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Technical Notes and Correspondence

Information Centrality and Ordering of Nodes for
Accuracy in Noisy Decision-Making Networks

Ioannis Poulakakis, Member, IEEE, George F. Young, Member, IEEE,
Luca Scardovi, Member, IEEE, and Naomi Ehrich Leonard, Fellow, IEEE

Abstract—This technical note considers a network of stochas-
tic evidence accumulators, each represented by a drift-diffusion
model accruing evidence towards a decision in continuous time
by observing a noisy signal and by exchanging information with
other units according to a fixed communication graph. These
network dynamics model distributed sequential hypothesis testing
as well as collective decision making. We prove the relationship
between the location of each unit in the graph and its certainty as
measured by the inverse of the variance of its state. Under mild
connectivity assumptions, we show that only in balanced directed
graphs do the node variances remain within a bounded constant
from the minimum possible variance. We then prove that, for
these digraphs, node ranking based on certainty is governed by
information centrality, which depends on the notion of effective
resistance suitably generalized to directed graphs. Our results,
which describe the certainty of each unit as a function of the
structural properties of the graph, can guide the selection of
leaders in problems that involve the observation of noisy external
signals by a cooperative multi-agent network.

Index Terms—Decision making, distributed hypothesis test-
ing, drift diffusion, information centrality, leader selection, noisy
networks.

I. INTRODUCTION

The identification of the most certain units in a network of sensors
accumulating evidence by observing noisy processes is central to
shaping collective behavior. The contribution of the present technical
note is to rigorously characterize the impact of the communication
graph on the certainty—i.e., accuracy—of each unit in a decision-
making network of stochastic evidence accumulators.

In decision making, evidence accumulation often assumes that rele-
vant information is collected sequentially, through a series of indepen-
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dent scalar observations. This assumption forms the basis for a large
class of decision-making tests, including Wald’s Sequential Probability
Ratio Test (SPRT) and its variations [1]. In the classical two-choice
SPRT test, the information accrued by a detector is processed to form
a likelihood ratio; as successive samples are collected, the evolution
of the likelihood ratio is equivalent to a discrete-time biased random
walk [2]. In continuous-time implementations of sequential binary hy-
pothesis tests, evidence accumulation is represented through diffusive
stochastic differential equations [3]. The relationship between discrete
and continuous implementations of the SPRT is discussed in [2], where
it is shown how the logarithmic likelihood ratio in the SPRT converges
in distribution to a stochastic differential equation with constant drift
and diffusion terms: the drift-diffusion model (DDM). The DDM is
also used to study cognitive and neural processes underlying decisions
in humans and animals [2].

We adopt the DDM as a basis for modeling information accumu-
lation by a single unit, and we study networks of DDMs in which
communication of information among the units occurs according to
the Laplacian flow [4]. Similar models of communication have been
used in the study of collective decision making in social networks as
well as in distributed implementations of hypothesis testing problems
in the engineering literature [6]. In fact, our information aggregation
model is the continuous-time equivalent of the running consensus
algorithm with fixed network structure [6]. Such networks of DDMs
have been applied in [7], [8] to analyze the performance of consensus
protocols in the presence of noise as a function of effective resistance
of the network graph. The notion of effective resistance is relevant to
many fields beyond consensus; see [9], and [10] which also discussed
the connection between error covariance and effective resistance in
estimation.

Rather than analyzing the collective effect of noise—as is common
in the consensus literature [7], [8]—this technical note focuses on
assessing the contribution of each individual unit to the uncertainty
of the network process. We consider a network of agents with drift-
diffusion dynamics interconnected according to a general communi-
cation graph. An example of such a system is a network of unmanned
aerial vehicles (UAVs), each equipped with a camera and/or other sens-
ing modalities—e.g., heat or smoke detectors—to monitor a forested
region for fire, and each communicating its evidence for the presence
of fire to its neighbors according to a fixed graph.

Among all directed graphs satisfying a mild connectivity assump-
tion, we prove that balanced digraphs are the ones that minimize the
linear growth rate of the variance of each node. For this class of graphs,
we introduce an index that characterizes the certainty of each unit,
and we interpret this index in terms of a generalization of the notion
of effective resistance to directed graphs [11]. Restricted to graphs
with normal Laplacian matrices, which include all undirected graphs,
our results formally relate node certainty to information centrality
developed in [12] in the context of social networks. We prove that the
ordering of nodes by certainty is determined by the ordering of nodes
by information centrality. In the fire-detection example described
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above, these results imply that the more information central is a
UAV in the communication graph, the more accurate is its assessment
regarding the presence of fire. Then, a reliable detection strategy
would have the most information central UAVs dominate the group’s
decision. Preliminary parts of this technical note appeared in [13],
[14]; see also [26] for a more detailed account.

II. MODEL AND PROBLEM STATEMENT

A. Networks of Sequential Evidence Accumulators

In the context of two-choice decisions—e.g, if there is a fire
or not—the diffusive paradigm of evidence accumulation admits a
simple representation [2]. Under the assumption that the difference
between the amounts of evidence supporting each of the two choices
is integrated over time, evidence is accumulated according to the drift-
diffusion model (DDM)

dx = βdt+ σdW (1)

where x(t) is the accumulated value at time t of the difference in
the information favoring one choice over the other, and x = 0 if the
integrated evidences are equal. In (1), the constant drift β represents
an increase in the evidence supporting the correct choice and σdW are
increments drawn from a Wiener process with standard deviation σ.
Equation (1) is the (weak) limit of the logarithmic likelihood ratio in
typical binary hypothesis tests under the assumption that infinitesimal
increments of information arrive at each moment in time [2].

We focus on a network of n evidence accumulating units as the
interconnection of n DDMs that share the relative value of their
evidence with those units with which they can communicate. The state
xk of unit k, for each k = 1, . . . , n, evolves according to

dxk =

[
β +

n∑
j=1

αkj(xj − xk)

]
dt+ σdWk (2)

where αkj ≥ 0 denotes the attention paid by unit k to the difference
between its state xk and the state xj of unit j; αkj = 0 implies that
the units k and j do not communicate. The constant drift β and the
independent Wiener processes σdWk are the same as in (1).

The model (2) can be associated with a collective decision-making
scenario, in which a set of interconnected decision-making units is pre-
sented with partial information about a stimulus—e.g., a deterministic
signal corrupted by noise—and each unit is asked to identify it between
two alternatives within a finite time interval [13]. More recently,
(2) has been used to investigate the speed-accuracy tradeoff in col-
lective implementations of two-alternative decision-making tasks in
[15] and to consider the case in which a limited number of units can
measure the external signal directly [16].

The model (2) with β = 0 has been used to determine necessary
and sufficient conditions for mean-square average consensus under
measurement noise [17], and to analyze the stochastic stability [8],
and robustness [7], of linear consensus algorithms in the presence of
(white) noise. Similar models have been employed in [18] to study
whether local feedback is sufficient to maintain coherence in large-
scale networks under the influence of stochastic disturbances and in
[16], [19], [20] to find leaders that maximize robustness in stochas-
tically forced consensus networks. A common metric for assessing
the quality of consensus under measurement noise is the trace of the
covariance matrix associated with the projection of the state on the
subspace orthogonal to the consensus subspace [7], [8], [21]. Such
metrics capture the collective effect of the uncertainty, but they do not
distinguish the individual contributions of the nodes to the dispersion
around the consensus subspace. Here, we address how the uncertainty
of each node affects the total uncertainty of the process, and how a
node’s contribution can be characterized based on its location in the
underlying interconnection graph.

B. Notation and Basic Properties of the Model

We identify the communication topology in the network with a di-
graphG=(V, E , A). The vertex setV :={v1, . . . , vn} containsn nodes
that represent the n evidence accumulators. The edge set E ⊆V×V
contains the communication links among the nodes, and A ∈ R

n×n
≥0

is the corresponding weighted adjacency matrix. The elements of A
are denoted by αkj ≥ 0 such that αkj > 0 if ekj = (vk, vj) ∈ E , and
αkj = 0 otherwise. We adopt a “sensing” convention: a (directed)
edge ekj = (vk, vj) ∈ E implies that node vj transmits information
about its state to node vk; equivalently, vk can “sense” the state of vj ,
and we say vj is a “neighbor” of vk. We will assume that there are no
self-loops in G, i.e., αkk = 0 for all vk ∈ V . The out- and in-degree
of a node vk ∈ V can be defined, respectively, by degout(vk) :=∑n

j=1
αkj and degin(vk) :=

∑n

j=1
αjk. If degout(vk) = degin(vk)

for all vk ∈ V , graph G is balanced. In this notation, (2) becomes

dx = (b− Lx)dt+HdW (3)

where x := col(x1, . . . , xn), dW := col(dW1, . . . , dWn), b := β1n

and H := σIn; 1n is the n-dimensional vector with entries all equal
to one and In is the n× n identity matrix. In (3), L is the Laplacian
matrix associated with G, defined by Lkj :=

∑n

i=1,i �=k
αki for k = j

and Lkj := −αkj for k �= j. By construction, 1n is an eigenvector of
L corresponding to the eigenvalue λ1 = 0. We will use the Laplacian
on the subspace of R

n orthogonal to 1n. Consider an (n− 1)× n
matrix Q with rows that form an orthonormal basis for this subspace
and that satisfies

Q1n = 0n−1, QQT = In−1 and QTQ = In − 1

n
1n1

T
n . (4)

Then, the reduced Laplacian matrix is given by

Lr = QLQT. (5)

If the graph is balanced, 1T
n is a left eigenvector of L with λ1 = 0. A

(directed) path in a digraph G is an ordered sequence of vertices, such
that any pair appearing consecutively is an edge of the digraph, and
every vertex other than the first and last is unique. A vertex of a digraph
is globally reachable if, and only if, it can be reached from any other
vertex by traversing a directed path. A digraph G is strongly connected
if, and only if, every vertex is globally reachable. For balanced
digraphs, containing a globally reachable node is equivalent to being
strongly connected (and implies weaker notions of connectivity) [22].
Next, we summarize properties of L.

Proposition 1: Let G := (V, E , A) be a digraph of order n, and L
its associated Laplacian. Then:

(i) all the eigenvalues of L have nonnegative real parts;
(ii) if G contains a globally reachable node, then rank(L) = n− 1,

i.e., 0 is a simple eigenvalue of L;
(iii) for any τ ∈ [0, t], e−L(t−τ) is a row-stochastic matrix.

Statements (i) and (ii) are proved in [23], and statement (iii) is a
direct consequence of the fact that the rows of L sum to zero.

It is known from general results in [24, pp. 131–132] that the
stochastic process {x(t) : t ≥ 0} produced by (3) is Gaussian. More-
over, assuming that x(0) = 0 with probability one, the mean and
covariance of x(t) are given, respectively, by

E [x(t)] =

t∫
0

e−L(t−τ)bdτ (6)

Cov (x(t), x(t)) =σ2

t∫
0

e−L(t−τ)e−LT(t−τ)dτ. (7)

The lemma below provides lower and upper bounds for the variance
of the state of each unit. The lower bound is used in Section III to
define an index that characterizes the certainty of each unit.
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Lemma 1: Consider (3). For any interconnection digraph G =
(V, E , A) and any node vk ∈ V

E [xk(t)] = βt (8)
σ2

n
t ≤ Var (xk(t)) ≤ σ2t. (9)

Proof: Equation (8) follows from (6) for b = β1n, since, by
Proposition 1(iii), e−L(t−τ) is row-stochastic. To show (9), let qk be
the n× 1 vector with all elements equal to zero except element k,
which is equal to one; note that

∑n

k=1
qk = 1n. Then

Var (xk(t)) =qT
kCov (x(t), x(t))qk

=σ2

t∫
0

∥∥∥e−LT(t−τ)qk

∥∥∥2

2
dτ

where (7) has been used. The result now follows from
(1/n) ‖e−LT(t−τ) qk‖21 ≤ ‖e−LT(t−τ) qk‖22 ≤ ‖e−LT(t−τ) qk‖21,
where ‖e−LT(t−τ)qk‖1 = 1, since e−LT(t−τ)qk is the k-th row of
e−L(t−τ), which is row-stochastic by Proposition 1(iii). �

Remark 1: Lemma 1 shows that the expected value of the evidence
accumulated by each unit increases linearly with time at a rate β, which
is the same for all units regardless of the interconnection topology. By
way of contrast, the covariance matrix does depend on the interconnec-
tion. This implies that certain communication topologies—and certain
nodes within them—may be better than others in terms of certainty
in integrating information. In view of the fact that σ2t is the variance
of the state of an isolated DDM, the upper bound in (9) implies that
the uncertainty associated with any of the interconnected units cannot
exceed that of an isolated unit.

Remark 2: When t is sufficiently small, by expanding the expo-
nentials in (7) in Taylor series and neglecting higher order terms,
Cov(x(t), x(t)) ≈ (σ2t)In. This implies that all units behave like
isolated DDMs at the beginning of the process. It will become apparent
in the following sections that, as time evolves and the units collect
and communicate their accumulated evidence, their certainty improves
with respect to that of an isolated DDM in a way that depends on the
topology of the communication. We identify units with variance that
evolves more closely to the lower bound in (9).

III. BALANCED GRAPHS AND NODE CERTAINTY

This section characterizes the class of digraphs in which node
variance evolves within a bounded constant from the lower bound
σ2t/n established by Lemma 1. For this class, we introduce an index
that encodes the certainty of each unit as it accrues evidence and can
be used to rank the nodes according to the quality of their accumulated
data. The next proposition establishes conditions under which the
difference between the variance of the state of each node and the
minimum possible variance σ2t/n remains bounded.

Proposition 2: Let G := (V, E , A) be a digraph, and L its associ-
ated Laplacian. Assume that G contains a globally reachable node.
Then, after initial transients:

(i) the variance of each node increases linearly with time;
(ii) the linear growth rate of the variance of every vk ∈ V is σ2/n

if, and only if, G is balanced;
(iii) if G is not balanced, the variance of every node will have growth

rate strictly larger than σ2/n.

To prove Proposition 2, we will use the following lemma regarding
the structure of the covariance matrix (7).

Lemma 2: Consider (3). Under the conditions and notation of
Proposition 2, the covariance matrix (7) takes the form

Cov (x(t), x(t)) = σ2 (C0 + C1t+ C2(t)) (10)

where C0=−SL−2T
r QLT−LQTL−2

r ST, C1=(1/n)1n1
T
n+SST,

C2(t) = Se−LT
r tL−T

r QLT + LQTL−1
r e−LrtST + LQTL−1

r Σ(t)
L−T

r QLT with S := LQTL−1
r −QT, and

Σ(t) :=

t∫
0

e−Lr(t−τ)e−LT
r (t−τ) dτ (11)

in which Q is a matrix defined as in (4) and Lr is the corresponding
reduced Laplacian given by (5).

Proof: Let P = [(1/
√
n)1n QT]

T where Q satisfies (4);
clearly, P is orthogonal. Next, note that

PLPT =

[
0 1√

n
1T
nLQ

T

0n−1 Lr

]
(12)

P eLtPT =

[
1 1√

n
1T
nLQ

TL−1
r

(
eLrt − In−1

)
0n−1 eLrt

]
(13)

which follow from properties of P and L. Re-writing (7) as

Cov(x(t), x(t))=σ2PT

t∫
0

P e−L(t−τ)PTP e−LT(t−τ)PTdτP

and substituting (12), (13) and their transposes results in (10). �
With the aid of Lemma 2, we can prove Proposition 2.

Proof [Proposition 2]: The assumption that G contains a glob-
ally reachable node implies that −Lr is Hurwitz [7, Lemma 1].
Hence, limt→∞ e−Lrt=limt→∞ e−LT

r t=0 and limt→∞ Σ(t)=Σ,
the unique positive-definite matrix that satisfies Lyapunov’s equation

LrΣ+ΣLT
r = In−1 (14)

see also [7, Lemma 2]. As a result

lim
t→∞

C2(t) = LQTL−1
r ΣL−T

r QLT =: C2,ss

a constant matrix. Hence, after initial transients, the variance associ-
ated with vk ∈ V converges to

Var (xk(t)) → σ2
(
qT
k (C0 + C2,ss)qk +

(
qT
kC1qk

)
t
)

(15)

confirming (i). To show (ii) and (iii), we focus on the linear term
σ2(qT

kC1qk)t in (15), which by Lemma 2 becomes

σ2
(
1

n
+ qT

k SS
Tqk

)
t = σ2

(
1

n
+ ‖STqk‖

2

2

)
t.

Using the fact that S = LQTL−1
r −QT = (1/n)1n1

T
nLQ

TL−1
r ,

which follows directly from the properties (4) of Q, we deduce that
the term ‖STqk‖22 is equal to zero when STqk = 0 ⇔ QLT1n =
0 ⇔ LT1n = 0, i.e., for balanced G. When G is not balanced, the
linear growth rate of the variance of any node will be strictly greater
than σ2/n. �

Motivated by Proposition 2, we restrict our analysis to strongly
connected digraphs G = (V, E , A) that are balanced. In these graphs,
and for each vk ∈ V we can define the node certainty index μ : V →
R>0 ∪ {∞} as the inverse of the difference between the variance
Var(xk(t)) of the state xk of node vk and the minimum possible
variance σ2t/n as t → +∞; that is

1

μ(vk)
:= lim

t→+∞

(
Var (xk(t))− σ2 t

n

)
. (16)

A high value of μ(vk) corresponds to small uncertainty associated
with the node vk, since the variance of its state evolves closely to
the minimum possible variance σ2t/n; see Lemma 1. By convention,
μ(vk) = ∞ corresponds to the highest possible certainty. Classifying
the nodes of a graph based on their certainty index and interpreting
this classification in terms of the structural properties of the inter-
connection graph will be discussed in Section IV below. First, we
state a proposition that shows μ is well defined for strongly connected
balanced digraphs and provides a formula for computing μ.
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Proposition 3: LetG := (V, E , A) be a digraph, andL its Laplacian.
Assume that G is strongly connected and balanced. Then:

(i) the limit in (16) is finite;
(ii) with the notation above, the index μ is computed by

1

μ(vk)
= σ2 qT

k (Q
TΣQ)qk. (17)

The proof of Proposition 3 is a straightforward consequence of
Lemma 2 and Proposition 2 and will be omitted. To provide further
intuition on the node certainty index μ, Corollary 1 particularizes
Proposition 3 to strongly connected digraphs G = (V, E , A) with
Laplacian matrices L that are normal; i.e., matrices that commute with
their transpose, [25, Sec. 2.5]. This family of graphs includes all the
undirected graphs, and also some classes of directed graphs, such as
directed circulant graphs; see [26, Section V] for more details.

Corollary 1: In addition to the conditions of Proposition 3, assume
that the corresponding Laplacian L is normal. Then, for vk ∈ V the
node certainty index μ can be computed by

1

μ(vk)
= σ2

n∑
p=2

1

2Re(λp)

∣∣∣u(p)
k

∣∣∣2 (18)

where Re(λp) is the real part of the eigenvalue λp, p ∈ {2, . . . , n} of

L, and u
(p)
k is the k-th component of the p-th normalized eigenvector.

Proof: By [25, Theorem 2.5.4], the normality of L implies that
there exists a unitary matrix U such that U∗LU = Λ, where U∗ is
the Hermitian transpose of U and Λ is a diagonal matrix with the
eigenvalues of L. Partition U as U = [u(1)| . . . |u(n)] = [u(1) | Ur],
where u(1) = (1/

√
n)1n and Ur contains the normalized eigenvectors

u(p) corresponding to the nonzero eigenvalues λp, p = 2, . . . , n. Then,
(5) becomes Lr = QUrΛrU

∗
rQ

T, where Λr is the diagonal matrix
containing the nonzero eigenvalues of L. Hence, (11) gives

Σ = QUr

⎛
⎝ ∞∫

0

e−(Λr+Λ̄r)(t−τ)dτ

⎞
⎠ U∗

rQ
T (19)

where Λ̄r is the complex conjugate of Λr . The result follows from (17)
through pre- and post-multiplying (19) by QT and Q, respectively, and
using (4) and the facts 1T

nUr = U∗
r 1n = 0. �

The additional structure imposed on the Laplacian L by requiring
it to be a normal matrix renders the dependence of the node certainty
index μ on the eigenstructure of L explicit, as shown by (17). This
allows us to draw connections between μ and the total effective
resistance, or the Kirchhoff index, Kf , of the underlying graph.

Remark 3: Under the conditions of Corollary 1, (18) results in∑
vk∈V(G)

1

μ(vk)
= σ2

n∑
p=2

1

2Re(λp)
. (20)

For linear consensus protocols in the presence of additive white noise,
the sum on the right hand side of (20) corresponds to the expected
steady-state dispersion around the consensus subspace. Hence, the
inverse of μ(vk) can be interpreted as the individual contribution of the
node vk to the dispersion of the evidence; the higher μ(vk), the smaller
the contribution of the node vk. In the case of undirected graphs, the
sum (20) is related to the total effective resistance Kf , or Kirchhoff
index, Kf = n

∑n

p=2
(1/λp) of the graph; see [9]. So, for undirected

graphs, we have
∑

vk∈V(G)
(1/μ(vk)) = σ2(Kf/2n).

IV. NODE CERTAINTY AS A CENTRALITY MEASURE

In this section, the node certainty index μ is characterized in terms
of the structural properties of the underlying interconnection graph and
shown to depend on the totality of paths in the network.

Fig. 1. Left: The connected undirected graph used to illustrate that all paths—
not just the geodesics—must be taken into account in interpreting μ. The nodes
that maximize the certainty index are v1 and v2, and the node that minimizes
certainty is v5. Right: Node properties (degree, κclose and μ).

A. A Motivational Example

Consider the undirected graph in Fig. 1 [12]. For each node vk,
we compute the certainty index μ(vk) using (17), and its degree, i.e.,
the number of edges attached to vk. The corresponding closeness
centrality, κclose, is provided as a representative geodesic-distance-
based measure of centrality. Defining the geodesic distance d(vk, vj)
between vk and vj as the length of the shortest path connecting them,
the closeness centrality of a node vk is computed as the inverse of the
mean geodesic distance d(vk, vj) over all nodes vj

κclose(vk) =

(
1

n

n∑
j=1

d(vk, vj)

)−1

(21)

see [27, Section 7.6]. The example of the graph of Fig. 1 demonstrates
that, for general undirected graphs, node certainty cannot be captured
by centrality measures based on degrees or geodesic paths. This is a
consequence of the fact that the evidence accumulated by each unit is
transmitted through the network and reaches the rest of the units via
circuitous, non-geodesic pathways.

As an example, note that μ(v3) = μ(v4) > μ(v5) in Fig. 1. This
distinction between v5 and {v3, v4} cannot be captured by their
degrees, which are all equal to 2, nor by their closeness centralities,
which are all equal to 0.83, nor by any centrality measure that is
defined based on geodesic paths. To see this, note that any of the
vertices v3, v4, and v5 in the graph of Fig. 1 is connected to the rest
through two geodesic paths of length 2 and two geodesic paths of
length 1. Hence, excluding non-geodesic pathways, these nodes are
equivalent, resulting in κclose(v3) = κclose(v4) = κclose(v5).

B. Main Result: Node Certainty and Information Centrality

This section clarifies the relation between node certainty, as char-
acterized by the index μ, and the location of a node in the underlying
interconnection graph through the notion of effective resistance.

We begin with defining effective resistance for strongly connected
weighted balanced digraphs. Let G = (V, E , A) be such a digraph.
Following [11], we can compute effective resistances between any pair
of nodes in G from the corresponding Laplacian matrix L as follows.
Let vk, vj ∈ V be two nodes with vk �= vj . Then, the directed effective
resistance between vk and vj is given by

r(vk, vj) = xkk + xjj − 2xkj (22)

where xkj , 1 ≤ k, j ≤ n are the entries of the matrix

X := 2QTΣQ (23)

and Q is defined through (4) and Σ is the solution of (14) with Lr the
reduced Laplacian computed by (5). Finally, we can compute the total
effective resistance of G as

Kf =
∑
k<j

r(vk, vj) (24)

which generalizes the Kirchhoff index defined for undirected graphs to
strongly connected balanced digraphs.
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We now define the directed information centrality of vk as the
inverse of the mean effective resistance r(vk, vj) over all nodes vj

κinfo(vk) :=

(
1

n

n∑
j=1

r(vk, vj)

)−1

. (25)

Our motivation for using the term information centrality in (25) comes
from the work of Stephenson and Zelen [12] on social networks. It
will be shown below that (25) essentially represents a generalization
of the original definition of information centrality in [12] to balanced
digraphs that are strongly connected. Note the similarities between
(21) and (25), with the important difference being that κinfo depends
on all connections between nodes.

Theorem 1 below relates the certainty index of a node vk in a
balanced and strongly connected weighted digraph G = (V, E , A) to
the directed information centrality of vk.

Theorem 1: Let G = (V, E , A) be a balanced and strongly con-
nected digraph on n vertices. Then, the certainty index μ(vk) of the
node vk ∈ V is

1

μ(vk)
=

σ2

2

(
1

κinfo(vk)
− Kf

n2

)

where κinfo(vk) is the information centrality of vk in G and Kf is
the Kirchhoff index of G given by (24). Hence, for any set of indices
k1, k2, . . . , kn, the following inequalities are equivalent:

μ (vk1
) ≥μ (vk2

) ≥ · · · ≥ μ (vkn)

κinfo (vk1
) ≥κinfo (vk2

) ≥ · · · ≥ κinfo (vkn) .

Theorem 1 shows that node ranking according to certainty is deter-
mined by the graph structure via the notion of effective resistance. In
particular, more certain nodes are located so that they minimize the
mean effective resistance averaged over all nodes of the graph. To pro-
vide more intuition, we consider the special case of strongly-connected
weighted digraphs with normal Laplacian matrices. By Corollary 2
below, node ranking in this class of directed graphs is captured by
their corresponding mirror graphs, which are undirected. To define the
mirror graph Ĝ of a strongly-connected normal digraph G = (V, E , A),
let Ẽ be the set of reverse edges of G, obtained by reversing the
order of nodes of all pairs in E . Then, Ĝ is an undirected graph
Ĝ = (V̂, Ê , Â) with set of vertices V̂ = V , set of edges Ê := E ∪ Ẽ ,
and adjacency matrix Â = [α̂kj ] with α̂kj = α̂jk = (αkj + αjk)/2;
see also [4, Def. 2].

Since Ĝ = (V̂, Ê , Â) is undirected and connected we can define
information centrality in a more intuitive way, using a path enumer-
ation procedure. Assume that w : Ê → R>0 is a function that maps
each edge e ∈ Ê to its positive weight and consider a pair of vertices
vk, vj ∈ V̂ . Suppose there are mkj paths Pkj(r), r = 1, . . . ,mkj ,
connecting vk and vj and define the weighted length of Pkj(r) as

�w (Pkj(r)) :=
∑

e∈Pkj(r)

1

w(e)
. (26)

The definition of the length �w in (26) reflects the convention that the
higher the weight of an edge the more important the communication
between the incident nodes of that edge is; hence, these nodes appear
to be “closer.” Additionally, the weighted length of a path matches the
usual notion of effective resistance for undirected graphs [9].

To capture non-geodesic paths, we define the distance between
vk and vj based on a “combined” path P̃kj that incorporates all
the paths Pkj(r), r = 1, . . . ,mkj , connecting vk and vj . To do so,
define the mkj ×mkj matrix Dkj as follows: its diagonal entries
Dkj(r, r) correspond to the weighted lengths of the paths Pkj(r),
Dkj(r, r) = �w(Pkj(r)), and its off-diagonal entries Dkj(r, s) corre-
spond to the sum of the inverse weights of the edges that are common
between Pkj(r) and Pkj(s) for r, s ∈ {1, . . . ,mkj} with r �= s, i.e.,

Dkj(r, s) =
∑

e∈Pkj(r)∩Pkj(s)
(1/w(e)). Then, the length �w(P̃kj)

of the combined path is given by

1

�w(P̃kj)
=

mkj∑
r=1

mkj∑
s=1

D−1
kj (r, s) (27)

and the distance between vk and vj is d̃(vk, vj) := �w(P̃kj).
This procedure is analogous to combining resistances in parallel

in electric circuits, while taking into account shared edges, so that
the combined distance between two nodes is equal to the resistance
distance between them; see Lemma 5 in Section IV-C .

Stephenson and Zelen in [12] define the total “information” con-
tained in the entirety of paths connecting vk and vj as the inverse
of the length of the combined path Ikj := 1/�w(P̃kj), with �w(P̃kj)
computed by (27), and use Ikj to compute information centrality of a
node vk as the harmonic average

κ̂info(vk) :=

(
1

n

n∑
j=1

1

Ikj

)−1

=

(
1

n

n∑
j=1

d̃(vk, vj)

)−1

.

This corresponds to the restriction of (25) to the class of undirected
weighted graphs.

With this notation, the following result can be stated.
Corollary 2: Let G = (V, E , A) be a strongly connected digraph on

n vertices and assume that its Laplacian matrix L is normal. Then, the
certainty index of the node vk ∈ V is

1

μ(vk)
=

σ2

2

(
1

κ̂info(vk)
− K̂f

n2

)

where κ̂info(vk) is the information centrality of vk in the mirror graph
Ĝ of G and K̂f is the Kirchhoff index of Ĝ given by (24).

C. Proof of Main Result

In this section, Theorem 1 and Corollary 2 are proved through a
sequence of lemmas. Theorem 1 follows from an examination of the
covariance matrix given in (7).

Proof [Theorem 1]: Using (17) in view of (23) results in

1

μ(vk)
=

σ2

2
xkk. (28)

Then, from (25) and (22), we can write κinfo(vk) = (xkk +
(1/n)Tr(X))−1, since X1n = 2QTΣQ1n = 0n by (4). Also be-
cause X is symmetric with zero row sums we have Kf = nTr(X).
The result follows by substituting these expressions to (28). �

To connect our algebraic notion of information centrality with the
more intuitive, path-enumeration construction for undirected graphs,
we start with a lemma due to Stephenson and Zelen [12].

Lemma 3 (Stephenson and Zelen, [12]): Let Ĝ = (V̂, Ê , Â) be an
undirected connected graph of order n and let L̂ be its Laplacian.
Then, the total information Ikj transmitted via all paths connecting vk,
vj ∈ V̂ is

Ikj = (ckk + cjj − 2ckj)
−1 (29)

where ckj , 1 ≤ k, j ≤ n, are the entries of C = (L̂+ 1n1
T
n )

−1.
Next, we can derive an explicit formula for the matrix X from (23)

for undirected graphs.
Lemma 4: Let Ĝ be an undirected connected graph of order n with

Laplacian matrix L̂. Then, X̂ = QT(QL̂QT)
−1

Q, where X̂ satisfies
(23) for Ĝ.
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Proof: Since Ĝ is undirected, L̂ is symmetric, and hence so is
L̂r = QL̂QT. Thus, (14) becomes L̂rΣ̂ + Σ̂L̂r = I which has solu-
tion Σ̂ = (1/2)L̂−1

r . The result follows by substituting Σ̂ into (23).
Note that L̂−1

r exists since Ĝ is connected, [7]. �
The following lemma establishes a correspondence in undirected

graphs between effective resistances r(vi, vj), computed via (22), and
the information Iij , computed via (29).

Lemma 5: Let Ĝ be an undirected connected graph of order n with
Laplacian matrix L̂. Then

C =
(
L̂+ 1n1

T
n

)−1
= X̂ +

1

n2
1n1

T
n (30)

where X̂ is computed from L̂ using (5), (14) and (23). Thus
r(vi, vj) = I−1

i,j for all pairs of nodes (vi, vj) in Ĝ.

Proof: First, note that L̂ is symmetric since Ĝ is undirected, and
L̂1n = 0n. Hence, we must have 1T

n L̂ = 0T
n and hence QTQL̂ =

(In − (1/n)1n1
T
n )L̂ = L̂. Then by Lemma 4, (30) follows from(

L̂+ 1n1
T
n

)(
X̂ +

1

n2
1n1

T
n

)
= QTQ+

1

n
1n1

T
n = In

where (4) and 1T
n1n = n have been used. By (30) we observe that

cij = x̂ij + (1/n2), and the result follows from (29) and (22). �
We now establish sufficient conditions for the computation of

information centrality in digraphs using only the mirror graph.
Lemma 6: Let G be a strongly connected digraph on n vertices and

assume that its Laplacian L is normal. Then, the information centrality
κinfo(vk) of node vk in G is equal to the information centrality
κ̂info(vk) of node vk in the mirror graph Ĝ of G.

Proof: By [7, Lemma 4], strongly connected digraphs with nor-
mal Laplacians are balanced. Then [4, Theorem 7] states that if G is
balanced, the symmetric part L̂ = (1/2)(L+ LT) of its Laplacian L

is a valid Laplacian matrix for the mirror graph Ĝ of G. Now, by the
proof of Lemma 4, we know that Σ̂ = (1/2)L̂−1

r solves (14) for Ĝ. We
will now show that Σ̂ also solves (14) for G.

First, L̂r = (1/2)Q(L+ LT)QT = (1/2)(Lr + LT
r ), implies that

Σ̂ =
(
Lr + LT

r

)−1
. (31)

Next, note that (4) results in LQTQ = L using the fact that L1n =
0n. Furthermore, as G is balanced we also have 1T

nL = 0T
n , and hence

QTQL = L. Combining these expressions with the normality of L,
i.e., LLT = LTL, results in

LrL
T
r = LT

r Lr ⇒ L−T
r Lr = LrL

−T
r (32)

where we used the fact that Lr is invertible since G is connected; see
[7, Lemma 1]. Equation (32) implies Lr is also normal.

To show that Σ̂ also solves (14) for G, we consider the term LrΣ̂ +
Σ̂LT

r , which based on (31) and the results above gives

LrΣ̂ + Σ̂LT
r =In−1−

(
In−1+LrL

−T
r

)−1
+
(
In−1 + L−T

r Lr

)−1

where the Matrix Inversion Lemma was used. But by (32), the final
two terms are identical with opposite signs. Hence, Σ̂ solves (14) for
G as well as Ĝ implying that X = X̂ . The result follows. �

Finally, Corollary 2 follows from Lemma 6 and Theorem 1.

V. CONCLUSION

This technical note proved that node certainty in a network of
stochastic evidence accumulators depends on the underlying commu-
nication graph in a way that is captured by the notion of information
centrality [12]. In recent work, this connection between information
centrality and node certainty has been used to derive systematic
solutions to the optimal leader selection problem for coherence in
noisy networks [16], and to rigorously compare nodes in terms of their

speed-accuracy tradeoffs in collective decision-making tasks [15]. Fu-
ture work includes the generalization of these results to heterogeneous
networks with different drifts and noise intensities among nodes.
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