
Integrating a human designer’s preferences in
Multidisciplinary Design Optimization

Paul Reverdy∗, Akhil Reddy†, Luigi Martinelli‡, Naomi E. Leonard§

Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544

Multidisciplinary Design Optimization (MDO) is a powerful engineering tool that allows designers
to incorporate information from all relevant design disciplines simultaneously. In aerospace appli-
cations, for example, MDO has been used to produce designs that incorporate both the structural
and aerodynamic disciplines. It is not generally possible to optimize the objectives of all disciplines
simultaneously, so producing an optimal design requires a human designer to balance the tradeoffs
between the various objectives. We propose and implement a novel system that helps the designer
explore the various possible tradeoffs and systematically find their most preferred design. We show
that the system converges to the most preferred design in a simulated task and discuss how it could
be used in an industrial MDO problem.

I. Introduction
Engineering design is an iterative optimization process incorporating multiple objectives, often representing different
design disciplines. Multidisciplinary Design Optimization (MDO) is a numerical tool often used in engineering design,
which allows designers to find optimal designs by incorporating information from all relevant design disciplines.
However, it is not generally possible to optimize the objectives of all disciplines simultaneously, meaning tradeoffs
must be made among the conflicting objectives in order to find an optimal design. Ultimately, it is a human designer
who expresses a preference about which tradeoffs are acceptable and which design to build. This makes the human
designer an essential part of any MDO system.

Frameworks and tools for MDO have been developed in the literature over the past several decades. The review [1]
and the more recent survey [2] provide a summary of the existing literature. While much work has been done to
develop algorithms for finding the Pareto frontier of efficient tradeoffs, comparatively little work has considered the
human designer. Our focus is on studying MDO with an emphasis on the human designer.

In parallel with the MDO literature, Multiple Criteria Decision Analysis (MCDA) has been developed in the
decision theory literature [3]. As its name implies, MCDA studies decisions that incorporate multiple objectives and
explicitly considers the preference information that is required to discriminate among efficient tradeoffs. Through its
connection with economics and psychology, the MCDA literature provides frameworks for eliciting this preference
information from human decision makers, as well as methods for encoding the preferences mathematically in utility
functions. By integrating tools from the MDO and MCDA literatures, we provide a framework in the present paper
for rationalizing the process of engineering design by explicitly including the human designer in the system.

Such a framework is valuable within a given design exercise, but even more so over the course of a series of design
exercises. An important aspect of design practice is that an experienced designer will tend to find a good solution much
more quickly than a novice. By performing many design exercises, the experienced designer develops intuition about
the nature of good solutions, which allows him/her to more quickly search the design space. This intuition is likely to
be largely subconscious and as such difficult to quantify. Our framework provides a method for eliciting this intuition
using preferences and a way to quantify the intuition using utility theory. Once quantified, an experienced designer’s
intuition can be used both for self improvement and to aid novice designers whose intuition is less developed.

We are not the first researchers to notice the parallels between engineering design and decision theory. As early as
1991, Sykes and White [4] proposed a framework for incorporating designer preferences into an intelligent computer-
aided design process using utility functions. Their approach is conceptually similar to ours but makes more restrictive
assumptions in the utility model. Despite the potential value of the ideas in [4], few papers extended their framework.
In 2001, the US National Research Council’s Board on Manufacturing and Engineering Design produced a report [5]
that highlighted the role of decision making in engineering design and recommended that “constructive dialogue
∗preverdy@princeton.edu, Ph.D. Candidate, D309 Engineering Quadrangle, Student Member, AIAA
†asreddy4@gmail.com, Currently Research Assistant at the Cleveland Clinic, Cleveland, OH 44106
‡gigi@phantom2.princeton.edu, Associate Professor, D302C Engineering Quadrangle, Associate Fellow, AIAA
§naomi@princeton.edu, Professor, D234 Engineering Quadrangle



should be encouraged to allow the best aspects of each method and theory for decision making in engineering design
to be incorporated into common practice.” Our paper contributes to this dialogue by connecting the engineering design
and decision theory literatures in the context of MDO, which is a well-established tool with a well-defined end user
and research community. To make the connection concrete, we construct a system to solve MDO problems using the
utility-based framework. The system uses designer preferences as feedback to iteratively converge on a solution.

The remainder of the paper is structured as follows. Section II lays out our specification of the MDO problem.
Section III introduces the mathematical formulation of preferences, details the conditions under which they can be rep-
resented in terms of a utility function, and explains how to use the utility function in an MDO framework. Section IV
presents an MDO system constructed using the utility-based framework. Section V presents the results of a simulation
study where the utility-based MDO system was used to solve a test design problem and discusses how to apply the
system to an industrially-relevant problem. Finally, Section VI offers conclusions and prospectives for future work.

II. The MDO problem
The MDO problem can be specified as follows. Let there exist n scalar-valued design variables x = (x1, x2, . . . , xn) ∈
X ⊆ Rn. Let q : X → Q ⊆ Rm represent m scalar-valued objective functions of the design determined by the n design
variables. Then q(x) = (q1(x), q2(x), . . . , qm(x)) represents a performance assessment of the design x. For example,
q(x) may be computed using a numerical analysis of the design represented by x. The designer’s goal is to pick x so
as to maximize the objectives q:

max
x∈X

qi(x), i = 1 . . . ,m. (1)

The MDO problem (1) is not a well-defined optimization problem, since q is a vector. There is no single well-
defined ordering of two points q,q′ ∈ Q, and as such, no well-defined optimal point. However, one can define a partial
order on Q as follows.

Definition 1. For two points q,q′ ∈ Q and q 6= q′, point q is said to dominate q′ if q′i ≤ qi for all i = 1, . . . ,m. That
is, q is at least as good as q′ in every individual objective. A point q is said to be non-dominateda if there is no other
point that dominates it.

The set of non-dominated points is known as the Pareto front, and consists of solutions where no single objective can
be improved without worsening at least one other objective.

Computation of the Pareto front is a well-studied problem (see, e.g., [6]), so it is reasonable to assume that the
Pareto front, or at least a local approximation, is known. All points on the Pareto front are efficient in the sense that
they are optimal for some value of the tradeoff among objectives, but the solution of an engineering design exercise
generally requires the selection of a single solution. Additional constraints are needed to isolate an optimal solution
among the points on the Pareto front. In particular, the designer’s preferences among tradeoffs, if they are known, can
be used to define an optimal solution.

Two different common approaches to defining the optimal solution are the game-theoretic approach and the scalar-
ization approach. In the game-theoretic approach [7], one considers the optimization problem as a game where each
objective is represented by a player, each of which must bargain with the others to optimize its individual objective.
The single optimum arises as the equilibrium of this bargaining process. In the scalarization approach [8, 9], one
defines a scalar objective function J : Q → R and then searches for the value of x that maximizes J(q(x)). Our
framework takes the scalarization approach.

The standard scalarization technique defines J(q(x)) as the weighted sum

J(q(x)) =

m∑
i=1

wiqi(x), (2)

where the weight wi ≥ 0 is a constant that represents the importance of objective i to the designer. However, the
solution to this scalarized problem depends heavily on the choice of weights, the correct values of which are not
generally clear. The use of constant weights in Equation (2) implies that the relative importance of each objective qi

is independent of its value. While such an assumption may be justified in a local region around a point q ∈ Q, it is not
valid in general. For example, consider a design that has a target value for some objective qi. If qi is far from its target
value, it will be more heavily weighted than if it is close to the target.

Ultimately, it is the designer who uses his/her judgement to pick the optimal design. Under mild assumptions
detailed in Section III, a scalar objective function can be used to represent the designer’s judgement. We seek to learn
the designer’s objective function, since it encodes the designer’s intuition. An experienced designer is likely to have

aSome authors call such a point Pareto-optimal.

2 of 12

American Institute of Aeronautics and Astronautics



good intuition that is useful in solving the problem. The functional form we use for J(q) is a sum over objectives as
in (2), but it relaxes the assumption of linearity and allows the relative importance of each objective to depend on its
value.

III. Utility and preferences
For many years economists have studied decision-making processes with particular emphasis on theories of rational
decision making, meaning decisions that reflect a consistent ranking of choice alternatives [10]. Since Samuelson [11],
research has focused on formulating rational decision making in terms of maximizing a scalar utility function that can
be inferred from preference information revealed by an individual’s choice behavior. Our framework applies the
revealed preference paradigm to the MDO problem by estimating the designer’s utility function on objective space
and using this as the scalarization function J(q(x)).

A. Preferences

For the MDO problem, preferences represent the designer’s judgement. Let � be a preference relation and ∼ be
a indifference relation between elements in Q. We assume that given any pair of designs x, x′ with corresponding
objective values q,q′, the designer’s judgement will take the form of a preference consisting of a choice of exactly one
of the following three options:

• q � q′: the designer prefers q to q′,

• q ≺ q′: the designer prefers q′ to q, or

• q ∼ q′: the designer is indifferent between q and q′.

The MCDA literature has studied the case of fuzzy preferences (i.e., where the designer has uncertainty as to which
preference to express) and variable strength preferences (i.e., where some preferences may be stronger than others)
[12], but these extensions are beyond the scope of this paper.

The question of how to encode preferences in a scalar function is the subject of utility theory [3]. In utility theory,
two important properties of a preference relation are transitivity and completeness.

Definition 2. A preference relation � on a set Q is said to be transitive if, for every q, r, s ∈ Q, q � r and r � s implies
q � s.

This is a basic consistency condition that is required for the preferences to rank the possible outcomes.

Definition 3. A preference relation on a set Q is said to be complete if for each pair q, r ∈ Q, either q � r, r � q, or
q ∼ r.

In other words, the preference set includes an opinion about each pair of outcomes. We assume that the designer’s
preferences are transitive and complete.

A fundamental result in utility theory due to Debreu [13] is the following.

Theorem 1. If a preference relation on a set Q ⊆ Rm is complete and transitive, then there exists a real-valued utility
function representation.

By Theorem 1 there is a utility function v : Q → R with the property that v(q) > v(r) ⇔ q � r and v(q) =

v(r) ⇔ q ∼ r. A point q∗ that maximizes the value of v(q) is known as a most preferred point. In the context of
the design problem, where v(q) represents the designer’s preferences, q∗ is a most preferred solution for the designer,
i.e., it corresponds to a design he/she would choose to build. For purposes of presentation, we refer to q∗ as the most
preferred solution. The goal of our approach is to find q∗ by learning the designer’s utility function.

B. Learning utility functions

We learn the designer’s utility function by posing a series of queries in which the designer is required to express a
preference between pairs of points q,q′ in objective space Q. We use the UTA (UTilités Additives) method, developed
by Jacquet-Lagrèze and Siskos [12, Chapter 8] to estimate the utility function that represents the designer’s preferences.
UTA assumes that there are known bounds qi and q̄i on each objective value qi such that qi ∈ [qi, q̄i], and that the

3 of 12

American Institute of Aeronautics and Astronautics



decision maker’s preferences are monotonic in each qi, i.e., that larger values of each criterion are weakly preferred to
smaller ones. UTA then assumes that the utility function takes the additive form

v(q) =

m∑
i=1

vi(qi) (3)

subject to normalization constraints 
m∑

i=1

vi(q̄i) = 1

vi(qi) = 0, ∀i = 1, 2, . . . ,m,

(4)

where vi are non-decreasing real-valued functions on Q, termed marginal value functions. Their monotonicity follows
from the assumed monotonicity of the decision maker’s preferences.

Sykes and White [4] employ a similar model, which in our notation takes the form

v(q) =

m∑
i=1

wiui(qi),

where ui(qi), i ∈ {1, . . . ,m} are value score functions obeying 0 ≤ ui(qi) ≤ 1, assumed known, and wi ≥ 0 is the weight
on objective i, normalized such that

∑m
i=1 wi = 1. The quantity wiui(qi) is analogous to the marginal value function

vi. The major difference as compared to UTA is in the assumption that the value score functions ui(qi) are known.
Many different functional forms are possible; Sykes and White [4] suggest some examples and refer the reader to the
decision sciences literature for further information.

UTA makes no assumption about the functional form of vi and instead fits the marginal value functions using linear
interpolation. By fitting the functions directly, UTA makes the method simpler to use by avoiding the additional steps
Sykes and White’s approach requires to pick a functional form. The UTA interpolation procedure is as follows. Let A
be the set of points the designer has considered in Q. These are the points over which the designer has been queried
and expressed a preference. For each alternative a ∈ A ⊆ Q define an estimate v′ of the utility function v as

v′(a) =

m∑
i=1

vi(ai) + σ(a), ∀a ∈ A, (5)

where σ(a) is an error relative to the true value function v(a) and ai is the ith component of a. Further, let each interval
[qi, q̄i] be divided into αi − 1 equal intervals with end points that we denote q j

i for j = 1, 2, . . . , αi. The value vi(ai) is

approximated by linear interpolation between the points vi(q
j
i ), which UTA picks to minimize the error σ.

The set A = {a1, . . . , al} is sorted according to the preference relation, so that a1 is the most preferred alternative
and al is the least preferred one. Therefore, for each consecutive pair of alternatives (ak, ak+1), either ak � ak+1 (ak is
preferred) or ak ∼ ak+1 (the designer is indifferent). Define the difference in their corresponding utilities with added
error as

∆(ak, ak+1) = v′(ak) − v′(ak+1). (6)

By the definition of the utility representation, one of the following holds ∆(ak, ak+1) ≥ δ ⇔ ak � ak+1

∆(ak, ak+1) = 0 ⇔ ak ∼ ak+1,
(7)

where δ is a small positive number representing a threshold for significant discrimination between two equivalence
classes of the preference relation �.

The assumption that the marginal value functions vi(qi) are monotonically increasing in qi implies the following
set of constraints on the values vi(q

j
i ) at the interpolation points q j

i

v(q j+1
i ) − vi(q

j
i ) ≥ si ∀ j = 1, 2, . . . , αi − 1, i = 1, 2, . . . , n, (8)

with si ≥ 0 being indifference thresholds defined on each criterion qi. Jacquet-Lagrèze and Siskos [14] set si = 0 and
show that setting a positive threshold is not necessary, but can be useful in certain special circumstances.

4 of 12

American Institute of Aeronautics and Astronautics



UTA estimates the marginal value functions by solving the following linear program which minimizes the total
error of the linear interpolation by choosing the function values at the interpolation points:

min
vi(q

j
i )

∑
a∈A

σ(a)

subject to
∆(ak, ak+1) ≥ δ if ak � ak+1

∆(ak, ak+1) = 0 if ak ∼ ak+1

 ∀k

vi(q
j+1
i ) − vi(q

j
i ) ≥ 0 ∀i and j

n∑
i=1

vi(q̄i) = 1

vi(qi) = 0, vi(q
j
i ) ≥ 0, σ(a) ≥ 0 ∀a ∈ A, ∀i and j.

(9)

Tunable parameters in this linear program include the utility discrimination threshold δ and the number of interpolation
points αi. To set up the linear program, UTA takes as inputs the set of upper and lower bounds {qi, q̄i} on the objectives
qi and the set A of alternatives sorted according to the designer’s preference relationship. The set A can be represented
parsimoniously as a binary search tree.

C. Design Choice Hierarchy

As new alternatives are added to the set that the designer considers, we use a binary search tree to maintain the sorted
set A of alternatives. We call the set A represented as a binary search tree the design choice hierarchy. Introducing
a new alternative into the set A corresponds to inserting a new element into the tree. The insertion procedure starts
at the root of the tree and compares the new element to the value there, moving on to the left or right subtree if the
new element is smaller or larger, respectively, than the root, and recursively applying this procedure until it reaches an
external node of the tree.

Each comparison operation corresponds to a query that must be posed to the human designer, who will reply
with a preference. Responding to a query is tiring for the designer, so the number of queries required should be
minimized. Binary search trees are known to be efficient data structures for inserting new elements: the average
number of comparisons required to insert a new element in a tree of l elements is O

(
log l

)
(as compared to the worst-

case performanceO (l)). Using the design choice hierarchy structure is efficient with respect to the designer’s cognitive
load, and the insertion procedure ensures that the preferences encoded in the design choice hierarchy will be transitive,
as required for the utility function representation.

IV. Utility-based MDO system
Figure 1 shows our proposed implementation of a utility-based MDO system based on the above elements. The system
works interactively with the designer, incorporating his/her feedback in the form of preferences, to find the most
preferred solution point q∗ in objective space. The system sequentially presents the designer with pairs of objective
vectors q,q′ and asks him/her to express a preference for one of the elements in the pair. At the beginning of an
MDO problem, the system performs an initialization step where a set of points that cover objective space are used for
queries. In the next step the system iteratively improves the estimate of v(q) and q∗ using the designer’s preferences
as feedback at each iteration. The idea is that the system uses a continuously improving estimate of v(q) to guide the
preference query process.

A. Initialization step

The system requires a set of preferences in order to estimate the utility function, which is the basis of the optimization
process. Therefore, we begin solving the MDO problem by picking a set of points in objective space Q and constructing
the design choice hierarchy over these points. The initialization step has the designer consider a variety of points in
objective space Q, thereby exploring the full space. Such an exploration step is analogous to current industrial practice,
where the initial step in a design optimization is often a large simulation study which computes a rough approximation
of the design-objective map q : X → Q at a set of points that cover the space X of design variables.

We consider both deterministic and stochastic methods to choose the set of initialization points. In either case,
we choose a coordinate system for the objective space Q. To create a deterministic discretization, we pick a uniform
grid of points in this coordinate system. To create a stochastic discretization, we pick the set of points according to
a uniform distribution on Q. The extension to non-uniform discretization grids or distributions is straightforward and

5 of 12

American Institute of Aeronautics and Astronautics



2. Accurately capture and model the preferences of a user (human designer) over

the given feasible region.

3. Provide feedback to the user on the e↵ect of his/her preference articulations

and allow the user to influence the solution path.

4. Pose preference elicitation queries which require only relative judgements (i.e.

preference relations x � y , y � x , or x ⇠ y) and which minimize user fatigue.

3.2 High Level Design

In order to satisfy these design requirements, we propose an interactive method for

MDO which takes the form of an iterative loop as depicted in Figure 3.1. The system

represents a novel scheme which allows the user to simultaneously converge to his/her

true value function and most preferred solution (Design Req. 1 and 2). The system

is therefore able to capture the preference structure of the designer while preserving

the ability of the designer to gain feedback and influence the solution path (Design

Req. 3).

Designer

Value Function 
Generator

Design Choice 
Hierarchy

Optimization 
Process

a 

Value Function

Iteration
Alternative

Initialization
Alternatives

Figure 3.1: Multidisciplinary Design Optimization System, High Level Design

Prior to entering the MDO loop, there is an initialization phase in which the

designer is tasked with specifying his/her relative preferences over an initial set of

design alternatives within feasible region Q. This is performed through a series of

pairwise comparisons for which the designer can specify one of the following prefer-

ence relations on each alternative pair ~qy , ~qz in Q: ~qy � ~qz , ~qz � ~qy , or ~qy ⇠ ~qz

13

Figure 1. Schematic of utility-based MDO system design.

may be useful when one has prior knowledge about the location of interesting areas in objective space, but we do not
pursue this extension here.

B. Utility function estimation

We construct the designer’s choice hierarchy using a binary search tree structure as detailed above. Based on the
design choice hierarchy with t alternatives, we produce the estimate vt(q) of the utility function v(q) by solving the
linear program (9) using Matlab’s standard solver linprog. We use δ = 0.001 and αi = 26, so we have αi − 1 = 25
subintervals for each objective i.

C. Generation of iteration alternatives

Upon producing vt(q), we use the value function to generate new alternative points to be considered by the designer.
The initialization step carries out a general exploration of the objective space, so the iteration step can be used to focus
on regions that the initialization step showed to be good. The optimum q∗t = arg maxq vt(q) is the system’s current
estimate of the designer’s most preferred solution q∗. Thus, points nearby q∗t are likely to be good and as such are
targets for new iterations. We consider two methods for generating new alternatives:

1. Use the current optimum q∗t as the next (t + 1) alternative.

2. Use both the current optimum q∗t and a nearby point randomly chosen from the space within a radius r of q∗t as
the next two (t + 1 and t + 2) alternatives.

The optimum q∗t is simple to compute because of the additive linear interpolation structure of v(q). Method 1 can
be described as a pure exploitation strategy, as it exploits the currently-known information about the utility function
to recommend a new alternative. Method two can be described as a mixed exploration-exploitation strategy, since the
randomly chosen alternative attempts to explore the space near the current optimum q∗t .

D. Termination condition

The system should eventually complete its execution and output a final estimate of the most preferred solution once a
termination condition is reached. There are two natural candidates for the termination condition:

1. Terminate when the magnitude of the change in the estimated optimum q∗t is below some threshold. This
results in an estimate that has some guarantee of being close to the true optimum, but convergence may take an
arbitrarily large number of iterations, i.e., designer time.

6 of 12

American Institute of Aeronautics and Astronautics



2. Terminate after a fixed maximum number of iterations or preference queries. Each iteration or query is costly in
terms of computational and human cognitive resources, so this termination condition gives an upper bound on
the total cost of the design exercise.

In many practical cases, the solution of the design exercise is cost or time constrained, so we will focus on the second
termination condition.

V. Results
We use our system in simulation to solve an academic test problem and characterize the convergence performance
in terms of two metrics. We show that the system converges to the optimal design, and we study ways in which
our proposed iteration scheme affects the rate of convergence. To illustrate the relevance of our system to industrial
problems, we describe how to apply the system to an industrially-relevant turbo-machinery test problem from [15].

A. Performance metrics

We measure the performance of our system using two metrics: one that measures local convergence to the true op-
timum design and one that measures global convergence throughout the objective space Q. As a local measure we
consider the Euclidean distance ‖q∗t − q∗‖ between the current and the true optimum. This measure is equal to 0 when
the system recommendation is equal to the true optimum, and bounded above by

√
2 in the academic test problem

due to the size of the space Q. As a global measure, we consider Kendall’s tau, τ, which compares two orderings of
a given set A. We study the set of considered alternatives A and apply Kendall’s tau to the orderings implied by the
currently estimated utility function vt(q) and the true utility function v(q). Kendall’s tau is defined such that it takes
value +1 if the two orderings are identical, −1 if one ordering is the reverse of the other, and 0 if the two orderings are
uncorrelated. Therefore, τ = +1 represents global convergence of vt(q) to v(q).

B. An academic test problem

We tested our system in simulation with a simplified version of the DTLZ2 test problem described in [16], specified
by

max


q1 = r cos(θ) cos(γ)
q2 = r cos(θ) sin(γ)
q3 = r sin(θ),

subject to


0 ≤ r ≤ 1

0 ≤ θ ≤
π

2

0 ≤ γ ≤
π

2

. (10)

The problem (10) is constructed such that the Pareto front is the surface of the unit sphere in the first octant:
{q = (q1, q2, q3)|q1, q2, q3 ≥ 0, q2

1 + q2
2 + q2

3 = 1}. We simulate a human designer by specifying the following utility
function:

v(q) =
2cq1

0.15 + q1
+

3cq2

0.15 + q2
+

4cq3

0.15 + q3
, (11)

where c ≈ 0.1278 is a normalization constant. The true most preferred solution for this utility function is

q∗ = arg max
q

v(q) ≈ (0.4948, 0.5797, 0.6473). (12)

The simulated designer expresses preferences by computing the utility value for the alternatives in question and pre-
ferring the alternative with the higher utility.

We performed simulations using the simulated designer and measured the convergence of the system to the true
most preferred solution (12), as defined by the Euclidean distance between the system’s inferred value of q∗ and its
true value. As can be seen in Figure 2, the system converges as the number of initialization alternatives increases, but
including feedback by also adding the current inferred value of q∗ as an alternative increases the rate of convergence.
This can be seen in Figure 3, which shows mean distance D between the current estimate of the optimum q∗t and the
true optimum q∗. Figure 3a shows results for simulations using Scheme 1 and Figure 3b shows results for Scheme 2.
The horizontal axes for both panels are comparable since they count the total number of alternatives considered in the
process. By comparing the value of D for any given number of total alternatives considered, we see that Scheme 2
consistently converges more quickly than Scheme 1.

For both figures, the initialization used a set of points chosen from a uniform random distribution over the objective
space Q. The initialization and iteration stages interact to affect the convergence properties of the system, as can be
seen by considering the values of D along the two vertical dotted lines in each panel. These represent, for example, a

7 of 12

American Institute of Aeronautics and Astronautics



total budget of alternatives that can be considered in a given design exercise. A relevant issue for implementation is how
to allocate alternatives between initialization and iteration since initialization ensures a good coverage of the space, but
iteration is important to ensure that the the system converges on the optimum. For Scheme 1, an intermediate fraction
of initialization is optimal, as can be seen from the dotted line at N + m = 50: the curve with the smallest distance (i.e.,
error) is the one with N = 30 initialization alternatives, rather than the ones with N = 10 or 50. For Scheme 2, looking
at N + 2m = 50 shows that more iteration is optimal, i.e., the curve with N = 10 initialization alternatives yields the
smallest error. This is likely because the second point added in a randomly-chosen location effectively serves as an
additional mechanism to ensure good coverage of the space, replacing the need for an extensive initialization step.

0 25 50 75 100 125 150 175 200 225 250 275 300
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

N

D

0 0.1 0.2 0.3 0.4
0
25
50
75
100

D (N = 10)

Fr
eq
ue
nc
y

0 0.1 0.2 0.3 0.4
0
25
50
75
100

D (N = 50)
0 0.1 0.2 0.3 0.4

0
25
50
75
100

D (N = 100)
0 0.1 0.2 0.3 0.4

0
25
50
75
100

D (N = 200)

Figure 4.4: The e↵ect of N on MPS accuracy, measured by D. No iterations were
performed. 500 runs were conducted during the evaluation – data points indicate the
mean values, error bars represent the range of the middle 50%. Histograms show the
distribution of runs at various levels of N .

29

Figure 2. Euclidean distance D between the system’s current estimate q∗t of the most preferred solution and the true most preferred
solution q∗ as a function of the number of initialization alternatives N. The estimate converges to the true value as N increases. The data
were generated from 500 simulations of the system and the error bars indicate the range of the middle 50% of the data.

0 10 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

m

D

 

 
N = 10
N = 30
N = 50
N = 70
N = 130
N = 190

m

D

 

 

0 10 20
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

m

τ

m

τ

(a) (b)

Figure 4.10: The e↵ect of N on the mean behavior of D and ⌧ when using Scheme
2. 500 runs were conducted – data points indicate the mean values. For clarity, error
bars were omitted. The same figure, with error bars, can be found in Appendix A,
Figure A.3.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

N +m

D

 

 
N = 10
N = 30
N = 50
N = 70
N = 90
N = 110

D

 

 

Figure 4.11: Convergence behavior of Scheme 1 for di↵erent values of N , plotted
based on the total number of alternatives added to DCH. 500 runs were conducted
during the evaluation – data points indicate the mean values. For clarity, error bars
were omitted. The same figure, with error bars, can be found in Appendix A, Figure
A.4.

35

a) Scheme 1: one point added per iteration.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

N + 2m

D

 

 
N = 10
N = 30
N = 50
N = 70
N = 90
N = 110

D

 

 

Figure 4.12: Convergence behavior of Scheme 2 for di↵erent values of N , plotted based
on the total number of alternatives added to the DCH. 500 runs were conducted –
data points indicate the mean values. For clarity, error bars were omitted. The same
figure, with error bars, can be found in Appendix A, Figure A.5.

alternatives mark (dotted line), we see that the combination of N = 10 and m = 40

achieves a roughly similar final MPS accuracy to the scenario where N = 50 and

m = 0. However, a more accurate MPS is achieved in the case where N = 30 and

m = 20. A similar phenomonon is observed when we focus our attention to the 70

alternative mark. This situation suggests that there may exist an optimal ratio of N

to m, for achieving the smallest final D (Dfinal), which exists between the extremes

of running the system purely through initialization or iteration. It seems that the

quick convergence and then leveling o↵ of the system with S1 prevents the benefits of

the initialization phase from being outweighed by a large number of loop iterations.

Subsequent analysis will partially confirm this qualitative hypothesis. However, this

can only be said for N + m < 70, but we focus our analysis to this range since it is

likely the range where the system will be operated.

A di↵erent behavior is observed for S2 in Figure 4.12. In this plot, for any total

number of alternatives, we see the best performance in the scenario where there is

the greatest number of alternatives added to the DCH through iteration. This initial

investigation would therefore suggest that placing all of the weight on the iterations

would achieve the most accurate MPS for a given number of total alternatives. In the

range N + 2m < 70, loop iterations tend to consistently outweigh a more extensive

36

b) Scheme 2: two points added per iteration.

Figure 3. Euclidean distance D from the true most preferred solution as a function of the number of total alternatives considered, including
initialization alternatives N and iteration alternatives m. The curves represent the mean value of D based on data from 500 simulations of
the system. In panel a), the system was simulated using iteration Scheme 1, where the current estimate of the optimum q∗t is used for the
next alternative. In panel b), the system was simulated using iteration Scheme 2, which added both the current optimum q∗t and a nearby
point randomly chosen from the space within a radius r = 0.1 of q∗t . Scheme 2 consistently converges more quickly than Scheme 1, as
can be seen by comparing the value of D at any given number of total alternatives considered. For a fixed budget of alternatives that can
be considered, the optimal allocation of designer time between initialization and iteration depends on iteration scheme, as can be seen by
comparing where the different curves intersect the vertical dotted lines.

The convergence behavior due to the iteration process is largely local around the true optimum rather than global
throughout the whole space Q, which can be seen by considering the global convergence measure τ, as plotted in
Figure 4. Recall that τ is a measure of global convergence in the sense that it compares the rankings of the considered
alternatives according to the inferred utility function vt(q) and the true one v(q). The measure is normalized to lie
in [−1, 1], with τ = 0 corresponding to uncorrelated rankings and τ = 1 corresponding to identical rankings, i.e.,
convergence for the considered alternatives. Figure 4 shows τ as a function of the number m of iterations completed
for the two schemes and the same numbers N of initialization alternatives as in Figure 3. In all cases, τ is essentially
constant as a function of m, meaning that the the rankings of points away from the optimum do not converge as m
increases. If all one cares about is finding the most preferred design q∗, precisely measuring the value of v(q) at points
far from q∗ is irrelevant, so this lack of global convergence is inconsequential. However, if the goal is to accurately
measure the utility function throughout Q, the points should be chosen to cover the space.

8 of 12

American Institute of Aeronautics and Astronautics



0 10 20 30 40
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

m

D

 

 
N = 10
N = 30
N = 50
N = 70
N = 130
N = 190

m

D

 

 

0 10 20 30 40
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

m

τ

m

τ

(a) (b)

Figure 4.9: The e↵ect of N on the mean behavior of D and ⌧ when using Scheme
1. 500 runs were conducted during the evaluation – data points indicate the mean
values. For clarity, error bars were omitted. The same figure, with error bars, can be
found in Appendix A, Figure A.2.

have shown that the accuracy of the value function is soley dependent on the ex-

ploration of designer preferences throughout the feasible region (initialization phase).

The exploitation of designer preferences (iteration phase) increases our knowledge of

preferences in a very localized and high resolution manner. Therefore, it provides

great benefit in improving the accuracy of the MPS, but little benefit in improving

our overall knowledge of the designer’s value function.

Figure 4.10 illustrates the results of the same test performed using S2. Figure

4.10b further confirms the negligible e↵ect that the current iteration schemes have

on ⌧ . Figure 4.10a shows that for S2, the nature of convergence is also influenced

by N . Similar S1, there seems to be a decrease in the magnitude of improvement as

N is increased. This magnitude of improvement, however, tends to be much greater

when comparing the two based on the number of alternatives added to the DCH

through iterations. In addition, there does not seem to be a point where there is a

sharp decrease in the benefit of iterations. Instead, the benefit from each additional

iteration seems to diminish more gradually.

In Figures 4.11 and 4.12, we plot the data from Figures 4.9a and 4.10a with respect

to the total number of alternatives added to the DCH from both initialization and

iterations (N + m). From this comparison, we can gain an initial understanding of

the benefit of the iterative process on the convergence of the system to the true MPS.

In Figure 4.11, we find an interesting result. If we focus our attention to the 50 total

34

a) Scheme 1.

0 10 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

m

D

 

 
N = 10
N = 30
N = 50
N = 70
N = 130
N = 190

m

D

 

 

0 10 20
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

m

τ

m

τ

(a) (b)

Figure 4.10: The e↵ect of N on the mean behavior of D and ⌧ when using Scheme
2. 500 runs were conducted – data points indicate the mean values. For clarity, error
bars were omitted. The same figure, with error bars, can be found in Appendix A,
Figure A.3.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

N +m

D

 

 
N = 10
N = 30
N = 50
N = 70
N = 90
N = 110

D

 

 

Figure 4.11: Convergence behavior of Scheme 1 for di↵erent values of N , plotted
based on the total number of alternatives added to DCH. 500 runs were conducted
during the evaluation – data points indicate the mean values. For clarity, error bars
were omitted. The same figure, with error bars, can be found in Appendix A, Figure
A.4.

35

b) Scheme 2.

Figure 4. Kendall’s tau, τ, between the rankings of all considered alternatives implied by the inferred utility function vt(q) and the true
utility function v(q) as a function of the number of iteration alternatives m. The curves represent the mean value of τ based on data from 500
simulations of the system for the different numbers of initialization alternatives N plotted in Figure 3. The larger values of N correspond to
more complete coverage of the space and therefore better global convergence, which is reflected in the larger value of τ. However, iteration
has little effect on global convergence, as seen by the flatness of the curves as a function of m. Iteration primarily causes local convergence
to q∗ in a neighborhood of the optimum.

C. An industrially-relevant test problem

In recent work, Shankaran and Vandeputte [15] studied a multidisciplinary turbo-machinery problem: the tradeoff
between aerodynamics and mechanical integrity for a turbine blade. In this section, we pose their problem in our
framework and show how our method can complement their game-theoretic approach to finding the optimal tradeoff.

The problem in [15] aims to maximize the mid-span aerodynamic efficiency of a turbine blade while ensuring
that a mechanical frequency of interest is above a particular value. The problem begins with a baseline design that
has acceptable aerodynamic efficiency, but has one torsional frequency that is close to resonance. There is a tradeoff
between aerodynamic and structural performance, so finding an “optimal” solution is nontrivial. The authors of [15]
computed an approximate Pareto front for their problem and considered several game-theoretic approaches for se-
lecting an optimal point on the Pareto front. Our method provides an alternative approach for selecting the optimal
point.

Figure 5 shows the Pareto front generated in solving the turbine blade problem as well as several potential optimal
points representing different solution concepts. In the game theoretical approach, each objective qi is represented by a
player i, who participates in the game by picking a set of design variables xi. A solution consists of the equilibrium that
emerges from the interaction of the various players. In the lower left corner of the figure is the Nash non-cooperative
game solution N, which represents the disagreement point for the players and represents, in some sense, a worst-case
solution. This solution is Pareto suboptimal, as it is inside the front. By cooperating, the players can bargain to pick a
point that is efficient, i.e., Pareto optimal. Game theory shows that the efficient points of interest are in the cone with
the solution N as the origin, so the relevant part of objective space is bounded by the cone and the Pareto front.

Solution concepts for cooperative games are generally formulated in terms of maximizing some scalar function
g. For example, the Nash bargaining solution NB [17] maximizes the function g = ∆1∆2, where ∆i is the increase
of objective qi relative to the non-cooperative solution N. Another cooperative solution concept due to Kalai and
Smordinsky [18] maximizes g = ∆1/∆2, i.e., the ratio of the improvements. In [15], the authors introduced and studied
the System Optimal Cooperative Solution (SOCS), which maximizes a scalar objective function measuring the overall
performance of the system. In particular for their turbo-machinery problem, they sought to minimize specific fuel
consumption (sfc), which they approximate as a linear function of the objective values qi:

g(q) = sfc = aq1 + bq2, (13)

where a and b are constants that have previously been estimated by the designers. The resulting equilibrium solution
emerges from optimizing g(q) subject to the constraint that q lie on the Pareto front, and consists of the tangent point
between the Pareto front and level curves of g.

The above problem can be posed in our framework (1) as follows: the n = 5 design variables (x1, x2, x3, x4, x5) are,
namely, blade stagger angle, cross-sectional area, trailing edge feature, position of maximum thickness, and radius
of the leading edge. Shankaran and Vandeputte note that the dominant design variables are stagger (x1) and position
of maximum thickness (x4). The two objectives (q1, q2) are aerodynamic efficiency η and percentage change in the

9 of 12

American Institute of Aeronautics and Astronautics



0.999 1 1.001 1.002 1.003 1.004 1.005
1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

Non-dimensional efficiency η = q1

%
C
h
a
n
g
e
in

fr
e
q
u
e
n
c
y
ω

=
q
2

 

 

Pareto front

Nash Non−Cooperative Solution

System−Optimal Cooperative Solution

Nash Bargaining Solution

Figure 5. The Pareto front for the turbine blade problem together with three game-theoretically relevant points: the Nash non-cooperative
solution N, which sets the disagreement point for the system, and the Nash Bargaining (NB) and System-Optimal Cooperative (SOCS)
solutions. The Nash Bargaining and SOCS solutions emerge as tangent points between an objective function and the Pareto front. The
straight line defines the objective function for the SOCS, which authors of [15] argue is the appropriate engineering solution to the game.
Adapted from [15] with permission.

torsional frequency ω from its baseline value, so concretely we define

q1 = η, q2 = ω.

Note that the frequency objective could also be encoded as a constraint on the allowable points in objective space, but
we follow [15] and pose it as a second optimization objective. The intersection of the Pareto front and the cone defined
by N provides the bounds (qi, q̄i), i = 1, 2 required for our method.

The utility function v(q) provided by our method constitutes an alternative to the objective function (13). The
benefit of using v(q) is that it 1) allows for a more general function than the linear form assumed by (13), and 2) it
represents the human designer’s intuition. The constants a and b in (13) (known as derivative information) are assumed
known in [15], but must be estimated by performing additional studies. While there is a place for such studies, the
resulting derivative information is likely to be somewhat arbitrary. Our framework would provide a rational method
for integrating designer preferences and experience into the production of such derivative information, and therefore
can complement existing approaches.

Figure 6 shows how we would apply our framework to the MDO workflow. The first two steps constitute formulat-
ing the MDO problem and computing the non-cooperative Nash equilibrium and Pareto front, as in the game-theoretic
approach in [15]. In the third and final step, we would employ our framework to learn the designer’s utility function
v(q) and find the most preferred solution q∗ by posing a series of preference queries to the designer.

Formulate problem:
Specify X,Q,q(x)

Approximate Pareto front,
Non-Cooperative
Nash Equilibrium

Pose designer queries
Learn v(q)

Find q*

1 2 3

Figure 6. The MDO workflow modified to incorporate our utility-based framework. Steps 1 and 2 follow standard practice as detailed
in [15] to formulate the MDO problem and find the Pareto front of efficient points. Step 3 is where we incorporate our utility-based
framework to learn the designer’s utility function v(q) and find the designer’s most preferred design q∗, which is the “optimal” point.

10 of 12

American Institute of Aeronautics and Astronautics



In Section V.B we showed that our system works on a test problem, and we are seeking to apply it to an industrial
problem. We would carry out a study by performing the first two steps in the workflow following current practice and
then conducing step three in two stages: once with experienced designers to verify that the system recovers a baseline
“optimal” design, and a second time with less experienced designers for comparison with the baseline. This would
provide a way to compare the judgements made by different designers, both between individuals with a given level of
experience and between groups with differing levels of experience. A further interesting question would be how the
different designers’ utility functions v(q) compare with the SOCS objective (13). If the approaches using the utility
function v(q) and the SOCS objective g(q) result in similar optima, this provides evidence that the SOCS objective
is an accurate representation of the designers’ decisions in the sense that both result in the same solution. A perhaps
more interesting outcome would be for the two approaches to disagree on the optimal point, which would suggest that
the derivative information alone is insufficient to represent the designers’ decision process. Whether or not designers’
decisions reflect derivative information is an empirical question and either outcome would be informative.

VI. Conclusions
A utility-based MDO framework provides a natural way to incorporate the human designer’s preferences about per-
formance tradeoffs in the context of multiple disciplines. We have designed a system based on such a framework that
uses feedback from the designer to iteratively converge on the optimal design. We have shown through simulation
that it converges to the correct solution in the context of a test problem. Further work remains to be done to test the
framework in the context of an applied problem such as the turbo-machinery problem in Section V.C and to enhance
the system’s iteration scheme.

The implementation here works in objective space Q, assuming that the Pareto front is known. For several reasons,
it may be preferable to work directly in the design variable space X. Computing the Pareto front may be costly,
and ultimately the optimal design is parametrized in terms of the design variables, so it may be desirable to know
x∗ = arg maxx v(q(x)). Since the mapping from x to q may be computationally expensive and its inverse is not
generally known in closed form, if x∗ is required, it should be found directly. It may be desirable to include both
the design variables and the objectives in the utility function, in which case the utility function should take the form
v = v(x,q(x)).

Further work should also be done to provide convergence guarantees and to find iteration schemes that converge
at an optimal rate. One way to do so would be to cast the MDO problem as a best arm identification problem in
the multi-armed bandit framework, as studied by [19]. In previous work [20], we have developed a framework for
human-machine collaboration in the context of multi-armed bandit problems which could be extended to the MDO
problem. Analysis using the multi-armed bandit framework would facilitate proving convergence guarantees, as well
as providing bounds on the best possible convergence rate and developing iteration schemes that achieve these bounds.
Such schemes would give an optimal strategy for searching the design space as a function of the available resources,
e.g., simulation time, and as such would be of great practical importance.

Our utility-based MDO framework has the potential to rationalize current MDO practice. We have shown promis-
ing initial results and are beginning to apply our framework to industrially-relevant problems. We have a clear path
towards a number of analytical results that would provide performance guarantees for the system, and we anticipate
fruitful collaboration with industry going forward.

Acknowledgement
The authors would like to thank Sriram Shankaran of General Electric Global Research for helpful feedback and for
providing data on the industrial test problem.

References
[1] Sobieszczanski-Sobieski, J. and Haftka, R., “Multidisciplinary aerospace design optimization: survey of recent develop-

ments,” Structural Optimization, Vol. 14, 1997, pp. 1–23.

[2] Martins, J. R. R. A. and Lambe, A. B., “Multidisciplinary Design Optimization: A Survey of Architectures,” AIAA Journal,
Vol. 51, No. 9, 2013, pp. 2049–2075.

[3] Keeney, R. L. and Raiffa, H., Decision analysis with multiple conflicting objectives, Wiley & Sons, New York, 1976.

[4] Sykes, E. A. and White III, C. C., “Multiobjective intelligent computer-aided design,” IEEE Transactions on Systems, Man
and Cybernetics, Vol. 21, No. 6, 1991, pp. 1498–1511.

[5] Board on Manufacturing and Engineering Design, Theoretical Foundations for Decision Making in Engineering Design, The
National Academies Press, Washington, D.C., 2001.

11 of 12

American Institute of Aeronautics and Astronautics



[6] Das, I. and Dennis, J., “Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear
Multicriteria Optimization Problems,” SIAM Journal on Optimization, Vol. 8, No. 3, 1998, pp. 631–657.

[7] Tang, Z., Désidéri, J.-A., and Périaux, J., “Multicriterion aerodynamic shape design optimization and inverse problems using
control theory and Nash games,” Journal of Optimization Theory and Applications, Vol. 135, No. 3, 2007, pp. 599–622.

[8] Pascoletti, A. and Serafini, P., “Scalarizing vector optimization problems,” Journal of Optimization Theory and Applications,
Vol. 42, No. 4, 1984, pp. 499–524.

[9] Eichfelder, G., “An adaptive scalarization method in multiobjective optimization,” SIAM Journal on Optimization, Vol. 19,
2009, pp. 1694–1718.

[10] Grüne-Yanoff, T., “Paradoxes of Rational Choice Theory,” Handbook of Risk Theory, edited by S. Roeser, R. Hillerbrand,
P. Sandin, and M. Peterson, Springer Netherlands, 2012, pp. 499–516.

[11] Samuelson, P. A., “A Note on the Pure Theory of Consumer’s Behaviour,” Economica, Vol. 5, No. 17, 1938, pp. 61–71.

[12] Figueira, J., Greco, S., and Ehrgott, M., Multiple criteria decision analysis: state of the art surveys, Vol. 78, Springer, 2005.

[13] Debreu, G., “Representation of a Preference Ordering by a Numerical Function,” Decision Processes, edited by R. M. Thrall,
C. H. Coombs, and R. L. Davis, chap. 11, Wiley, 1954, pp. 159–165.

[14] Jacquet-Lagrèze, E. and Siskos, J., “Assessing a set of additive utility functions for multicriteria decision-making, the UTA
method,” European Journal of Operational Research, Vol. 10, No. 2, 1982, pp. 151–164.

[15] Shankaran, S. and Vandeputte, T., “Game-theoretic models for cooperative equilibrium solutions of interacting engineering
sub-systems,” Proceedings of the ASME Turbo Expo, 2014, pp. GT2014–25293.

[16] Deb, K., Thiele, L., Laumanns, M., and Zitzler, E., “Scalable multi-objective optimization test problems,” Proceedings of the
Congress on Evolutionary Computation (CEC-2002), 2002, pp. 825–830.

[17] Nash, J., “The Bargaining Problem,” Econometrica, Vol. 18, No. 2, 1950, pp. 155–162.

[18] Kalai, E. and Smorodinsky, M., “Other solutions to Nash’s bargaining problem,” Econometrica, Vol. 43, No. 3, 1975, pp. 513–
518.

[19] Audibert, J.-Y., Bubeck, S., and Munos, R., “Best arm identification in multi-armed bandits,” COLT: 23rd Conference on
Learning Theory, 2010, pp. 41–53.

[20] Reverdy, P., Srivastava, V., and Leonard, N. E., “Modeling Human Decision-making in Generalized Gaussian Multi-armed
Bandits,” Proceedings of the IEEE, Vol. 102, No. 4, 2014, pp. 544–571.

12 of 12

American Institute of Aeronautics and Astronautics


	Introduction
	The MDO problem
	Utility and preferences
	Preferences
	Learning utility functions
	Design Choice Hierarchy

	Utility-based MDO system
	Initialization step
	Utility function estimation
	Generation of iteration alternatives
	Termination condition

	Results
	Performance metrics
	An academic test problem
	An industrially-relevant test problem

	Conclusions
	References

