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Abstract— We propose a satisficing objective for the multi-
armed bandit problem, i.e., where the objective is to achieve
performance above a given threshold. We show that this
new problem is equivalent to a standard multi-armed bandit
problem with a maximizing objective and use this equivalence to
find bounds on performance in terms of the satisficing objective.
For the special case of Gaussian rewards we show that the
satisficing problem is equivalent to a related standard multi-
armed bandit problem again with Gaussian rewards. We apply
the Upper Credible Limit (UCL) algorithm to this standard
problem and show how it achieves optimal performance in
terms of the satisficing objective.

I. INTRODUCTION

Engineering solutions to decision-making problems are
often designed to maximize an objective function. However,
in many contexts maximization of an objective function is
an unreasonable goal, either because the objective itself is
poorly defined or because solving the resulting optimization
problem is intractable or costly. In these contexts, it is
valuable to consider alternative decision-making frameworks.

Herbert Simon considered [16] alternative models of ra-
tional decision making with the goal of making them “com-
patible with the access to information and the computational
capacities that are actually possessed by organisms, including
man, in the kinds of environments in which such organisms
exist.” A major feature of the models he considered is
what he called “satisficing”. In [16], Simon discussed in
very broad terms a variety of simplifications to the classi-
cal economic concept of rationality, most importantly the
idea that payoffs should be simple, defined by doing well
relative to some threshold value. In [17], he introduced the
word “satisficing” to refer to this thresholding concept and
considered an ecological example of food foraging behavior
in detail using mathematical terms. He also briefly discussed
how satisficing relates to problems in inventory control and
more complicated decision processes like playing chess.

Since Simon’s pioneering work, satisficing has been stud-
ied in many fields such as psychology [15], economics [3],
management science [10], [21], and ecology [20], [4]. In
engineering, satisficing is of interest for the same reasons
that motivated its introduction in the social science literature,
specifically that it can simplify decision-making problems.
Furthermore, many engineering problems are naturally posed
using a satisficing objective, for example design problems
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that have to meet given specifications. A design that meets
all the required specifications is acceptable, and the designers
may be indifferent between any such design. In this context,
optimization may be poorly defined, for example if there
are several competing performance measures that trade off
in complicated ways. Satisficing can be a simpler decision
paradigm than maximizing, which requires additional infor-
mation about preferences among possible tradeoffs.

Satisficing has been studied in the engineering literature in
several contexts. In [11], Nakayama studied design optimiza-
tion using a satisficing objective and found that it is effective
in many practical fields. In [6], the authors studied control
theory using a satisficing objective function, and in [22], the
authors used satisficing to study optimal software design.

Satisficing can be implemented in a variety of ways. In this
paper, we consider the stochastic multi-armed bandit problem
[14], where a decision maker sequentially chooses one of a
set of alternative options, or arms, and earns a reward drawn
from a stationary probability distribution associated with that
arm. The standard multi-armed bandit problem uses a maxi-
mizing objective, for which there is a known performance
bound. We propose a satisficing objective for the multi-
armed bandit problem based on the number of times the
decision maker receives a reward that is above a threshold
value and show that the multi-armed bandit problem with
this objective is equivalent to a related standard multi-armed
bandit problem. We use the equivalent problem to derive a
performance bound for the new satisficing problem.

For Gaussian bandit problems, i.e., where the reward dis-
tributions are Gaussian with unknown mean and known vari-
ance, we show that solving the problem with the satisficing
objective is equivalent to solving a standard Gaussian multi-
armed bandit problem. We then apply the UCL algorithm
we developed in previous work [13] to the standard problem,
and show how this algorithm achieves optimal performance
in terms of the original satisficing objective.

The remainder of the paper is structured as follows. In
Section II we review the standard stochastic multi-armed
bandit problem and the associated performance bounds. In
Section III we propose the satisficing objective and bound
performance in terms of this objective by defining a notion
of satisficing regret. In Section IV we specialize to the
case of Gaussian rewards and show that solving the satis-
ficing problem is equivalent to solving a standard problem
with Gaussian rewards. In Section V we review the UCL
algorithm and show how applying it to the problem with
Gaussian rewards achieves optimal performance in terms of
the satisficing objective. Section VI shows the results of
numerical simulations and Section VII concludes.
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II. THE STOCHASTIC MULTI-ARMED BANDIT PROBLEM

The stochastic multi-armed bandit problem is a decision-
making problem in which the decision maker sequentially
chooses one among a set of N options, called arms in
analogy with the lever of a slot machine. A single-levered
slot machine is sometimes called a one-armed bandit, so the
case of N options is often called an N -armed bandit.

The decision-making agent collects reward rt ∈ R by
choosing arm it at each time t ∈ {1, · · · , T}, where T ∈ N
is the horizon length for the sequential decision process. The
reward from option i ∈ {1, · · · , N} is sampled from a sta-
tionary probability distribution pi and has an unknown mean
mi ∈ R. The decision-maker’s objective is to maximize some
function of the sequence of rewards {rt}.

A. Maximization objective

In the standard multi-armed bandit problem, the agent’s
objective is to maximize the expected cumulative reward

J = E

[
T∑
t=1

rt

]
=

T∑
t=1

mit . (1)

Equivalently, by defining mi∗ = maximi and Rt = mi∗ −
mit as the expected regret at time t, the objective (1) can
be formulated as minimizing the cumulative expected regret
defined by

T∑
t=1

Rt = Tmi∗ −
N∑
i=1

miE
[
nTi
]

=

N∑
i=1

∆iE
[
nTi
]
, (2)

where nTi is the number of times arm i has been chosen up
to time T , ∆i = mi∗ − mi is the expected regret due to
picking arm i instead of arm i∗, and the expectation is over
the possible rewards and decisions made by the agent.

The interpretation of (2) is that suboptimal arms i 6= i∗

should be chosen as rarely as possible. This is a non-trivial
task since the mean rewards mi are initially unknown to
the decision maker, who must try all arms to learn about
their rewards while preferentially picking arms that appear
more rewarding. The tension between these requirements is
known as the explore-exploit tradeoff and is common to many
problems in machine learning and adaptive control.

B. Bound on optimal performance

Optimal performance in a bandit problem with the max-
imization objective (1) corresponds to picking suboptimal
arms as rarely as possible, as shown by the last equality
in (2). Lai and Robbins [9] studied the standard stochastic
multi-armed bandit problem and showed that any policy
solving the problem must pick each suboptimal arm i 6= i∗

a number of times that is at least logarithmic in the time
horizon T , i.e.,

E
[
nTi
]
≥
(

1

D(pi||pi∗)
+ o(1)

)
log T, (3)

where o(1) → 0 as T → +∞. The quantity D(pi||pi∗) :=∫
pi(r) log pi(r)

pi∗ (r)
dr is the Kullback-Leibler divergence be-

tween the reward density pi of a suboptimal arm i and the

reward density pi∗ of the optimal arm. The bound on E
[
nTi
]

implies that the cumulative expected regret must grow at least
logarithmically in time.

The bound (3) is asymptotic in time, but a number of
researchers (e.g., [2], [5], [13]) have constructed algorithms
that achieve cumulative expected regret that is bounded by
a logarithmic term uniformly in time, sometimes with the
same constant as in (3). Cumulative expected regret that
is uniformly bounded in time by a logarithmic term is
often called logarithmic regret for short. In the literature,
algorithms that achieve logarithmic regret with a leading term
that is within a constant factor of that in (3) are considered
to have optimal performance.

C. Gaussian rewards

In this paper we focus on the case of Gaussian reward
distributions, that is, the distribution pi of rewards associated
with arm i is Gaussian with unknown mean mi and known
variance σ2

s,i. In this case, the Kullback-Leibler divergence
in (3) takes the value

D(pi||pi∗) =
1

2

(
∆2
i

σ2
s,i∗

+
σ2
s,i

σ2
s,i∗
− 1− log

σ2
s,i

σ2
s,i∗

)
. (4)

This equation is more easily interpreted when the reward
variances are uniform, i.e., σ2

s,i = σ2
s for each i. In this case,

the divergence becomes

D(pi||pi∗) =
∆2
i

2σ2
s

,

so the bound (3) is

E
[
nTi
]
≥
(

2σ2
s

∆2
i

+ o(1)

)
log T. (5)

This result can be interpreted as follows. For a given value
of ∆i, a larger variance σ2

s makes the rewards more variable
and therefore it is more difficult to distinguish between the
arms. For a given value of σ2

s , a larger value of ∆i makes it
easier to distinguish the optimal arm.

III. THE MULTI-ARMED BANDIT PROBLEM WITH
SATISFICING OBJECTIVE

The standard multi-armed bandit problem is defined with
the maximizing objective (1). We now propose a new sat-
isficing objective for the multi-armed bandit problem and
find bounds on optimal performance in terms of this new
objective.

Consider an N -armed bandit problem. As before, the
reward associated with each arm i is drawn from a stationary
probability distribution pi, whose mean mi is unknown to the
decision maker. At time t ∈ {1, . . . , T}, the decision maker
selects arm it and receives a stochastic reward rt ∈ R.

The decision maker has a certain satisfaction level M ∈ R,
and is satisfied at time t only if the reward rt is at least M .
Let st be the random variable denoting the decision maker’s
satisfaction at time t:

st =

{
0, rt < M

1, rt ≥M.
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Then st is a Bernoulli random variable with success proba-
bility πit , where

πi = Pr [st = 1|it = i] = Pr [rt ≥M |it = i] (6)

is the probability of satisfaction upon picking arm i. We
propose a satisficing objective in terms the number of times
the satisfaction level is met.

Definition 1 (Satisficing objective). The satisficing objective
is to maximize the function

E

[
T∑
t=1

st

]
=

T∑
t=1

πit . (7)

The satisficing objective differs from the maximization
objective (1) in several important ways. First, it exhibits
thresholding, that is, it is indifferent among rewards rt above
the threshold value M . Second, it exhibits risk aversion,
that is, it prefers smaller, consistent rewards (that will often
be above the threshold) to larger, more variable ones (that
may often be below it). Risk aversion is a characteristic
often studied in economics and psychology [12], and is often
incorporated in models of human decision making.

Since the satisficing objective consists of maximizing the
number of times the agent is satisfied, it can be rewritten as
follows. Let πi∗ = maxi πi and define ∆̄i = πi∗ − πi as
the expected satisficing regret of selecting an arm i. We can
rewrite (7) in terms of expected satisficing regret as

JS = E

[
T∑
t=1

∆̄it

]
=

N∑
i=1

∆̄iE
[
nTi
]
, (8)

where nTi is the number of times arm i has been chosen
up to time T . This is a standard multi-armed bandit problem
with Bernoulli rewards. Therefore the Lai-Robbins bound (3)
holds, yielding a logarithmic lower bound on E

[
nTi
]

and
cumulative expected satisficing regret:

Corollary 1 (Satisficing regret bound). Any policy solving
the multi-armed bandit problem with the satisficing objective
(8) obeys

E
[
nTi
]
≥
(

1

D(πi||πi∗)
+ o(1)

)
log T, (9)

for suboptimal arms i 6= i∗ where D(πi||πi∗) =

πi log
(
πi

πi∗

)
+ (1− πi) log

(
1−πi

1−πi∗

)
is the Kullback-Leibler

divergence between the two Bernoulli distributions with
success probabilities πi and πi∗ .

Proof: Apply the Lai-Robbins bound (3) to the standard
multi-armed bandit problem with Bernoulli rewards.

We refer to cumulative expected satsificing regret that is
uniformly bounded above in time by a logarithmic term as
logarithmic satisficing regret. An algorithm that achieves
logarithmic satisficing regret achieves optimal satisficing
performance, i.e., optimal performance in terms of the sat-
isfiicing objective (7).

The implication of writing the satisficing objective as the
minimizing of cumulative regret is that if one can use the

rewards rt to estimate the satisfaction probability πit , one
can use algorithms designed to solve the multi-armed bandit
problem with a maximizing objective to solve the satisficing
problem. In the next sections we study the Gaussian multi-
armed bandit problem with a satisficing objective and show
how to link rewards and probabilities in this case.

IV. SATISFICING WITH GAUSSIAN REWARDS

In this section we study a Gaussian multi-armed bandit
problem with the satisficing objective (8). By Gaussian multi-
armed bandit problem, we mean that the reward rt due to
selecting arm it is rt ∼ N (mit , σ

2
s,it

), where σ2
s,it

is the
known variance of arm it.

Define the quantity

xi =
mi −M
σs,i

(10)

for each arm i. The following lemma states that the Gaussian
multi-armed bandit problem with a satisficing objective is
equivalent to a standard Gaussian multi-armed bandit prob-
lem with transformed reward distributions.

Lemma 2 (Equivalence for Gaussian rewards). The Gaus-
sian multi-armed bandit problem with satisficing objective
is equivalent to a standard Gaussian multi-armed bandit
problem with rewards r̃t ∼ N (xit , 1) in the sense that the
ordering of the arms in terms of xi is identical to the ordering
in terms of πi. In particular, the arm with maximal xi is the
arm with maximal πi

Proof: With Gaussian rewards, the probability (6) of
satisfaction from choosing arm i is

πi = Pr [mi + σs,iz ≥M ]

= Φ

(
mi −M
σs,i

)
= Φ(xi),

where z ∼ N (0, 1) is a standard normal random variable
and Φ(z) is its cumulative distribution function. Let i∗ =
arg maxi πi. The key insight is that Φ(·) is a monotonically
increasing function, which implies that the ordering of arms
in terms of πi is identical to the ordering in terms of xi. In
particular, arm i∗ is the arm with maximal xi. Therefore, the
goal of an agent playing the satisficing bandit problem is to
find the arm i∗ that maximizes xi.

This is again a Gaussian bandit problem: consider the
transformed reward

r̃t =
rt −M
σs,i

,

which is a Gaussian random variable r̃t ∼ N (xit , 1). The
quantity xi plays the role of the mean reward mi from the
original maximizing problem and the transformed rewards
have uniform variance σ̃2

s = 1. Solving this problem with
a maximizing objective is equivalent to solving the original
problem with the satisificing objective.

Remark 3 (Location-scale families). The above analysis
is easily generalized to reward distributions belonging to
location-scale families. A location-scale family is a set of
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probability distributions closed under affine transformations,
i.e., if the random variable X is in the family, so is the
variable Y = a+ bX, where a, b ∈ R. Any random variable
X in such a family with mean µ and standard deviation σ
can be written as X = µ + σZ, where Z is a zero-mean,
unit-variance member of the family. Examples include the
uniform or Student’s t-distribution.

V. THE UCL ALGORITHM FOR GAUSSIAN BANDIT
PROBLEMS

In this section we review the UCL algorithm, a Bayesian
algorithm that we developed and analyzed in [13] to solve
the standard Gaussian bandit problem. We then show that
the UCL algorithm can be applied to the Gaussian satisficing
problem of Section IV, achieving optimal performance. The
algorithm maintains a belief about the mean rewards m
by starting with a prior and updating it using Bayesian
inference as new rewards are received. At each time t the
algorithm chooses arm it using a heuristic which is a simple
function of the current belief state. For uninformative priors,
the UCL algorithm achieves logarithmic regret, i.e., optimal
performance.

Uninformative priors correspond to having no information
about the mean rewards. A major aspect of the UCL algo-
rithm is its ability to incorporate information about the mean
rewards through the use of a so-called “informative prior”.
In [13], we show that an appropriately chosen prior can
significantly increase the performance of the UCL algorithm.
Several different UCL algorithms are developed in [13]; here
we cover only the deterministic UCL algorithm, which we
refer to as the UCL algorithm for brevity.

A. Prior

The prior distribution captures the agent’s knowledge
about the vector of mean rewards m before beginning the
task. We assume that the prior distribution is multivariate
Gaussian with mean µ0 ∈ RN and covariance Σ0 ∈ RN×N :

m ∼ N (µ0,Σ0). (11)

The ith element of µ0, denoted by µ0
i , represents the agent’s

mean belief of the reward mi associated with arm i. The
(i, i) element of Σ0, denoted by

(
σ0
ii

)2
, represents the agent’s

uncertainty associated with that belief. Off-diagonal elements
of Σ0, e.g., σ0

ij , represent the agent’s perceived relationship
between mi and mj : if σ0

ij is positive, high values of mi are
correlated with high values of mj , while if it is negative, high
values of mi correlate with low values of mj . Any positive-
definite matrix can be used as Σ0, but several specific ones
are of interest. An uninformative prior corresponds to a
complete lack of certainty, i.e.,

(
σ0
ii

)2 → +∞, so one sets
each element σ0

ij equal to +∞.

B. Inference update

At each time t the agent picks an arm it and receives a
reward rt that is Gaussian distributed: rt ∼ N (mit , σ

2
s,it

).
Bayesian inference provides an optimal solution to the prob-
lem of updating the belief state (µt,Σt) to incorporate this

new information. Given the Gaussian prior (11), the Bayesian
update equations are linear [8]:

q =
rtφt
σ2
s,it

+ Λt−1µt−1

Λt =
φtφ

T
t

σ2
s,it

+ Λt−1, Σt = Λ−1
t

µt = Σtq.

(12)

C. Decision heuristic

At each time t the UCL algorithm computes a value Qti
for each arm i. The UCL algorithm picks the arm it that
maximizes Qti. That is, it picks

it = arg max
i
Qti. (13)

The heuristic value Qti is

Qti = µti + σtiΦ
−1(1− αt), (14)

where µti = (µt)i, (σti)
2

= (Σt)ii , αt = 1/Kt, and K > 0
is a tunable parameter. The heuristic Qti is a Bayesian upper
limit for the value of mi based on the information available
at time t. It represents an optimistic assessment of the value
of mi. The decision made can be thought of as the most
optimistic one consistent with the current information.

D. Performance

In [13], we study the case of homogeneous sampling noise
(i.e., σ2

s,i = σ2
s for each i) and show that the UCL algorithm

achieves cumulative expected regret uniformly in time. In
particular, we prove that the following theorem holds for
any β ≥ 1.02.

Theorem 4 (Regret of the deterministic UCL algorithm
[13]). The following statements hold for the Gaussian multi-
armed bandit problem and the deterministic UCL algorithm
with uncorrelated uninformative prior and K =

√
2πe:

1) the expected number of times a suboptimal arm i is
chosen until time T satisfies

E
[
nTi
]
≤
(8β2σ2

s

∆2
i

+
2√
2πe

)
log T

+
4β2σ2

s

∆2
i

(1− log 2− log log T ) + 1 +
2√
2πe

;

2) the cumulative expected regret until time T satisfies

T∑
t=1

Rt ≤
N∑
i=1

∆i

((8β2σ2
s

∆2
i

+
2√
2πe

)
log T

+
4β2σ2

s

∆2
i

(1− log 2− log log T ) + 1 +
2√
2πe

)
.

The implication of this theorem can be seen by comparing
statement 1) with the Lai-Robbins bound (5): it shows that
the UCL algorithm achieves logarithmic regret uniformly in
time with a constant that differs from the optimal asymptotic
one by a constant factor of 4β2, and therefore is considered
to have optimal performance.
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E. Application to satisficing objective

In Section IV, we showed that solving the Gaussian
multi-armed bandit problem with a satisficing objective is
equivalent to a transformed standard Gaussian multi-armed
bandit problem with maximizing objective. Therefore, we
can apply the UCL algorithm to the satisficing problem. A
prior belief m ∼ N (µ0,Σ0) is transformed into prior beliefs
on x by

x ∼ N (µ̃0, Σ̃0),

where (µ̃0)i = ((µ0)i − M)/σs,i and (Σ̃0)ij =
(Σ0)ij/(σs,iσs,j). Define xi∗ = maxi xi and ∆̃i = xi∗ −xi.

We refer to the UCL algorithm using the transformed
reward r̃t and prior as the satisficing UCL algorithm. The
satisficing UCL algorithm achieves logarithmic satisficing
regret, as formalized in the following theorem.

Theorem 5 (Regret of the satisficing UCL algorithm). The
following statements hold for the Gaussian multi-armed
bandit problem with a satisficing objective and the satisficing
UCL algorithm with uncorrelated uninformative prior and
K =

√
2πe:

1) the expected number of times a suboptimal arm i is
chosen until time T satisfies

E
[
nTi
]
≤

(
8β2

∆̃2
i

+
2√
2πe

)
log T

+
4β2

∆̃2
i

(1− log 2− log log T ) + 1 +
2√
2πe

;

2) the cumulative expected satisficing regret until time T
satisfies

T∑
t=1

Rt ≤
N∑
i=1

∆̃i

((8β2

∆̃2
i

+
2√
2πe

)
log T (15)

+
4β2

∆̃2
i

(1− log 2− log log T ) + 1 +
2√
2πe

)
.

Proof: Apply Theorem 4 to the Gaussian multi-armed
bandit problem with mean rewards x and reward distributions
r̃t ∼ N (xit , 1) defined in Lemma 2.

The satisficing regret is upper bounded by a logarithmic
function of T . Therefore, the satisficing UCL algorithm
achieves optimal satisficing regret up to a constant factor.

VI. NUMERICAL EXAMPLE

In this section, we present the results of two numeri-
cal simulations of the satisficing UCL algorithm solving
a multi-armed bandit problem with Gaussian rewards and
the satisficing objective. The first simulation demonstrates
the performance guarantees and allows us to compare the
optimal regret bound (9) and the bound (15) obeyed by the
satisficing UCL algorithm. The second simulation demon-
strates the risk-averse nature of the satisficing objective.

For the simulations presented in Figure 1, we set N =
4. The satisfaction level M was set equal to 2, the mean
rewards m were equal to [1 2 3 4] and the standard deviations
equal to [1 1 1 3], so x = [−1 0 1 2

3 ] and i∗ = 3 was

the optimal arm. The algorithm used an uninformative prior.
These values were chosen such that the arm with maximal
mean reward was not the optimal arm, so satisficing induces
different behavior than maximizing.

Figure 1 plots the mean cumulative satisficing regret in-
curred by the satisficing UCL algorithm over 100 simulations
along with the two regret bounds (9) and (15). The mean
regret obeys the performance bound (15) from Theorem 5
and is actually below the asymptotic lower bound (9) at
initial times. This apparent violation of the bound is due
to the fact that at initial times the system is not yet in the
asymptotic regime where the bound applies.

For the simulations presented in Figure 2, we set N = 2.
The mean rewards m were equal to [12.2 12.1] and the
standard deviations equal to [10 1], so x = [0.02 0.1].
This meant i = 1 was the optimal arm for the maximizing
objective while i = 2 was the optimal arm for the satisficing
objective. The algorithm used an uninformative prior. The
problem was simulated 100 times with each objective.

Figure 2 demonstrates the risk aversion inherent in the
satisficing objective by comparing the results of the same
problem solved with the satisficing and the maximizing
objectives. The satisfaction level M was set equal to 12.
We considered cumulative surplus (rewards in excess of the
satisfaction level) for both objectives. Negative values of the
surplus represent deficits, which are to be avoided. Results
from the maximizing objective are presented in black. The
solid line shows mean cumulative surplus and the shaded
region shows the 95% confidence interval around that mean.
Results from the satisficing objective are presented in blue.
The solid line shows the mean cumulative surplus, and
the dashed lines show the 95% confidence interval. The
lower limit of the confidence intervals measures worst-case
performance. The measure for the satisficing objective is
consistently above the one for the maximizing objective, so
satisficing results in better worst-case performance.

VII. CONCLUSION

Satisficing, the concept of doing well relative to a refer-
ence value, is a useful alternative to maximizing that can be
applied to a variety of decision-making scenarios. Consid-
ering satisficing objectives instead of maximizing ones can
simplify decision-making problems and can result in policies
that are more robust in the sense that they are risk-averse.

In this paper, we considered the multi-armed bandit prob-
lem using a satisficing objective by proposing a new notion
of satisficing regret. We showed that there is an equivalence
between minimizing satisficing regret and minimizing the
standard notion of regret. Using this equivalence, we derived
a logarithmic lower bound on satisficing regret and, in the
case of Gaussian rewards, adapted the UCL algorithm [13]
to achieve optimal satisficing performance.

This work opens the door to many future extensions. The
satisficing objective with Gaussian rewards bears a strong
resemblance to the CreditMetrics two-state credit risk model
used in quantitative finance [7]. This could allow the credit
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Fig. 1. Regret incurred by the satisficing UCL algorithm while solving a
satisficing Gaussian multi-armed bandit problem, along with two theoretical
bounds, plotted against time t on a logarithmic scale. The solid black line
shows mean cumulative expected regret from 100 simulations. The dashed
line shows the asymptotic bound on regret (9), which appears as a straight
line due to the scaling of the axes. The dash-dotted line shows the regret
bound (15), which provides guarantees on the algorithm’s performance.

investment portfolio problem studied in finance to be posed
as a multi-armed bandit problem with satisficing objective.

The risk averse nature of satisficing objectives such as
the one proposed in this paper will result in more robust
policies for solving the multi-armed bandit problem in cases
with reward variance σ2

s is heterogeneous across arms.
Risk aversion and robustness are important for engineering
applications (where standard bandit algorithms are known
to have poor risk-aversion characteristics [1]) but also in
the field of optimal foraging theory [4]. The multi-armed
bandit framework has been used to study foraging [18] using
a maximizing objective, but a satisficing objective is more
ecologically plausible.

We developed a policy for the satisficing problem with
Gaussian rewards, but development of optimal policies for
the satisficing problem with other reward distributions re-
mains an open problem. For all satisficing problems, picking
the appropriate satisfaction level is a non-trivial problem in
its own right, analogous to picking the error rates in the
Sequential Probability Ratio Test [19].
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