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ABSTRACT | In this paper, we present a formal model of human

decision making in explore–exploit tasks using the context of

multiarmed bandit problems, where the decision maker must

choose among multiple options with uncertain rewards. We

address the standard multiarmed bandit problem, the multi-

armed bandit problem with transition costs, and the multi-

armed bandit problem on graphs. We focus on the case of

Gaussian rewards in a setting where the decision maker uses

Bayesian inference to estimate the reward values. We model

the decision maker’s prior knowledge with the Bayesian prior

on the mean reward. We develop the upper-credible-limit (UCL)

algorithm for the standard multiarmed bandit problem and

show that this deterministic algorithm achieves logarithmic

cumulative expected regret, which is optimal performance for

uninformative priors. We show how good priors and good

assumptions on the correlation structure among arms can

greatly enhance decision-making performance, even over

short time horizons. We extend to the stochastic UCL algorithm

and draw several connections to human decision-making

behavior. We present empirical data from human experiments

and show that human performance is efficiently captured by

the stochastic UCL algorithm with appropriate parameters. For

the multiarmed bandit problem with transition costs and the

multiarmed bandit problem on graphs, we generalize the UCL

algorithm to the block UCL algorithm and the graphical block

UCL algorithm, respectively. We show that these algorithms

also achieve logarithmic cumulative expected regret and

require a sublogarithmic expected number of transitions

among arms. We further illustrate the performance of these

algorithms with numerical examples.

KEYWORDS | Adaptive control; human decision making;

machine learning; multiarmed bandit

I . INTRODUCTION

Imagine the following scenario: you are reading the menu
in a new restaurant, deciding which dish to order. Some of

the dishes are familiar to you, while others are completely

new. Which dish do you ultimately order: a familiar one

that you are fairly certain to enjoy, or an unfamiliar one

that looks interesting but you may dislike?

Your answer will depend on a multitude of factors,

including your mood that day (do you feel adventurous or

conservative?), your knowledge of the restaurant and its
cuisine (do you know little about African cuisine, and

everything looks new to you?), and the number of future

decisions the outcome is likely to influence (is this a

restaurant in a foreign city you are unlikely to visit again, or is

it one that has newly opened close to home, where you may

return many times?). This scenario encapsulates many of the

difficulties faced by a decision-making agent interacting with

his/her environment, e.g., the role of prior knowledge and
the number of future choices (time horizon).

The problem of learning the optimal way to interact

with an uncertain environment is common to a variety of
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areas of study in engineering such as adaptive control and
reinforcement learning [1]. Fundamental to these pro-

blems is the tradeoff between exploration (collecting more

information to reduce uncertainty) and exploitation (using

the current information to maximize the immediate

reward). Formally, such problems are often formulated

as Markov decision processes (MDPs). MDPs are decision

problems in which the decision-making agent is required

to make a sequence of choices along a process evolving in
time [2]. The theory of dynamic programming [3], [4]

provides methods to find optimal solutions to generic

MDPs, but is subject to the so-called curse of dimensionality
[2], where the size of the problem often grows exponen-

tially in the number of states.

The curse of dimensionality makes finding the optimal

solution difficult, and in general intractable for finite-horizon

problems of any significant size. Many engineering solutions
of MDPs consider the infinite-horizon case, i.e., the limit

where the agent will be required to make an infinite se-

quence of decisions. In this case, the problem simplifies sig-

nificantly and a variety of reinforcement learning methods

can be used to converge to the optimal solution, for example,

[1], [2], [4], and [5]. However, these methods only converge

to the optimal solution asymptotically at a rate that is difficult

to analyze. The upper confidence reinforcement learning
(UCRL) algorithm [6] addressed this issue by deriving a

heuristic-based reinforcement learning algorithm with a

provable learning rate.

However, the infinite-horizon limit may be inappro-

priate for finite-horizon tasks. In particular, optimal

solutions to the finite-horizon problem may be strongly

dependent on the task horizon. Consider again our

restaurant scenario. If the decision is a one-off, we are
likely to be conservative, since selecting an unfamiliar

option is risky and even if we choose an unfamiliar dish

and like it, we will have no further opportunity to use the

information in the same context. However, if we are likely

to return to the restaurant many times in the future,

discovering new dishes we enjoy is valuable.

Although the finite-horizon problem may be intracta-

ble to computational analysis, humans are confronted with
it all the time, as evidenced by our restaurant example. The

fact that they are able to find efficient solutions quickly

with inherently limited computational power suggests that

humans employ relatively sophisticated heuristics for

solving these problems. Elucidating these heuristics is of

interest both from a psychological point of view where

they may help us understand human cognitive control and

from an engineering point of view where they may lead to
development of improved algorithms to solve MDPs [7]. In

this paper, we seek to elucidate the behavioral heuristics at

play with a model that is both mathematically rigorous and

computationally tractable.

Multiarmed bandit problems [8] constitute a class of

MDPs that is well suited to our goal of connecting

biologically plausible heuristics with mathematically

rigorous algorithms. In the mathematical context, multi-
armed bandit problems have been studied in both the

infinite-horizon and finite-horizon cases. There is a well-

known optimal solution to the infinite-horizon problem

[9]. For the finite-horizon problem, the policies are

designed to match the best possible performance estab-

lished in [10]. In the biological context, the decision-

making behavior and performance of both animals and

humans have been studied using the multiarmed bandit
framework.

In a multiarmed bandit problem, a decision maker allo-

cates a single resource by sequentially choosing one among a

set of competing alternative options called arms. In the so-

called stationary multiarmed bandit problem, a decision

maker at each discrete instant chooses an arm and collects a

reward drawn from an unknown stationary probability

distribution associated with the selected arm. The objective
of the decision maker is to maximize the total reward

aggregated over the sequential allocation process. We will

refer to this as the standard multiarmed bandit problem, and

we will consider variations that add transition costs or spatial

unavailability of arms. A classical example of a standard

multiarmed bandit problem is the evaluation of clinical trials

with medical patients described in [11]. The decision maker

is a doctor and the options are different treatments with
unknown effectiveness for a given disease. Given patients

that arrive and get treated sequentially, the objective for the

doctor is to maximize the number of cured patients, using

information gained from successive outcomes.

Multiarmed bandit problems capture the fundamental

exploration–exploitation tradeoff. Indeed, they model a wide

variety of real-world decision-making scenarios including

those associated with foraging and search in an uncertain
environment. The rigorous examination in this paper of the

heuristics that humans use in multiarmed bandit tasks can

help in understanding and enhancing both natural and

engineered strategies and performance in these kinds of tasks.

For example, a trained human operator can quickly learn the

relevant features of a new environment, and an efficient

model for human decision making in a multiarmed bandit task

may facilitate a means to learn a trained operator’s task-
specific knowledge for use in an autonomous decision-making

algorithm. Likewise, such a model may help in detecting

weaknesses in a human operator’s strategy and deriving

computational means to augment human performance.

Multiarmed bandit problems became popular following

the seminal paper by Robbins [12] and found application in

diverse areas including controls, robotics, machine learn-

ing, economics, ecology, and operational research [13]–
[17]. For example, in ecology the multiarmed bandit

problem was used to study the foraging behavior of birds in

an unknown environment [18]. The authors showed that

the optimal policy for the two-armed bandit problem

captures well the observed foraging behavior of birds.

Given the limited computational capacity of birds, it is

likely they use simple heuristics to achieve near-optimal
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performance. The development of simple heuristics in this
and other contexts has spawned a wide literature.

Gittins [9] studied the infinite-horizon multiarmed

bandit problem and developed a dynamic allocation index

(Gittins’ index) for each arm. He showed that selecting an

arm with the highest index at the given time results in the

optimal policy. The dynamic allocation index, while a

powerful idea, suffers from two drawbacks: 1) it is hard to

compute; and 2) it does not provide insight into the nature
of the optimal policies.

Much recent work on multiarmed bandit problems

focuses on a quantity termed cumulative expected regret. The

cumulative expected regret of a sequence of decisions is

simply the cumulative difference between the expected

reward of the options chosen and the maximum expected

reward possible. In this sense, expected regret plays the same

role as expected value in standard reinforcement learning
schemes: maximizing expected value is equivalent to

minimizing cumulative expected regret. Note that this

definition of regret is in the sense of an omniscient being

who is aware of the expected values of all options, rather than

in the sense of an agent playing the game. As such, it is not a

quantity of direct psychological relevance but rather an

analytical tool that allows one to characterize performance.

In a ground-breaking work, Lai and Robbins [10]
established a logarithmic lower bound on the expected

number of times a suboptimal arm needs to be sampled by an

optimal policy, thereby showing that cumulative expected

regret is bounded below by a logarithmic function of time.

Their work established the best possible performance of any

solution to the standard multiarmed bandit problem. They

also developed an algorithm based on an upper confidence

bound on estimated reward and showed that this algorithm
achieves the performance bound asymptotically. In the

following, we use the phrase logarithmic regret to refer to

cumulative expected regret being bounded above by a

logarithmic function of time, i.e., having the same order of

growth rate as the optimal solution. The calculation of the

upper confidence bounds in [10] involves tedious computa-

tions. Agarwal [19] simplified these computations to develop

sample mean-based upper confidence bounds, and showed
that the policies in [10] with these upper confidence bounds

achieve logarithmic regret asymptotically.

In the context of bounded multiarmed bandits, i.e.,

multiarmed bandits in which the reward is sampled from a

distribution with a bounded support, Auer et al. [20]

developed upper-confidence-bound-based algorithms that

achieve logarithmic regret uniformly in time; see [21] for an

extensive survey of upper-confidence-bound-based algo-
rithms. Audibert et al. [22] considered upper-confidence-

bound-based algorithms that take into account the

empirical variance of the various arms. In a related work,

Cesa-Bianchi et al. [23] analyzed a Boltzman allocation rule

for bounded multiarmed bandit problems. Garivier et al. [24]

studied the Kullback–Leibler upper confidence bound (KL–

UCB) algorithm, which uses upper confidence bounds based

on the Kullback–Leibler divergence, and advocated its use in
multiarmed bandit problems where the rewards are distrib-

uted according to a known exponential family.

The works cited above adopt a frequentist perspective,

but a number of researchers have also considered MDPs

and multiarmed bandit problems from a Bayesian per-

spective. Dearden et al. [25] studied general MDPs and

showed that a Bayesian approach can substantially improve

performance in some cases. Recently, Srinivas et al. [26]
developed asymptotically optimal upper-confidence-

bound-based algorithms for Gaussian process optimiza-

tion. Agrawal et al. [27] proved that a Bayesian algorithm

known as Thompson Sampling is near-optimal for binary

bandits with a uniform prior. Kauffman et al. [28]

developed a generic Bayesian upper-confidence-bound-

based algorithm and established its optimality for binary

bandits with a uniform prior. In this paper, we develop a
similar Bayesian upper-confidence-bound-based algorithm

for Gaussian multiarmed bandit problems and show that it

achieves logarithmic regret for uninformative priors

uniformly in time.

Some variations of these multiarmed bandit problems

have been studied as well. Agarwal et al. [29] studied

multiarmed bandit problems with transition costs, i.e., the

multiarmed bandit problems in which a certain penalty is
imposed each time the decision maker switches from the

currently selected arm. To address this problem, they

developed an asymptotically optimal block allocation

algorithm. Banks and Sundaram [30] showed that, in

general, it is not possible to define dynamic allocation

indices (Gittins’ indices) which lead to an optimal solution

of the multiarmed bandit problem with switching costs.

However, if the cost to switch to an arm from any other arm
is a stationary random variable, then such indices exist.

Asawa and Teneketzis [31] characterized qualitative

properties of the optimal solution to the multiarmed bandit

problem with switching costs, and established sufficient

conditions for the optimality of limited look-ahead-based

techniques. A survey of multiarmed bandit problems with

switching costs was presented in [32]. In the present paper,

we consider Gaussian multiarmed bandit problems with
transition costs and develop a block allocation algorithm

that achieves logarithmic regret for uninformative priors

uniformly in time. Our block allocation scheme is similar to

the scheme in [29]; however, our scheme incurs a smaller

expected cumulative transition cost than the scheme in

[29]. Moreover, an asymptotic analysis is considered in

[29], while our results hold uniformly in time.

Kleinberg et al. [33] considered multiarmed bandit
problems in which arms are not all available for selection

at each time (sleeping experts) and analyzed the perfor-

mance of upper-confidence-bound-based algorithms. In

contrast to the temporal unavailability of arms in [33], we

consider a spatial unavailability of arms. In particular, we

propose a novel multiarmed bandit problem, namely, the

graphical multiarmed bandit problem in which only a subset
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of the arms can be selected at the next allocation instance
given the currently selected arm. We develop a block allo-

cation algorithm for such problems that achieves logarithmic

regret for uninformative priors uniformly in time.

Human decision making in multiarmed bandit pro-

blems has also been studied in the cognitive psychology

literature. Cohen et al. [7] surveyed the exploration–

exploitation tradeoff in humans and animals and discussed

the mechanisms in the brain that mediate this tradeoff.
Acuña et al. [34] studied human decision making in

multiarmed bandits from a Bayesian perspective. They

modeled the human subject’s prior knowledge about the

reward structure using conjugate priors to the reward

distribution. They concluded that a policy using Gittins’

index, computed from approximate Bayesian inference

based on limited memory and finite step look-ahead,

captures the empirical behavior in certain multiarmed
bandit tasks. In a subsequent work [35], they showed that a

critical feature of human decision making in multiarmed

bandit problems is structural learning, i.e., humans learn

the correlation structure among different arms.

Steyvers et al. [36] considered Bayesian models for

multiarmed bandits parametrized by human subjects’

assumptions about reward distributions and observed that

there are individual differences that determine the extent
to which people use optimal models rather than simple

heuristics. In a subsequent work, Lee et al. [37]

considered latent models in which there is a latent

mental state that determines if the human subject should

explore or exploit. Zhang et al. [38] considered multi-

armed bandits with Bernoulli rewards and concluded that,

among the models considered, the knowledge gradient

algorithm best captures the trial-by-trial performance of
human subjects.

Wilson et al. [39] studied human performance in two-

armed bandit problems and showed that at each arm selec-

tion instance the decision is based on a linear combination of

the estimate of the mean reward of each arm and an ambi-

guity bonus that depends on the value of the information

from that arm. Tomlin et al. [40] studied human performance

on multiarmed bandits that are located on a spatial grid; at
each arm selection instance, the decision maker can only

select the current arm or one of the neighboring arms.

In this paper, we study multiarmed bandits with

Gaussian rewards in a Bayesian setting, and we develop

upper-credible-limit (UCL)-based algorithms that achieve

efficient performance. We propose a deterministic UCL

algorithm and a stochastic UCL algorithm for the standard

multiarmed bandit problem. We propose a block UCL
algorithm and a graphical block UCL algorithm for the

multiarmed bandit problem with transition costs and the

multiarmed bandit problem on graphs, respectively. We

analyze the proposed algorithms in terms of the cumulative

expected regret, i.e., the cumulative difference between the

expected received reward and the maximum expected

reward that could have been received. We compare human

performance in multiarmed bandit tasks with the perfor-
mance of the proposed stochastic UCL algorithm and show

that the algorithm with the right choice of parameters

efficiently models human decision-making performance.

The major contributions of this work are fourfold.

First, we develop and analyze the deterministic UCL

algorithm for multiarmed bandits with Gaussian rewards.

We derive a novel upper bound on the inverse cumulative

distribution function (cdf) for the standard Gaussian
distribution, and we use it to show that, for an uninforma-

tive prior on the rewards, the proposed algorithm achieves

logarithmic regret. To the best of our knowledge, this is the

first confidence-bound-based algorithm that provably

achieves logarithmic cumulative expected regret uniformly

in time for multiarmed bandits with Gaussian rewards.

We further define a quality of priors on rewards and

show that for small values of this quality, i.e., good priors,
the proposed algorithm achieves logarithmic regret

uniformly in time. Furthermore, for good priors with

small variance, a slight modification of the algorithm yields

sublogarithmic regret uniformly in time. Sublogarithmic

refers to a rate of expected regret that is even slower than

logarithmic, and thus performance is better than with

uninformative priors. For large values of the quality, i.e.,

bad priors, the proposed algorithm can yield performance
significantly worse than with uninformative priors. Our

analysis also highlights the impact of the correlation

structure among the rewards from different arms on the

performance of the algorithm as well as the performance

advantage when the prior includes a good model of the

correlation structure.

Second, to capture the inherent noise in human decision

making, we develop the stochastic UCL algorithm, a
stochastic arm selection version of the deterministic UCL

algorithm. We model the stochastic arm selection using

softmax arm selection [2], and show that there exists a

feedback law for the cooling rate in the softmax function such

that for an uninformative prior the stochastic arm selection

policy achieves logarithmic regret uniformly in time.

Third, we compare the stochastic UCL algorithm with the

data obtained from our human behavioral experiments. We
show that the observed empirical behaviors can be

reconstructed by varying only a few parameters in the

algorithm.

Fourth, we study the multiarmed bandit problem with

transition costs in which a stationary random cost is

incurred each time an arm other than the current arm is

selected. We also study the graphical multiarmed bandit

problem in which the arms are located at the vertices of a
graph and only the current arm and its neighbors can be

selected at each time. For these multiarmed bandit

problems, we extend the deterministic UCL algorithm to

block allocation algorithms that for uninformative priors

achieve logarithmic regret uniformly in time.

In summary, the main contribution of this work is to

provide a formal algorithmic model (the UCL algorithms)
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of choice behavior in the exploration–exploitation trade-
off using the context of the multiarm bandit problem. In

relation to cognitive dynamics, we expect that this model

could be used to explain observed choice behavior and

thereby quantify the underlying computational anatomy

in terms of key model parameters. The fitting of such

models of choice behavior to empirical performance is

now standard in cognitive neuroscience. We illustrate the

potential of our model to categorize individuals in terms
of a small number of model parameters by showing that

the stochastic UCL algorithm can reproduce canonical

classes of performance observed in large numbers of

subjects.

The remainder of the paper is organized as follows. The

standard multiarmed bandit problem is described in

Section II. The salient features of human decision making

in bandit tasks are discussed in Section III. In Section IV,
we propose and analyze the regret of the deterministic

UCL and stochastic UCL algorithms. In Section V, we

describe an experiment with human participants and a

spatially embedded multiarmed bandit task. We show that

human performance in that task tends to fall into one of

several categories, and we demonstrate that the stochastic

UCL algorithm can capture these categories with a small

number of parameters. We consider an extension of the
multiarmed bandit problem to include transition costs and

describe and analyze the block UCL algorithm in Section VI.

In Section VII, we consider an extension to the graphical

multiarmed bandit problem, and we propose and analyze the

graphical block UCL algorithm. Finally, in Section VIII, we

conclude and present avenues for future work.

This work expands on the results derived in our

previous work [41], [42]. In addition to improving on the
ideas in [41] and [42], this paper improves the analysis of

algorithms and compares the performance of these

algorithms against empirical data.

II . REVIEW OF MULTIARMED
BANDIT PROBLEMS

Consider a set of N options, termed arms in analogy with
the lever of a slot machine. A single-levered slot machine is

termed a one-armed bandit, so the case of N options is

often called an N-armed bandit or multiarmed bandit.

The N-armed bandit problem refers to the choice among

the N options that a decision-making agent should make to

maximize the cumulative reward.

The agent collects reward rt 2 R by choosing arm it at

each time t 2 f1; . . . ; Tg, where T 2 N is the horizon
length for the sequential decision process. The reward

from option i 2 f1; . . . ;Ng is sampled from a stationary

distribution pi and has an unknown mean mi 2 R. The

decision maker’s objective is to maximize the cumulative

expected reward
PT

t¼1 mit
by selecting a sequence of arms

fitgt2f1;...;Tg. Equivalently, defining mi� ¼ maxfmiji 2
f1; . . . ;Ngg and Rt ¼ mi� � mit

as the expected regret at

time t, the objective can be formulated as minimizing the
cumulative expected regret defined by

XT

t¼1

Rt ¼ Tmi� �
XN

i¼1

miE nT
i

� �
¼
XN

i¼1

DiE nT
i

� �

where nT
i is the total number of times option i has been

chosen until time T and Di ¼ mi� � mi is the expected

regret due to picking arm i instead of arm i�. Note that in
order to minimize the cumulative expected regret, it

suffices to minimize the expected number of times any

suboptimal option i 2 f1; . . . ;Ng n fi�g is selected.

The multiarmed bandit problem is a canonical example

of the exploration–exploitation tradeoff common to many

problems in controls and machine learning. In this context,

at time t, exploitation refers to picking arm it that is

estimated to have the highest mean at time t, and
exploration refers to picking any other arm. A successful

policy balances the exploration–exploitation tradeoff by

exploring enough to learn which arm is most rewarding and

exploiting that information by picking the best arm often.

A. Bound on Optimal Performance
Lai and Robbins [10] showed that, for any algorithm

solving the multiarmed bandit problem, the expected

number of times a suboptimal arm is selected is at least

logarithmic in time, i.e.,

E nT
i

� �
� 1

Dðpikpi� Þ
þ oð1Þ

� �
log T (1)

for each i 2 f1; . . . ;Ng n fi�g, where oð1Þ ! 0 as T !
þ 1. Dðpikpi�Þ :¼

R
piðrÞlogðpiðrÞ=pi� ðrÞÞdr is the Kullback–

Leibler divergence between the reward density pi of any

suboptimal arm and the reward density pi� of the optimal arm.

The bound on E½nT
i � implies that the cumulative expected

regret must grow at least logarithmically in time.

B. Gaussian Multiarmed Bandit Task
For the Gaussian multiarmed bandit problem consid-

ered in this paper, the reward density pi is Gaussian with

mean mi and variance �2
s . The variance �2

s is assumed
known, e.g., from previous observations or known

characteristics of the reward generation process. Therefore

Dðpikpi� Þ ¼
D2

i

2�2
s

(2)

and accordingly, the bound (1) is

E nT
i

� �
� 2�2

s

D2
i

þ oð1Þ
� �

log T: (3)
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The insight from (3) is that for a fixed value of �s, a
suboptimal arm i with higher Di is easier to identify, and

thus chosen less often, since it yields a lower average

reward. Conversely, for a fixed value of Di, higher values of

�s make the observed rewards more variable, and thus it is

more difficult to distinguish the optimal arm i� from the

suboptimal ones.

C. Upper-Confidence-Bound Algorithms
For multiarmed bandit problems with bounded re-

wards, Auer et al. [20] developed upper-confidence-bound-

based algorithms, known as the UCB1 algorithm and its

variants, that achieve logarithmic regret uniformly in time.

UCB1 is a heuristic-based algorithm that at each time t
computes a heuristic value Qt

i for each option i. This value

provides an upper bound for the expected reward to be

gained by selecting that option

Qt
i ¼ �mt

i þ Ct
i (4)

where �mt
i is the empirical mean reward and Ct

i is a measure

of uncertainty in the reward of arm i at time t. The UCB1

algorithm picks the option it that maximizes Qt
i . Fig. 1

depicts this logic: the confidence intervals represent

uncertainty in the algorithm’s estimate of the true value

of mi for each option, and the algorithm optimistically

chooses the option with the highest upper confidence

bound. This is an example of a general heuristic known in

the bandit literature as optimism in the face of uncertainty
[21]. The idea is that one should formulate the set of

possible environments that are consistent with the
observed data, then act as if the true environment were

the most favorable one in that set.

Auer et al. [20] showed that, for an appropriate choice

of the uncertainty term Ct
i , the UCB1 algorithm achieves

logarithmic regret uniformly in time, albeit with a larger

leading constant than the optimal one (1). They also

provided a slightly more complicated policy, termed

UCB2, that brings the factor multiplying the logarithmic
term arbitrarily close to that of (1). Their analysis relies on

Chernoff–Hoeffding bounds which apply to probability

distributions with bounded support.

They also considered the case of multiarmed bandits with

Gaussian rewards, where both the mean (mi in our notation)

and the sample variance ð�2
s Þ are unknown. In this case, they

constructed an algorithm, termed UCB1-normal, that

achieves logarithmic regret. Their analysis of the regret in
this case cannot appeal to Chernoff–Hoeffding bounds

because the reward distribution has unbounded support.

Instead their analysis relies on certain bounds on the tails of

the �2 and the Student t-distribution that they could only

verify numerically. Our work improves on their result in the

case �2
s is known by constructing a UCB-like algorithm that

provably achieves logarithmic regret. The proof relies on new

tight bounds on the tails of the Gaussian distribution that will
be stated in Theorem 1.

D. Bayes-UCB Algorithm
UCB algorithms rely on a frequentist estimator �mt

i of mi

and, therefore, must sample each arm at least once in an

initialization step, which requires a sufficiently long

horizon, i.e., N G T. Bayesian estimators allow the

integration of prior beliefs into the decision process. This

enables a Bayesian UCB algorithm to treat the case N > T
as well as to capture the initial beliefs of an agent, informed
perhaps through prior experience. Kauffman et al. [28]

considered the N-armed bandit problem from a Bayesian

perspective and proposed the quantile function of the

posterior reward distribution as the heuristic function (4).

For every random variable X 2 R [ f�1g with

probability distribution function (pdf) fðxÞ, the associated

cdf FðxÞ gives the probability that the random variable

takes a value of at most x, i.e., FðxÞ ¼ PðX � xÞ. See Fig. 2.
Conversely, the quantile function F�1ðpÞ is defined by

F�1 : ½0; 1� ! R [ f�1g

i.e., F�1ðpÞ inverts the cdf to provide an upper bound for

the value of the random variable X � fðxÞ

P X � F�1ðpÞ
� �

¼ p: (5)

In this sense, F�1ðpÞ is an upper confidence bound, i.e., an

upper bound that holds with probability, or confidence level,
p. Now suppose that FðrÞ is the cdf for the reward

Fig. 1. Components of the UCB1 algorithm in an N ¼ 3 option (arm)

case. The algorithm forms a confidence interval for the mean rewardmi

for each option i at each time t. The heuristic value Qt
i ¼ mt

i þ Ct
i

is the upper limit of this confidence interval, representing an optimistic

estimate of the true mean reward. In this example, options 2 and 3

have the same mean m but option 3 has a larger uncertainty C,

so the algorithm chooses option 3.
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distribution piðrÞ of option i. Then, Qi ¼ F�1ðpÞ gives a

bound such that Pðmi > QiÞ ¼ 1� p. If p 2 ð0; 1Þ is chosen

large, then 1� p is small, and it is unlikely that the true mean
reward for option i is higher than the bound. See Fig. 3.

In order to be increasingly sure of choosing the optimal

arm as time goes on, Kaufmann et al. [28] set p ¼ 1� �t as

a function of time with �t ¼ 1=ðtðlog TÞcÞ, so that 1� p is

of order 1=t. The authors termed the resulting algorithm

Bayes-UCB. In the case that the rewards are Bernoulli
distributed, they proved that with c � 5 Bayes-UCB

achieves the bound (1) for uniform (uninformative) priors.

The choice of 1=t as the functional form for �t can be

motivated as follows. Roughly speaking, �t is the probability

of making an error (i.e., choosing a suboptimal arm) at time t.
If a suboptimal arm is chosen with probability 1=t, then the

expected number of times it is chosen until time T will follow

the integral of this rate, which is
PT

1 1=t 	 log T, yielding a
logarithmic functional form.

III . FEATURES OF HUMAN DECISION
MAKING IN MULTIARMED
BANDIT TASKS

As discussed in the Introduction, human decision making

in the multiarmed bandit task has been the subject of
numerous studies in the cognitive psychology literature.

We list the five salient features of human decision

making in this literature that we wish to capture with our

model.

1) Familiarity with the environment: Familiarity

with the environment and its structure plays a

critical role in human decision making [7], [36]. In

the context of multiarmed bandit tasks, familiarity
with the environment translates to prior knowl-

edge about the mean rewards from each arm.

2) Ambiguity bonus: Wilson et al. [39] showed that

the decision at time t is based on a linear

combination of the estimate of the mean reward

of each arm and an ambiguity bonus that captures

the value of information from that arm. In the

context of UCB and related algorithms, the
ambiguity bonus can be interpreted similarly to

the Ct
i term of (4) that defines the size of the upper

bound on the estimated reward.

3) Stochasticity: Human decision making is inher-

ently noisy [7], [34], [36], [38], [39]. This is

possibly due to inherent limitations in human

computational capacity, or it could be the

signature of noise being used as a cheap,
general-purpose problem-solving algorithm. In

the context of algorithms for solving the multi-

armed bandit problem, this can be interpreted as

picking arm it at time t using a stochastic arm

selection strategy rather than a deterministic one.

4) Finite-horizon effects: Both the level of decision

noise and the exploration–exploitation tradeoff

are sensitive to the time horizon T of the bandit
task [7], [39]. This is a sensible feature to have, as

shorter time horizons mean less time to take

advantage of information gained by exploration,

therefore biasing the optimal policy toward

exploitation. The fact that both decision noise

and the exploration–exploitation tradeoff (as

represented by the ambiguity bonus) are affected

Fig. 3. Decomposition of the Gaussian cdf FðxÞ and relation to the UCB/

Bayes-UCB heuristic value. For a given value of �t (here equal to 0:1),

F�1ð1� �tÞ gives a value Qt
i ¼ �ti þ Ct

i such that the Gaussian random

variable X � Qt
i with probability 1� �t. As �t ! 0, Qt

i !þ1 and X is

almost surely less than Qt
i .

Fig. 2. The pdf fðxÞ of a Gaussian random variable X with mean �ti .

The probability that X � x is
R x
�1 fðXÞdX ¼ FðxÞ. The area of the shaded

region is Fð�ti þ Ct
i Þ ¼ p, so the probability that X � �ti þ Ct

i is p.

Conversely, X � �ti þ Ct
i with probability 1� p, so if p is close to 1,

X is almost surely less than �ti þ Ct
i .
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by the time horizon suggests that they are both
working as mechanisms for exploration, as inves-

tigated in [1]. In the context of algorithms, this

means that the uncertainty term Ct
i and the

stochastic arm selection scheme should be func-

tions of the horizon T.

5) Environmental structure effects: Acuña et al. [35]

showed that an important aspect of human

learning in multiarmed bandit tasks is structural
learning, i.e., humans learn the correlation

structure among different arms, and utilize it to

improve their decision.

In the following, we develop a plausible model for

human decision making that captures these features.

Feature 1) of human decision making is captured through

priors on the mean rewards from the arms. The

introduction of priors in the decision-making process
suggests that non-Bayesian upper-confidence-bound algo-

rithms [20] cannot be used, and, therefore, we focus on

Bayesian upper-confidence-bound (upper credible limit)

algorithms [28]. Feature 2) of human decision making is

captured by making decisions based on a metric that

comprises two components, namely, the estimate of the

mean reward from each arm, and the width of a credible

set. It is well known that the width of a credible set is a
good measure of the uncertainty in the estimate of the

reward. Feature 3) of human decision making is captured

by introducing a stochastic arm selection strategy in place

of the standard deterministic arm selection strategy [20],

[28]. In the spirit of Kauffman et al. [28], we choose the

credibility parameter �t as a function of the horizon length

to capture feature 4) of human decision making. Feature 5)

is captured through the correlation structure of the prior
used for the Bayesian estimation. For example, if the arms

of the bandit are spatially embedded, it is natural to think

of a covariance structure defined by S ij ¼ �2
0 expð�jxi�

xjj=�Þ, where xi is the location of arm i and � � 0 is the

correlation length scale parameter that encodes the spatial

smoothness of the rewards.

IV. UCL ALGORITHMS FOR GAUSSIAN
MULTIARMED BANDITS

In this section, we construct a Bayesian UCB algorithm

that captures the features of human decision making

described above. We begin with the case of deterministic

decision making and show that for an uninformative prior

the resulting algorithm achieves logarithmic regret. We
then extend the algorithm to the case of stochastic decision

making using a Boltzmann (or softmax) decision rule, and

show that there exists a feedback rule for the temperature

of the Boltzmann distribution such that the stochastic

algorithm achieves logarithmic regret. In both cases, we

first consider uncorrelated priors and then extend to

correlated priors.

A. Deterministic UCL Algorithm With
Uncorrelated Priors

Let the prior on the mean reward at arm i be a Gaussian

random variable with mean �0
i and variance �2

0. We are

particularly interested in the case of an uninformative

prior, i.e., �2
0 ! þ1. Let the number of times arm i has

been selected until time t be denoted by nt
i . Let the

empirical mean of the rewards from arm i until time t be

�mt
i . Conditioned on the number of visits nt

i to arm i and the
empirical mean �mt

i , the mean reward at arm i at time t is a

Gaussian random variable ðMiÞ with mean and variance

�t
i :¼E Mijnt

i; �mt
i

� �
¼ �

2�0
i þ nt

i �mt
i

�2 þ nt
i

and

�t
i

� �2
:¼Var Mijnt

i; �mt
i

� �
¼ �2

s

�2 þ nt
i

respectively, where �2 ¼ �2
s =�

2
0. Moreover

E �t
ijnt

i

� �
¼�

2�0
i þ nt

imi

�2 þ nt
i

and Var �t
ijnt

i

� �
¼ nt

i�
2
s

�2 þ nt
ið Þ2
:

We now propose the UCL algorithm for the Gaussian

multiarmed bandit problem. At each decision instance

t 2 f1; . . . ; Tg, the UCL algorithm selects an arm with the

maximum value of the upper limit of the smallest

ð1� 1=KtÞ-credible interval, i.e., it selects an arm

it ¼ arg maxfQt
i ji 2 f1; . . . ;Ngg, where

Qt
i ¼ �t

i þ �t
i%
�1ð1� 1=KtÞ

%�1 : ð0; 1Þ ! R is the inverse cdf of the standard

Gaussian random variable, and K 2 R>0 is a tunable

parameter. For an explicit pseudocode implementation,

see Algorithm 1 in Appendix F. In the following, we will

refer to Qt
i as the ð1� 1=KtÞ-upper credible limit.

It is known [26], [43] that an efficient policy to
maximize the total information gained over sequential

sampling of options is to pick the option with highest

variance at each time. Thus, Qt
i is the weighted sum of the

expected gain in the cumulative reward (exploitation), and

the gain in the total information about arms (exploration),

if arm i is picked at time t.

B. Regret Analysis of the Deterministic
UCL Algorithm

In this section, we analyze the performance of the UCL

algorithm. We first derive bounds on the inverse cdf for
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the standard Gaussian random variable and then utilize it
to derive upper bounds on the cumulative expected regret

for the UCL algorithm. We state the following theorem

about bounds on the inverse Gaussian cdf.

Theorem 1 (Bounds on the Inverse Gaussian CDF): The

following bounds hold for the inverse cdf of the standard

Gaussian random variable for each � 2 ð0; 1=
ffiffiffiffiffiffi
2�
p
Þ, and

any 	 � 1:02:

%�1ð1��Þ G	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� log�ð2��2Þlogð2��2Þð Þ

p
(6)

and

%�1ð1��Þ >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� log 2��2 1�logð2��2Þð Þð Þ

p
: (7)

Proof: See Appendix A.

The bounds in (6) and (7) were conjectured by Fan

[44] without the factor 	. In fact, it can be numerically

verified that without the factor 	, the conjectured upper

bound is incorrect. We present a visual depiction of the
tightness of the derived bounds in Fig. 4.

We now analyze the performance of the UCL

algorithm. We define fRUCL
t gt2f1;...;Tg as the sequence of

expected regret for the UCL algorithm. The UCL algorithm

achieves logarithmic regret uniformly in time as formal-

ized in the following theorem.

Theorem 2 (Regret of the Deterministic UCL Algorithm):
The following statements hold for the Gaussian multi-

armed bandit problem and the deterministic UCL

algorithm with an uncorrelated uninformative prior and

K ¼
ffiffiffiffiffiffiffi
2�e
p

.

i) The expected number of times a suboptimal arm i
is chosen until time T satisfies

E nT
i

� �
� 8	2�2

s

D2
i

þ 2ffiffiffiffiffiffiffi
2�e
p

� �
log T

þ 4	2�2
s

D2
i

ð1� log 2� log log TÞ þ 1þ 2ffiffiffiffiffiffiffi
2�e
p :

ii) The cumulative expected regret until time T
satisfies

XT

t¼1

RUCL
t �

XN

i¼1

Di
8	2�2

s

D2
i

þ 2ffiffiffiffiffiffiffi
2�e
p

� �
log T

�

þ 4	2�2
s

D2
i

ð1� log 2� log log TÞ þ 1þ 2ffiffiffiffiffiffiffi
2�e
p

�
:

Proof: See Appendix B.

Remark 3 (Uninformative Priors With Short Time Horizon):
When the deterministic UCL algorithm is used with an

uncorrelated uninformative prior, Theorem 2 guarantees

that the algorithm incurs logarithmic regret uniformly in

horizon length T. However, for small horizon lengths, the

upper bound on the regret can be lower bounded by a
super-logarithmic curve. Accordingly, in practice, the

cumulative expected regret curve may appear super-

logarithmic for short time horizons. For example, for

horizon T less than the number of arms N, the cumulative

expected regret of the deterministic UCL algorithm grows

at most linearly with the horizon length.

Remark 4 (Comparison With UCB1): In view of the
bounds in Theorem 1, for an uninformative prior, the

ð1� 1=KtÞ-upper credible limit obeys

Qt
i G �mt

i þ 	�s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2 log t� log log et2

nt
i

s
:

This upper bound is similar to the one in UCB1, which sets

Qt
i ¼ �mt

i þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2 log t

nt
i

s
:

Remark 5 (Informative Priors): For an uninformative

prior, i.e., very large variance �2
0, we established in

Theorem 2 that the deterministic UCL algorithm achieves

logarithmic regret uniformly in time. For informative
Fig. 4. Depiction of the normal quantile function F�1ð1� �Þ (solid line)

and the bounds (6) and (7) (dashed lines), with 	 ¼ 1:02.
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priors, the cumulative expected regret depends on the
quality of the prior. The quality of a prior on the rewards

can be captured by the metric 
 :¼ maxfjmi � �0
i j=

�0ji 2 f1; . . . ;Ngg. A good prior corresponds to small

values of 
, while a bad prior corresponds to large values of


. In other words, a good prior is one that has 1) mean

close to the true mean reward, or 2) a large variance.

Intuitively, a good prior either has a fairly accurate

estimate of the mean reward, or has low confidence about
its estimate of the mean reward. For a good prior, the

parameter K can be tuned such that

%�1 1� 1

Kt

� �
� max

i2f1;...;Ng

�s mi��0
i

		 		� �
�2

0

> %�1 1� 1
�Kt

� �

where �K 2 R>0 is some constant, and it can be shown,
using the arguments of Theorem 2, that the deterministic

UCL algorithm achieves logarithmic regret uniformly in

time. A bad prior corresponds to a fairly inaccurate

estimate of the mean reward and high confidence. For a

bad prior, the cumulative expected regret may be a super-

logarithmic function of the horizon length.

Remark 6 (Sublogarithmic Regret for Good Priors): For a
good prior with a small variance, even uniform subloga-

rithmic regret can be achieved. Specifically, if the variable

Qt
i in Algorithm 1 is set to Qt

i ¼ mt
i þ �t

i%
�1ð1� 1=Kt2Þ,

then an analysis similar to Theorem 2 yields an upper

bound on the cumulative expected regret that is dominated

by 1) a sublogarithmic term for good priors with small

variance; and 2) a logarithmic term for uninformative

priors with a larger constant in front than the constant in
Theorem 2. Notice that such good priors may correspond

to human operators who have previous training in the task.

C. Stochastic UCL Algorithm With
Uncorrelated Priors

To capture the inherent stochastic nature of human

decision making, we consider the UCL algorithm with
stochastic arm selection. Stochasticity has been used as a

generic optimization mechanism that does not require

information about the objective function. For example,

simulated annealing [45]–[47] is a global optimization

method that attempts to break out of local optima by

sampling locations near the currently selected optimum

and accepting locations with worse objective values with a

probability that decreases in time. By analogy with physical
annealing processes, the probabilities are chosen from a

Boltzmann distribution with a dynamic temperature

parameter that decreases in time, gradually making the

optimization more deterministic. An important problem in

the design of simulated annealing algorithms is the choice

of the temperature parameter, also known as a cooling
schedule.

Choosing a good cooling schedule is equivalent to
solving the explore–exploit problem in the context of

simulated annealing, since the temperature parameter

balances exploration and exploitation by tuning the

amount of stochasticity (exploration) in the algorithm. In

their classic work, Mitra et al. [46] found cooling schedules

that maximize the rate of convergence of simulated

annealing to the global optimum. In a similar way, the

stochastic UCL algorithm (see Algorithm 2 in Appendix F
for an explicit pseudocode implementation) extends the

deterministic UCL algorithm (Algorithm 1) to the

stochastic case. The stochastic UCL algorithm chooses an

arm at time t using a Boltzmann distribution with

temperature �t, so the probability Pit of picking arm i at

time t is given by

Pit ¼
exp

Qt
i

�t


 �
PN

j¼1 exp
Qt

j

�t


 � :

In the case �t ! 0þ, this scheme chooses it¼arg maxfQt
i j

i 2 f1; . . . ;Ngg and as �t increases the probability of

selecting any other arm increases. Thus, Boltzmann
selection generalizes the maximum operation and is

sometimes known as the soft maximum (or softmax) rule.

The temperature parameter might be chosen constant,

i.e., �t ¼ �. In this case the performance of the stochastic

UCL algorithm can be made arbitrarily close to that of the

deterministic UCL algorithm by taking the limit �! 0þ.

However, Mitra et al. [46] showed that good cooling

schedules for simulated annealing take the form

�t ¼
�

log t

so we investigate cooling schedules of this form. We

choose � using a feedback rule on the values of the

heuristic function Qt
i , i 2 f1; . . . ;Ng and define the

cooling schedule as

�t ¼
DQt

min

2 log t

where DQt
min ¼ minfjQt

i � Qt
j j j i; j 2 f1; . . . ;Ng; i 6¼ jg is

the minimum gap between the heuristic function value for

any two pairs of arms. We define 1�1 ¼ 0, so that

DQt
min ¼ 0 if two arms have infinite heuristic values, and

we define 0=0 ¼ 1.
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D. Regret Analysis of the Stochastic UCL Algorithm
In this section, we show that for an uninformative

prior, the stochastic UCL algorithm achieves efficient

performance. We define fRSUCL
t gt2f1;...;Tg as the sequence

of expected regret for the stochastic UCL algorithm. The

stochastic UCL algorithm achieves logarithmic regret

uniformly in time as formalized in the following theorem.

Theorem 7 (Regret of the Stochastic UCL Algorithm): The
following statements hold for the Gaussian multiarmed

bandit problem and the stochastic UCL algorithm with an

uncorrelated uninformative prior and K ¼
ffiffiffiffiffiffiffi
2�e
p

.

i) The expected number of times a suboptimal arm i
is chosen until time T satisfies

E nT
i

� �
� 8	2�2

s

D2
i

þ 2ffiffiffiffiffiffiffi
2�e
p

� �
log T þ �

2

6

þ 4	2�2
s

D2
i

ð1� log 2� log log TÞ þ 1þ 2ffiffiffiffiffiffiffi
2�e
p :

ii) The cumulative expected regret until time T
satisfies

XT

t¼1

RSUCL
t �

XN

i¼1

Di
8	2�2

s

D2
i

þ 2ffiffiffiffiffiffiffi
2�e
p

� �
log T þ �

2

6

�

þ 4	2�2
s

D2
i

ð1� log 2� log log TÞ þ 1þ 2ffiffiffiffiffiffiffi
2�e
p

�
:

Proof: See Appendix C.

E. UCL Algorithms With Correlated Priors
In the preceding sections, we consider the case of

uncorrelated priors, i.e., the case with diagonal covariance

matrix of the prior distribution for mean rewards

S0 ¼ �2
0IN. However, in many cases, there may be

dependence among the arms that we wish to encode in
the form of a nondiagonal covariance matrix. In fact, one

of the main advantages a human may have in performing a

bandit task is their prior experience with the dependency

structure across the arms resulting in a good prior

correlation structure. We show that including covariance

information can improve performance and may, in some

cases, lead to sublogarithmic regret.

Let NðM0;20Þ and NðM0;20dÞ be correlated and
uncorrelated priors on the mean rewards from the arms,

respectively, where M0 2 RN is the vector of prior estimates

of the mean rewards from each arm, 20 2 RN
N is a

positive–definite matrix, and 20d is the same matrix with all

its nondiagonal elements set equal to 0. The inference

procedure described in Section IV-A generalizes to a

correlated prior as follows: Define fFt 2 RNgt2f1;...;Tg to

be the indicator vector corresponding to the currently chosen
arm it, where ðFtÞk ¼ 1 if k ¼ it, and zero otherwise. Then,

the belief state ðMt;2tÞ updates as follows [48]:

q ¼ rtFt

�2
s

þmt�1Mt�1

mt ¼
FtF

T
t

�2
s

þmt�1; 2t ¼ m�1
t

Mt ¼2tq (8)

where mt ¼ 2�1
t is the precision matrix.

The upper credible limit for each arm i can be

computed based on the univariate Gaussian marginal

distribution of the posterior with mean �t
i and variance

ð�t
iÞ

2 ¼ ð2tÞii. Consider the evolution of the belief state

with the diagonal (uncorrelated) prior 20d and compare it

with the belief state based on the nondiagonal 20, which

encodes information about the correlation structure of the
rewards in the off-diagonal terms. The additional infor-

mation means that the inference procedure will converge

more quickly than in the uncorrelated case, as seen in

Theorem 8. If the assumed correlation structure correctly

models the environment, then the inference will converge

toward the correct values, and the performance of the UCL

and stochastic UCL algorithms will be at least as good as that

guaranteed by the preceding analyses in Theorems 2 and 7.
Denoting �t

i
2 ¼ ð2tÞii as the posterior at time t based

on 20 and �t
id

2 ¼ ð2tdÞii as the posterior based on 20d, for

a given sequence of chosen arms fi
g
2f1;...;Tg, we have that

the variance of the nondiagonal estimator will be no larger

than that of the diagonal one, as summarized in the

following theorem.

Theorem 8 (Correlated Versus Uncorrelated Priors): For
the inference procedure in (8), and any given sequence of

selected arms fi
g
2f1;...;Tg, �t
i
2 � �t

id
2, for any t 2 f0; . . . ;

Tg, and for each i 2 f1; . . . ;Ng.
Proof: We use induction. By construction,

�0
i

2 ¼ �0
id

2
, so the statement is true for t ¼ 0. Suppose

the statement holds for some t � 0 and consider the

update rule for 2t. From the Sherman–Morrison formula

for a rank-1 update [49], we have

ð2tþ1Þjk ¼ ð2tÞjk �
2tFtF

0
t2t

�2
s þ F0t2tFt

� �
jk

:

We now examine the update term in detail, starting with

its denominator. Since

F0t2tFt ¼ ð2tÞit it
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so �2
s þ F0t2tFt ¼ �2

s þ ð2tÞitit
> 0. The numerator is the

outer product of the itth column of 2t with itself, and can

be expressed in index form as

2tFtF
0
t2t

� �
jk
¼ ð2tÞjit

ð2tÞitk
:

Note that if 2t is diagonal, then so is 2tþ1 since the only

nonzero update element will be ð2tÞ2itit
. Therefore, 2td is

diagonal for all t � 0.

The update of the diagonal terms of 2 only uses the

diagonal elements of the update term, so

�
ðtþ1Þ
i

2
¼ð2tþ1Þii
¼ð2tÞii �

1

�2
s þ F0t2tFt

X
j

ð2tÞjit
ð2tÞitj

:

In the case of 2td, the sum over j only includes the j ¼ it

element, whereas with the nondiagonal prior 2t the sum

may include many additional terms. So we have

�
ðtþ1Þ
i

2
¼ð2tþ1Þii
¼ð2tÞii �

1

�2
s þ F0t2tFt

X
j

ð2tÞjit
ð2tÞit j

�ð2tdÞii �
1

�2
s þ F0t2tdFt

ð2tdÞ2it it

¼ �ðtþ1Þ
id

2

and the statement holds for tþ 1.

Note that the above result merely shows that the belief
state converges more quickly in the case of a correlated

prior, without making any claim about the correctness of

this convergence. For example, consider a case where the

prior belief is that two arms are perfectly correlated, i.e.,

the relevant block of the prior is a multiple of
1 1

1 1

� �
, but

in actuality the two arms have very different mean

rewards. If the algorithm first samples the arm with lower
reward, it will tend to underestimate the reward to the

second arm. However, in the case of a well-chosen prior,

the faster convergence will allow the algorithm to more

quickly disregard related sets of arms with low rewards.

V. CLASSIFICATION OF HUMAN
PERFORMANCE IN MULTIARMED
BANDIT TASKS

In this section, we study human data from a multiarmed

bandit task and show how human performance can be

classified as falling into one of several categories, which we
term phenotypes. We then show that the stochastic UCL

algorithm can produce performance that is analogous to

the observed human performance.

A. Human Behavioral Experiment in a Multiarmed
Bandit Task

In order to study human performance in multiarmed

bandit tasks, we ran a spatially embedded multiarmed
bandit task through web servers at Princeton University

(Princeton, NJ, USA). Human participants were recruited

using Amazon’s Mechanical Turk (AMT) web-based task

platform [50]. Upon selecting the task on the AMT

website, participants were directed to follow a link to a

Princeton University website, where informed consent was

obtained according to protocols approved by the Princeton

University Institutional Review Board.
After informed consent was obtained, participants

were shown instructions that told them they would be

playing a simple game during which they could collect

points, and that their goal was to collect the maximum

number of total points in each part of the game.

Each participant was presented with a set of N ¼ 100

options in a 10 
 10 grid. At each decision time

t 2 f1; . . . ; Tg, the participant made a choice by moving
the cursor to one element of the grid and clicking. After

each choice was made, a numerical reward associated to

that choice was reported on the screen. The time allowed

for each choice was manipulated and allowed to take one

of two values, denoted fast and slow. If the participant did

not make a choice within 1.5 (fast) or 6 (slow) s after the

prompt, then the last choice was automatically selected

again. The reward was visible until the next decision was
made and the new reward reported. The time allotted for

the next decision began immediately upon the reporting of

the new reward. Fig. 5 shows the screen used in the

experiment.

The dynamics of the game were also experimentally

manipulated, although we focus exclusively here on the

first dynamic condition. The first dynamic condition was a

standard bandit task, where the participant could choose
any option at each decision time, and the game would

immediately sample that option. In the second and third

dynamic conditions, the participant was restricted in

choices and the game responded in different ways. These

two conditions are beyond the scope of this paper.

Participants first completed three training blocks of

T ¼ 10 choices each, one for each form of the game

dynamics. Subsequently, the participants performed two
task blocks of T ¼ 90 choices each in a balanced

experimental design. For each participant, the first task

had parameters randomly chosen from one of the 12

possible combinations (two timing, three dynamics, two

landscapes), and the second task was conditioned on the

first so that the alternative timing was used with the

alternative landscape and the dynamics chosen randomly

Reverdy et al. : Modeling Human Decision Making in Generalized Gaussian Multiarmed Bandits

Vol. 102, No. 4, April 2014 | Proceedings of the IEEE 555



from the two remaining alternatives. In particular, only

approximately 2/3 of the participants were assigned a
standard bandit task, while other subjects were assigned

other dynamic conditions. The horizon T G N was chosen

so that prior beliefs would be important to performing the

task. Each training block took 15 s and each task block took

135 (fast) or 540 (slow) s. The time between blocks was

negligible, due only to network latency.

Mean rewards in the task blocks corresponded to one

of two landscapes: landscape A [Fig. 6(a)] and landscape B
[Fig. 6(b)]. Each landscape was flat along one dimension

and followed a profile along the other dimension. In the

two task blocks, each participant saw each landscape once,

presented in random order. Both landscapes had a mean

value of 30 points and a maximum of approximately 60

points, and the rewards rt for choosing an option it were

computed as the sum of the mean reward mit
and an

integer chosen uniformly from the range ½�5; 5�. In the
training blocks, the landscape had a mean value of zero

everywhere except for a single peak of 100 points in the
center. The participants were given no specific informa-

tion about the value or the structure of the reward

landscapes.

To incentivize the participants to make choices to

maximize their cumulative reward, the participants were

told that they were being paid based on the total reward

they collected during the tasks. As noted above, due to the

multiple manipulations, not every participant performed a
standard bandit task block. Data were collected from a

total of 417 participants: 326 of these participants

performed one standard bandit task block each, and the

Fig. 5. Screen used in the experimental interface. Each square in the

grid corresponded to an available option. The text box above the grid

displayed the most recently received reward, the blue dot indicated

the participant’s most recently recorded choice, and the smaller red

dot indicated the participant’s next choice. In the experiment, the red

dot was colored yellow, but here we have changed the color for

legibility. When both dots were located in the same square, the red dot

was superimposed over the blue dot such that both were visible.

Initially, the text box was blank and the two dots were together in a

randomly chosen square. Participants indicated a choice by clicking in

a square, at which point the red dot would move to the chosen option.

Until the time allotted for a given decision had elapsed, participants

could change their decision without penalty by clicking on another

square, and the red dot would move accordingly. When the decision

time had elapsed, the blue dot would move to the new square, the text

box above the grid would be updated with the most recent reward

amount, and the choice would be recorded.

Fig. 6. Two task reward landscapes: (a) landscape A; and

(b) landscape B. The 2-D reward surfaces followed the profile along

one dimension (here the x-direction) and were flat along the other

(here the y-direction). The landscape A profile is designed to be simple

in the sense that the surface is concave and there is only one

global maximum ðx ¼ 6Þ, while the landscape B profile is more

complicated since it features two local maxima (x ¼ 1 and 10), only

one of which ðx ¼ 10Þ is the global maximum.
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remaining 91 participants performed no standard bandit
task blocks.

B. Phenotypes of Observed Performance
For each 90-choice standard bandit task block, we

computed observed regret by subtracting the maximum

mean cumulative reward from the participant’s cumulative
reward, i.e.,

RðtÞ ¼ mi� t�
Xt


¼1

r
 :

The definition of RðtÞ uses received rather than expected

reward, so it is not identical to cumulative expected regret.

However, due to the large number of individual rewards

received and the small variance in rewards, the difference
between the two quantities is small.

We study human performance by considering the

functional form of RðtÞ. Optimal performance in terms of

regret corresponds to RðtÞ ¼ C log t, where C is the sum

over i of the factors in (1). The worst case performance,

corresponding to repeatedly choosing the lowest value

option, corresponds to the form RðtÞ ¼ Kt, where K > 0

is a constant. Other bounds in the bandit literature (e.g.,
[27]) are known to have the form RðtÞ ¼ K

ffiffi
t
p

.

To classify types of observed human performance in

bandit tasks, we fit models representing these three forms

to the observed regret from each task. Specifically, we fit

the three models

RðtÞ ¼ aþ bt (9)

RðtÞ ¼ atb (10)

RðtÞ ¼ aþ b logðtÞ (11)

to the data from each task and classified the behavior

according to which of the models (9)–(11) best fit the data

in terms of squared residuals. Model selection using this
procedure is tenable given that the complexity or number

of degrees of freedom of the three models is the same.

Of the 326 participants who performed a standard

bandit task block, 59.2% were classified as exhibiting

linear regret [model (9)], 19.3% power regret [model

(10)], and 21.5% logarithmic regret [model (11)]. This

suggests that 40.8% of the participants performed well

overall and 21.5% performed very well. We observed no
significant correlation between performance and timing,

landscape, or order (first or second) of playing the

standard bandit task block.

Averaging across all tasks, mean performance was best

fit by a power model with exponent b 	 0:9, so participants

on average achieved sublinear regret, i.e., better than linear

regret. A nontrivial number of positive performances are

noteworthy given that T G N, i.e., a relatively short time

horizon which makes the task challenging.

Averaging, conditional on the best fit model, separates

the performance of the participants into the three

categories of regret performance as can be observed in

Fig. 7. The difference between linear and power-law

performance is not statistically significant until near the

task horizon at t ¼ 90, but log-law performance is
statistically different from the other two, as seen using

the confidence intervals in the figure. Therefore, we

interpret the linear and power-law performance pheno-

types as representing participants with low performance

and the log-law phenotype as representing participants

with high performance. Interestingly, the three models are

indistinguishable for time less than 30. This may represent

a fundamental limit to performance that depends on the
complexity of the reward surface: if the surface is smooth,

skilled participants can quickly find good options,

corresponding to a small value of the constant K, and

thus their performance will quickly be distinguished from

less skilled participants. However, if the surface is rough,

identifying good options is harder and will, therefore,

require more samples, i.e., a large value of K, even for

skilled participants.

C. Comparison With UCL
Having identified the three phenotypes of observed

human performance in Section V-B, we show that the

stochastic UCL algorithm (Algorithm 2) can produce

behavior corresponding to the linear-law and log-law

phenotypes by varying a minimal number of parameters.

Fig. 7. Mean observed regretRðtÞ conditional on the best fit

model (9)–(11), along with bands representing 95% confidence

intervals. Note how the difference between linear and power-law

regret is not statistically significant until near the task horizon T ¼ 90,

while logarithmic regret is significantly less than that of the linear and

power-law cases.
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Parameters are used to encode the prior beliefs and the
decision noise of the participant. A minimal set of

parameters is given by the four scalars �0, �0, �, and �,

defined as follows.

• i) The model assumes prior beliefs about the mean

rewards to be a Gaussian distribution with mean

M0 and covariance 20. It is reasonable to assume

that participants set M0 to the uniform prior

M0 ¼ �01N, where 1N 2 RN is the vector with
every entry equal to 1. Thus, �0 2 R is a single

parameter that encodes the participants’ beliefs

about the mean value of rewards.

• ii) and iii) Prior covariance: For a spatially

embedded task, it is reasonable to assume that

arms that are spatially close will have similar mean

rewards. Following [51], we choose the elements of

20 to have the form

2ij ¼ �2
0 exp �jxi � xjj=�

� �
(12)

where xi is the location of arm i and � � 0 is the

correlation length scale parameter that encodes

the spatial smoothness of the reward surface. The
case � ¼ 0 represents complete independence of

rewards, i.e., a very rough surface, while as �
increases the agent believes the surface to be

smoother. The parameter �0 � 0 can be inter-

preted as a confidence parameter, with �0 ¼ 0

representing absolute confidence in the beliefs

about the mean M0, and �0 ¼ þ1 representing

complete lack of confidence.
• iv) Decision noise: In Theorem 7, we show that for

an appropriately chosen cooling schedule, the

stochastic UCL algorithm with softmax action

selection achieves logarithmic regret. However,

the assumption that human participants employ

this particular cooling schedule is unreasonably

strong. It is of great interest in future experimental

work to investigate what kind of cooling schedule
best models human behavior. The Bayes-optimal

cooling schedule can be computed using variation-

al Bayes methods [52]; however, for simplicity, we

model the participants’ decision noise by using

softmax action selection with a constant temper-

ature � � 0. This yields a single parameter

representing the stochasticity of the decision

making: in the limit �! 0þ, the model reduces
to the deterministic UCL algorithm, while with

increasing � the decision making is increasingly

stochastic.

With this set of parameters, the prior quality 
 from

Remark 5 reduces to 
 ¼ ðmaxi jmi � �0jÞ=�0. Uninfor-

mative priors correspond to very large values of �0. Good

priors, corresponding to small values of 
, have �0 close to

mi� ¼ maxi mi or little confidence in the value of �0,

represented by large values of �0.

By adjusting these parameters, we can replicate both

linear and logarithmic observed regret behaviors as seen in

the human data. Fig. 8 shows examples of simulated

observed regret RðtÞ that capture linear and logarithmic

regret, respectively. In both examples, landscape B was
used for the mean rewards. The example with linear regret

shows a case where the agent has fairly uninformative and

fully uncorrelated prior beliefs (i.e., � ¼ 0). The prior

mean �0 ¼ 30 is set equal to the true surface mean, but

with �2
0 ¼ 1000, so that the agent is not very certain of this

value. Moderate decision noise is incorporated by setting

� ¼ 4. The values of the prior encourage the agent to

explore most of the N ¼ 100 options in the T ¼ 90
choices, yielding regret that is linear in time. As

emphasized in Remark 3, the deterministic UCL algorithm

(and any agent employing the algorithm) with an

uninformative prior cannot, in general, achieve sublinear

cumulative expected regret in a task with such a short

horizon. The addition of decision noise to this algorithm

may increase regret, making it harder for the agent to

achieve sublinear regret.
In contrast, the example with logarithmic regret shows

how an informative prior with an appropriate correlation

structure can significantly improve the agent’s perfor-

mance. The prior mean �0 ¼ 200 encourages more

Fig. 8. Observed regretRðtÞ from simulations (solid lines) that

demonstrate linear (9), blue curves, and log (11), green curves, regret.

The best fits to the simulations are shown (dashed lines). The

simulated task parameters were identical to those of the human

participant task with landscape B from Fig. 6(b). In the example with

linear regret, the agent’s prior on rewards was the uncorrelated

prior �0 ¼ 30, �20 ¼ 1000, and � ¼ 0. Decision noise was incorporated

using softmax selection with a constant temperature � ¼ 4. In the

example with log regret, the agent’s prior on rewards was the

correlated prior with uniform �0 ¼ 200 and 20 an exponential prior

(12) with parameters �20 ¼ 10, � ¼ 4. The decision noise parameter

was set to � ¼ 1.
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exploration than the previous value of 30, but the smaller
value of �2

0 ¼ 10 means the agent is more confident in its

belief and will explore less. The correlation structure

induced by setting the length scale � ¼ 4 is a good model

for the reward surface, allowing the agent to more quickly

reject areas of low rewards. A lower softmax temperature

� ¼ 1 means that the agent’s decisions are made more

deterministically. Together, these differences lead to the

agent’s logarithmic regret curve; this agent suffers less
than a third of the total regret during the task as compared

to the agent with the poorer prior and linear regret.

VI. GAUSSIAN MULTIARMED BANDIT
PROBLEMS WITH TRANSITION COSTS

Consider an N-armed bandit problem as described in

Section II. Suppose that the decision maker incurs a
random transition cost cij 2 R�0 for a transition from arm

i to arm j. No cost is incurred if the decision maker chooses

the same arm as the previous instant, and accordingly,

cii ¼ 0. Such a cost structure corresponds to a search

problem in which the N arms may correspond to N
spatially distributed regions and the transition cost cij may

correspond to the travel cost from region i to region j.
To address this variation of the multiarmed bandit

problem, we extend the UCL algorithm to a strategy that

makes use of block allocations. Block allocations refer to

sequences in which the same choice is made repeatedly;

thus, during a block no transition cost is incurred. The

UCL algorithm is used to make the choice of arm at the

beginning of each block. The design of the (increasing)

length of the blocks makes the block algorithm provably

efficient. This model can be used in future experimental
work to investigate human behavior in multiarmed bandit

tasks with transition costs.

A. Block UCL Algorithm
For Gaussian multiarmed bandits with transition costs,

we develop a block allocation strategy illustrated in Fig. 9

and described in pseudocode in Algorithm 3 in Appendix F.

The intuition behind the strategy is as follows. The decision
maker’s objective is to maximize the total expected reward

while minimizing the number of transitions. As we have

shown, maximizing total expected reward is equivalent to

minimizing expected regret, which we know grows at least

logarithmically with time. If we can bound the number of

expected cumulative transitions to grow less than logarith-

mically in time, then the regret term will dominate and the

overall objective will be close to its optimum value. Our
block allocation strategy is designed to make transitions less

than logarithmically in time, thereby ensuring that the

cumulative expected regret term dominates.

We know from the Lai–Robbins bound (1) that the

expected number of selections of suboptimal arms i is at

least Oðlog TÞ. Intuitively, the number of transitions can

be minimized by selecting the option with the maximum

upper credible limit dlog Te times in a row. However, such

a strategy will have a strong dependence on T and will not

have a good performance uniformly in time. To remove
this dependence on T, we divide the set of natural numbers

(choice instances) into frames ffkgk2N such that frame fk

starts at time 2k�1 and ends at time 2k � 1. Thus, the length

of frame fk is 2k�1.

We subdivide frame fk into blocks each of which will

correspond to a sequence of choices of the same option.

Let the first b2k�1=kc blocks in frame fk have length k and

the remaining choices in frame fk constitute a single block
of length 2k�1 � b2k�1=kck. The time associated with the

choices made within frame fk is Oð2kÞ. Thus, following the

intuition in the last paragraph, the length of each block in

frame fk is chosen equal to k, which is Oðlogð2kÞÞ.
The total number of blocks in frame fk is bk ¼ d2k�1=ke.

Let ‘ 2 N be the smallest index such that T G 2‘. Each

block is characterized by the tuple ðk; rÞ, for some

k 2 f1; . . . ; ‘g, and r 2 f1; . . . ; bkg, where k identifies
the frame and r identifies the block within the frame. We

denote the time at the start of block r in frame fk by


kr 2 N. The block UCL algorithm at time 
kr selects the

arm with the maximum ð1� 1=K
krÞ-upper credible limit

and chooses it k times in a row (� k times if the block r is

the last block in frame fk). The choice at time 
kr is

analogous to the choice at each instant in the UCL

algorithm.
Next, we analyze the regret of the block UCL

algorithm. We first introduce some notation. Let Qkr
i be

the ð1� 1=K
krÞ-upper credible limit for the mean reward

of arm i at allocation round ðk; rÞ, where K ¼
ffiffiffiffiffiffiffi
2�e
p

is the

credible limit parameter. Let nkr
i be the number of times

arm i has been chosen until time 
kr (the start of block

ðk; rÞ). Let st
i be the number of times the decision maker

transitions to arm i from another arm j 2 f1; . . . ;Ng n fig
until time t. Let the empirical mean of the rewards from

arm i until time 
kr be �mkr
i . Conditioned on the number of

visits nkr
i to arm i and the empirical mean �mkr

i , the mean

Fig. 9. Block allocation scheme used in the block UCL algorithm.

Decision time t runs from left to right in both panels. Panel (a)

shows the division of the decision times t 2 f1; . . . ; Tg into frames

k 2 f1; . . . ; ‘g. Panel (b) shows how an arbitrary frame k is divided into

blocks. Within the frame, an arm is selected at time 
kr, the start of

each block r in frame k, and that arm is selected for each of the k

decisions in the block.
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reward at arm i at time 
kr is a Gaussian random variable
ðMiÞ with mean and variance

�kr
i :¼E Mijnkr

i ; �mkr
i

� �
¼ �

2�0
i þ nkr

i �mkr
i

�2 þ nkr
i

and

�kr
i

2
:¼Var Mijnkr

i ; �mkr
i

� �
¼ �2

s

�2 þ nkr
i

respectively. Moreover

E �kr
i jnkr

i

� �
¼ �2�0

i þ nkr
i mi

�2 þ nkr
i

and

Var �kr
i jnkr

i

� �
¼ nkr

i �
2
s

�2 þ nkr
ið Þ2

:

Accordingly, the ð1� 1=K
k;rÞ-upper credible upper limit

Qkr
i is

Qkr
i ¼ �kr

i þ
�sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ nkr
i

p %�1 1� 1

K
kr

� �
:

Also, for each i 2 f1; . . . ;Ng, we define constants

�i
1 ¼

8	2�2
s

D2
i

þ 1

log 2
þ 2

K

�i
2 ¼

4	2�2
s

D2
i

ð1� log 2Þ þ 2þ 8

K
þ log 4

K

�i
3 ¼ �i

1 log 2ð2� log log 2Þ

� 4	2�2
s

D2
i

log log 2� �i
2

� �
1þ �

2

6

� �
and

�cmax
i ¼ max E½cij�jj 2 f1; . . . ;Ng

� 

:

Let fRBUCL
t gt2f1;...;Tg be the sequence of the expected

regret of the block UCL algorithm, and fSBUCL
t gt2f1;...;Tg be

the sequence of expected transition costs. The block UCL

algorithm achieves logarithmic regret uniformly in time as

formalized in the following theorem.

Theorem 9 (Regret of Block UCL Algorithm): The
following statements hold for the Gaussian multiarmed

bandit problem with transition costs and the block UCL

algorithm with an uncorrelated uninformative prior.

i) The expected number of times a suboptimal arm i
is chosen until time T satisfies

E nT
i

� �
� �i

1 log T � 4	2�2
s

D2
i

log log T þ �i
2:

ii) The expected number of transitions to a subop-

timal arm i from another arm until time T satisfies

E sT
i

� �
� �i

1 log 2
� �

log log T þ �i
3:

iii) The cumulative expected regret and the cumula-

tive transition cost until time T satisfy

XT

t¼1

RBUCL
t �

XN

i¼1

Di �i
1 log T � 4	2�2

s

D2
i

log log T þ �i
2

� �
;

XT

t¼1

SBUCL
t �

XN

i¼1;i 6¼i�

�cmax
i þ �cmax

i�
� �


 �i
1 log 2

� �
log log T þ �i

3

� �
þ �cmax

i� :

Proof: See Appendix D.

Figs. 10 and 11 show, respectively, the cumulative

expected regret and the cumulative transition cost of the

block UCL algorithm on a bandit task with transition costs.

For comparison, the figures also show the associated

bounds from statement iii) of Theorem 9. Cumulative

expected regret was computed using 250 runs of the block

UCL algorithm. Variance of the regret was minimal. The
task used the reward surface of landscape B from Fig. 6(b)

with sampling noise variance �2
s ¼ 1. The algorithm used

an uncorrelated prior with �0 ¼ 200 and �2
0 ¼ 106.

Transition costs between options were equal to the

distance between them on the surface.

The variance of the cumulative regret is relatively

small, i.e., the cumulative regret experienced in a given

task is close to the expected value. Also, the bound on
transition costs is quite loose. This is due to the loose

bound on the expected number of transitions to the

optimal arm. More detailed analysis of the total number of

transitions would allow the bound to be tightened.

Reverdy et al. : Modeling Human Decision Making in Generalized Gaussian Multiarmed Bandits

560 Proceedings of the IEEE | Vol. 102, No. 4, April 2014



VII. GRAPHICAL GAUSSIAN
MULTIARMED BANDIT PROBLEMS

We now consider multiarmed bandits with Gaussian

rewards in which the decision maker cannot move to

every other arm from the current arm. Let the set of arms

that can be visited from arm i be neðiÞ � f1; . . . ;Ng. Such
a multiarmed bandit can be represented by a graph G with

node set f1; . . . ;Ng and edge set E¼fði; jÞjj 2 neðiÞ; i 2
f1; . . . ;Ngg. We assume that the graph is connected in the

sense that there exists at least one path from each node

i 2 f1; . . . ;Ng to every other node j 2 f1; . . . ;Ng. LetP ij be

the set of intermediary nodes in a shortest path from node i to

node j. Note that the setP ij does not contain node i or node j.
We denote the cardinality of the set P ij by pij and,
accordingly, the elements of the set P ij by fPij

1 ; . . . ; Pij
pij
g.

A. Graphical Block UCL Algorithm
For graphical Gaussian multiarmed bandits, we develop

an algorithm similar to the block allocation Algorithm 3,

namely, the graphical block UCL algorithm, described in

pseudocode in Algorithm 4 in Appendix F. Similar to the

block allocation algorithm, at each block, the arm with
maximum upper credible limit is determined. Since the

arm with the maximum upper credible limit may not be

immediately reached from the current arm, the graphical

block UCL algorithm traverses a shortest path from the

current arm to the arm with maximum upper credible

limit. Traversing a shortest path will mean making as many

as N � 2 visits to undesirable arms (N � 2 is the worst case

in a line graph where the current location is at one end of
the line and the desired arm is at the other end of the line).

Thus, we apply a block allocation algorithm to limit the

number of transitions as in the case of Algorithm 3 for the

bandit problem with transition costs.

We classify the selection of arms in two categories,

namely, goal selection and transient selection. The goal

selection of an arm corresponds to the situation in which the

arm is selected because it has the maximum upper credible
limit, while the transient selection corresponds to the

situation in which the arm is selected because it belongs to

the shortest path to the arm with the maximum credible

limit. Accordingly, we define the block associated with the

goal selection of an arm as the goal block, and the block

associated with arms on the shortest path between two arms

associated with consecutive goal blocks as the transient block.

The design of the blocks is illustrated in Fig. 12.
The goal selection instances of arms are subdivided into

frames fk, k 2 f1; . . . ; ‘g, where the length of the frame fk is

2k�1. Note that only goal selections are counted to compute

the length of each frame. The length of the goal blocks within

each frame is chosen as it is in the block allocation strategy.

We denote the time at the start of the transient block before

goal block r in frame fk by 
kr 2 N. The graphical block

allocation algorithm at time 
kr 1) determines the arm with
the maximum ð1� 1=K
krÞ-upper credible limit; 2) traverses

the shortest path to the arm; and 3) picks the arm k times

(� k times if the goal block r is the last goal block in frame fk).

In Fig. 12, the goal block only shows the choices of the goal

selection. The transient block, shown prior to the

corresponding goal block, accounts for the selections along

a shortest path.

Fig. 11. Cumulative transition cost (solid line) and the associated

bound (dashed line) from Theorem 9. Transition costs were computed

using 250 runs of the block UCL algorithm with the same parameters

as in Fig. 10. Transition costs between any two arms i and j were

deterministic and set equal to jxi � xj j, where xi is the location of

arm i in the grid.

Fig. 10. Cumulative expected regret (solid line) and the associated

bound (dashed line) from Theorem 9. Expected regret was

computed using 250 runs of the block UCL algorithm; variance of

the regret was minimal. The task used the reward surface from

Fig. 6(b) with sampling noise variance �2s ¼ 1. The algorithm used an

uncorrelated prior with �0 ¼ 200 and �20 ¼ 106.
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The key idea behind the algorithm is that the block

allocation strategy results in an expected number of

transitions that is sublogarithmic in the horizon length. In

the context of the graphical bandit, sublogarithmic
transitions result in sublogarithmic undesired visits to the

arms on the chosen shortest path to the desired arm with

maximum upper credible limit. Consequently, the cumu-

lative expected regret of the algorithm is dominated by a

logarithmic term.

B. Regret Analysis of the Graphical Block
UCL Algorithm

We now analyze the performance of the graphical block

UCL algorithm. Let fRGUCL
t gt2f1;...;Tg be the sequence of

expected regret of the graphical block UCL algorithm. The
graphical block UCL algorithm achieves logarithmic regret

uniformly in time as formalized in the following theorem.

Theorem 10 (Regret of Graphical Block UCL Algorithm):
The following statements hold for the graphical Gaussian

multiarmed bandit problem with the graphical block UCL

algorithm and an uncorrelated uninformative prior.

i) The expected number of times a suboptimal arm i
is chosen until time T satisfies

E nT
i

� �
� �i

1 log T � 4	2�2
s

D2
i

log log T þ �i
2

þ
XN

i¼1;i 6¼i�

2�i
1 log 2

� �
log log T þ 2�i

3

� �
þ 1:

ii) The cumulative expected regret until time T
satisfies

XT

t¼1

RGUCL
t �

XN

i¼1

�i
1 log T � 4	2�2

s

D2
i

log log T

�

þ �i
2 þ

XN

i¼1;i 6¼i�

2�i
1 log 2

� �
log log T þ 2�i

3

� �
þ 1

!
Di:

Proof: See Appendix E.

Fig. 13 shows cumulative expected regret and the

associated bound from Theorem 10 for the graphical block
UCB algorithm. The underlying graph topology was chosen

to be a line graph, so the algorithm could only choose to

move one step forward or backwards at each time.

Expected regret was computed using 250 runs of the

graphical block UCL algorithm. Each task consisted of

N ¼ 10 bandits with mean rewards set equal to the reward

profile along the x-axis of Fig. 6(b). Reward variance was

�2
s ¼ 6:25, while the agent used the uncorrelated prior

with �0 ¼ 40 and �2
0 ¼ 106. Note that the regret bound is

quite loose, as in the case of transition costs for the block

UCL algorithm. This is because the regret bound uses the

same bound on switching costs as in Theorem 9 to bound

the regret incurred by traversing the graph.

Fig. 13. Cumulative expected regret (solid line) and the associated

bound (dashed line) from Theorem 10. Expected regret was computed

from 250 simulated tasks played using the graphical block UCL

algorithm. Each task consisted of N ¼ 10 bandits with mean rewards

set equal to the reward profile from Fig. 6(b). The graph topology

was a line graph, so the agent could only move one step forward or

backward at each time. Reward variance was �2s ¼ 6:25, while the agent

used the uncorrelated prior with �0 ¼ 40 and �20 ¼ 106.

Fig. 12. Block allocation scheme used in the graphical block UCL

algorithm. Decision time t runs from left to right in both panels.

Panel (a) shows the division of goal selection instances of the arms

into frames k 2 f1; . . . ; ‘g. The frame fk corresponds to 2k�1 goal

selections of the arms. Panel (b) shows how an arbitrary frame fk is

divided into goal and transient blocks. The goal blocks are selected

as they are in the block allocation strategy, while the transient blocks

correspond to the shortest path between two arms associated with

consecutive goal blocks. Only the goal selections are counted to

compute the length of the frames.

Reverdy et al. : Modeling Human Decision Making in Generalized Gaussian Multiarmed Bandits

562 Proceedings of the IEEE | Vol. 102, No. 4, April 2014



VIII . CONCLUSION

In this paper, we considered multiarmed bandit problems

with Gaussian rewards and studied them from a Bayesian

perspective. We considered three particular multiarmed

bandit problems: the standard multiarmed bandit problem,

the multiarmed bandit problem with transition costs, and the

graphical multiarmed bandit problem. We developed two

UCL algorithms, namely, the deterministic UCL algorithm

and the stochastic UCL algorithm, for the standard

multiarmed bandit problem. We extended the deterministic

UCL algorithm to the block UCL algorithm and the graphical

block UCL algorithm for the multiarmed bandit problem

with transition costs, and the graphical multiarmed bandit

problem, respectively. We established that for uninformative

priors, each of the proposed algorithms achieves logarithmic

regret uniformly in time, and moreover, the block UCL

algorithm achieves a sublogarithmic expected number of

transitions among arms. We elucidated the role of general

priors and the correlation structure among arms, showing

how good priors and good assumptions on the correlation

structure among arms can greatly enhance decision-making

performance of the proposed deterministic UCL algorithm,

even over short time horizons.

We drew connections between the features of the

stochastic UCL algorithm and human decision making in

multiarmed bandit tasks. In particular, we showed how the

stochastic UCL algorithm captures five key features of

human decision making in multiarmed bandit tasks, namely,

1) familiarity with the environment; 2) ambiguity bonus;

3) stochasticity; 4) finite-horizon effects; and 5) environ-

mental structure effects. We then presented empirical data

from human decision making experiments on a spatially em-

bedded multiarmed bandit task and demonstrated that the

observed performance is efficiently captured by the proposed

stochastic UCL algorithm with appropriate parameters.

This work presents several interesting avenues for future

work in the design of human–automata systems. The model

phenotypes discussed in Section V provide a method for

assessing human performance in real time, and the experi-

mental results presented in that section suggest that some

humans use informative priors for spatial search tasks which

allow them to achieve better performance than a similar

algorithm using uninformative priors. Therefore, a useful

goal for human–automata systems would be to develop a

means to learn the humans’ informative priors and use them

to improve the performance of the overall system.

This work also presents several interesting avenues for

future psychological research. First, in this work, we relied

on certain functional forms for the parameters in the

algorithms, e.g., we considered credibility parameter

�t ¼ 1=Kt and cooling schedule �t ¼ �= log t. It is of

interest to perform thorough experiments with human

subjects to ascertain the correctness of these functional
forms. Second, efficient methods for estimation of para-

meters in the proposed algorithms need to be developed.

Overall, the proposed algorithms provide ample in-
sights into plausible decision mechanisms involved with

human decision making in tasks with an explore–exploit

tension. We envision a rich interplay between these

algorithms and psychological research.

APPENDIX A

PROOF OF INVERSE GAUSSIAN
TAIL BOUND

Proof of Theorem 1: We start by establishing inequality

(6). It suffices to establish this inequality for 	 ¼ 1:02. Since

the cdf for the standard normal random variable is a con-

tinuous and monotonically increasing function, it suffices to

show that

% 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� log �2��2 logð2��2Þð Þ

p
 �
þ �� 1 � 0 (13)

for each � 2 ð0; 1Þ. Equation (13) can be equivalently

written as hðxÞ � 0, where x ¼ 2��2 and h : ð0; 1Þ !
ð0; 1=

ffiffiffiffiffiffi
2�
p
Þ is defined by

hðxÞ ¼ % 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� logð�x log xÞÞ

p
 �
þ

ffiffiffi
x
pffiffiffiffiffiffi

2�
p � 1:

Note that limx!0þ hðxÞ ¼ 0 and limx!1� hðxÞ ¼ 1=
ffiffiffiffiffiffi
2�
p

.

Therefore, to establish the theorem, it suffices to establish

that h is a monotonically increasing function. It follows

that:

gðxÞ:¼2
ffiffiffiffiffiffi
2�
p

h0ðxÞ¼ 1ffiffiffi
x
p þ 	ð�x log xÞ	

2=2�1ð1þlog xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� logð�x log xÞ

p :

Note that limx!0þ gðxÞ ¼ þ1 and limx!1� gðxÞ ¼ 1.

Therefore, to establish that h is monotonically increasing,

it suffices to show that g is nonnegative for x 2 ð0; 1Þ. This

is the case if the following inequality holds:

gðxÞ ¼ 1ffiffiffi
x
p þ 	ð�x log xÞ	

2=2�1ð1þ log xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� logð�x log xÞ

p � 0

which holds if

1ffiffiffi
x
p � � 	ð�x log xÞ	

2=2�1ð1þ log xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� logð�x log xÞ

p :
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The inequality holds if the right-hand side is negative. If it
is positive, one can take the square of both sides and the

inequality holds if

�logð�x log xÞ
� 	2xð1þ log xÞ2ð�x log xÞ	

2�2

¼ 	2x 1þ 2 log xþ ðlog xÞ2
� �

ð�x log xÞ	
2�2:

Letting t ¼ � log x, the above inequality transforms to

�logðte�tÞ � 	2e�tð1� 2tþ t2Þðte�tÞ	
2�2

which holds if

�log t � 	2t	
2�2ð1� 2tþ t2Þe�ð	2�1Þt � t:

Dividing by t, this is equivalent to

� log t

t
� 	2t	

2�3ð1� 2tþ t2Þe�ð	2�1Þt � 1

which is true if

inf
t2½1;þ1Þ

� log t

t

� max
t2½1;þ1Þ

	2t	
2�3ð1� 2tþ t2Þe�ð	2�1Þt � 1: (14)

These extrema can be calculated analytically, so we have

inf
t2½1;þ1Þ

� log t

t
¼ � 1

e
	 �0:3679

for the left-hand side and

t� ¼ arg max
t2½1;þ1Þ

	2t	
2�3ð1� 2tþ t2Þe�ð	2�1Þt � 1

¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

ð	2 � 1Þ

s

¼) max
t2½1;þ1Þ

	2t	
2�3ð1� 2tþ t2Þe�ð	2�1Þt � 1

	 �0:3729

for the right-hand side of (14). Therefore, (14) holds. In

consequence, gðxÞ is nonnegative for x 2 ð0; 1Þ, and hðxÞ is

a monotonically increasing function. This establishes
inequality (6). Inequality (7) follows analogously. h

APPENDIX B

PROOF OF REGRET OF THE
DETERMINISTIC UCL ALGORITHM

Proof of Theorem 2: We start by establishing the first

statement. In the spirit of [20], we bound nT
i as follows:

nT
i ¼

XT

t¼1

1ðit ¼ iÞ

�
XT

t¼1

1 Qt
i > Qt

i�
� �

� � þ
XT

t¼1

1 Qt
i > Qt

i� ; n
ðt�1Þ
i � �


 �

where � is some positive integer and 1ðxÞ is the indicator
function, with 1ðxÞ ¼ 1 if x is a true statement and 0

otherwise.

At time t, the agent picks option i over i� only if

Qt
i� � Qt

i :

This is true when at least one of the following equations

holds:

�t
i� �mi� � Ct

i� (15)

�t
i �mi þ Ct

i (16)

mi�Gmi þ 2Ct
i (17)

where Ct
i ¼ ð�s=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ nit

p
Þ%�1ð1� �tÞ and �t ¼ 1=Kt.

Otherwise, if none of (15)–(17) holds

Qt
i� ¼ �t

i� þ Ct
i� > mi� � mi þ 2Ct

i > �t
i þ Ct

i ¼ Qt
i

and option i� is picked over option i at time t.
We proceed by analyzing the probability that (15) and

(16) hold. Note that the empirical mean �mt
i is a normal

random variable with mean mi and variance �2
s =nt

i, so, con-

ditional on nt
i, �

t
i is a normal random variable distributed as

�t
i � N

�2�0
i þ nt

imi

�2 þ nt
i

;
nt

i�
2
s

�2 þ nt
ið Þ2

 !
:
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Equation (15) holds if

mi� ��t
i� þ

�sffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ nt

i

p %�1ð1� �tÞ

() mi� � �t
i� �

�sffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ nt

i

p %�1ð1� �tÞ

() z � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nt

i� þ �2

nt
i�

s
%�1ð1� �tÞ

þ �
2

�s

Dmi�ffiffiffiffiffi
nt

i�
p

where z � Nð0; 1Þ is a standard normal random variable

and Dmi� ¼ mi� � �0
i� . For an uninformative prior �2 !

0þ, and consequently, (15) holds if and only if z �
�%ð1� �tÞ. Therefore, for a uninformative prior

P(Equation (15) holds) ¼ �t ¼
1

Kt
¼ 1ffiffiffiffiffiffiffi

2�e
p

t
:

Similarly, (16) holds if

mi ��t
i �

�sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ nit

p %�1ð1� �tÞ

() �t
i � mi �

�sffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ nt

i

p %�1ð1� �tÞ

() z �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nt

i þ �2

nt
i

s
%�1ð1� �tÞ þ

�2

�s

Dmiffiffiffiffi
nt

i

p

where z � Nð0; 1Þ is a standard normal random variable
and Dmi ¼ mi � �0

i . The analogous argument to that for

the above case shows that, for an uninformative prior,

P(Equation (16) holds) ¼ �t ¼
1

Kt
¼ 1ffiffiffiffiffiffiffi

2�e
p

t
:

Equation (17) holds if

mi� Gmi þ
2�sffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ nt

i

p %�1ð1� �tÞ

() Di G
2�sffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ nt

i

p %�1ð1� �tÞ

() D2
i

4	2�2
s

ð�2 þ nt
iÞG � log �2��2

t log 2��2
t

� �� �
(18)

¼) D2
i

4	2�2
s

�2 þ nt
i

� �
G logðet2Þ � log logðet2Þ

¼) D2
i

4	2�2
s

�2 þ nt
i

� �
G logðeT2Þ � log logðeT2Þ

¼) D2
i

4	2�2
s

�2 þ nt
i

� �
G 1þ 2 log T � log 2� log log T (19)

where Di ¼ mi� � mi, inequality (18) follows from bound
(6), and inequality (19) follows from the monotonicity of

the function log x� log log x in the interval ½e;þ1Þ.
Therefore, for an uninformative prior, inequality (17)

never holds if

nt
i �

4	2�2
s

D2
i

ð1þ 2 log T � log 2� log log TÞ:

Setting � ¼ dð4	2�2
s =D2

i Þð1 þ 2 log T � log 2 � log
log TÞe, we get

E nT
i

� �
� � þ

XT

t¼1

P Qt
i > Qt

i� ; n
ðt�1Þ
i � �


 �

¼ � þ
XT

t¼1

P Equation (15) holds; n
ðt�1Þ
i � �


 �

þ
XT

t¼1

P Equation (16) holds; n
ðt�1Þ
i � �


 �

G
4	2�2

s

D2
i

ð1þ 2 log T � log 2� log log TÞ

þ 1þ 2ffiffiffiffiffiffiffi
2�e
p

XT

t¼1

1

t
:

The sum can be bounded by the integral

XT

t¼1

1

t
� 1þ

ZT

1

1

t
dt ¼ 1þ log T

yielding the bound in the first statement

E nT
i

� �
� 8	2�2

s

D2
i

þ 2ffiffiffiffiffiffiffi
2�e
p

� �
log T

þ 4	2�2
s

D2
i

ð1� log 2� log log TÞ þ 1þ 2ffiffiffiffiffiffiffi
2�e
p :
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The second statement follows from the definition of the
cumulative expected regret. h

APPENDIX C

PROOF OF REGRET OF THE STOCHASTIC
UCL ALGORITHM

Proof of Theorem 7: We start by establishing the first

statement. We begin by bounding E½nT
i � as follows:

E nT
i

� �
¼
XT

t¼1

E½Pit��� þ
XT

t¼1

E Pit1 nt
i � �

� �� �
(20)

where � is a positive integer.

Now, decompose E½Pit� as

E½Pit� ¼E PitjQt
i � Qt

i�
� �

P Qt
i � Qt

i�
� �

þ E PitjQt
i > Qt

i�
� �

P Qt
i > Qt

i�
� �

�E PitjQt
i � Qt

i�
� �

þ P Qt
i > Qt

i�
� �

: (21)

The probability Pit can itself be bounded as

Pit ¼
exp

Qt
i

�t


 �
PN

j¼1 exp
Qt

j

�t


 � � exp
Qt

i

�t


 �
exp

Qt
i�
�t


 � : (22)

Substituting the expression for the cooling schedule in

inequality (22), we obtain

Pit � exp �
2 Qt

i� � Qt
i

� �
DQt

min

log t

� �
¼ t
�

2 Qt
i� �Qt

ið Þ
DQt

min : (23)

For the purposes of the following analysis, define 0=0 ¼ 1.

Since DQt
min � 0, with equality only if two arms have

identical heuristic values, conditioned on Qt
i� � Qt

i , the

exponent on t can take the following magnitudes:

Qt
i� � Qt

i

		 		
DQt

min

¼
0
0
¼ 1; if Qt

i� ¼ Qt
i

þ1; if Qt
i� 6¼ Qt

i and DQt
min ¼ 0

x; if DQt
min 6¼ 0

8<
:

where x 2 ½1;þ1Þ. The sign of the exponent is deter-

mined by the sign of Qt
i� � Qt

i .

Consequently, it follows from inequality (23) that

XT

t¼1

E PitjQt
i� � Qt

i

� �
�
XT

t¼1

1

t2
� �

2

6
:

It follows from inequality (21) that

XT

i¼1

E½Pit��
�2

6
þ
XT

i¼1

P Qt
i > Qt

i�
� �

� �
2

6
þ 8	2�2

s

D2
i

þ 2ffiffiffiffiffiffiffi
2�e
p

� �
log T

þ 4	2�2
s

D2
i

ð1�log 2�log log TÞþ1þ 2ffiffiffiffiffiffiffi
2�e
p

where the last inequality follows from Theorem 2. This

establishes the first statement.

The second statement follows from the definition of

the cumulative expected regret. h

APPENDIX D

PROOF OF REGRET OF THE BLOCK
UCL ALGORITHM

Proof of Theorem 9: We start by establishing the first

statement. For a given t, let ðkt; rtÞ be the lexicographically

maximum tuple such that 
ktrt
� t. We note that

nT
i ¼
XT

t¼1

1ðit ¼ iÞ

¼
XT

t¼1

1 it ¼ i & nktrt
i G�

� ��

þ1 it ¼ i & nktrt
i � �

� ��

�� þ ‘þ
XT

t¼1

1 it ¼ i & nktrt
i � �

� �

�� þ ‘þ
X‘
k¼1

Xbk

r¼1

k1 i
kr
¼ i & nkr

i � �
� �

: (24)

We note that 1ði
kr
¼ iÞ � 1ðQkr

i > Qkr
i� Þ, where i� is the

optimal arm. We now analyze the event 1ðQkr
i > Qkr

i� Þ. It
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follows that 1ðQkr
i > Qkr

i� Þ ¼ 1 if the following inequali-
ties hold:

�kr
i� �mi� � Ckr

i� (25)

�kr
i �mi þ Ckr

i (26)

mi�Gmi þ 2Ckr
i (27)

where Ckr
i ¼ ð�s=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ nkr

i

p
Þ%�1ð1� ð1=K
krÞÞ. Other-

wise, if none of the inequalities (25)–(27) hold, then

Qkr
i ¼ �kr

i þ Ckr
i G �kr

i� þ Ckr
i� ¼ Qkr

i� :

We now evaluate the probabilities of events (25)–(27). We

note that

P �kr
i� � mi� � Ckr

i�
� �
� P z � �

2ðmi� � �i�0Þ
�s

ffiffiffiffiffiffi
nkr

i�

p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þnkr

i�

nkr
i�

s
%�1 1� 1

K
kr

� � !

where z � Nð0; 1Þ is a standard normal random variable.

Since �2 ! 0þ as �2
0 ! þ1, it follows that:

P �kr
i� � mi� � Ckr

i�
� �

� P z � �%�1 1� 1

K
kr

� �� �
¼ 1

K
kr
:

A similar argument shows that Pð�kr
i � mi þ Ckr

i Þ �
1=K
kr. We note that inequality (27) holds if

mi� G mi þ 2
�sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ nkr
i

p %�1 1� 1

K
kr

� �

¼)Di G 2
�sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ nkr
i

p %�1 1� 1

K
kr

� �

¼)D2
i G �4

�2
s

�2þnkr
i

	2 log � 2�

K
kr
log

2�

K2
2
kr

� �� �

G
4	2�2

s

�2 þ nkr
i

log e
2
kr

� �
� log log e
2

kr

� �� �
:

Since log x� log log x achieves its minimum at x ¼ e,

it follows that logðe
2
krÞ � log logðe
2

krÞ � logðeT2Þ �

log logðeT2Þ. Consequently, inequality (27) holds if

D2
i G

4	2�2
s

�2 þ nkr
i

1þ 2 log T � logð1þ 2 log TÞð Þ

G
4	2�2

s

�2 þ nkr
i

1þ 2 log T � log log T � log 2ð Þ:

Since �2 ! 0þ, it follows that inequality (27) does not

hold if

nkr
i �

8	2�2
s

D2
i

log T � 1

2
log log T

� �
þ 4	2�2

s

D2
i

ð1� log 2Þ:

Therefore, if we choose � ¼ dð8	2�2
s =D2

i Þðlog T � ð1=2Þ
log log TÞ þ ð4	2�2

s =D2
i Þð1� log 2Þe, it follows from (24)

that

E nT
i

� �
� � þ ‘þ 2

K

X‘
k¼1

Xbk

r¼1

k


kr
: (28)

We now focus on the term
P‘

k¼1

Pbk

r¼1ðk=
krÞ. We note

that 
kr ¼ 2k�1 þ ðr� 1Þk, and hence

Xbk

r¼1

k


kr
¼
Xbk

r¼1

k

2k�1 þ ðr� 1Þk

� k

2k�1
þ
Zbk

1

k

kðx� 1Þ þ 2k�1
dx

¼ k

2k�1
þ log

2k�1 þ kðbk � 1Þ
2k�1

� k

2k�1
þ log 2: (29)

Since T � 2‘�1, it follows that ‘ � 1þ log2 T ¼: �‘. There-

fore, inequalities (28) and (29) yield

E nT
i

� �
� � þ �‘þ 2

K

X�‘

k¼1

k

2k�1
þ log 2

� �

� � þ �‘þ 8

K
þ 2 log 2

K
�‘

� �i
1 log T � 4	2�2

s

D2
i

log log T þ �i
2:

We now establish the second statement. In the spirit of

[29], we note that the number of times the decision maker

transitions to arm i from another arm in frame fk is equal to
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the number of times arm i is selected in frame k divided by
the length of each block in frame fk. Consequently

sT
i �

X‘
k¼1

n2k

i � n2k�1

i

k
¼
X‘
k¼1

n2k

i

k
�
X‘�1

k¼1

n2k

i

kþ 1

¼ n2‘

i

‘
þ
X‘�1

k¼1

n2k

i

1

k
� 1

kþ 1

� �
� n2‘

i

‘
þ
X‘�1

k¼1

n2k

i

k2
:

Therefore, it follows that:

E sT
i

� �
�

E n2‘

i

h i
‘
þ
X‘�1

k¼1

E n2k

i

h i
k2

: (30)

We now analyze inequality (30) separately for the three

terms in the upper bound on E½nT
i �. For the first logarithmic

term, the right-hand side of inequality (30) yields

�i
1 log 2‘

‘
þ
X‘�1

k¼1

�i
1 log 2k

k2

¼ �i
1 log 2 1þ

X‘�1

k¼1

1

k

 !

� �i
1 log 2ðlog log T þ 2� log log 2Þ: (31)

For the second sublogarithmic term, the right-hand side of

inequality (30) is equal to

� 4	2�2
s

D2
i

ðlog ‘þlog log 2Þ
‘

þ
X‘�1

k¼1

ðlog kþlog log 2Þ
k2

 !

� � 4	2�2
s

D2
i

ðlog log 2Þ
‘

þ
X‘�1

k¼1

log log 2

k2

 !

� � 4	2�2
s

D2
i

1þ �
2

6

� �
log log 2: (32)

Similarly, for the constant term �2, the right-hand side of

inequality (30) is equal to

�i
2

‘
þ
X‘�1

k¼1

�i
2

k2
� �i

2 1þ �
2

6

� �
: (33)

Collecting the terms from inequalities (31)–(33), it follows

from inequality (30) that:

E sT
i

� �
� �i

1 log 2
� �

log log T þ �i
3:

We now establish the last statement. The bound on the

cumulative expected regret follows from its definition and

the first statement. To establish the bound on the
cumulative switching cost, we note that

XT

t¼1

SB
t �

XN

i¼1; i 6¼i�

�cmax
i E sT

i

� �
þ �cmax

i� E sT
i�
� �

�
XN

i¼1; i 6¼i�

�cmax
i þ�cmax

i�
� �

E sT
i

� �
þ�cmax

i� (34)

where the second inequality follows from the observation

that sT
i� �

PT
i¼1; i 6¼i� sT

i þ 1. The final expression follows
from inequality (34) and the second statement. h

APPENDIX E

PROOF OF REGRET OF THE GRAPHICAL
BLOCK UCL ALGORITHM

Proof of Theorem 10: We start by establishing the first

statement. Due to transient selections, the number of
frames until time T are at most equal to the number of

frames if there are no transient selections. Consequently,

the expected number of goal selections of a suboptimal arm

i are upper bounded by the expected number of selections

of arm i in the block UCL Algorithm 3, i.e.,

E nT
goal;i

h i
� �i

1 log T � 4	2�2
s

D2
i

log log T þ �i
2:

Moreover, the number of transient selections of arm i are
upper bounded by the total number of transitions from an

arm to another arm in the block UCL Algorithm 3, i.e.,

E nT
transient;i

h i
�
XN

i¼1; i 6¼i�

2�i
1 log 2

� �
log log Tþ2�i

3

� �
þ 1:

The expected number of selections of arm i is the sum of
the expected number of transient selections and the
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expected number of goal selections, and thus the first
statement follows.

The second statement follows immediately from the

definition of the cumulative regret. h

APPENDIX F

PSEUDOCODE IMPLEMENTATIONS OF
THE UCL ALGORITHMS

See Algorithms 1–4.
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