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Parameter Estimation in Softmax Decision-Making
Models With Linear Objective Functions

Paul Reverdy and Naomi Ehrich Leonard

Abstract—We contribute to the development of a systematic
means to infer features of human decision-making from behavioral
data. Motivated by the common use of softmax selection in models
of human decision-making, we study the maximum-likelihood
(ML) parameter estimation problem for softmax decision-making
models with linear objective functions. We present conditions
under which the likelihood function is convex. These allow us to
provide sufficient conditions for convergence of the resulting ML
estimator and to construct its asymptotic distribution. In the case
of models with nonlinear objective functions, we show how the es-
timator can be applied by linearizing about a nominal parameter
value. We apply the estimator to fit the stochastic Upper Credible
Limit (UCL) model of human decision-making to human subject
data. The fits show statistically significant differences in behavior
across related, but distinct, tasks.

Note to Practitioners—Many problems in online planning and
control can be formulated as sequential decision-making tasks in
which an agent seeks to maximize rewards gained (or equivalently,
minimize costs incurred) from a series of choices among control
actions. When the task is highly structured, methods from optimal
control can provide effective automated solutions to the control
problem. However, when the uncertainties associated with the
task are significant, solutions to the control problem generally
require some input from human supervisors because of the hu-
mans’ greater flexibility, for example, to adapt to unforeseen
events. For human-centered automation, one seeks to combine the
computational abilities of machine automation with the flexibility
of a human supervisor in an effective way. In a previous paper
(Reverdy et al., Proc. IEEE, vol. 102, no. 4, pp. 544–571, 2014),
we studied human decision-making behavior in a reward-driven
decision-making task and showed that a significant fraction of
subjects exhibited very high performance, which we ascribed to
their intuition about the task. We developed a model (UCL) of this
behavior that represents the human subject’s intuition in terms of
a small number of parameters. Estimating the model parameters
from observed choice behavior would allow an automated system
to quantify and learn the human’s intuition, which the system
could use to improve its own performance. To that end, this paper
addresses the parameter estimation problem for the UCL model.
The softmax functional form of the UCL model is a common
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feature of models of human decision-making, which makes the
estimator we develop relevant to a wide range of decision-making
models.
Index Terms—Automation, decision-making, estimation.

I. INTRODUCTION

I N A VARIETY of decision-making scenarios an agent se-
lects one among a discrete set of options

and receives a reward associated with the selection. The agent’s
goal is to make a selection or a sequence of selections to max-
imize reward. For example, a human air traffic controller se-
lects among options for allocating aircraft for takeoff, and the
reward is a measure of efficiency of flight departures associated
with the selected option [24]. Often the decision-making task
is challenging, especially when there is uncertainty or there are
complex dependencies associated with options and rewards, as
in the air traffic control example.
Much research has gone into studying how humans decide

among options and what conditions lead to good deci-
sion-making performance. In this research, decision-making
models are used together with empirical data. One common
approach is to derive a decision-making model as the solution
of an optimization problem. An objective function is defined
for each option , and the model agent selects the option that
maximizes the objective function

The maximum operation is deterministic and non-differ-
entiable, so for many applications it is replaced by the
so-called “softmax” operation, in which option is chosen with
probability

The softmax operation, which we adopt in this paper, is a sto-
chastic, biologically plausible approximation of the maximum
operation [33]. Furthermore, it is differentiable with respect to
its argument , whichmakes it more analytically tractable. Nu-
merous works in the psychology and neuroscience literature,
e.g., [4], [5], [7], and [37], have developed models of human
decision-making behavior that apply the softmax operation to
various objective functions .
In contexts such as inverse reinforcement learning [28], [23]

and neuroscience [20], a central goal is to understand the de-
cision-making process by finding the objective function values
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that explain observed decisions. In this paper, we consider
this problem in the case that each objective function value is
linear in a set of known variables , i.e.,

(1)

Models of this form are often used in studies of human deci-
sion-making behavior, e.g., [7], [19], [4], [10], and are therefore
of interest in developing principled methods for human-cen-
tered automation. Further, by assuming the functional form (1),
we reduce the problem of finding the objective function values
to that of learning the vector of parameters , which we assume
to be constant across options and decisions. We call the reduced
problem the parameter estimation problem for softmax deci-
sion-making models with linear objective functions. The linear
functional form of (1) allows us to derive conditions for con-
vergence of the parameter estimator. In the more general case
where the objective function is nonlinear, it can be locally ap-
proximated with a linear function of the form (1).
The problem of learning the objective function that can ex-

plain observed decision-making behavior is relevant for several
different disciplines. In the behavioral sciences, it is often of in-
terest to develop models that quantify the various factors that
contribute to the decision-making process. Similarly, in engi-
neering, system identification seeks to develop models of dy-
namic systems that can be used for engineering design. In either
case the problem is generally solved in two steps. The first step
is to determine which variables affect the process or system in
question. In the context of the present paper, this is equivalent to
determining the variables in (1). The second step is to quantify
the effect of each variable on the system. This is equivalent to
learning the value of the parameters in (1), i.e., solving the pa-
rameter estimation problem.We call the two-step process fitting.
This paper develops an estimator with rigorous performance
guarantees for the softmax decision-making model, which pro-
vides a tool for the second step in the fitting process.
For human-centered automation, one seeks to combine the

computational abilities of machine automation with the flexi-
bility of a human supervisor in an effective way. One approach
is to design an automated system that can infer the intuition or
the intent of a human operator and use the intuition to improve
its own performance. This could be done if a decision-making
model with parameters representing intuition could be fitted to
observed human choice data. The estimator developed in the
present paper makes this possible when applied to an appro-
priate decision-making model.
We demonstrate the estimator using an algorithmic model

of human decision-making in a spatial search task, derived
in [26]. The model, called the stochastic Upper Credible
Limit (UCL) model, was derived by generalizing results in
the neuroscience [37] and machine learning [13] literature
concerning multi-armed bandit tasks in a Bayesian setting. In
[26], the stochastic UCL model was shown to qualitatively
reproduce experimentally observed human behavior. We use
our estimator to infer from these experimental data the human
decision-maker’s intuition in terms of a set of prior beliefs about
the task. The estimator is applicable to a more general class of

Fig. 1. The probability (2) from the model (1) with options and a
scalar parameter . The probability of picking option 1 is a logistic
function of and the sensitivity to is controlled by , which
sets the slope at .

decision-making tasks for which a softmax decision-making
model can be developed.
As a motivating example of the softmax model, consider the

case of deciding between options each with a single
known variable , representing the

value of the option, and a scalar. Then, the probability of
picking option 1 is

(2)

Fig. 1 plots the probability (2) as a function of the difference in
value of the two options . When the values of
the two options are identical, the probability is equal to 0.5 and
it increases monotonically with increasing . The rate of the
increase is controlled by , which sets the slope of the function
at . Large values of increase the slope and make the
choice represented by (2) discriminate between and with
more sensitivity, while small values of decrease the slope and
make the choice less sensitive to . Models of this form have
been used to study a variety of decision-making tasks [16], [29],
[7], [21], [32], where finding the value of that explains a given
set of decisions is an important problem.
The parameter estimation problem for softmax deci-

sion-making models is related to other problems previously
studied in the literature, in particular, the multinomial logistic
regression problem [1], [15] and the conditional log-likelihood
model learning problem [9]. With the linear functional form
(1), the softmax decision-making model and the conditional
log-likelihood model are formally equivalent, meaning that
the parameter estimation problem has been studied in previous
work, e.g., [9]. The novelty of the present paper comes in
the application of parameter estimators to a formal model
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of human decision-making (the stochastic UCL model) and
its use in quantifying a human subject's intuition about a
decision-making task.
The stochastic UCL model for human decision-making in

spatial search tasks [26] is a softmax decision model with an ob-
jective function that is a nonlinear function of several pa-
rameters. We show how can be transformed into a linear
function of the form (1) by linearizing about a point in param-
eter space.
We adopt amaximum-likelihood (ML) approach to parameter

estimation. In this framework, the convexity of a model implies
asymptotic convergence of estimators and the convexity of the
associated optimization problem. The convexity of the condi-
tional log-likelihoodmodel is an accepted fact in the natural lan-
guage processing literature [9], so we do not focus on it here.We
apply standard optimization algorithms to the stochastic UCL
parameter estimation problem and demonstrate our results.
There are two major contributions of this paper. First, we

show how to apply standard parameter estimation techniques
to the stochastic UCL model, a rigorously derived model of
human choice behavior. Models with a similar softmax func-
tional form are commonly used in the neuroscience literature to
model choice behavior and are likely to be widely applicable in
the context of human-centered automation. Estimating the pa-
rameters of such models provides a method to quantify human
intention and intuition in choice tasks, which can be leveraged in
human-centered automation systems. Second, we apply the pa-
rameter estimation techniques to empirical human choice data
and find statistically significant differences between groups of
subjects presented with different experimental conditions.
The remainder of this paper is structured as follows.

Section II defines the softmax decision model. Section III de-
fines the parameter estimation problem for the softmax
model and reviews convergence results from the literature.
Section IV summarizes conditions under which the ML esti-
mator converges. Section V provides a numerical example of
the estimator. Section VI linearizes the stochastic UCL model
about a nominal parameter to yield a softmax decision model
with a linear objective function, and applies the estimator to
simulated data. Section VII applies the linearization proce-
dure to fit the stochastic UCL model to human subject data.
Section VIII concludes.

II. THE SOFTMAX DECISION MODEL

In this section, we define our notation and the specific
softmax decision model for which we derive estimator conver-
gence bounds. We also provide several examples of this model
that appear in related literature.

A. Notation

In the spirit of [15], we set the following notation. We as-
sume we have observations. For each observation , we have
data consisting of explanatory variables and a re-
sponse, corresponding to the assignment of one of classes.
Specifically, for each observation we have data

. For each class , we have explana-
tory variables . The vector of explanatory variables

is composed of the concatenation of the

The response variable represents the class
assignment, where the element if the observation corre-
sponds to class and zero otherwise.
Motivated by models of decision-making [26], we consider

the following statistical model:

(3)

for , where is a weight vector that is
the same for all classes. This is the softmax decision-making
model with linear objective function (1) introduced above,
which has been studied in other literatures under other names.
In the natural language processing literature, (3) is known as
the conditional log-likelihoodmodel, while in the econometrics
literature, it is known as the conditional logit model [17].

B. Example Softmax Decision Models
In this section, we provide several concrete examples of the

softmax decision model (3). The goal is to make the connection
between this functional form and others that appear in the liter-
ature.
Example 1 (Softmax With Unknown Temperature): A stan-

dard decision model in reinforcement learning [33] is the
so-called softmax action selection rule, which selects an option
with probability

where is the value associated with option and is a positive
parameter known as the temperature. This rule selects options
stochastically, preferentially selecting those with higher values.
The degree of stochasticity is controlled by the temperature .
In the limit , the rule reduces to the standard maximum
and deterministically selects the option with the highest value
of . In the limit , all options are equally probable
and the rule selects options according to a uniform distribution.
This model is in the form of (3) with . Specifically,

assume that the temperature is constant but unknown, and the
values are known. Then, the two models are identical if we
identify

In the reinforcement learning literature, the quantity is
sometimes known as the inverse temperature and referred to
by the symbol . Our methods allow one to estimate

from observed choice data.
Example 2 (Softmax With Known Cooling Schedule Form):

A slightly more complicated model might let the softmax tem-
perature of Example 1 follow a known functional form, called
a cooling schedule, that depends on an unknown parameter. For
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example, in simulated annealing, Mitra et al. [18] showed that
good cooling schedules follow a logarithmic functional form:

where is the decision time and is a parameter.
If is constant but unknown, this model can be represented

in the form of (3) with if we identify

Example 3 (Softmax -Learning With Unknown Temperature
and Learning Rate): According to a simple -learning model
[35], for each choice time the agent assigns an expected value

to each option . The values are initialized to 0 at
and then for each subsequent time, the agent picks option ,
receives reward , and updates the value of the chosen option
according to

where is a free parameter called the learning rate and
is the prediction error at time .

A common model in reinforcement learning [6] has the agent
make decisions using a softmax rule on the value function ,
so the probability of selecting an option at time is

where is the indicator function, equal to 1 if its argument
is a true statement, and 0 otherwise. Similar models are used in
the analysis of fMRI data, e.g., [38]. If , and are
known while and are unknown, the model is in the form of
(3) with if we identify

If only the initial value is known, then the value
function becomes a nonlinear function of the parameters
and the model is not of the form (3), although it may be possible
to find a transformation that puts it in such a form.
In the following section, we define the parameter estima-

tion problem for the softmax model (3). We then analyze the
problem to develop conditions under which this parameter esti-
mation problem can be solved with provable guarantees about
its convergence.

III. PARAMETER ESTIMATION FOR SOFTMAX
DECISION-MAKING MODELS

In this section, we define the parameter estimation problem
for softmax decision-making models using a likelihood frame-
work, and we review relevant results from the literature. Key
to these results is the concept of concavity, which is a property
of functions that can guarantee the uniqueness of a maximum.
When the likelihood function is concave, the ML estimation

problem can be solved by off-the-shelf optimization algorithms.
Concavity is also central to several results from the economet-
rics literature that provide conditions under which the estimator
is guaranteed to converge asymptotically.
In the optimization literature, it is traditional to consider min-

imization problems, for which convexity plays the same role as
concavity does for maximization problems: a function is con-
cave if the function is convex, and maximizing is equiv-
alent to minimizing . Following the literature, we refer to
concavity and convexity when discussing results from econo-
metrics and optimization, respectively. We distinguish between
two notions of concavity: a function is weakly con-
cave if its Hessian is negative semidefinite, and strongly con-
cave if its Hessian is strictly negative definite.

A. The Softmax Model Parameter Estimation Problem
In the parameter estimation problem for softmax decision-

making models, we wish to estimate the values of based on the
observed data . A standard way to perform parameter
estimation is using the ML method [14]. To perform ML esti-
mation of , one maximizes the log-likelihood function .
Problem 1: The ML parameter estimation problem for the

softmax decision model (3) is the optimization problem

(4)

where is the logarithm of the likelihood function of the
model (3), defined as

(5)

The ML estimate can be interpreted as the parameter value
that makes the observed data most likely under the given

model.
A prior on can be incorporated by adopting a maximum a

posteriori (MAP) estimate

(6)

with being the prior on . The MAP estimate penalizes ML
estimates that are considered unlikely under the prior.

B. Asymptotic Behavior of the ML Estimator
The ML estimator solves the estimation problem in the

frequentist framework, which posits that there is a true value
of the parameters that we attempt to recover from analyzing the
given data. In this framework, natural questions to be asked are:
1) does as the number of observations grows and
2) how dispersed is the difference ? These questions
have been studied in the econometrics literature, for which [22]
is a standard reference. The remainder of this section summa-
rizes the relevant results from [22]. The answers to these two
questions depend on two properties of the model, identification
and concavity, defined as follows.
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Definition 1 (Identification): A statistical model with likeli-
hood function and observed data is said to be
identified if, for all

Definition 2 (Concavity): A statistical model with likelihood
function is said to be concave if is strictly
concave in .
If a model with likelihood function is identified and con-

cave (see [22, Th. 2.7]) for details), the answer to question 1)
is yes. These two properties imply that the true value of the
parameter is the unique maximum of the expected value of the
log-likelihood .
Concavity and identification can depend on both the func-

tional form of and the observed data . As an example of
how the identification property may fail due to data, consider the
model (3) with being the zero vector for each . In this case,

for each independent of and the es-
timation procedure will be unable to distinguish among the pos-
sible parameter values. In the following section, we derive con-
ditions on the data that ensure identification. These conditions
also ensure that is strictly concave and provide guidelines
for the design of experiments for estimating .
The answer to question 2) is that, under mild regularity condi-

tions, the distribution of approaches a normal distribution
as the number of samples grows. In particular, the following
limit holds:

(7)

where signifies a limit in distribution as and
is the negative of the expected value of the Hes-

sian of with respect to . See [11, Chap. 9] for more de-
tails about the concept of a limit in distribution and see [22, Th.
3.3] for full details of the conditions under which (7) holds. In
practice, one uses as an estimate of . This
permits construction of standard frequentist analysis tools, such
as confidence intervals for the parameter estimates and hypoth-
esis tests. The estimate is efficient in the sense that it obeys
the Cramér-Rao lower bound [14] on the variance of estimators
, so no other unbiased estimator can have lower variance than

.

IV. ANALYSIS OF THE MAXIMUM-LIKELIHOOD ESTIMATOR
FOR SOFTMAX DECISION MODELS WITH

LINEAR OBJECTIVE FUNCTIONS
In this section, we present conditions under which the model

(3) is identified and concave. These conditions imply that the
ML estimator converges and that the ML optimization
problem (4) is convex. The concavity of the model is an ac-
cepted fact in the natural language processing literature [9]; we
summarize the result in Theorem 1.

A. Asymptotic and Finite-Sample Behavior
Recall from Section III-B that two properties that guarantee

asymptotic convergence of the ML estimator are identification
and concavity.Whether or not the model (3) satisfies these prop-
erties can be a function of the data . Recall

our example where for each and . In this case, the
probability for each and for all values
of and the likelihood function is flat, so neither identifi-
cation nor concavity is satisfied.
However, a sufficient condition for identification is as fol-

lows. Define the matrix by transforming the ex-
planatory variable of a single observation

(8)

Note that . Considering as a random
variable, the following lemma ensures identification.
Lemma 1: Let be the explanatory variable for an arbitrary

observation and let be the transformation of defined in (8).
If the second-momentmatrix exists and is positive def-
inite, then the model (3) is identified.

Proof: The probability of choosing an option under the
model (3) is a monotonic function of the objective value ,
so it suffices to show that the data provides a one-to-one map-
ping between the parameter vector and the objective values

.
Let and define the vectors of objective func-

tion values and . Define
. The magnitude of satisfies

. Then, by the assump-
tion that is positive definite, implies

, so and . Therefore, the mapping
between the parameters and the objective values
is one-to-one, which implies that for

and the model is identified.
The condition of Lemma 1 is given in terms of an expectation,

but in practice one has a given sample of data. In this case, the
expectation can be replaced by the sample average. Specifically,
define for each observation following (8). Then,
is estimated by

If this sample average is positive definite, then themodel is iden-
tified. For the sample average to be positive definite it must be

, and each observation can add at most to
the rank. Therefore, the following inequality must be satisfied
for the model to be identified:

This gives a lower bound on the minimum
number of observations required for identification. For most
applications, the number of options will be larger than the
number of parameters , so the lower bound is trivial. How-
ever, for cases with a large number of parameters the bound can
be useful for experimental design.
The following theorem summarizes the conditions under

which the ML estimator (4) converges.
Theorem 1 (Convergence of the ML Estimator): Let be

defined as in (8). If the second-moment matrix
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exists and is positive definite, then
1) The ML optimization problem (4) is convex.
2) The ML estimator for the model (3) is asymptotically

approximately distributed as

(9)

where is the empirical mean Hessian of
the likelihood function evaluated at the estimated param-
eter value.
Proof: See [17] and [25].

Theorem 1 proves convergence of the parameter estimate
and provides its asymptotic distribution. This distribution

can be used to formulate frequentist confidence intervals for the
parameter estimate . Furthermore, the theorem proves that
the optimization problem (4) is convex, which allows us to solve
it using off-the-shelf optimization algorithms. In the following,
we use the phrase the estimator to refer to the procedure of using
an off-the-shelf convex optimization algorithm to solve the ML
problem (4). We use the phrase the estimate to refer to the so-
lution of (4) thus obtained. The next three sections apply the
estimator to increasingly complex data sets, building towards
the application to experimental human subject data.

V. NUMERICAL EXAMPLES

In this section, we present several numerical examples to
demonstrate the theory developed in the previous sections for
solving the parameter estimation problem (4). In all cases, the
explanatory variables were drawn randomly according to
Gaussian distributions and the response variables were drawn
according to the model (3) conditional on the explanatory
variables . Application to data generated from simulations
of the stochastic UCL model is presented in Section VI, and
application to data collected from human subjects is presented
in Section VII.

A. Scalar Parameter

First, we consider model (3) with options and a scalar
parameter that we wish to estimate. This could cor-
respond to a decision-maker choosing among ten options using
a softmax model with unknown constant inverse temperature

, as in Example 1. Alternatively, it could correspond to a
temperature varying with observation number ac-
cording to a known function with a single unknown parameter

, e.g., , as in Example 2. In this case, the
term can be absorbed into the explanatory variables and

we proceed as in the first case.
Fig. 2 shows results of applying the estimator to simulated

data. For every , when an observation was taken and a deci-
sion made, the model was simulated 100 times. For each of the
100 simulations, the estimator was applied to estimate the pa-
rameter based on the first observations. Running 100 simula-
tions made it possible to examine convergence of the estimate in
distribution. Fig. 2 illustrates how the estimates converge in dis-
tribution to the normal distribution (9) as the number of observa-
tions increases. For the simulations, the explanatory variables

Fig. 2. Scalar parameter estimation example. The parameter estimates con-
verge to the asymptotic normal distribution (9) as the number of observations
grows. The dashed lines show the true value of the scalar parameter and
the accompanying 95% confidence intervals implied by the asymptotic normal
distribution (9). For each value of , an ensemble of 100 parameter estimates
was formed by repeatedly simulating the data while holding the explanatory
variables fixed, and using the estimator to compute the value of the parameter.
The solid black line shows the mean parameter estimate and the shaded region
the empirical 95% confidence interval.

were drawn from a standard Gaussian distribution
(mean zero and unit variance), and the response variables
were drawn according to probability distribution (3) conditional
on and . The estimates were computed by solving
the optimization problem (4) using a BFGS quasi-Newton al-
gorithm [2], [8], [12], [30] (Matlab function fminunc [34]).
Theorem 1 guarantees that the optimization problem is convex,
so the algorithm will converge.
The convergence behavior can be seen in Fig. 2 by observing

the mean parameter estimate as well as its confidence in-
tervals. The mean parameter estimate , represented by the
solid black line, converges to the true parameter value ,
represented by the horizontal dashed line. However, Theorem
1 guarantees convergence in distribution, which is a stronger
result. To illustrate this behavior we plot 95% confidence in-
tervals for both the empirical distribution of estimates and
the asymptotic distribution (9), computed from the ensemble of
100 parameter estimates. For values of greater than 100, the
two intervals overlap closely, showing that the distribution of
estimates has converged. Importantly, this shows that statistical
hypothesis tests based on the asymptotic distribution (9) will be
accurate.
For small amounts of data, i.e., , the mean parameter

estimate is biased above the true value. The bias is due to an
insufficient amount of data being used in the estimation proce-
dure, and the direction of the bias can be explained as follows.
Larger values of the parameter correspond to more determin-
istic choice behavior. When , for any given choice, the
model is more likely to pick the option with a larger objective
value, resulting in a parameter estimate that is biased upwards.
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Fig. 3. Vector parameter estimation example. The parameter estimates con-
verge to the asymptotic normal distribution (9) as the number of observations
grows. The dashed lines show the true value of each element of the vector

parameter . For each value of , an ensemble of 100 parameter
estimates was formed by repeatedly simulating the data while holding the ex-
planatory variables fixed, and using the estimator to compute the value of the
parameter. The solid lines show the mean parameter estimate and the shaded
regions the empirical 95% confidence interval.

This bias can be seen in Fig. 3 as well, which treats a case with
a vector parameter.

B. Vector Parameter

Next, we consider the model (3) with options and
a vector parameter with elements that we
wish to estimate. Fig. 3 shows results of applying the estimator
to simulated data in this vector parameter estimation example.
As in the scalar parameter estimation case above, the model
was simulated 100 times for every . Fig. 3 shows
how the estimate converges to the true value as the total
number of observations increases. The explanatory variables

were drawn according to independent standard Gaussian dis-
tributions, and the response variables drawn according to the
model (3) conditional on and true vector parameter value

. The estimates were computed as in the scalar
case.
The convergence behavior can be seen in Fig. 3 by observing

the mean parameter estimate as well as its confidence in-
tervals. For each of the three parameters , the cor-
responding mean parameter estimate , represented as a
solid line, converges to the true parameter value , repre-
sented by a horizontal dashed line. The shaded regions represent
the empirical 95% confidence interval around the corresponding
mean value, computed from the ensemble of 100 parameter es-
timates. For clarity, we omit the confidence intervals implied by
the asymptotic normal distribution (9) from the figure, but the
behavior is similar to that shown in Fig. 2.
There is an upwards bias in the parameter estimates for small

numbers of observations , as in Fig. 2. The width of the con-
fidence intervals for the three parameters scales roughly with
their true value . This behavior can be seen in the figures
in the next section as well.

VI. APPLICATION TO NONLINEAR OBJECTIVE FUNCTIONS
USING LINEARIZATION

The development up to this point for addressing the param-
eter estimation problem (4) has assumed that the objective func-
tion takes the linear form (1). However, many relevant objective
functions are nonlinear functions of the unknown parameter .
One approach is to linearize the nonlinear objective function
about a nominal parameter value, and then apply the estimator
to the linearized objective function. We apply this approach to
the nonlinear objective function from the stochastic UCL algo-
rithm [26], an algorithm that models human decision-making in
multi-armed bandit tasks in a Bayesian setting, and show how
its parameters can be estimated.

A. The Multi-Armed Bandit Problem

The multi-armed bandit problem, introduced by Robbins [27]
is a sequential decision-making problem which consists of a set
of options (each option is also called an arm in analogy with
the lever of a slot machine). Each option , has an
associated probability distribution with mean , unknown
to the agent solving the problem. At each sequential decision
time , the agent picks an arm and receives a
stochastic reward drawn from the probability distri-
bution associated with that arm. This is a special case of the no-
tation introduced in Section II-A, with options indexed
by and decisions indexed by . The agent’s objective is
to maximize the expected value of the cumulative rewards re-
ceived from the decisions

Each choice of is made conditional on the information
available to the agent at time . If the mean rewards were
known to the agent, the optimal policy would be trivial: pick arm

for each . However, since the mean rewards
are unknown, the agent must simultaneously select arms where
the reward value is uncertain to gain information about the re-
wards and preferentially select arms with high rewards to accu-
mulate reward. The tension between selecting arms with uncer-
tain (but possibly high) rewards and selecting arms that appear
to have high rewards based on current information is known as
the explore-exploit tradeoff. This tradeoff is common to a va-
riety of problems in machine learning and adaptive control.
The multi-armed bandit problem is the subject of active

research in machine learning as well as in neuroscience. In
[26], we showed that a significant fraction of human subjects
exhibited excellent performance in solving a multi-armed
bandit problem, even outperforming algorithms known to have
optimal performance in some cases. We attributed this good
performance to the human subjects’ having good priors on the
structure of the rewards , and we designed the stochastic
UCL algorithm as a model of human behavior to capture this
dependence on priors. Estimating the parameters of this model
from observations of a human solving the multi-armed bandit
task would allow a machine to learn the human’s belief priors.
This could in turn facilitate the design of a human-machine
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system that could achieve better performance than either the
human or the machine could on its own.

B. The Stochastic UCL Algorithm
The stochastic UCL algorithm [26] is designed to solve multi-

armed bandit problems with Gaussian rewards, i.e., where the
reward distribution is Gaussian with un-
known mean and known variance . The algorithm con-
sists of two parts: Bayesian inference that maintains the agent's
belief state and a softmax decision model that uses an objective
function that depends on the belief state. Both the inference
and the decision parts introduce nonlinear dependencies on the
parameters of the algorithm.
As a model of human behavior, the stochastic UCL algorithm

assumes that the agent's prior distribution of (i.e., the agent's
initial beliefs about the mean reward values and their covari-
ance) is multivariate Gaussian with mean and covariance

where and is a positive-definite matrix.
In [26], we use a minimal set of three parameters to specify

. For the mean we use a uniform prior ,
where is a single parameter that encodes the agent’s be-
lief about the mean value of the rewards and is the vector
with each element equal to 1. For the problems considered in
[26], the arms are spatially embedded with each arm at a dif-
ferent location in space (see Fig. 8 in the next section). It is rea-
sonable to assume that arms that are spatially close will have
similar mean rewards. Therefore, for the covariance we set

, where represents a prior that is exponential in
distance, i.e., each element has the form

(10)

where is the location of arm and is the correlation
length scale. The parameter can be interpreted as a confi-
dence parameter, with representing absolute confidence
in the beliefs about the mean , and representing
complete lack of confidence.
With this prior, the posterior distribution is also Gaussian,

so the Bayesian optimal inference algorithm is linear and can
be written down as follows. At each time , the agent selects
option and receives a reward . Let be the vector
composed of the . Let be the number of times the agent
has selected option up to time , let be the empirical mean
reward observed for option , and let and be the vectors
composed of the and , respectively. For each time , define
the precision matrix . Then, the belief state at time
is ([14, Th. 10.3])

(11)

(12)

where diag maps a vector to a diagonal matrix, is the
observation matrix with if and zero

otherwise, and is the -dimensional identity matrix.

Based on the belief state , the stochastic UCL algo-
rithm chooses arm with probability

(13)

where is the heuristic function value for arm at time and
is the temperature corresponding to the cooling schedule at

time . The cooling schedule is assumed to take the form
a constant, so the probabilities (13) become

(14)

The heuristic function is

(15)

where is the posterior mean reward of arm at
time and its associated standard deviation. The
quantity is the inverse cumulative distribution function
of the standard normal distribution and is a
decreasing function of time.
This is a softmax decision model with unknown parameters

, but it is not yet in the form (3) since the quantity
is a nonlinear function of the parameters. However,

we can locally approximate with a linear function
by linearizing about a nominal value of the prior. By estimating
the parameter values of the linearized model, we can recover the
parameters of the original nonlinear model (14) near the nom-
inal prior.

C. Linearization

Let be the relative precision of a reward mea-
surement compared to the certainty of the prior. Fix a nominal
prior with parameter values and consider small de-
viations and about and , respectively

In the case that the true value of is unknown, this method is
easily generalized to include deviations in , but for simplicity
of exposition we consider it fixed. Recall that the covariance
prior is , where is defined by (10), and its inverse
is denoted by .
In terms of the nominal value , (11) becomes

Therefore, to first order in is given by

(16)

where and . Expanding
the square root in the following, we get:

(17)
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Fig. 4. Estimate of the vector of parameters based on simulated data from
the stochastic UCL algorithm. The linearization point was taken to be

. The true algorithm parameters were ,
and . The estimate converges as the number of observations grows.
The dashed lines show the true value of each parameter . For each value of ,
an ensemble of 100 parameter estimates was formed by repeatedly simulating
the data , while holding the parameters fixed, and using the
estimator to compute the value of the parameters. The solid lines show the mean
parameter estimate and the 95% confidence interval implied by the asymptotic
normal distribution (9).

where is the th element on the diagonal of and
is the th element on the diagonal of . The

standard deviation must be nonnegative, which implies an
upper bound on . Similarly, must be nonnegative, which
implies a lower bound on , which is already assumed to be
small. The implied bounds on are

which, together with the requirement that be small with re-
spect to , gives a bound on the values of for which the
linearization is valid.
Similarly, the expression (12) for becomes

(18)

where denotes second-order terms in the deviation variables
and , and , and are the vectors

(19)

(20)

(21)

Define , and as the th components of and ,
respectively. Then, the linearized heuristic is

(22)

Fig. 5. Estimate of the vector of parameters based on simulated data from
the stochastic UCL algorithm. Everything is the same as in Fig. 4 except that
the linearization point was taken to be .

where the parameters are defined by

(23)

and the explanatory variables are defined as

(24)

(25)

(26)

The linearized heuristic (22) defines a softmax deci-
sion-making model with a linear objective function of the form
(3). Thus, we can apply our estimation algorithm to estimate
the parameters . Using (23), we can then use the estimate of
to provide an estimate of the parameters .

D. Example Estimates
We tested the estimation procedure described above by simu-

lating runs of the stochastic UCL algorithm for various param-
eter values. Figs. 4 and 5 show two examples of estimates com-
puted using simulated data from the stochastic UCL algorithm
with the nonlinear objective function and true pa-
rameters . These parameters re-
sult in the algorithm achieving high performance (specifically,
logarithmic regret, see [26] for details). Fig. 4 shows estimates
based on linearization about the point .
Following (23), the linearized objective function corresponds
to parameters , and having true values

, and .
These are the values to which the estimates should converge.
Fig. 5 shows estimates based on linearization about the point

. The linearized objective function in this
case corresponds to the three parameters taking true values

and .
In both cases the estimator converges to the true value of

within the horizon of the decision task. Further, the
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Fig. 6. Estimate of the vector of parameters based on simulated data from
the UCL algorithm with a weakly-informative prior. This prior makes the al-
gorithm's choice behavior more random, which makes the estimation problem
more difficult. Everything is the same as in Fig. 4 except that the linearization
point was taken to be and the true algorithm parameters
were , and . The 95% confidence interval
implied by the asymptotic normal distribution (9) is shown only in the plot of
. For parameters and , the width of the confidence intervals are much

greater than the magnitudes of the parameter estimates and are omitted for leg-
ibility.

true value of the parameter is within the 95% confidence interval
after 30 observed choices. There are two implications from this
result. First, the estimation procedure is at least somewhat ro-
bust to the choice of linearization point for this set of algorithm
parameters. Second, the estimator is useful for realistic empir-
ical data sets, such as those reported in [26] and studied in the
following section. For these data sets, the horizon is
choices. For this amount of data, the simulations show that the
estimation procedure can identify the true value of the param-
eter in a statistically significant way. This result is valuable be-
cause the rigorous convergence result from Theorem 1 does not
directly guarantee convergence in the more general case of non-
linear objective functions.
The amount of data required to get a reliable estimate can de-

pend on the true value of the algorithm parameters, as shown
in Fig. 6. In this case, the true value of the algorithm parame-
ters are and the linearization
is made about the point . The linearized
objective function corresponds to the three parameters taking
true values and . With
the true values of the prior in the algorithm, the agent is suffi-
ciently uncertain about the rewards and makes most of its ini-
tial 100 choices at random in order to gain information about
the rewards. This choice behavior results in low performance
(specifically, linear regret, see [26] for details). Since the ini-
tial choices are effectively made at random, they do not provide
useful information about the parameter values (except that they
represent some combination of an uncertain prior and high deci-
sion noise). The uncertainty in the parameter values can be seen
from the width of the confidence interval around the mean pa-
rameter estimates shown in Fig. 6. For and their width is

many orders of magnitude larger than the magnitude of the pa-
rameter and they are not displayed. For , the estimate exhibits
persistent bias away from the true value, but the width of the as-
sociated confidence interval is significantly larger than the bias.
Therefore, for such parameter values, one must observe more
data to be able to shrink the confidence intervals and provide
precise estimates of the parameter values.

E. Discussion
The linearization procedure described above yields a local

linear approximation to the likelihood maximization problem
(4), and Theorem 1 provides conditions under which the local
approximation results in an identified model with a convex opti-
mization problem. However, the effectiveness of the procedure
is sensitive to the choice of nominal prior about which
to linearize. The linearization point should be chosen such that
the linear approximation is valid at the (unknown) true value
of the parameters. In the worst case, there might not be any in-
tuition for choosing the linearization point, making the above
procedure no better than any other local optimization technique
for which a starting point must be chosen.
Fortunately, there are several advantageous aspects of the

problem. The first is generic to any heuristic function, which
is the fact that the likelihood function forms a unique objective
for judging the “goodness” of the estimated parameter. Without
knowing in advance a good choice of linearization point, one
approach is to perform the estimation assuming two different
choices of linearization points and to compare the resulting es-
timates . If the two linearization points result in identical esti-
mates there is no conflict, while if the estimates differ, the one
with the higher likelihood value is better.
Second, there may be intuition about an appropriate choice

of linearization point due to the structure of the model. In
[26], we showed that behavior of the stochastic UCL model
falls broadly into three classes as a function of the parameters

. Thus, by categorizing a given data set into one of
the three classes, we narrow the search for a linearization point
to the associated regions of parameter space. And, as we saw in
Figs. 4 and 5, the stochastic UCL model appears to be relatively
insensitive to the choice of linearization point within the region
of parameter space associated with a given behavioral class. In
the following section, we exploit this intuition to estimate the
parameters of the stochastic UCL algorithm based on data from
a human subject experiment.

VII. APPLICATION TO EXPERIMENTAL DATA

In this section, we apply the estimator to fit the stochastic
UCL model (14) to experimental data studied in [26]. By fit,
we refer to the process of selecting a nominal parameter for
linearization and applying the estimator to the linearized model.
The parameter estimates produced by the fitting procedure show
that individuals with high performance match their behavior to
the task in a statistically significant way.

A. Experimental Setup
This section reviews the experimental setup as presented in

Reverdy et al. [26]. As described in [26], we collected data from
a human subject experiment where we ran multi-armed bandit
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Fig. 7. The experimental interface used in the human subject experiment. Upon
clicking on one of the 100 squares arranged in a 10 10 grid, the red dot would
move to the center of the square. The subject was free to select a new square
without penalty until the time allotted (1.5 or 6 s per choice) had elapsed, at
which time the blue dot would move to the center of the selected square and the
subject would receive a reward reported in the text box at the top of the screen.
Originally appeared as Fig. 5 in [26]; reproduced with permission.

tasks through web servers at Princeton University (Princeton,
NJ, USA) following protocols approved by the Princeton Uni-
versity Institutional Review Board. Human participants were
recruited using Amazon’s Mechanical Turk (AMT) web-based
task platform [3]. Participants were shown instructions that told
them they would be playing a simple game during which they
could obtain points, and that their goal was to obtain the max-
imum number of total points in each part of the game.
Each participant was presented with a set of

options, presented as squares arranged in a 10 10 grid. See
Fig. 7 for a visualization of the experimental interface. At each
decision time , the participant made a choice by
moving the cursor to one square in the grid and clicking. After
each choice was made, a numerical reward associated with that
choice was reported on the screen. A variety of aspects of the
game, including timing, game dynamics, and reward structures,
were manipulated as part of the experimental design. As a
result of these manipulations, only 326 of the 417 participants
were assigned to a standard multi-armed bandit task for which
the stochastic UCL model is appropriate. In the remainder
of the section, we focus exclusively on data from these 326
participants.
The mean value of the reward associated with choosing a

particular option was . Since the options were arranged
in a 10 10 grid, the set of mean values can be thought of
as a real-valued function on the discrete two-dimensional grid.
We refer to this function as the reward landscape, and prior
knowledge about the rewards in a given task corresponds to

Fig. 8. The two task reward landscapes: (a) Landscape A and (b) Landscape
B. The two-dimensional reward surfaces for the 10 10 set of options followed
the profile along one dimension (here the direction) and were flat along the
other (here the direction). The Landscape A profile is designed to be simple
in the sense that the surface is concave and there is only one global maximum

, while the Landscape B profile is more complicated since it features
two local maxima ( and 10), only one of which is the global
maximum. Originally appeared as Fig. 6 in [26]; reproduced with permission.

prior knowledge about the landscape. Mean rewards in each
task corresponded to one of two landscapes: Landscapes A and
B, shown in Fig. 8. Each landscape was flat along one dimen-
sion and followed a profile along the other dimension. The pro-
file of Landscape A was such that a simple gradient-climbing
strategy was likely to prove effective, while Landscape B was
constructed to require a more sophisticated strategy. Each par-
ticipant played the game with each landscape once, presented in
random order. Due to the structure of the experimental design,
only one of the two landscapes was associated with a standard
multi-armed bandit task.
The participants’ performance in a given task can be clas-

sified in terms of the growth rate of their cumulative regret,
which is a measure of cumulative loss relative to the (unknown
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to the subject) optimal decision. As reported in [26], 70 of the
326 participants, or approximately 21%, achieved high perfor-
mance, while the remainder, approximately 79%, achieved low
performance. Of the 206 subjects assigned to Landscape A, 53
achieved high performance. Likewise, of the 120 subjects as-
signed to Landscape B, 17 achieved high performance. The
high-performing subjects outperformed standard frequentist al-
gorithms on the task, which we attribute to the subjects' having
good priors about the task. Since we did not explicitly convey
prior knowledge about the reward landscapes to the subjects,
we postulate that they used priors developed in the course of
other spatial tasks encountered in daily life. Considering the
stochastic UCL algorithm as a model of the subjects’ behavior,
good priors correspond to good values for the parameters
and , which quantify the subjects’ intuition about the task.
To learn the priors, we propose estimating them from the data.
The estimated priors could then be used, e.g., to improve the
performance of an automated system.

B. Fitting
In fitting the stochastic UCLmodel to human subject data, we

seek to answer two questions. First, what distinguishes the deci-
sion-making of the subjects with high performance from those
with low performance? And second, do subjects adapt their de-
cision-making strategies to the task, i.e., the reward landscape?
Our experimental design provides data from only one task per
subject, so we cannot, for example, compare a single subject’s
performance on the different landscapes. Thus, we analyze at
the population level to answer the two questions.
Each subject is classified as having high or low performance

as described above. On the basis of this classification and the
reward landscape, the subject is assigned to one of the four per-
formance-landscape combined categories.We assume each sub-
ject represents an independent and identically distributed (iid)
sample from the true parameter associated with its category.
We applied the estimator to data from each subject using nom-
inal parameters for subjects with low
performance and for subjects with
high performance. We validated the choice of by performing
estimation on the data from several subjects using a variety of
values of . The optimal value of clearly differed between the
two categories of performance but the estimates for each given
performance category were fairly robust to changes in the value
of . The fitting procedure produces a ML estimate and associ-
ated covariance matrix for each subject. By the iid assumption,
it is tenable to construct a population-level parameter estimate
for each of the four categories by appropriately averaging the
individual subjects’ estimates and covariances.
Table I presents the population-level parameter estimates,

along with the mean log-likelihood values, for the four cat-
egories. The columns labeled report the ML parameter
estimates and those labeled their asymptotic standard devi-
ations implied by (9). Recall that these parameters represent
deviations from the nominal parameter values and therefore
are not directly comparable between performance categories.
However, comparing the magnitude of the standard deviations
shows that the parameter estimates are much more precise
for those categories associated with high performance. This is

TABLE I
PARAMETER ESTIMATES AND ASSOCIATED STANDARD

DEVIATIONS CONDITIONAL ON REGRET GROWTH ORDER
AND REWARD LANDSCAPE. THE VALUES FOR HIGH

PERFORMANCE ARE SIGNIFICANTLY DIFFERENT BETWEEN
SURFACES AT THE 95% CONFIDENCE LEVEL (TWO-SIDED
WELCH’S -TEST [36]); OTHER COMPARISONS SHOW

THAT THE PARAMETER VALUES DO NOT SIGNIFICANTLY
DIFFER BETWEEN CLASSES

TABLE II
PARAMETER ESTIMATES AND ASSOCIATED STANDARD
DEVIATIONS CONDITIONAL ON REGRET GROWTH ORDER

AND REWARD LANDSCAPE

consistent with our findings in Section VI-D. Table II presents
the ML parameter estimates transformed back into the original
variables , and ; these are directly comparable.
Table II allows us to answer our first question about the dif-

ferences between subjects with different levels of performance.
The parameter values clearly differ more between levels of per-
formance rather than between landscapes. Between levels of
performance the parameters that differ the most are the decision
noise parameter and the prior uncertainty . Larger values
of are associated with more random decision-making, while
larger values of represent greater uncertainty about the re-
wards which is associated with placing a higher value on in-
formation. Both of these factors tend to encourage exploration,
and the values of both and are much greater for subjects
with high performance than those with low performance. Thus,
for both landscapes, the high-performing subjects explore more
than the low-performing ones, which presumably helps them
discover the regions of high rewards. Furthermore, the subjects
with high performance use correlated priors which allow them
to quickly explore large regions of the reward surface.
We can compare the quality of the model fits by comparing

the mean log-likelihood values across categories provided on
Table I. Again, we see starker differences between levels of per-
formance than between landscapes. Between landscapes, the fits
are approximately equal in quality, while between performance
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levels there is substantial difference, equal to an approximate
doubling of the fitted model's predictive power.
Table I allows us to answer our second question about the

degree to which subjects match their strategies to the task. We
focus on comparing the parameters across landscape conditions
for each of the performance categories separately. For low-per-
forming subjects, comparing the relative magnitudes of the pa-
rameter estimates and their standard deviations suggests that
there is no significant difference between the two landscape
conditions. The two-sided Welch’s -test [36] confirms that the
difference in the parameter estimates is statistically insignifi-
cant. For high-performing subjects, the parameter estimates are
much more precise, and the two-sided Welch’s -test confirms
that the difference in the parameter estimates is statistically sig-
nificant at the 95% confidence level. In other words, the fitting
procedure is able to distinguish that the high-performing sub-
jects have strategies that are matched to the landscape.

C. Discussion
The results of the fitting exercise demonstrate an estimator

for a model of human decision-making behavior. The estimator
allows one to quantify a human subject’s intuition in a statis-
tically powerful way. We observe that the model fits are of
higher quality for subjects with high performance. This sug-
gests that the stochastic UCL model is better suited to the deci-
sion-making behavior of subjects who are experts at the task; a
different model may be more appropriate for lower performing
subjects. We also observe that subjects with high performance
seem to have effective priors: these priors have low certainty
(large values of ), but exploit correlation in the rewards due
to the smoothness of the reward landscapes by using positive
values of the length scale parameter . When such correlation
structures exist, they can be exploited to greatly improve per-
formance [31], as our human subjects appear to have done. The
estimator provides a way to learn effective priors from a human
operator. In the absence of a correlation structure, the above fit-
ting process can still be applied by setting , although con-
vergence of the estimator will be slower, requiring longer series
of choice data than those studied here.
By analyzing data from a human subject experiment, we have

shown the effectiveness of the linearization procedure for ex-
tending the estimator to amodel with a nonlinear objective func-
tion. The known asymptotic properties of the estimator allowed
us to perform tests for statistical significance and find differ-
ences in behavior.

VIII. CONCLUSION
Motivated by the parameter estimation problem for deci-

sion-making models, we studied the ML parameter estimation
problem for softmax decision-making models with linear
objective functions. Such models occur frequently in the
neuroscience and machine learning literatures. We derived
conditions under which the ML estimator converges on the
correct parameter values, characterized the estimator’s asymp-
totic distribution, and showed how to use this distribution to
formulate confidence intervals for the parameter estimates.
The estimator convergence results we state in Theorem 1 are

specific to the case where the objective function is linear in

the unknown parameters. However, we showed how the estima-
tion procedure can be extended to nonlinear objective functions
by linearizing about a nominal point in parameter space. We
showed that we could estimate the true value of the parameters
of the stochastic UCL decision-making algorithm developed in
[26]. The amount of data required to perform useful estimation
depends on the region of parameter space, with parameters rep-
resenting priors that strongly influence behavior being easier to
estimate. For example, small variances represent strong be-
liefs and large correlation length scales represent highly struc-
tured beliefs.
We then fit the stochastic UCL model to data from a human

subject experiment. The estimates show a statistically signifi-
cant difference in behavior between subjects who exhibit good
performance in similar but different tasks. Quantifying this dif-
ference is of interest for both the science of decision-making and
also for the development of automation. The estimator devel-
oped in this paper, as applied to the stochastic UCL model, pro-
vides a tool for quantifying human decision-making behavior in
multi-armed bandit problems. This tool will facilitate the prin-
cipled development of human-centered automation systems.
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