically zero initial
conditions, i.e.,Cov(x0, x0) = 0 and E[x0] = 0, the mean
and covariance ofx(t) are given by

E[x(t)] =

∫ t

0

e−L(t−τ)bdτ (5)

and

Cov(x(t), x(t)) = σ2

∫ t

0

e−L(t−τ)e−LT(t−τ)dτ , (6)

respectively; see [10]. The following lemma provides lower
and upper bounds for the variance associated with the state
of each unit.

Lemma 1: Consider (3). For any interconnection graph
G = (V , E , A) and any nodevk ∈ V ,

σ2

n
t ≤ Var(xk(t)) ≤ σ2t. (7)

Proof: Let qk denote then × 1 vector with a1 in
the k-th entry and zeros in the remaining entries; clearly,
∑n

k=1 qk = 1n. Then,

Var(xk(t)) = qT
k Cov(x(t), x(t))qk

= σ2

∫ t

0

||e−LT(t−τ)qk||
2dτ

= σ2

∫ t

0

n
∑

ℓ=1

(

qT
ℓ e−LT(t−τ)qk

)2

dτ ,

(8)

where (6) has been used. The lower bound in (7) is obtained
through Jensen’s inequality2,

n
∑

ℓ=1

(

qT
ℓ e−LT(t−τ)qk

)2

≥
1

n

(

n
∑

ℓ=1

qT
ℓ e−LT(t−τ)qk

)2

,

(9)

1Notation:1n is then-dimensional column vector with entries all equal
to one andIn is then × n identity matrix.

2Jensen’s inequality: Letf be a convex function on an intervalX and
xj ∈ X for j ∈ {1, ..., n}. Then,f

“

1
n

Pn
j=1 xj

”

≤ 1
n

“

Pn
j=1 f(xj)

”

.



by observing thate−LT(t−τ)qk corresponds to thek-th
column of e−LT(t−τ), that is, thek-th row of e−L(t−τ),
and by noticing thate−L(t−τ) is row-stochastic3. Finally, the
upper bound follows from

n
∑

ℓ=1

(

qT
ℓ e−LT(t−τ)qk

)2

≤

(

n
∑

ℓ=1

∣

∣

∣
qT

ℓ e−LT(t−τ)qk

∣

∣

∣

)2

(10)
in a similar fashion.

Remark 1: In view of the fact thatσ2t corresponds to the
variance of the state of anisolated DDM (1), the upper bound
of inequality (7) implies that the uncertainty associated with
the evidence collected by any of the units in a graph cannot
exceed that of a unit collecting evidence in isolation.

Remark 2: When t is sufficiently small, (6) results in
Cov(x(t), x(t)) ≈ (σ2t)In, implying that all the units
behave like isolated DDMs at the beginning of the process.
However, as time evolves and the units collect and commu-
nicate their accumulated evidence to their neighbors, their
certainty improves with respect to that of an isolated unit in
a way that depends on the topology of the communication.
An objective of this work is to identify units with variance
that evolves more closely to the lower bound in (7).

III. A N ODE CERTAINTY INDEX

This section introduces an index that characterizes the
certainty of each unit in connected undirected graphs. We
begin with an undirected graphG = (V , E , A) with Laplacian
matrix L. SinceL is symmetric, there exists an orthogonal
matrix U such thatUTLU = Λ, whereΛ is the diagonal
matrix containing the eigenvalues ofL. For such graphs, the
covariance matrix (6) can be written as

Cov(x(t), x(t)) = σ2
(

U G(t) UT
)

, (11)

where

G(t) :=

∫ t

0

e−2Λ(t−τ)dτ. (12)

Under the assumption thatG is connected4, [12, Lemma
1] provides the following expression for the variance
Var(xk(t)) of the state of thek-th unit:

Var(xk(t)) = σ2 t

n
+ σ2

n
∑

p=2

1 − e−2λpt

2λp

∣

∣u
(p)
k

∣

∣

2
, (13)

whereu
(p)
k is thek-th component of the normalized eigen-

vector that corresponds to the nonzero5 eigenvalueλp, p =
2, . . . , n, of L.

Equation (13) can be used to define an index, based on
which the nodes can be classified in terms of their certainty
as they accrue evidence. First, note that, by [15, Theorem

3This is a consequence of the zero row sums of the Laplacian matrix L.
4Definition: G is connected if there exist a path between any two vertices.
5By [15, Theorem 1.37] connectivity ofG implies that1n spans the

kernel of L, so thatu(1) =
`

1/
√

n
´

1n is the normalized eigenvector
corresponding to the zero eigenvalueλ1 = 0. Equation (13) follows.

1.37], connectivity ofG implies λp > 0 for p = 2, ..., n, so
that by (13) the limit

lim
t→+∞

(

Var(xk(t)) − σ2 t

n

)

=:
1

µ(vk)
(14)

is well defined. Then, for each nodevk in a connected undi-
rected graphG, we define thenode certainty index µ(vk) > 0
as the inverse of the difference between the variance ofvk

and the minimum achievable varianceσ2t/n as t → +∞.
For a nodevk, a high value ofµ(vk) corresponds to small
uncertainty associated with the statexk of that node. Equiva-
lently, the variance of the statexk of vk evolves closely to the
minimum possible varianceσ2t/n, after transients decay. By
convention,µ(vk) = ∞ corresponds to nodes that achieve
the highest possible certainty.

In view of (13), equation (14) implies

1

µ(vk)
= σ2

n
∑

p=2

1

2λp

∣

∣u
(p)
k

∣

∣

2
. (15)

It is evident from (15) that the node certainty indexµ de-
pends on the eigenstructure of the graph Laplacian, reflecting
the fact that the certainty of a node is a function of its
location in the underlying interconnection graph. Classifying
the nodes of a graph based on their certainty and interpreting
this classification in terms of the structural properties ofthe
interconnection graph is at the core of this work.

Before continuing with clarifying the relation between
the node certainty indexµ and suitable notions of network
centrality, a few remarks are in order.

Remark 3: From (15) it is easy to see that

∑

vk∈V(G)

1

µ(vk)
= σ2

n
∑

p=2

1

2λp

. (16)

As was discussed in [14], the sum in the right hand side
of (16) corresponds to the expected steady-statedispersion
around the consensus subspace of the evidence collected
by the decision-making units. Hence, the inverse ofµ(vk)
represents the individual contribution of nodevk to the
dispersion of the evidence; the higherµ(vk), the smaller the
contribution of the nodevk. Note that the sum in the right-
hand side of (16) is related to the effective resistanceKf of
the graph,

Kf := n

n
∑

p=2

1

λp

, (17)

also known as the Kirchhoff index; see [16]. Clearly,
∑

vk∈V(G)

1

µ(vk)
= σ2

(

Kf

2n

)

. (18)

Remark 4: The definition of the node certainty index
can be extended to strongly connected digraphs under the
assumption that the associated Laplacian matrix is normal.
Indeed, the normality condition implies thatL is unitarily
diagonalizable, so that

Var(xk(t)) = σ2 t

n
+ σ2

n
∑

p=2

1 − e−2Re(λp)t

2Re(λp)

∣

∣u
(p)
k

∣

∣

2
; (19)



see [12, Lemma 1] for details. Since by [15, Theorem 1.37]
strong connectivity impliesRe(λp) > 0 for p = 2, ..., n the
limit (14) is well defined, and the node certainty index can
be computed by the following rule

1

µ(vk)
= σ2

n
∑

p=2

1

2Re(λp)

∣

∣u
(p)
k

∣

∣

2
. (20)

IV. N ODE CERTAINTY AS A CENTRALITY MEASURE

This section provides an interpretation of the node cer-
tainty indexµ, and the associated node classification, through
a suitable centrality measure. It is intuitively discussedand
rigorously formalized that the impact of network architecture
on node certainty depends on thetotality of paths—and not
just the geodesic paths—in the network.

A. Motivating Examples

To motivate the discussion, we begin with two examples
of undirected graphs. For each nodevk, we compute the
certainty indexµ(vk) using (15). In addition, we provide its
degree—that is, the number of edges attached tovk—and
the correspondingcloseness centrality,κclose(vk), computed
as the inverse of the mean geodesic distanced(vk, vj) from
vk to vj , averaged over all nodesvj in the graph, i.e.

κclose(vk) =





1

n

n
∑

j=1

d(vk, vj)





−1

; (21)

see [6, Section 7.6]. It will be shown that, for general
undirected graphs, node certainty cannot be captured by
centrality measures based on degrees or geodesic paths. This
is a consequence of the fact that the evidence accumulated
by each unit is transmitted through the network and reaches
the rest of the units via circuitous, non-geodesic pathways.

Example 1: Consider the unweighted undirected tree of
Fig. 1. According to the table in Fig. 1, the nodev5 is the
most certain, in the sense that the variance of its state evolves
closest to the minimum achievable varianceσ2t/n. Clearly,
v5 is not the maximum degree node; the degree ofv5 is
equal to three, i.e. less than the degree ofv6, which is four.
Thus, the local nature of a centrality measure based on nodal
degrees precludes its use to distinguish the nodes of the given
tree in terms of their certainty. Instead, compared to any other
node in the tree,v5 is the node that minimizes the sum of the
lengths of the paths that start from it. Hence, this example
suggests that closeness centrality (21) is a suitable measure
that captures the classification of the nodes based on the
certainty indexµ; see also the table in Fig. 1. While this
observation is true for trees, the following example shows
that it does not hold when the graph contains cyclic paths.

Example 2: Consider the graph of Fig. 2. It is clear from
the table in Fig. 2 thatµ(v3) = µ(v4) > µ(v5). In contrast to
Example 1, this distinction between vertexv5 and the vertices
v3, v4 cannot be captured by closeness centrality. In particu-
lar, any of the verticesv3, v4 andv5 in the graph of Fig. 2 is
connected to the rest of the nodes through two geodesic paths
of length 2 and two geodesic paths of length1, resulting

1

2

3

4

5

6

789 Vertex Degree κclose µ
v1 1 0.36 1.18
v2 2 0.50 2.18
v3 1 0.36 1.18
v4 2 0.50 2.18
v5 3 0.69 5.59
v6 4 0.64 4.25
v7 1 0.42 1.61
v8 1 0.42 1.61
v9 1 0.42 1.61

Fig. 1. Left: The unweighted undirected tree used in Example1. The
node that maximizes the certainty index isv5. Right: The table summarizes
properties of the nodes, such as degree,κclose andµ.

in κclose(v3) = κclose(v4) = κclose(v5). The reason for the
ambiguity is that the definition (21) of closeness centrality
is based on geodesic paths, and does not incorporate non-
geodesic pathways. To provide some intuition, consider the
pairs{v1, v4} and{v1, v5}, and enumerate all possible paths
connecting them. For{v1, v4} we have the pathsv1 − v4,
v1−v2−v3−v4 andv1−v5−v2−v3−v4; for {v1, v5} we
have the pathsv1−v5, v1−v2−v5 andv1−v4−v3−v2−v5.
Thus, the evidence transmitted byv1 reachesv4 via three
paths of length1, 3 and4, respectively. On the other hand,
it reachesv5 via three paths of lengths1, 2 and 4. This
difference is reflected in the node certainty index, and cannot
be captured by shortest paths, based on whichv4 andv5 are
indistinguishable. This observation reveals the non-geodesic
nature underlying information transmission, which can be
captured only if all possible paths between any pair of nodes
are taken into account.

1 2

34

5
Vertex Degree κclose µ

v1 3 1.00 8.33
v2 3 1.00 8.33
v3 2 0.83 5.26
v4 2 0.83 5.26
v5 2 0.83 5.00

Fig. 2. Left: The connected undirected graph used in Example2. The
nodes that maximize the certainty index arev1 and v2. Right: The table
summarizes properties of the nodes, such as degree,κclose andµ.

B. Main Result: Node Certainty and Information Centrality

This section clarifies the relation between node certainty,
as measured by the indexµ, and the location of a node in
the underlying interconnection graph through the notion of
information centrality [8]. To demonstrate the concept in an
intuitive way, we first describe a path enumeration procedure.
Let G = (V , E , A) be a connected undirected graph; for
simplicity assume an unweighted graph. Consider the pair of
verticesvk, vj ∈ V(G). Suppose there arelkj pathsPkj(q),
q = 1, ..., lkj , connectingvk andvj , and that different paths
Pkj(q1) andPkj(q2), q1, q2 = 1, ..., lkj with q1 6= q2, do not
have common edges. Denoting the length of each such path
by ℓ(Pkj(q)), we define the information contained in it by



the inverse of its length, i.e.,

Ikj(q) =
1

ℓ(Pkj(q))
. (22)

Then, the total information transmitted through all paths
connecting the nodesvk andvj is given by

Itot
kj =

lkj
∑

q=1

Ikj(q). (23)

Intuitively, Itot
kj represents the information contained in

a “combined” path, which incorporates all pathsPkj(q)
from vk to vj , by weighting each according to the factor
Ikj(q)/Itot

kj . The weightIkj(q)/Itot
kj corresponds to the per-

centage of the total information transmitted fromvk to vj

that is contained inPkj(q).
When common edges exist among different paths con-

necting a pair of vertices, the procedure for computing
Itot
kj via path enumeration needs to be modified so that the

contribution of each common edge to the information of
the combined path is weighted appropriately. Rather than
describing the modified procedure, we provide the following
lemma due to Stephenson and Zelen [8], which gives a
simple way to computeItot

kj without path enumeration. Note
that Lemma 2 incorporates the case where different paths
between pairs of vertices share one or more of their edges,
and can be used to computeItot

kj in weighted graphs as well.
Lemma 2 (Stephenson and Zelen, [8]): Let G be an undi-

rected connected graph of ordern and letL be its Laplacian.
Then, the total informationItot

kj transmitted via all paths
connectingvk, vj ∈ V(G) is

Itot
kj = (ckk + cjj − 2ckj)

−1
, (24)

whereckj , k, j = 1, . . . , n, are the entries of the matrix

C =
(

L + 1n1T
n

)−1
. (25)

Then, according to [8], information centrality is defined
for the vertexvk ∈ V(G) by the harmonic average6 of Itot

kj ,

κinfo(vk) =





1

n

n
∑

j=1

1

Itot
kj





−1

. (26)

whereItot
kj is computed based on Lemma 2 for each pair.

The relation between node certainty and information cen-
trality is now established by the following theorem.

Theorem 1: LetG = (V , E , A) be an undirected connected
graph of ordern. Then, forvk ∈ V(G)

1

µ(vk)
=

σ2

2

(

1

κinfo(vk)
−

Kf

n2

)

, (27)

where µ(vk) and κinfo(vk) are the certainty index and
the information centrality ofvk given by (15) and (26),
respectively;Kf is the Kirchhoff index ofG defined by (17).
Hence, ifk1, k2, ..., kn are indices such that

µ(vk1
) ≥ µ(vk2

) ≥ ... ≥ µ(vkn
), (28)

6An alternative definition provided in [17] uses the arithmetic average.

then,

κinfo(vk1
) ≥ κinfo(vk2

) ≥ ... ≥ κinfo(vkn
), (29)

and vice versa.
Before continuing with the proof of Theorem 1, which is

given in Section IV-C below, the following remark is made.
Remark 5: In the case where the graphG is an unweighted

tree, for every pair of nodesvk, vj ∈ G there exists a unique
pathPkj connecting them. Then, (22) and (23) imply that the
total information transmitted betweenvk andvj is equal to
the inverse of the lengthℓ(Pkj) of Pkj . Hence, (26) reduces
to (21), which explains why closeness centrality can be used
to discriminate the nodes of an undirected unweighted tree
such as the one used in Example 1.

C. Proof of Main Result

In this section, Theorem 1 is proved through a sequence
of lemmas. We begin with a result that relates the node
certainty indexµ with the diagonal elements of the group
inverse of the Laplacian. To fix terminology, recall that the
group inverse of ann × n matrix P , when it exists, is the
unique matrixX that satisfies:

(i) PXP = P, (ii) XPX = X, (iii) PX = XP ; (30)

see [18, Section 4.4] for details. In what follows, the group
inverse of a matrixP is denoted byP#. Note that, if P
is Hermitian, its group inverse corresponds to the standard
Moore-Penrose pseudoinverse ofP .

Lemma 3: Let G be a connected undirected graph of order
n with Laplacian matrixL. Then, the group inverseL# of
L exists and is unique. In particular,

L# = Ur

(

UT
r LUr

)−1
UT

r . (31)

where the columns of then× (n− 1) matrix Ur contain the
normalized eigenvectors ofL corresponding to the nonzero
eigenvaluesλp, p = 2, . . . , n. Moreover,

1

µ(vk)
=

σ2

2
L#

kk. (32)

Proof: Existence and uniqueness ofL# follows from
[18, Thm. 1, p. 162], by the fact thatλ1 = 0 is a simple
eigenvalue ofL. SinceL is symmetric, letU =

[

u(1) | Ur

]

with Lu(1) = 0 be the orthogonal matrix that diagonalizes
L. Then, LUr = UrΛr, where Λr is the diagonal matrix
containing the nonzero eigenvalues ofL. Using this fact,
and the properties

UrU
T
r = In −

1

n
1n1T

n , (33)

UT
r Ur = In−1, (34)

it is straightforward to show that the matrix

X = Ur

(

UT
r LUr

)−1
UT

r

satisfies the requirements (30) for the group inverse. Hence,
L# = X , and the(k, j)-th entry ofL# is

L#
kj =

n
∑

p=2

1

λp

u
(p)
k u

(p)
j . (35)



The result (32) follows fork = j in view of (15).
The following lemma collects some useful facts aboutL#.
Lemma 4: Let L# be the group inverse of the Laplacian

L of a connected undirected graphG of ordern. Then,

LL# = L#L = In −
1

n
1n1T

n , (36)

1T
nL# = L#1n = 0, (37)

Tr(L#) =
Kf

n
, (38)

whereKf is the Kirchhoff index ofG.
Proof: Equations (36) and (37) follow from (31) in

view of (33)-(34) and1T
nUr = UT

r 1n = 0. Equation (38) is
a consequence of (18) of Remark 3 in view of (32).

The following lemma establishes a correspondence be-
tween the group inverse of the graph Laplacian and the
inverseC of the matrixL + 1n1T

n in Lemma 2.
Lemma 5: Let G be an undirected connected graph of

ordern with Laplacian matrixL. Then,

C = (L + 1n1T
n )−1 = L# +

1

n2
1n1T

n . (39)
Proof: The result follows from

(L + 1n1T
n )

(

L# +
1

n2
1n1T

n

)

= LL# +
1

n2
(L1n)1T

n

+ 1n

(

1T
nL#

)

+
1

n
1n1T

n

= In,

where Lemma 4 and the fact1T
n1n = n have been used.

Theorem 1 is now proved by combining the lemmas above.
Proof: [Theorem 1] The definition of information cen-

trality (26) combined with (24) in Lemma 2 gives

1

κinfo(vk)
=

1

n

n
∑

j=1

(ckk + cjj − 2ckj). (40)

By Lemma 5 in view of (32) in Lemma 3 we have

1

n

n
∑

j=1

ckk = ckk = L#
kk +

1

n2
=

2

σ2

1

µ(vk)
+

1

n2
. (41)

In addition, from Lemmas 5 and 4 and (17) we have

1

n

n
∑

j=1

cjj =
1

n
Tr(L#) +

1

n2
=

1

n2
Kf +

1

n2
(42)

and

1

n

n
∑

j=1

2ckj =
2

n





n
∑

j=1

L#
kj +

1

n



 =
2

n2
, (43)

The result follows.
Remark 6: Lemmas 3 and 4 can be extended to strongly

connected digraphs with normal Laplacian matrices. The
proofs are somewhat lengthier and for reasons of space are
not given here. It is only mentioned that in this case the
node certainty index is related to the diagonal elements of the
Laplacian of themirror graph of the interconnection digraph;
see [19, Def. 2] for a definition of the mirror graph.

V. CONCLUSION

In this paper we studied a collection of units, each repre-
sented by a DDM, which accumulate evidence in continuous
time by observing a deterministic signal partially corrupted
by noise. We focused on the impact of the interconnection
topology on the certainty of each unit as it integrates informa-
tion in the pursuit of a decision. A node certainty index which
captures how the location of a unit affects the variance of its
state was defined based on the eigenstructure of the graph
Laplacian. It was intuitively discussed and rigorously proved
that ranking the units according to their certainty index
can be captured by their information centrality, a centrality
measure that incorporatesall possible paths connecting each
unit with the rest of the network. These results show that
evidence accumulation in collective decision making is a
total network process, and may be used to identify units that
can potentially serve as more powerful decision makers.
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