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Abstract— This paper brings into focus the relationship We turn our attention to exploring the role of informa-
between the location of a decision-making unit in a network tion sharing in a network of interconnected drift-diffusio

of decision makers and its certainty in integrating information  yacision makers. Assessing the consequences of the overall
toward a decision. A collection of units, each representedyba

Drift-Diffusion Model (DDM), accrues evidence in continuaus network_ structure on .each individua! unit naturally Iegds t
time by observing a (noisy) stimulus. Their task is to make a the notion of centrality [6]. Centrality measures typigall
decision that depends on accurately identifying the stimuls ob- assign to each node a quantity that reflects its location in
served. It is shown that common structural centrality measues the network. Based on shortest paths, a family of such

based on nodal degree or geodesic distance cannot be usedyneagyres has been introduced in [7]. This choice, however,
to rank the units according to their certainty in integratin g

information. Instead, the variance associated with the st of does not incorporate information transmitted betweenspair
a decision-making unit depends on the communication topoyy ~ ©f nodes through non-geodesic pathways. A centrality index
in a way that incorporates all possible paths connecting that that makes use of all possible paths connecting any pair of
unit with the rest. nodes has been proposed by Stephenson and Zelen in [8],

|. INTRODUCTION where it was applied to interpret the spread of an infectious
disease in a network of interconnected individuals.

In collective implementations of decision-making tasks . . ! .
X . . In this work, we examine the relationship between the
that depend on noisy measurements of a stimulus, mformra\—

tion sharing can significantly impact the certainty of eac:hoc"mon of anode in the underlying communication topology

. . : - .and its certainty as it collects and exchanges information
unit as it accumulates evidence toward a decision. Depgndin .., . . . . . :
. . -~ with its neighbors. Assuming that evidence is accumulated i
on the structural properties of the underlying communicati : : . e o )
. . " " continuous time according to the drift-diffusion paradigme

architecture, units that are more “central” than others ma : . .

. - rovide a formal connection between the variance of the stat
emerge as potentially more powerful decision makers. T ) : : . .

oal of this work is to identify such units in a restricted of each unit and the notion of information centrality propos

g by Stephenson and Zelen in [8]. Our result demonstrates that

albeit common, decision-making scenario. ollective evidence accumulation in the context of coupled
The complexity of the mechanisms governing the capaci ; ; P
rPMS is a total network process: the entirety of paths—

of humans or animals to make accurate and fast decisions.

multi-scale, time-varying, highly uncertain environmeoan LCELU?r']Zgri?? tLheatn:t:/io?kozf?eegdtzselcl;iig n::r(t:;i%? Zsu;'t
be daunting. Nonetheless, certain decision-making sienar. o o : ANty
tegrates noisy information in the pursuit of a decisionisT

can be understood on a phenomenological level through t ) e ; ;
P 9 g result provides a classification of nodes by their certaagty

introduction of archetypical reductive mathematical mede : e
a function of the network topology. Such classification can

[1], [2]. An example of such a scenario is ti&o-Alternative X . 7 .
. ) . be used to improve collective decision-making performance
Forced-Choice (TAFC) task; see [2] for an extensive account. . o . . .
g. by suitably weighting the information supplied—or the

The TAFC task represents a canonical behavioral experiment". = o
in which each trial involves correctly identifying a noisy ecision made [9]—l_3y each l.m't in the network. .
stimulus drawn at random between two possibilities. Bot The.str_ucture of this paper is as follows. In S.eCt'Oﬂ.”’ the
behavioral data in humans [2], [3], and direct recordings DM is |n.troduce.d and extgnded o a coIIectlye eyujence
neural firing rates in sensorimotor brain areas of primat ccumulation setting. In Section Il a node certainty index

[4], [5], performing simple TAFC tasks provide evidence efined. Our main result that interprets the node certainty
su;’)por,ting theDrift-Diffusion Model (DDM), as a plausible index in terms of information centrality is presented in
model for formally investigating such tasks. Section IV. Section V concludes the paper.
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integrated over each trial, and for unbiased initial cdodg, sufficient and necessary conditions for mean-square aserag

the standard DDM accumulates evidence according to  consensus under measurement noise [13], and to analyze
robustness in linear consensus algorithms in the presence o

dz = Bdt + odW, 2(0) =0, (@ (white) noise [14]. ’ P

where z(t) denotes the accumulated value at timef the ~ Itis natural to identify the communication topology with a

difference in the information favoring one choice over th@raphg = (V, &, A) with vertex sety’ containing the agents

other;z = 0 means that the amounts of integrated evidenc@nd edge sef containing the communication links among

are equal. In (1), the constant driftrepresents an increasethem according to the adjacency matixwith elementsyy; .

in the evidence supporting the correct decision amdy ~ Then, (2) takes the form

are increments drawn from a Wiener process with standard do = (b— Lz)dt + HdW, (3)

deviationo. The probability density of solutions of (1) at

is normally distributed with meaR|[z(¢)] = 3t and variance wheré z := col(wy, ..., ), bi= fln, H i=oly, AW =
Var(z(t)) = o?t, i.e. p(x,t) = N(Bt,0?t); see [10]. col(dWh,...,dW,), and L is the Laplacian matrix of the

In the relevant literature, (1) arises in a variety of Ways|_nterc0nnect|on graplti, defined by

For example, it is shown in [2] that under the assumption 2 ,

of infinitesimal increments of information arriving at each L= 1 Z aki, k=7, @)
moment in time, (1) is the (weak) limit of the logarithmic ’ i=Lizk

likelihood ratio in typical binary hypothesis tests. In a —agj, k#J.

different context, it is also shown in [2] that the DDM C. Basic Properties of the Model
can be derived through appropriate reductions in models |t is known that the solutio{z(t) : t > 0} of (3) is a

of competing leaky accumulators representing two neur@ayssian process [10]. Under deterministically zeroahiti
populations with activities that provide evidence for th@t conditions, i.e.Cov(zo, z0) = 0 and E[zo] = 0, the mean

alternatives in a TAFC task. More recently, [11] establésheang covariance of (¢) are given by

a connection between (1) and the long-time behavior of an .

integrated Ornstein-Uhlenbeck velocity process obtaaed Elz(t)] = / e~ L= par (5)
the (weak) limit of an excitatory-inhibitory shot noise pai 0

at high intensities. The work in [11] provides a quantitativ and
link from the microscopic, short-time statistics of neuwsbn
representations to the macroscopic, long-time statigifcs

t
Cov(z(t),z(t)) = 02/ e_L(t_T)e_LT(t_T)dT, (6)
information accumulation processes. 0

respectively; see [10]. The following lemma provides lower
B. Networks of Interconnected DDMs and upper bounds for the variance associated with the state
of each unit.

The objective of this work is to analyze the role of ) . . .
hanain inf tion in reduci tainty i . Lemma 1: Consider (3). For any interconnection graph
exchanging information in reducing uncertainty in a ne ore _ (V. €, A) and any nodey, € V),

of agents observing a signal corrupted by noise. A collectio )

of n agents coupled according to certain communication 7 < Var(zy (1)) < ot. @)
topologies is considered, and the drift-diffusion paraaid.) - -

is adopted and extended to model evidence accumulation at pygof: | et qr denote then x 1 vector with al in

each agent in the presence of information received from itge 1.-th entry and zeros in the remaining entries; clearly,
neighbors. Mathematically, for eadh= 1,...,n, the state S qr =1,. Then

x;, of the k-th agent evolves according to -
Var(z(t)) = qi, Cov(z(t), z(t))ak

n t
doy = |6+ ongla; —xp) | dt +0dWe,  (2) =0 / le=2" =gy 2dr @
Jj=1 0
t n 2
where, in analogy with (1) represents a constant drift = 02/ > (q}e*LT(H)Qk) dr,
term and odW), corresponds to increments drawn from 0 =1

independent Wiener processes with standard deviatidn  where (6) has been used. The lower bound in (7) is obtained
(2), ax; > 0 denotes the attention paid by the agknb the through Jensen’s inequalfty
difference between its statg, and the stater; of the j-th n s (o 2
agent;ay; = 0 implies that-k: andj do n.ot communlcate. . Z ( Te—LT(t—r)qk) > = (Z q}e—LT(t—T)qk> ’

The model (2) can be directly associated with a collective;— n A\,
decision-making scenario, in whiehdecision-making units 9)
are .present_ed Wlth a stimulus (e.g., a determ|n|st|c_ S)gr!al INotation: 1, is the n-dimensional column vector with entries all equal
partially buried in noise, and are asked to correctly idgnti 1o one andr,, is then x n identity matrix.
it between two alternatives [12]. Continuous-time models 2Jensen’s inequality: Lef be a convex function on an interval and
described by (2) with3 = 0 have been used to provide z; € X forj € {1,...,n}. Then,f (% Z}lej) <i (Z};l f(:vj))-



by observing thate‘LT(t‘T)qk corresponds to theé:-th  1.37], connectivity ofG implies A, > 0 for p = 2,...,n, so
column of e=% (t=7) that is, thek-th row of e~ L(t=7)  that by (13) the limit
and by noticing that—~(*~7) is row-stochastit Finally, the ,t 1

upper bound follows from Jm (Var(ffk(t)) -0 5) = ) (14)

n - 9 2 is well defined. Then, for each nodg in a connected undi-
> (q}e‘L (t_T)qk) < ( ’qT —L-T)g D rected graply, we define theode certainty index z:(vy,) > 0

=1 = as the inverse of the difference between the variance, of
. - . (19)  and the minimum achievable varianeét/n ast — +oc.
in a similar fashion. [ |

) For a nodevy, a high value ofu(vy) corresponds to small
Remark 1: In view of the fact that-?t corresponds to the

) X uncertainty associated with the statgof that node. Equiva-
variance of the state of asolated DDM (1), the upper bound

. . L ' o lently, the variance of the state. of v;, evolves closely to the
of inequality (7) implies that the uncertainty associatethw minimum possible variance®t /n, after transients decay. By

the evidence collected by any of the units in a graph Cann%nventlon,u(vk) — oo corresponds to nodes that achieve
exceed that of a unit collecting evidence in isolation. the highest possible certainty

Remark 2: When ¢ is sufficiently small, (6) results in | view of (13) equation (14) implies
Cov(z(t),z(t)) ~ (o?t)I,, implying that all the units
behave like isolated DDMs at the beginning of the process. o2 Z ’ (p)’ (15)
is evident from (15) that the node certainty indexde-

However, as time evolves and the units collect and commu-
nicate their accumulated evidence to their nelghborsrthq%
certainty improves with respect to that of an isolated umit i ends on the eigenstructure of the graph Laplacian, reftcti
a way that depends on the topology of the communlcatloﬁ,I
e fact that the certainty of a node is a function of its
An objective of this work is to identify units with variance o . . -
. location in the underlying interconnection graph. Clagsij
that evolves more closely to the lower bound in (7). : . . .
the nodes of a graph based on their certainty and intergretin
this classification in terms of the structural propertie$haf
interconnection graph is at the core of this work.

This section introduces an index that characterizes the Before continuing with clarifying the relation between
certainty of each unit in connected undirected graphs. We node certainty index and suitable notions of network
begin with an undirected gragh= (V, £, A) with Laplacian centrality, a few remarks are in order.
matrix L. Since L is symmetric, there exists an orthogonal Remark 3: From (15) it is easy to see that
matrix U such thatUTLU = A, where A is the diagonal

IIl. A NODECERTAINTY INDEX

matrix containing the eigenvalues b6f For such graphs, the Z . = o2 Z % (16)
covariance matrix (6) can be written as v EV(G) #(vr) p=2 7P
9 T As was discussed in [14], the sum in the right hand side
Cov(z(t),2(t)) = o (U Gl U ) ’ (11) of (16) corresponds to the expected steady-stieggersion
where around the consensus subspace of the evidence collected
t by the decision-making units. Hence, the inverse.ofy)
L —2A(t—T1
G(t) '—/O e M, (12) represents the individual contribution of node to the

_ . dispersion of the evidence; the highey), the smaller the
Under the assumption tha is conn.ecte‘d [12, Lemma  contribution of the node,. Note that the sum in the right-
1] provides the following expression for the variancenand side of (16) is related to the effective resistafAgeof

Var(zy(t)) of the state of the:-th unit: the graph,
1— Apt Ki:=n 17
Var(zy(t)) = o ——|—022 c | (p)| (13) b ; Ap (7)
also known as the Kirchhoff index; see [16]. Clearly,
Whereugf) is the k-th component of the normalized eigen- 1 o [ Kt
vector that corresponds to the nonz%aingenvalue/\p, p= Z w(vg) =9 \9, ) (18)
2,...,n, of L. vk €V(9)

Equation (13) can be used to define an index, based onRemark 4: The definition of the node certainty index
Wh|Ch the nodeS can be ClaSSified in terms Of theil‘ Certain%n be extended to Strong'y connected digraphs under the
as they accrue evidence. First, note that, by [15, Theoreggsumption that the associated Laplacian matrix is normal.

Indeed, the normality condition implies that is unitarily

3This is a consequence of the zero row sums of the Laplaciarixmiat dlagonahzable so that

4Definition: G is connected if there exist a path between any two vertices.

5By [15, Theorem 1.37] connectivity of implies that1, spans the 9 1—e
kernel of L, so thatu(® = (1/y/n) 1, is the normalized eigenvector Var(xy(t)) = =o?= + o Z
corresponding to the zero eigenvale = 0. Equation (13) follows. 2R

—2Re(Ap)t
= @ 29)
e



see [12, Lemma 1] for details. Since by [15, Theorem 1.37] ©) B @) Vertex Degree Kciose I

strong connectivity implieRe(\,) > 0 for p = 2, ...,n the vy 1 0.36  1.18
limit (14) is well defined, and the node certainty index can (6) Vo 2 0.50 2.18
be computed by the following rule V3 1 0.36  1.18
1 n 1 V4 2 0.50  2.18
oty [P, (20) (5) vs 3 0.69  5.59
p(vr) 2= 2Re(Xp) & @ v6 4 0.64 4.25
v7 1 042 1.61
IV. NODE CERTAINTY AS A CENTRALITY MEASURE v 1 042  1.61

8 . .
This section provides an interpretation of the node cer- D © Vg 1 0.42 1.61

tainty indexu, and the associated node classification, throuth _ . . .

f . .. " . ig. 1. Left: The unweighted undirected tree used in Exanipldhe
a suitable centrality measure. It is intuitively discussext node that maximizes the certainty indexis Right: The table summarizes
rigorously formalized that the impact of network architeet properties of the nodes, such as degreg,s. and .
on node certainty depends on ttetality of paths—and not
just the geodesic paths—in the network.

o iN Kelose(V3) = Kelose(Va) = Kelose(vs5). The reason for the
A. Motivating Examples ambiguity is that the definition (21) of closeness centalit
To motivate the discussion, we begin with two examples based on geodesic paths, and does not incorporate non-

of undirected graphs. For each nodg we compute the geodesic pathways. To provide some intuition, consider the
certainty indexu(vy) using (15). In addition, we provide its pairs{v;,v4} and{v;, v5}, and enumerate all possible paths
degree—that is, the number of edges attached;te-and connecting them. Fofvy,v,} we have the paths; — vy,
the correspondingloseness centrality, kciose (V5 ), COMputed vy — vy —v3 — v4 @Ndwvy — v5 — Vg — v3 —vg; TOr {vy,v5} We
as the inverse of the mean geodesic distafeg, v;) from have the paths; —vs, v1 — vy —v5 andv; — vy —v3 —v2 — vs.

v, to v;, averaged over all nodes in the graph, i.e. Thus, the evidence transmitted by reachesv, via three
1 paths of lengthl, 3 and4, respectively. On the other hand,
1 & it reachesvs via three paths of lengths, 2 and 4. This
Kelose (k) = n Z d(vw; v;) ; (21)  difference is reflected in the node certainty index, and otinn
j=1

be captured by shortest paths, based on whicAndv; are
see [6, Section 7.6]. It will be shown that, for generaindistinguishable. This observation reveals the non-gsid
undirected graphs, node certainty cannot be captured Bgture underlying information transmission, which can be
centrality measures based on degrees or geodesic patks. T@ptured only if all possible paths between any pair of nodes
is a consequence of the fact that the evidence accumula@@ taken into account.
by each unit is transmitted through the network and reaches

the rest of the units via circuitous, non-geodesic pathways (5) Vertex Degree Fclose M
Example 1: Consider the unweighted undirected tree of * v1 3 1.00 8.33
Fig. 1. According to the table in Fig. 1, the nodg is the 9 2 V2 3 1.00 833
most certain, in the sense that the variance of its stateevol ' U3 2 0.83 5.26
closest to the minimum achievable variancé /n. Clearly, (@) G) U4 2 0.83 5.26
vs i not the maximum degree node; the degreevpfis Us 2 0.83  5.00

equal to three, i.e. less than the degreeg@fwhich is four. Fig. 2. Left: The connected undirected graph used in Exar@pl&he
Thus, the local nature of a centrality measure based on nodgfles that maximize the certainty index are and v>. Right: The table
degrees precludes its use to distinguish the nodes of tka givsumma1rlzes properties of the nodes, such as degig. and .
tree in terms of their certainty. Instead, compared to ahgmot
node in the treeys is the node that minimizes the sum of the . . . .
lengths of the paths that start from it. Hence, this exampl%‘ Main Result: Node Certainty and Information Centrality
suggests that closeness centrality (21) is a suitable measu This section clarifies the relation between node certainty,
that captures the classification of the nodes based on ths measured by the indgx and the location of a node in
certainty indexu; see also the table in Fig. 1. While thisthe underlying interconnection graph through the notion of
observation is true for trees, the following example showsiformation centrality [8]. To demonstrate the concept in an
that it does not hold when the graph contains cyclic pathsintuitive way, we first describe a path enumeration procedur
Example 2: Consider the graph of Fig. 2. It is clear fromLet G = (V,&, A) be a connected undirected graph; for
the table in Fig. 2 that(vs) = u(vs) > p(vs). In contrastto  simplicity assume an unweighted graph. Consider the pair of
Example 1, this distinction between vertexand the vertices verticesvy,v; € V(G). Suppose there arg; pathsPy;(q),
v3,v4 cannot be captured by closeness centrality. In particug = 1, ..., l;, connectingu;, andv;, and that different paths
lar, any of the verticess, v4 andvs in the graph of Fig. 2is Py;(g1) andPx;(q2), q1,q2 = 1, ..., l; With ¢1 # g2, do not
connected to the rest of the nodes through two geodesic patiese common edges. Denoting the length of each such path
of length 2 and two geodesic paths of length resulting by ¢(Py;(q)), we define the information contained in it by



the inverse of its length, i.e., then,

Lij(q) = 1. . 22) Kinfo(Vky) = Finfo(Vky) = oo > Kinfo(Vk, ),  (29)
(Pr;(9) and vice versa.
Then, the total information transmitted through all paths Before continuing with the proof of Theorem 1, which is
connecting the nodes, andv; is given by given in Section IV-C below, the following remark is made.
nj Remark 5: In the case where the graphis an unweighted
IZ?t _ Zlkj (q). (23) tree, for every pair of nodes;, v; € G there eX|s_ts a unique
= pathP.; connecting them. Then, (22) and (23) imply that the

ot total information transmitted between andwv; is equal to
Int‘l‘uuvely, Ikg’. represents the information contained inthe inverse of the length(Py;) of Py;. Hence, (26) reduces
a “combined” path, which incorporates all patf#%;(q) to (21), which explains why closeness centrality can be used
from v, to v;, by weighting each according to the factoryy giscriminate the nodes of an undirected unweighted tree

Iij(q) /15 The weightly;(q)/I}5" corresponds to the per- gych as the one used in Example 1.
centage of the total information transmitted fram to v; .
' C. Proof of Main Result

that is contained iPy;(q).
When common edges exist among different paths con- In this section, Theorem 1 is proved through a sequence

necting a pair of vertices, the procedure for computingf lemmas. We begin with a result that relates the node

Iio* via path enumeration needs to be modified so that tieertainty index, with the diagonal elements of the group

contribution of each common edge to the information ofnverse of the Laplacian. To fix terminology, recall that the

the combined path is weighted appropriately. Rather thagfoup inverse of am x n matrix P, when it exists, is the

describing the modified procedure, we provide the followinginique matrixX that satisfies:

Ie_mma due to Stephenson_ and Zelen [8], Whi_ch gives a () PXP = P, (i) XPX = X, (i) PX =XP; (30)

simple way to compute§,§‘;t without path enumeration. Note ] )

that Lemma 2 incorporates the case where different patfi§€ [18, Section 4.4] for details. In what follows, the group

between pairs of vertices share one or more of their edgd@verse of a matrix? is denoted byP#. Note that, if P

and can be used to Compuﬁgt in weighted graphs as well. 1S Hermitian, its group inverse corresponds to the standard
Lemma 2 (Stephenson and Zelen, [8]): LetG be an undi- Moore-Penrose pseudoinversefef

rected connected graph of ordeand letL be its Laplacian. ~ Lemma 3: Letg be a connected undirected graph of order

Then, the total information!e® transmitted via all paths " With Laplacian matrixL. Then, the group inversé# of

connectinguy, v; € V(G) is L exists and is unique. In particular,
_ #_ T “lor
I = (cpe + cjj — 2015) ", (24) L* =U, (U LU,) UL (31)
wherecy;, k,j =1,...,n, are the entries of the matrix where Fhe co!umns of the x (n —1) matrix Uy contain the
normalized eigenvectors df corresponding to the nonzero
C = (L + 1n13)’1 . (25) eigenvalues\,, p = 2,...,n. Moreover,
Then, according to [8], information centrality is defined 1 o 4
for the vertexv, € V(G) by the harmonic avera§ef I;°", ) ~ Lk (32)
-1
154 1 Proof: Existence and uniqueness bf* follows from
Kinfo(Vk) = - > Tror : (26) [18, Thm. 1, p. 162], by the fact that; = 0 is a simple
j=1"ki eigenvalue ofL. SinceL is symmetric, letV = [u!) | U]

whereI!*" is computed based on Lemma 2 for each pair. with Lu(») = 0 be the orthogonal matrix that diagonalizes
The relation between node certainty and information cerf+- Then, LU, = U:A,, where A, is the diagonal matrix

trality is now established by the following theorem. containing the nonzero eigenvalues bf Using this fact,
Theorem 1: LetG = (V, £, A) be an undirected connected@nd the properties
graph of ordem. Then, forv, € V(G) Ut = I, - ilnlz, (33)
1 o2 1 Kf) T "
- (=2 27 UTU, = .1, 34
plog) 2 (Hinfo(vk) n? @ ' (34)

. . it is straightforward to show that the matrix
where p(vr) and kinfo(vr) are the certainty index and 9

the information centrality ofv, given by (15) and (26), X =U, (UYTLUr)flUrT
respecuyer;Kf Is the K'rchho.ﬁ index ofG defined by (17). satisfies the requirements (30) for the group inverse. Hence
Hence, ifkq, ko, ..., k,, are indices such that L# — X, and the(k, j)-th entry of L# is

(v, ) > p(vi,) > oo > p(or,), (28)

|
Lk#j = Z A—pu,(gp)u§p). (35)
p=2

6An alternative definition provided in [17] uses the arithimetverage.



The result (32) follows folk = j in view of (15).

The following lemma collects some useful facts abbit

V. CONCLUSION
In this paper we studied a collection of units, each repre-

Lemma 4: Let L# be the group inverse of the Laplaciansented by a DDM, which accumulate evidence in continuous

L of a connected undirected graghof ordern. Then,

1
LL#*=L#L =1, — =1,1F,
n
1'% = %1, =0,

K¢
Tr(L#) = —
r(L#) ==,

where K; is the Kirchhoff index ofG.

Proof:

(36)
(37)
(38)

Equations (36) and (37) follow from (31) in
view of (33)-(34) andl U, = Ur1,, = 0. Equation (38) is
a consequence of (18) of Remark 3 in view of (32). &
The following lemma establishes a correspondence bg
tween the group inverse of the graph Laplacian and tr}

time by observing a deterministic signal partially coregbt

by noise. We focused on the impact of the interconnection
topology on the certainty of each unit as it integrates imf@+

tion in the pursuit of a decision. A node certainty index whic
captures how the location of a unit affects the variancesof it
state was defined based on the eigenstructure of the graph
Laplacian. It was intuitively discussed and rigorouslyyao
that ranking the units according to their certainty index
can be captured by their information centrality, a certali
measure that incorporatel possible paths connecting each
unit with the rest of the network. These results show that
vidence accumulation in collective decision making is a
Btal network process, and may be used to identify units that

inverseC of the matrix L + 1,1} in Lemma 2.
Lemma 5: Let G be an undirected connected graph
ordern with Laplacian matrixZ. Then,

(1]

1
C=(L+1,10)"'=L#+ 1,1}
2]

Proof: The result follows from

(39)

1 1
L+1,10 (% + =1,17 )\ =LL# + — (L1,)1F
(L4118 (2 4 1] D DL,

1
+1, (1LL#) + 51”13
- Ina

(4]

where Lemma 4 and the fagf' 1,, = n have been usedm [

Theorem 1 is now proved by combining the lemmas above[15
Proof: [Theorem 1] The definition of information cen-

trality (26) combined with (24) in Lemma 2 gives [7]

1 1< ) 20 (8]

mnfo(vk) B E ;(Ckk e ij)' (40) [9]

By Lemma 5 in view of (32) in Lemma 3 we have [10]

I 1201 1 (L1
EZCkk—Ckk—ka—Fﬁ—ﬁﬂ(vk)+ﬁ. (42)

Jj=1

In addition, from Lemmas 5 and 4 and (17) we have (12]

1 — 1 1 1 1

— = —Tr(L*)+ = = = Ki + — 42
n ; CJJ n ( ) + TLQ TLQ f + TL2 ( ) [13]
and . ) : ) [14]

1
n Z 2Ck; n Z Lig n n2’ (43)
Jj=1 Jj=1

[15]

The result follows. [ |

Remark 6: Lemmas 3 and 4 can be extended to strongl{}]
connected digraphs with normal Laplacian matrices. Thgz
proofs are somewhat lengthier and for reasons of space are
not given here. It is only mentioned that in this case th&s!
node certainty index is related to the diagonal elementseof t ;g
Laplacian of themirror graph of the interconnection digraph;
see [19, Def. 2] for a definition of the mirror graph.

] M. E. J. Newman,Networks: An Introduction, 1st ed.

0fcan potentially serve as more powerful decision makers.
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