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Satisficing in Multi-Armed Bandit Problems
Paul Reverdy, Member, IEEE, Vaibhav Srivastava, and Naomi Ehrich Leonard, Fellow, IEEE

Abstract—Satisficing is a relaxation of maximizing and
allows for less risky decision making in the face of
uncertainty. We propose two sets of satisficing objectives
for the multi-armed bandit problem, where the objective is to
achieve reward-based decision-making performance above
a given threshold. We show that these new problems are
equivalent to various standard multi-armed bandit problems
with maximizing objectives and use the equivalence to find
bounds on performance. The different objectives can result
in qualitatively different behavior; for example, agents ex-
plore their options continually in one case and only a finite
number of times in another. For the case of Gaussian re-
wards we show an additional equivalence between the two
sets of satisficing objectives that allows algorithms devel-
oped for one set to be applied to the other. We then develop
variants of the Upper Credible Limit (UCL) algorithm that
solve the problems with satisficing objectives and show that
these modified UCL algorithms achieve efficient satisficing
performance.

Index Terms—Multi-armed bandit, upper credible limit
(UCL).

I. INTRODUCTION

ENGINEERING solutions to decision-making problems are
often designed to maximize an objective function. How-

ever, in many contexts maximization of an objective function
is an unreasonable goal, either because the objective itself is
poorly defined or because solving the resulting optimization
problem is intractable or costly. In these contexts, it is valuable
to consider alternative decision-making frameworks.

Herbert Simon considered alternative models of rational
decision-making [30] with the goal of making them “compatible
with the access to information and the computational capacities
that are actually possessed by organisms, including man, in the
kinds of environments in which such organisms exist.” A major
feature of the models he considered is what he called “satis-
ficing”. In [30], he discussed in very broad terms a variety of
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simplifications to the classical economic concept of rationality,
most importantly the idea that payoffs should be simple, de-
fined by doing well relative to some threshold value. In [31], he
introduced the word “satisficing”, a combination of the words
“satisfy” and “suffice”, to refer to this thresholding concept and
illustrated it using a mathematical model of foraging. He also
briefly discussed how satisficing relates to problems in inventory
control and more complicated decision processes like playing
chess.

Since Simon’s pioneering work, satisficing has been studied
in many fields such as psychology [29], economics [6], manage-
ment science [23], [37], and ecology [36], [8]. In engineering,
satisficing is of interest for the same reasons that motivated its
introduction in the social science literature, specifically that it
can simplify decision-making problems: as compared to max-
imizing it allows for less risky decision making in the face of
uncertainty. Furthermore, many engineering problems are nat-
urally posed using a satisficing objective, such as choosing a
design that meets given specifications, but where the design-
ers may be indifferent among any such designs. Satisficing is
well defined even if there are several competing performance
measures that trade off in complicated ways, whereas maximiz-
ing may be poorly defined without additional information about
preferences.

Satisficing has been studied in the engineering literature in
several contexts. In [25], the authors studied design optimization
using a satisficing objective and found that it is effective in
many practical fields. In [14], the authors studied control theory
using a satisficing objective function, and in [38], the authors
used satisficing to study optimal software design. In [10], the
authors used a multi-armed bandit algorithm to construct robots
that actively adapt their control policies to mitigate damage,
such as actuator failures. In order to speed the convergence of
their algorithm, they only sought to identify control policies
with performance above a set threshold, rather than to identify
an optimal policy. The theory that we develop in this paper
formalizes their notion of thresholding and provides bounds on
performance.

In this paper, we consider satisficing in the stochastic
multi-armed bandit problem [28], for which a decision maker
sequentially chooses one of a set of alternative options, called
arms, and earns a reward drawn from a stationary probability
distribution associated with that arm. The standard multi-armed
bandit problem uses a maximizing objective on accumulated
reward. For this objective there is a known performance bound
in terms of expected regret, which is the expected difference
between the reward received by the decision maker and the
maximum reward possible.
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Since the standard notion of regret is defined relative to the
unknown optimum, it can only be computed by an omniscient
agent; this notion of regret is not computable by a decision
maker faced with a multi-armed bandit problem. Nevertheless,
it is a useful theoretical concept, which facilitates the analysis
of algorithms designed to solve bandit problems. We extend the
notion of regret to satisficing objectives and use it to analyze
new algorithms.

In contrast to the standard stochastic multi-armed bandit prob-
lem in which the agent seeks to determine, with certainty, the
option with maximum mean reward, the satisficing multi-armed
bandit problem seeks to determine, with a desired confidence,
a satisfying option. We characterize satisficing in multi-armed
bandit problems using three separate features of the satisficing
objective.

The first feature selects the quantity on which the satisfic-
ing objective is defined. We consider two such quantities: (i)
the unknown mean reward of the selected option, and (ii) the
instantaneous observed reward.

The second feature treats the satisfaction aspect of the satis-
ficing problem. In particular, it selects if the objective function
should be optimizing, or if it should be satisfying.

The third feature treats the sufficing aspect of the satisfic-
ing problem. In particular, it selects if the decision-making
algorithm should be certain that the optimizing/satisfying cri-
terion is met, or if it is sufficient for the algorithm to meet a
desired threshold in confidence about the criterion. Different
combinations of the above three features of satisficing lead to
eight satisficing objectives that we discuss in this paper.

We begin by defining the four objectives for the case where
the satisficing quantity is the unknown mean reward. We show
that the bandit problem with each of these four objectives is
equivalent to a previously studied bandit problem and use the
equivalence to derive a performance bound for the satisficing
problems. These four objectives seek an arm with satisfyingly
high mean reward without regard to that reward’s dispersion.
To develop objectives with improved robustness properties, we
then consider the case where the satisficing quantity is the in-
stantaneous observed reward. We extend the first four objectives
to this case by adding an additional layer of thresholding, which
defines four more objectives. When the reward distributions be-
long to location-scale families, there is an equivalence between
the objectives defined in terms of mean reward and the robust
objectives defined in terms of instantaneous reward, which we
prove for Gaussian rewards.

For simplicity of exposition, we then specialize to Gaus-
sian multi-armed bandit problems, where the reward distri-
butions are Gaussian with unknown mean and known vari-
ance. For such problems, we develop several modifications of
the UCL algorithm that we developed in previous work [27].
These algorithms solve the problem with the satisficing mean
reward objectives (and thus also with the robust objectives).
We show that these algorithms achieve efficient performance.
These results extend our previous work [26] by incorporat-
ing the concept of sufficiency into the satisficing objective, as
well as by adding several new algorithms and their associated
analysis.

The assumption of Gaussian rewards with known variance
is not required, but it allows us to focus on the different no-
tions of regret, which is the main contribution of this paper. We
later show how the known variance assumption can be relaxed.
Our methods also extend immediately to many other impor-
tant classes of reward distributions, including distributions with
bounded support and sub-Gaussian distributions. We show how
to extend our methods in these cases and provide references to
the relevant literature for other extensions.

The remainder of the paper is structured as follows. In
Section II we review the standard stochastic multi-armed bandit
problem and the associated performance bounds. In Section III
we propose the satisficing objectives and bound performance
in terms of these objectives. In Section IV we specialize to the
case of Gaussian rewards and show the equivalence between
the satisficing in mean reward objectives and the satisficing in
instantaneous observed reward objectives. In Section V we re-
view the UCL algorithm, and in Section VI we design modified
versions of the UCL algorithm for the satisficing objectives. We
show that these modified algorithms achieve efficient perfor-
mance for Gaussian rewards. We show the results of numerical
simulations in Section VII and in Section VIII we conclude.

II. THE STOCHASTIC MULTI-ARMED BANDIT PROBLEM

In the stochastic multi-armed bandit problem a decision-
making agent sequentially chooses one among a set of N options
called arms in analogy with the lever of a slot machine. A single-
levered slot machine is called a one-armed bandit, so the case
of N ≥ 2 options is called a multi-armed bandit.

The decision-making agent collects reward rt ∈ R by choos-
ing arm it at each time t ∈ {1, . . . , T}, where T ∈ N is the
horizon length for the sequential decision process. The reward
from option i ∈ {1, . . . , N} is sampled from a stationary proba-
bility distribution νi which has an unknown mean mi ∈ R. The
decision-maker’s objective is to maximize some function of the
sequence of rewards {rt} by sequentially picking arms it using
only the information available at time t.

A. Maximization Objective

In the standard multi-armed bandit problem, the agent’s ob-
jective is to maximize the expected cumulative reward

J = E

[
T∑

t=1

rt

]
=

T∑
t=1

mit
. (1)

Equivalently, by defining mi∗ = maxi mi and Rt = mi∗ − mit
,

the expected regret at time t, minimizing (1) can be formulated
as minimizing the cumulative expected regret defined by

T∑
t=1

Rt = Tmi∗ −
N∑

i=1

miE
[
nT

i

]
=

N∑
i=1

ΔiE
[
nT

i

]
, (2)

where nT
i is the number of times arm i has been chosen up to

time T , Δi = mi∗ − mi is the expected regret due to picking
arm i instead of arm i∗, and the expectation is over the possible
rewards and decisions made by the agent.
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The interpretation of (2) is that suboptimal arms i �= i∗ should
be chosen as rarely as possible. This is a non-trivial task since
the mean rewards mi are initially unknown to the decision-
maker, who must try arms to learn about their rewards while
preferentially picking arms that appear more rewarding. The
tension between these requirements is known as the explore-
exploit tradeoff and is common to many problems in machine
learning and adaptive control.

B. Bound on Optimal Performance

Optimal performance in a bandit problem corresponds to
picking suboptimal arms as rarely as possible, as shown by
(2). Lai and Robbins [20] studied the standard stochastic multi-
armed bandit problem and showed that any policy solving the
problem must pick each suboptimal arm i �= i∗ a number of
times that is at least logarithmic in the time horizon T , i.e.,

E
[
nT

i

] ≥ (
1

D(νi ||νi∗)
+ o(1)

)
log T, (3)

where o(1) → 0 as T → +∞. The quantity D(νi ||νi∗) :=∫
νi(r) log νi (r)

νi ∗ (r) dr is the Kullback-Leibler divergence between
the reward density νi of any suboptimal arm and the reward den-
sity νi∗ of the optimal arm. Equation (3) implies that cumulative
expected regret must grow at least logarithmically in time.

The bound (3) is asymptotic in time, but researchers (e.g., [4],
[13], [27]) have developed algorithms that achieve cumulative
expected regret that is bounded by a logarithmic term uniformly
in time, sometimes with the same constant as in (3). Cumu-
lative expected regret that is uniformly bounded in time by a
logarithmic term is often called logarithmic regret for short. In
the literature, algorithms that achieve logarithmic regret with a
leading term that is within a constant factor of that in (3) are
considered to have optimal performance.

C. Multiple Plays

Anantharam et al. [2] studied a generalization of the multi-
armed bandit problem in which the agent picks k ≥ 1 arms at
each time t, which they called the multi-armed bandit problem
with multiple plays. The case k = 1 corresponds to the standard
multi-armed bandit problem defined above.

In the spirit of [2], let σ be a permutation of {1, . . . , N} such
that mσ (1) ≥ mσ (2) ≥ · · · ≥ mσ (N ) . For the multi-armed ban-
dit problem with k plays, the optimal policy with full informa-
tion corresponds to picking the arms σ(1), · · · , σ(k), called the
k-best arms [2]. In the case k = 1, σ(1) = i∗, the optimal arm
defined above. For the case of general k ≥ 1, the cumulative ex-
pected regret for the multi-armed bandit problem with multiple
plays is defined as follows [2]:

T

k∑
i=1

mσ (i) −
N∑

i=1

miE
[
nT

i

]
, (4)

which is a straightforward generalization of the regret (2). The
suboptimal arms σ(k + 1), · · · , σ(N) are called the k-worst

arms [2]. Define Δ(k)
i = mσ (k) − mi for each k-worst arm i.

The quantity Δ(k)
i is the generalization of the expected regret Δi

for the problem with multiple plays, where the expected value
of the optimal policy is that of the k best arms.

As in the case of a single play, optimal performance corre-
sponds to picking suboptimal (i.e., k-worst) arms as rarely as
possible. By [2] each k-worst arm i must be picked a number of
times that is at least logarithmic in the time horizon T , i.e.,

E
[
nT

i

] ≥ (
1

D(νi ||νσ (k))
+ o(1)

)
log T. (5)

This bound can be interpreted as a generalization of the Lai-
Robbins bound (3) where the Kullback-Leibler divergence is
taken with respect to the kth best arm σ(k) rather than the first
best arm σ(1) (i.e., i∗ in the case k = 1).

D. PAC Bounds

In the standard multi-armed bandit problem and the multi-
armed bandit problem with multiple plays, regret is defined in
terms of the unknown mean reward values mi . These regret
definitions imply that avoiding regret requires identifying op-
timal arms with certainty. The requirement to identify optimal
arms with certainty is characteristic of a maximizing decision-
making strategy. In contrast, a satisficing decision-making agent
should seek arms that are “good enough”. In this context, sat-
isficing corresponds to finding arms that are optimal with high
probability rather than with certainty.

The Probably Approximately Correct (PAC) model for learn-
ing introduced by Valiant [34] provides a natural way to cap-
ture this aspect of satisficing. Even-Dar et al. [11], [12] and
Mannor and Tsitsiklis [22] studied the multi-armed bandit prob-
lem using the PAC model and defined an ε-optimal arm i as one
for which mi > mi∗ − ε, i.e., the mean reward is within ε of
the optimum value. Equivalently, an ε-optimal arm is an arm i
for which the expected regret Δi is at most ε. Under the PAC
model one wishes to find an ε-optimal arm with probability of
at least 1 − δ. With probability one, this can be achieved in a
finite number of samples, so performance guarantees take the
form of bounds on the number of samples required, which is
referred to as sample complexity. In our notation, we denote
sample complexity by T ∗, as it is the value of the horizon length
at which sampling terminates.

When the rewards are Bernoulli distributed with unknown
success probabilities pi , the following lower bound holds [22]:

E [T ∗] ≥ O
(

1
ε2 log(1/δ)

)
. (6)

A similar result was reported in [11] for T ∗, rather than its
expected value. In other words, one must sample an arm at least
log(1/δ)/ε2 times to be able to declare that it is ε-optimal with
probability at least 1 − δ.

Similar to the work of [2] extending Lai and Robbins’ bounds
[20] to the case of multiple plays, Kalyanakrishnan et al. [15]
extended the work of [12] from finding the ε-optimal arm to
finding the m ε-best arms with probability at least 1 − δ. In [15]
this problem is called Explore-m, and an algorithm that solves
it (ε,m, δ)-optimal. Note that the problem in [12] is the special
case Explore-1. The Explore-m problem is studied in [15] for
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rewards that are Bernoulli distributed. It is proved that, for every
(ε,m, δ)-optimal algorithm, there exists a bandit problem on
which that algorithm has worst-case sample complexity of at
least log(m/8δ). Specifically, it is shown that there exists a
bandit problem such that the number of samples T ∗ required to
identify m ε-best arms obeys

T ∗ ≥ 1
18375

N

ε2 log
( m

8δ

)
. (7)

This gives a worst-case bound on the number of times all arms
need to be sampled to achieve (ε,m, δ)-optimality.

The bounds (6) and (7) were both formulated for the case of
Bernoulli rewards, but it is straightforward to extend them to the
case where the rewards are Gaussian distributed with unknown
mean and known variance.

E. Gaussian Rewards

In this paper we focus on the case of Gaussian reward dis-
tributions, where the distribution νi of rewards associated with
arm i is Gaussian with mean mi , which is unknown to the de-
cision maker, and variance σ2

s,i , which is known to the decision
maker from, e.g., previous observations or known measurement
characteristics. Relaxation of the assumption of known variance
is discussed in Remark 12. For the given case, the Kullback-
Leibler divergence in (3) takes the value

D(νi ||νi∗) =
1
2

(
Δ2

i

σ2
s,i∗

+
σ2

s,i

σ2
s,i∗

− 1 − log
σ2

s,i

σ2
s,i∗

)
. (8)

This equation is more easily interpreted when the reward vari-
ances are uniform, i.e., σ2

s,i = σ2
s for each i. In some cases we

assume uniform variance for simplicity of exposition, but the rel-
evant results are readily generalized to the case of non-uniform
variance. Assuming uniform variance, D(νi ||νi∗) = Δ2

i /2σ2
s ,

so the bound (3) is

E
[
nT

i

] ≥ (
2σ2

s

Δ2
i

+ o(1)
)

log T. (9)

This result can be interpreted as follows. For a given value of
Δi , a larger variance σ2

s makes the rewards more variable and
therefore it is more difficult to distinguish between the arms.
For a given value of σ2

s , a larger value of Δi makes it easier
to distinguish it from the optimal arm. The expressions for the
problem with multiple plays (i.e., (5)) are identical except for
substituting σ(k) for i∗ and Δ(k)

i for Δi .

III. THE MULTI-ARMED BANDIT PROBLEM WITH

SATISFICING OBJECTIVES

We now define the multi-armed bandit problem with satis-
ficing objectives. We propose several new satisficing notions
of regret and find associated bounds on optimal performance.
These notions capture two dimensions of the satisficing prob-
lem: satisfaction, i.e., the agent’s desire to obtain a reward that
is above a certain threshold, and sufficiency, i.e., the agent’s de-
sire to attain a level of confidence that its choice of a given arm
will bring them satisfaction. We define these notions first for
satisficing in mean reward and then extend them to satisficing
in instantaneous reward, which we refer to as robust satisficing.

A. Satisficing in Mean Reward

We define satisfaction in mean reward as having an expected
reward mit

that is above a specified threshold value M. For-
mally, we represent satisfaction in mean reward at time t by the
variable st , defined as

st = 1(mit
> M), (10)

where 1(·) is the indicator function, equal to one if the argument
is true and zero otherwise. The threshold M is a free parameter
that must be specified by the decision-making agent. Let mi∗ =
maxi mi be the maximum expected reward from any arm. The
agent can never be satisfied if M is greater than mi∗ , so we
assume that M ≤ mi∗ to make the problem feasible. If M >
mσ (2) , i.e., greater than the mean reward of the second-best arm,
then arm σ(1) = i∗ is the only one that is satisfying in mean
reward.

As in the multi-armed bandit problem with multiple plays, let
σ be a permutation of {1, . . . , N} such that mσ (1) ≥ mσ (2) ≥
· · · ≥ mσ (N ) . Let k be the largest integer such that mσ (k) ≥ M.
The arms {σ(1), . . . , σ(k)} are the k-best arms defined by the
satisfaction threshold M. For each arm i, define the thresh-
olded expected regret ΔM

i = max{M− mi, 0}. For each k-
best arm, the thresholded regret is zero, and for each k-worst
arm i ∈ {σ(k + 1), . . . , σ(N)}, the value ΔM

i > 0 quantifies
the extent to which the arm is unsatisfying in mean rewards.
Note that if M = mi∗ , ΔM

i = Δi , which is the standard mea-
sure of expected regret. We refer to the k-best and k-worst arms
as satisfying and non-satisfying arms, respectively.

The satisfaction variable st defined in (10) can be written as
a function of the sign of ΔM

it
:

st = 1(ΔM
it

= 0).

The quantity st is deterministic. However, since the agent does
not know the value of ΔM

i associated with any given arm,
they must learn it by sampling rewards from the various arms
and updating their beliefs accordingly. Adopting a Bayesian
framework, we assume st is a realization of a binary random
variable St . Due to the stochastic nature of the rewards the agent
will have less than perfect confidence in their beliefs about the
value of st .

We distinguish satisficing objectives in mean reward accord-
ing to the degree δ ∈ [0, 1] of confidence the agent seeks in their
beliefs, which we call sufficiency in mean reward. We define an
arm i to be (δ-)sufficing in mean reward if

Pr [St = 1] ≥ 1 − δ,

where the probability is evaluated based on the agent’s current
beliefs. For non-zero values of δ, the agent finds it sufficient
to have finite confidence that they are satisfied, while for δ =
0, the agent wants certainty that they are satisfied. The agent
cannot achieve certainty in finite time, so these two cases result
in qualitatively different behavior: δ = 0 means the agent will
never stop exploring, while δ > 0 means the agent will settle on
a set of acceptable options after finite time.
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TABLE I
TABLE OF THE FOUR DIFFERENT REGRET CONCEPTS, AND RESULTING

PROBLEMS, ASSOCIATED WITH THE SATISFICING-IN-MEAN-REWARD
MULTI-ARMED BANDIT PROBLEM

Threshold level Seek certainty (δ = 0) Suffice (δ > 0)

M > mσ ( 2 ) 1) Standard bandit 3) δ -sufficing
M ≤ mσ ( 2 ) 2) Satisfaction-in-mean-rwd 4) (M, δ)-satisficing

The satisficing-in-mean-reward objective is

T∑
t=1

1
(
(st = 1) or Pr [St = 1] > 1 − δ

)
. (11)

The objective (11) is maximized if, at each time, a satisfying
option is selected, or the probability that the option is satisfying
is sufficiently high. The event that an option is satisfying is not
known a priori and must be learned by exploration. This results
in an explore-exploit tradeoff as in the standard multi-armed
bandit problem.

To quantify the optimal explore-exploit tradeoff in the spirit
of the Lai-Robbins bound we introduce the following notion of
the expected satisficing regret at time t, Rt , defined by

Rt = ΔM
it

1(Pr[St = 1] < 1 − δ). (12)

If the agent is insufficiently certain of being satisfied by the
choice of it , they incur expected regret of ΔM

it
. Otherwise, they

incur no regret.
We define the satisficing-in-mean-reward multi-armed bandit

problem in terms of minimizing cumulative expected satisficing
regret.

Definition 1 (Satisficing-In-Mean-Reward Multi-Armed
Bandit Problem): The satisficing-in-mean-reward multi-armed
bandit problem is to minimize the cumulative sum of the
expected satisficing regret (12):

JR = E

[
T∑

t=1

Rt

]
. (13)

The satisficing-in-mean-reward bandit problem has two pa-
rameters: M and δ. These parameters characterize the agent’s
thresholds for satisfaction and sufficiency, respectively. For pur-
poses of analysis we distinguish four cases as a function of the
parameter values. For the satisfaction threshold M ∈ R, the
first case is setting M > mσ (2) , while the second case is set-
ting M ≤ mσ (2) . For the sufficiency threshold δ ∈ [0, 1], the
first case is the certainty value δ = 0, while the second case is
δ ∈ (0, 1].

Table I summarizes the four problems that result from the in-
teraction of the two dimensions of satisfaction and sufficiency.
Problem 1 sets the satisfaction threshold M > mσ (2) and the
sufficiency threshold δ = 0, which results in a standard ban-
dit problem. We call Problem 2 with M ≤ mσ (2) and δ = 0
satisfaction-in-mean-reward. We call Problem 3 with M >
mσ (2) and δ ∈ (0, 1] δ-sufficing. Finally, we call Problem 4
with M ≤ mσ (2) and δ ∈ (0, 1], (M, δ)-satisficing.

Remark 1: We note that the distinction between Problems 1
and 2 and between Problems 3 and 4 is only due to the range
of values M can take. These problems can be thought of as a

single problem in which the choice ofM dictates the cardinality
of the set of satisfying arms. However, the two ranges of thresh-
olds M > mσ (2) and M ≤ mσ (2) allow us to clearly contrast
the satisficing problem with the standard problem. Assuming
M > mσ (2) in Problems 1 and 3 is equivalent to assuming that
the agent seeks the (unknown) highest mean reward, which is
consistent with the standard problem. The policies we define for
Problems 1 and 3 do not rely on a known threshold M. Assum-
ing M ≤ mσ (2) is equivalent to assuming that the agent seeks
to meet a (known) desired mean reward threshold. The policies
we define for Problems 2 and 4 do rely on the threshold M.
These same assumptions analogously distinguish Problems 5
and 7 from Problems 6 and 8 defined in Section III-B. However,
unlike the policies for Problems 1 and 3, the policies defined
for Problems 5 and 7 do rely on M > mσ (2) being known. We
do not assume in any of the problems that the agent knows the
permutation σ, so no policies depend on σ.

We develop performance bounds for each of these problems
in terms of corollaries of the performance bounds presented in
Section II. For the problems with δ = 0, these bounds show that
cumulative expected regret must grow at least at a logarithmic
rate, while for the problems with δ > 0, finite regret is possible.

Problem 1 Standard Bandit: The satisficing-in-mean-reward
multi-armed bandit problem with M > mσ (2) and δ = 0 is a
standard multi-armed bandit problem. Therefore, for this prob-
lem, the Lai-Robbins bound (3) holds, and the expected number
of times a suboptimal arm i is chosen obeys

E
[
nT

i

] ≥ (
1

D(νi ||νi∗)
+ o(1)

)
log T.

As a direct consequence, the cumulative expected satisficing
regret (13) grows at least logarithmically with time horizon T :

JR ≥
(

N∑
i=1

ΔM
i

D(νi ||νi∗)
+ o(1)

)
log T.

Problem 2 Satisfaction-in-Mean-Reward: The satisfaction-
in-mean-reward problem, defined as the satisficing-in-mean-
reward multi-armed bandit problem where M ≤ mσ (2) and
δ = 0, also has a logarithmic lower bound on the cumulative
expected satisficing regret:

Corollary 2 (Satisfaction-In-Mean-Reward Regret Bound):
The satisfaction-in-mean-reward problem is a satisficing-in-
mean-reward multi-armed bandit problem where the objective
(13) is defined with M ≤ mσ (2) and δ = 0. Any policy solving
the satisfaction-in-mean-reward problem obeys

E
[
nT

i

] ≥ (
1

D(νi ||νσ (k))
+ o(1)

)
log T (14)

for each non-satisfying arm i, where σ is a permutation of
{1, . . . , N} such that mσ (1) ≥ mσ (2) ≥ · · · ≥ mσ (N ) and k is
the largest integer such that mσ (k) ≥ M.

Proof: The definition of satisfaction (10) implies that perfor-
mance bounds for the satisfaction-in-mean-reward problem and
the multi-armed bandit problem with multiple plays are equiv-
alent. Given a problem instance, the threshold M induces the
number k of satisfying arms, so performance can be analyzed
as in the problem with multiple plays. The bound (5) applies to
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the problem with multiple plays and the equivalence implies the
result. �

Problem 3 δ-Sufficing: The δ-sufficing problem, defined as
the satisficing-in-mean-reward multi-armed bandit problem
where M > mσ (2) and δ ∈ (0, 1], admits policies that achieve
cumulative expected regret that is a bounded function of T :

Corollary 3 (δ-Sufficing Regret Bound): The δ-sufficing
problem is a satisficing-in-mean-reward multi-armed bandit
problem where the objective (13) is defined with M > mσ (2)
and δ ∈ (0, 1]. Any policy solving the δ-sufficing problem obeys

nT
i ≥ O

(
1
ε2 log(1/δ)

)
(15)

for each suboptimal arm i, where ε = Δi = M− mi .
Proof: The definition of satisfaction (10) in the δ-sufficing

problem implies that the agent incurs regret if the arm selected
is not (ε = 0, δ)-optimal. The bound (6) thus provides a lower
bound on the number of times the agent must incur regret. �

Problem 4 (M, δ)-Satisficing: The (M, δ)-satisficing pro-
blem, defined as the satisficing-in-mean-reward multi-armed
bandit problem where M ≤ mσ (2) and δ ∈ (0, 1], admits poli-
cies that achieve cumulative expected regret that is a bounded
function of T :

Corollary 4 ((M, δ)-Satisficing Regret Bound): The (M,
δ)-satisficing problem is a satisficing-in-mean-reward multi-
armed bandit problem where the objective (13) is defined
with M ≤ mσ (2) and δ ∈ (0, 1]. Any policy solving the
(M, δ)-satisficing multi-armed bandit problem obeys

T ∗ =
N∑

i=1

nT ∗
i ≥ 1

18375
N

ε2 log
(

k

8δ

)
(16)

where σ is a permutation of {1, . . . , N} such that mσ (1) ≥
mσ (2) ≥ · · · ≥ mσ (N ) , k is the largest integer such that
mσ (k) ≥ M, and ε = M− mσ (k) . Since only arms in {σ(k +
1), . . . , σ(N)} result in regret, the left hand side of (16) is an
upper bound on the expected satisficing regret (13).

Proof: The definition of satisfaction (10) in the (M, δ)-
sufficing problem implies that an algorithm that minimizes satis-
ficing regret is equivalent to an (ε = mσ (k) −M, k, δ)-optimal
algorithm in the sense of [15]. Therefore, the bound (7) applies
to the (M, δ)-sufficing problem. �

Recall that T ∗ is the number of times all arms (including
the optimal one) should be cumulatively sampled such that fol-
lowing T ∗ an (M, ε)-optimal decision can be made. The lower
bounds on both T ∗ and nT ∗

i are independent of T , suggesting
that for (M, ε)-satisficing, a bounded regret can be achieved.

Corollaries 3 and 4 show that the worst-case regret is a
bounded function of T for the sufficing problems, where δ > 0.
Therefore we can conclude that the expected regret for such
problems can also be a bounded function of T . This is an impor-
tant distinction from the maximizing problems, where δ = 0: in
such problems, the Lai-Robbins bound (3) implies that the ex-
pected regret must grow logarithmically with T . As is standard
in the bandit literature, we say an algorithm has efficient perfor-
mance if its regret matches, up to constant factors, the relevant
growth rates: log T for maximizing problems and log(k/δ)/ε2

for sufficing problems.

B. Robust Satisficing in Instantaneous Reward

The four objectives defined in Section III-A above define
satisfaction (10) in terms of the mean reward mi from an arm i.
This captures situations where the time scale for satisfaction
spans numerous decision times. For example, consider foraging,
where an animal must consume a minimum amount of food each
day. If each decision time represents a small portion of the day,
the total food consumed during the day represents the sum of
numerous small rewards from each decision time. As long as
the mean reward at each decision time is sufficiently high, the
animal will meet its daily food requirement.

If, instead, the decision time scale is the same as the satisfac-
tion time scale, it is more appropriate to define satisfaction at
time t in terms of the reward rt received at that time. This re-
quires more robust algorithms, in the sense that they must ensure
that each reward, rather than simply the mean reward, is satisfy-
ing with high probability. In this context we define satisfaction
in two stages. First, we define happiness as receiving a reward rt

that is at least a threshold value M ∈ R. We represent happiness
at time t as the Bernoulli random variable ht , defined as

ht = 1(rt > M). (17)

We define the success probability of the happiness random
variable ht as

pi = Pr [ht = 1|it = i] . (18)

The success probability pi is the expected rate of happiness due
to picking arm i. This defines a Bernoulli multi-armed bandit
problem where the mean reward (i.e., happiness rate) is pi .
We then define satisfaction in terms of a threshold Π for this
Bernoulli multi-armed bandit problem as we did in (10):

st = 1(pit
> Pi). (19)

Given the happiness threshold M , this definition is identical to
the definition (10) of satisfaction where mi = pi , pi∗ = maxi pi ,
and M = Π. Therefore the four satisficing multi-armed bandit
problems defined in Table I can be used to define four additional
problems in this context, which we call robust satisficing.

Definition 2 (Robust Satisficing Multi-Armed Bandit Probl-
em): The robust satisficing multi-armed bandit problem is
to minimize the cumulative sum of the expected satisficing
regret (12):

JR = E

[
T∑

t=1

Rt

]
,

where the regret Rt is defined using the notion of satisfaction
defined by (17)–(19).

A robust satisficing multi-armed bandit problem has three
parameters: M,Π, and δ. We assume that M and Π are chosen
such that there is at least one satisfying arm; otherwise, the ex-
pected regret must grow indefinitely. Table II summarizes the
four robust satisficing multi-armed bandit problems that result
from the interaction of the two dimensions of satisfaction and
sufficiency, which we list below. We assume that ς is a permu-
tation of {1, . . . , N} such that pς (1) ≥ pς (2) ≥ . . . ≥ pς (N ) .



3794 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 8, AUGUST 2017

TABLE II
TABLE OF THE FOUR DIFFERENT REGRET CONCEPTS, AND RESULTING

PROBLEMS, ASSOCIATED WITH THE ROBUST SATISFICING MULTI-ARMED
BANDIT PROBLEM

Threshold level Seek certainty (δ = 0) Suffice (δ > 0)

Π > pς ( 2 ) 5) Robust bandit 7) δ -robust sufficing
Π ≤ pς ( 2 ) 6) Robust satisfaction 8)(Π , δ)-robust satisficing

The quantity pi represents the probability of happiness (i.e., receiving a
reward of at least M ) due to choosing arm i

Problem 5. Robust Bandit: The robust bandit problem is de-
fined as the robust satisficing multi-armed bandit problem where
Π > pς (2) and δ = 0.

Problem 6. Robust Satisfaction: The robust satisfaction pro-
blem is defined as the robust satisficing multi-armed bandit
problem where Π ≤ pς (2) and δ = 0.

Problem 7. δ-Robust Sufficing: The δ-robust sufficing prob-
lem is defined as the robust satisficing multi-armed bandit prob-
lem where Π > pς (2) and δ ∈ (0, 1].

Problem 8. (Π, δ)-Robust Satisficing: The (Π, δ)-robust sat-
isficing problem is defined as the robust satisficing multi-armed
bandit problem where Π ≤ pς (2) and δ ∈ (0, 1].

For a large class of reward distributions, there is an equiv-
alence between Problems 5–8 defined in terms of rt and
Problems 1–4 defined in terms of mi . By Lemma 5 below,
when the rewards rt follow a Gaussian distribution with un-
known mean mi and known variance σ2

s,i , each problem in
Table II is equivalent to the analogous problem in Table I.

IV. SATISFICING WITH GAUSSIAN REWARDS

In this section we study the Gaussian satisficing multi-
armed bandit problem. This is the satisficing multi-armed ban-
dit problem where the reward rt due to selecting arm it is
rt ∼ N (mit

, σ2
s,it

) and σ2
s,it

is the known variance of arm it . In
this case, we show a formal equivalence between the satisficing-
in-mean-reward multi-armed bandit problems and the robust sat-
isficing multi-armed bandit problems. The choice of Gaussian
rewards facilitates modeling correlation dependencies among
arms, which can be useful in applications.

A. Equivalence Lemma for Gaussian Rewards

For the Gaussian robust satisficing multi-armed bandit prob-
lem, define the quantity

xi =
mi − M

σs,i
, (20)

which we call the standardized mean reward, for each arm i.
The following lemma states that each Gaussian robust satisfic-
ing multi-armed bandit problem where satisfaction is defined
by (19) is equivalent to a Gaussian satisficing-in-mean-reward
multi-armed bandit problem where satisfaction is defined by
(10) with standardized reward distributions.

Lemma 5 (Equivalence for Gaussian Rewards): Each Gau-
ssian robust satisficing multi-armed bandit problem is equiva-
lent to a Gaussian satisficing-in-mean-reward multi-armed ban-

dit problem with rewards r̃t ∼ N (xit
, 1) with xi given by (20).

That is, the ordering of the arms in terms of xi is identical to the
ordering in terms of pi , and, in particular, the arm with maximal
xi is the arm with maximal pi .

Proof: With Gaussian rewards, the probability (18) of hap-
piness due to choosing arm i is

pi = Pr [mi + σs,iz ≥ M ]

= Φ
(

mi − M

σs,i

)
= Φ(xi), (21)

where z ∼ N (0, 1) is a standard normal random variable
and Φ(z) is its cumulative distribution function. Let i∗ =
arg maxipi . The key insight is that Φ(·) is a monotonically
increasing function, which implies that the ordering of arms in
terms of pi is identical to the ordering in terms of xi . In partic-
ular, arm i∗ is the arm with maximal xi . Therefore, satisfaction
in terms of rt is equivalent to satisfaction in terms of the mean
reward xi .

This is again a Gaussian bandit problem: consider the stan-
dardized reward

r̃t =
rt − M

σs,it

, (22)

which is a Gaussian random variable r̃t ∼ N (xit
, 1). The quan-

tity xi plays the role of the mean reward mi and the transformed
rewards have uniform variance σ̃2

s = 1. Minimizing the robust
satisficing regret in terms of rt is equivalent to minimizing the
satisficing regret in terms of xi . �

Lemma 5 has two implications for the relationship between
Problems 5–8 and Problems 1–4 when rewards are Gaussian
distributed. First, each Problem 5–8 inherits a regret bound from
the corresponding Problem 1–4. Second, each Problem 5–8 can
be solved by applying the algorithm developed for Problem 1–4
by first applying the standardization transformation (22) to the
observed rewards.

Remark 6 (Location-Scale Families): Lemma 5 is easily
generalized to reward distributions belonging to location-scale
families. A location-scale family is a set of probability distri-
butions closed under affine transformations, i.e., if the random
variable X is in the family, so is the variable Y = a + bX, where
a, b ∈ R. Any random variable X in such a family with mean μ
and standard deviation σ can be written as X = μ + σZ, where
Z is a zero-mean, unit-variance member of the family. Examples
include the uniform distribution and Student’s t-distribution.

B. Application to the Gaussian Robust Satisficing
Problems

In this section we show how to use the equivalence result of
Lemma 5 for the full set of robust satisficing problems in the
case of Gaussian rewards.

Recall from Lemma 5 that the probability of happiness
(18) due to picking an arm i is pi . In the proof of the
lemma, we show that maximizing the probability of happiness
is equivalent to maximizing the mean reward in a Gaussian
multi-armed bandit problem with mean rewards xi = Φ−1(pi),
where xi is the standardized mean reward (mi − M)/σs,i .
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Given an algorithm developed for one of the Problems 1–
4 defined in Table I, it can be applied to the correspond-
ing Problem 5–8 defined in Table II as follows. Standard-
ize the observed rewards rt and run the algorithm using the
standardized rewards r̃t = (rt − M)/σs,it

as input. For ex-
ample, Problem 5, the robust multi-armed bandit problem,
can be solved by an algorithm designed to solve Problem 1,
the standard bandit problem, where rewards are transformed
according to (22) before being input to the algorithm.
The same procedure allows one to apply algorithms de-
veloped for Problem 3, δ-sufficing, to Problem 7, δ-robust
sufficing.

For Problem 6, robust satisfaction, and Problem 8, (Π, δ)-
robust satisficing, we need a threshold X that is analogous to
the threshold M defined for Problem 2, satisfaction-in-mean-
reward, and Problem 4, (M, δ)-satisficing. We use the relation-
ship between xi and pi to derive the threshold. In particular,
for a robust satisficing problem with probability of happiness
threshold Π, define the threshold X by

X = Φ−1(Π). (23)

When the rewards are Gaussian distributed, we can apply
algorithms developed for Problems 2 and 4 to the correspond-
ing robust satisficing Problems 6 and 8 by standardizing re-
wards and using the threshold X defined in (23) in place of the
threshold M.

Lemma 5 implies that the efficient performance guarantees
for algorithms designed for Problems 1–4 also hold when they
are used to solve the robust satisficing Problems 5–8.

V. THE UCL ALGORITHM FOR GAUSSIAN MULTI-ARMED

BANDIT PROBLEMS

In this section we review the UCL algorithm, a Bayesian al-
gorithm we developed and analyzed in [27] to solve the standard
Gaussian multi-armed bandit problem. The UCL algorithm was
developed by applying the Bayesian upper confidence bound
approach of [16] to the case of Gaussian rewards; the choice of
Gaussian rewards facilitated the modeling of human decision-
making behavior.

The UCL algorithm maintains a belief about the mean re-
wards m by starting with a prior and updating it using Bayesian
inference as new rewards are received. At each time t the
algorithm chooses arm it using a heuristic that is a simple
function of the current belief state. For uninformative priors,
the UCL algorithm achieves logarithmic regret, i.e., optimal
performance.

Uninformative priors correspond to having no information
about the mean rewards. A major advantage of the UCL
algorithm is its ability to incorporate information about the mean
rewards through the use of a so-called informative prior. In [27],
we showed that an appropriately-chosen prior can significantly
increase the performance of the UCL algorithm. Several differ-
ent UCL algorithms were developed in [27], including a stochas-
tic decision rule to model human behavior; here we cover only
the deterministic UCL algorithm, which, for brevity, we refer to
as the UCL algorithm.

A. Prior

The prior distribution captures the agent’s knowledge about
the vector of mean rewards m before beginning the task. We
assume that the prior distribution is multivariate Gaussian with
mean μ0 ∈ RN and covariance Σ0 ∈ RN ×N :

m ∼ N (μ0 ,Σ0). (24)

The ith element of μ0 , denoted by μ0
i , represents the agent’s

mean belief of the reward mi associated with arm i. The (i, i)
element of Σ0 , denoted by

(
σ0

i

)2
, represents the agent’s uncer-

tainty associated with that belief. Off-diagonal elements of Σ0 ,
e.g., σ0

ij , represent the agent’s perceived relationship between
mi and mj : if σ0

ij is positive, high values of mi are correlated
with high values of mj , while if it is negative, high values of mi

correlate with low values of mj . Any positive-definite matrix
can be used as Σ0 , but it is often useful to consider a structured
parametrization, such as Σ0 = σ2

0Σ, where σ2
0 > 0 encodes the

agent’s uncertainty. One important special case is an uncorre-
lated prior, where Σ is diagonal, which corresponds to the agent
perceiving the rewards associated with different arms to be in-
dependent. Another important special case is an uninformative
prior, which corresponds to complete uncertainty, i.e., the limit
σ2

0 → +∞; an uninformative prior can be thought of as a special
case of an uncorrelated prior.

B. Inference Update

At each time t the agent picks an arm it and receives a reward
rt that is Gaussian distributed: rt ∼ N (mit

, σ2
s,it

). Bayesian in-
ference provides an optimal solution to the problem of updating
the belief state (μt ,Σt) (i.e., the sufficient statistics for esti-
mating m) to incorporate this new information. Let Λt = Σ−1

t ,
and let φt ∈ RN be the vector with element it equal to 1 and
all other elements equal to zero. Then given the Gaussian prior
(24), the Bayesian update equations are linear [17]:

q =
rtφt

σ2
s,it

+ Λt−1μt−1 ,

Λt =
φtφ

T
t

σ2
s,it

+ Λt−1 , μt = Σtq. (25)

C. Decision Heuristic

At each time t the UCL algorithm computes a value Qt
i for

each arm i. The algorithm then picks the arm it that maximizes
Qt

i . That is, it picks

it = arg max
i

Qt
i . (26)

The heuristic value Qt
i is

Qt
i = μt

i + σt
i Φ

−1(1 − αt), (27)

where μt
i = (μt)i , (σt

i )
2 = (Σt)ii , αt = 1/(Kt), K > 0 is a

tunable parameter, and Φ−1(·) is the quantile function of the
standard normal random variable. The heuristic Qt

i is a Bayesian
upper limit for the value of mi based on the information available
at time t. It represents an optimistic assessment of the value of
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mi . The decision made can be thought of as the most optimistic
one consistent with the current information.

D. Performance

In [27], we studied the case of homogeneous sampling noise
(i.e., σ2

s,i = σ2
s for each i) and showed that the UCL algorithm

achieves logarithmic cumulative expected regret uniformly in
time. In particular, we proved that the following theorem holds.
We define {RUCL

t }t∈{1,...,T } as the sequence of expected regret
for the deterministic UCL algorithm.

Theorem 7 (Regret of the Deterministic UCL Algorithm [27]):
The following statements hold for the Gaussian multi-armed
bandit problem and the deterministic UCL algorithm with
uncorrelated uninformative prior and K = 1:

1) the expected number of times a suboptimal arm i is chosen
until time T satisfies

E
[
nT

i

] ≤ (
8σ2

s

Δ2
i

+ 2
)

log T + 3 ;

2) the cumulative expected regret until time T satisfies

JR =
T∑

t=1

Rt ≤
N∑

i=1

Δi

((
8σ2

s

Δ2
i

+ 2
)

log T + 3

)
.

The implication of this theorem can be seen by comparing 1)
with the Lai-Robbins bound (9): the UCL algorithm achieves
logarithmic regret uniformly in time with a constant that differs
from the optimal asymptotic one by a constant factor, and thus
is considered to have optimal performance.

VI. ALGORITHMS FOR SATISFICING GAUSSIAN MULTI-ARMED

BANDIT PROBLEMS

In this section we develop algorithms for solving Gaussian
multi-armed bandit problems with the satisficing objectives pro-
posed in Section III. All the algorithms consist of modified ver-
sions of the UCL algorithm. We analyze the algorithms and
show that they achieve efficient performance. The UCL algo-
rithm solves the standard Gaussian multi-armed bandit problem,
i.e., the satisficing Gaussian multi-armed bandit problem with
M > mσ (2) and δ = 0 (Problem 1). We develop three new UCL
variants for Problems 2–4 in Table I. These algorithms can then
be applied to Problems 5–8 in Table II. At the end of the sec-
tion, we consider extensions to reward distributions other than
the Gaussian with known variance.

A. Problem 2: Satisfaction-In-Mean-Reward UCL
Algorithm

A simple modification of the UCL algorithm achieves log-
arithmic regret for the Gaussian satisfaction-in-mean-reward
problem, which is the satisficing-in-mean-reward multi-armed
bandit problem with M ≤ mσ (2) and δ = 0 (Problem 2). We
define this algorithm, which we refer to as the satisfaction-in-
mean-reward UCL algorithm, as follows.

As in (27), define the heuristic value Qt
i as

Qt
i = μt

i + σt
i Φ

−1(1 − αt),

where αt = 1/(Kt) and K > 0 is again a tunable parameter.
Let M ∈ R be the satisfaction threshold, so the agent is

satisfied if it picks an arm with mi ≥ M. Let the eligible set
at time t be {i | Qt

i ≥ M}. In contrast to the UCL selection
scheme (26) that picks the arm with maximal Qt

i , satisfaction-
in-mean-reward UCL picks any arm in the eligible set. That is,
if the eligible set is non-empty, then

it ∈ {i|Qt
i ≥ M}, (28)

or if the eligible set is empty, then satisfaction-in-mean-reward
UCL picks the arm with maximal Qt

i . Thus, if the most recently
selected arm is in the eligible set, it may be selected again even
if it does not have the maximal Qt

i .
The satisfaction-in-mean-reward UCL algorithm achieves

logarithmic cumulative expected satisfaction-in-mean-reward
regret, as guaranteed by the following theorem.

Theorem 8 (Regret of the Satisfaction-In-Mean-Reward UCL
Algorithm): Let a Gaussian multi-armed bandit problem with
the satisfaction-in-mean-reward objective have at least one
arm i that obeys mi > M, and, without loss of generality,
assume σ2

s,i = 1 for each arm i. Then, the following statements
hold for the satisfaction-in-mean-reward UCL algorithm with
uncorrelated uninformative prior and K = 1:

1) the expected number of times a non-satisfying arm i is
chosen until time T satisfies

E
[
nT

i

] ≤
(

8(
ΔM

i

)2 + 3

)
log T + 4;

2) the cumulative expected satisfaction-in-mean-reward re-
gret until time T satisfies

JSM ≤
N∑

i=1

ΔM
i

((
8(

ΔM
i

)2 + 3

)
log T + 4

)
.

To prove Theorem 8 we use the following bound from [1].
Lemma 9 (Bounds on the Inverse Gaussian cdf): For the st-

andard normal (i.e., Gaussian) random variable z and a constant
w ∈ R≥0 ,

Pr [z ≥ w] ≤ 2e−w 2 /2
√

2π(w +
√

w2 + 8/π)
≤ 1

2
e−w 2 /2 . (29)

It follows from (29) that for any α ∈ [0.5, 1],

Φ−1(1 − α) ≤
√

−2 log α. (30)

Proof of Theorem 8: The proof proceeds as in the proof of
Theorem 7 in [27], which itself follows the proofs in [4]. Let i be
a non-satisfying arm, i.e., mi < M, and recall that i∗ designates
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the maximum mean reward. Then

E
[
nT

i

]
=

T∑
t=1

Pr [it = i]

≤
T∑

t=1

Pr
[
Qt

i ≥ M]

+ Pr
[
Qt

i ≥ Qt
i∗ & max

j
Qt

j < M
]

≤ η +
T∑

t=1

(
Pr

[
Qt

i ≥ M, nt
i ≥ η

]
+ Pr

[
Qt

i ≥ Qt
i∗ , n

t
i ≥ η

])
.

The first term in the summand corresponds to the probability
that the non-satisfying arm i is in the eligible set, while the
second term corresponds to the probability that the eligible set
is empty and that a non-satisfying arm appears better than an
optimal arm.

The statement Qt
i ≥ Qt

i∗ implies that at least one of the fol-
lowing inequalities holds:

μt
i ≥ mi + Ct

i (31)

μt
i∗ ≤ mi∗ − Ct

i∗ (32)

mi∗ < mi + 2Ct
i , (33)

where Ct
i = σt

i Φ
−1(1 − αt) and αt = 1/(Kt). Otherwise, if

none of (31)–(33) holds, then

Qi∗ = μt
i∗ + Ct

i∗ > mi∗ ≥ mi + 2Ct
i > μt

i + Ct
i = Qt

i .

We first analyze the probability that (31) holds. For an un-
correlated uninformative prior, μt

i is equal to m̄t
i , the empirical

mean reward observed at arm i until time t, and σt
i = 1/

√
nt

i .
Therefore, for an uncorrelated uninformative prior,

Qt
i = m̄t

i +
1√
nt

i

Φ−1(1 − αt).

Conditional on nt
i , the empirical mean reward m̄t

i is itself a
Gaussian random variable with mean mi and standard deviation
1/

√
nt

i , so (31) holds if

m̄t
i ≥ mi +

1√
nt

i

Φ−1(1 − αt)

⇔ mi +
z√
nt

i

≥ mi +
1√
nt

i

Φ−1(1 − αt)

⇔ z ≥ Φ−1(1 − αt),

where z ∼ N (0, 1) is a standard normal random variable. Thus,
for an uninformative prior, Pr [(31) holds] = αt = 1

K t .
Similarly, (32) holds if

m̄t
i∗ ≤ mi∗ − Ct

i∗

⇔ mi∗ +
z√
nt

i

≤ mi − 1√
nt

i

Φ−1(1 − αt)

⇔ z ≤ −Φ−1(1 − αt),

where z ∼ N (0, 1) is a standard normal random variable. Thus,
for an uninformative prior, Pr [(32) holds] = αt = 1

K t .
Inequality (33) holds if

mi∗ < mi +
2√
nt

i

Φ−1(1 − αt)

⇔ Δi <
2√
nt

i

Φ−1(1 − αt) ⇔ Δ2
i n

t
i

4
< −2 log αt (34)

⇒ Δ2
i n

t
i

4
< 2 log t ⇒ Δ2

i n
t
i

4
< 2 log T

where Δi = mi∗ − mi and inequality (34) follows from bound
(30). Thus, for an uninformative prior, (33) never holds if

nt
i ≥

8
Δ2

i

log T. (35)

Thus, for nt
i sufficiently large, Pr [Qt

i ≥ Qt
i∗ ] = 2/(Kt).

We now bound the probability Pr [Qt
i ≥ M] that a non-

satisfying arm i is in the eligible set. Note that Qt
i ≥ M implies

that at least one of the following inequalities holds:

μt
i ≥ mi + Ct

i (36)

M < mi + 2Ct
i . (37)

Otherwise, if neither (36) nor (37) holds, M ≥ mi + 2Ct
i >

μt
i + Ct

i = Qt
i and arm i is not in the eligible set.

(36) is identical to (31) and (37) to (33). For an uninformative
prior, Pr [(36) holds] = αt = 1

K t . And (37) holds if

M < mi +
2√
nt

i

Φ−1(1 − αt)

⇔ ΔM
i <

2√
nt

i

Φ−1(1 − αt)

⇔
(
ΔM

i

)2
nt

i

4
< −2 log(αt)

⇒
(
ΔM

i

)2
nt

i

4
< 2 log t ⇒

(
ΔM

i

)2
nt

i

4
< 2 log T.

Thus, for an uninformative prior, (37) never holds if

nt
i ≥

8(
ΔM

i

)2 log T. (38)

Since mi∗ ≥ M, for each non-satisfying arm i, ΔM
i ≤ Δi .

Thus, 1/
(
ΔM

i

)2 ≥ 1/Δ2
i and (38) implies (35). So setting

η =

⌈
8(

ΔM
i

)2 log T

⌉
(39)

yields the bound

E
[
nT

i

] ≤ η +
T∑

t=1

(
Pr

[
Qt

i ≥ M, nt
i ≥ η

]
+ Pr

[
Qt

i ≥ Qt
i∗ , n

t
i ≥ η

])
<

⌈
8(

ΔM
i

)2 log T

⌉
+ 3

T∑
t=1

1
t
.
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The sum can be bounded by the integral

T∑
t=1

1
t
≤ 1 +

∫ T

1

1
t
dt = 1 + log T,

yielding the bound in the first statement of the theorem:

E
[
nT

i

] ≤
(

8(
ΔM

i

)2 + 3

)
log T + 4.

The second statement of the theorem follows from the
definition (12) of expected satisficing regret. �

B. Problem 3: δ-Sufficing UCL Algorithm

An alternative modification of the UCL algorithm achieves
finite satisficing regret in the Gaussian δ-sufficing problem,
which is the satisficing-in-mean-reward multi-armed bandit with
M > mσ (2) and δ ∈ (0, 1] (Problem 3). For the agent, this can
be thought of as wanting to have finite confidence that it has
found the unknown optimal arm σ(1). For the δ-sufficing prob-
lem, define the heuristic function

Qt
i = μt

i + σt
i Φ

−1
(

1 − δ

2

)
.

We define the δ-sufficing UCL algorithm as the algorithm that
selects arm it = arg maxiQ

t
i at each decision time t. The δ-

sufficing UCL algorithm achieves finite cumulative satisficing
regret, as guaranteed by the following theorem.

Theorem 10: Consider the δ-sufficing UCL algorithm with
an uninformative prior. The number of times the picked arm
it is non-satisfying with probability greater than δ is upper
bounded as

nT
i <

4σ2
s

Δ2
i

(
Φ−1

(
1 − δ

2

))2

+ 1.

Proof: We bound nT
i by noting that a non-satisfying arm i

is picked only if Qt
i ≥ Qt

i∗ , which can be decomposed as in the
proof of Theorem 8 into the three conditions

μt
i ≥ mi + Ct

i (40)

μt
i∗ ≤ mi∗ − Ct

i∗ (41)

mi∗ < mi + 2Ct
i . (42)

(42) is equivalent to

Δi = mi∗ − mi < 2Ct
i =

2σs√
nt

i

Φ−1(1 − δ/2).

Squaring and rearranging, we see that this never holds if

nt
i >

4σ2
s

Δ2
i

(
log(1/δ)

log 2
+ 1

)
>

4σ2
s

Δ2
i

(
Φ−1(1 − δ/2)

)2 = η.

The same argument as in the proof of Theorem 8 shows that
for nt

i ≥ 1, (40) and (41) each hold with probability at most
δ/2. Therefore, for nt

i > η + 1, a non-satisfying arm is selected
with probability at most δ. �

Theorem 10 guarantees that the δ-sufficing UCL algorithm
achieves finite regret. Furthermore, the algorithm is efficient

in that the regret matches the dependence on ε and δ in
the bound (15). To see this, note that a non-satisfying arm
i with Δi is an ε = Δi-suboptimal arm, so Corollary 3 im-
plies that nT

i is lower bounded by O (
log(1/δ)/ε2

)
. The state-

ment of Theorem 10 combined with the bound (30) on the
inverse Gaussian cdf implies that nT

i is upper bounded by
8σ2

s log(2/δ)/Δ2
i + 1 = 8σ2

s log(2/δ)/ε2 + 1, which matches
the lower bound (15) up to constant factors.

C. Problem 4: (M, δ)-Satisficing UCL Algorithm

A third modification of the UCL algorithm achieves finite
satisficing regret in the Gaussian (M, δ)-satisficing problem,
which is the satisficing-in-mean-reward multi-armed bandit with
M ≤ mσ (2) and δ ∈ (0, 1] (Problem 4). For the agent, this can
be thought of as wanting to have finite confidence that it has
found an arm whose mean reward is above a known threshold.
For the (M, δ)-satisficing problem, define the heuristic function

Qt
i = μt

i + σt
i Φ

−1
(

1 − δ

3

)
.

Let the eligible set at time t be {i | Qt
i ≥ M}. We define the

(M, δ)-satisficing UCL algorithm as the algorithm that selects
arm it ∈ {i|Qt

i ≥ M}, if the eligible set at time t is non-empty.
Otherwise, if the eligible set is empty, the algorithm picks the
arm with maximal Qt

i .
The (M, δ)-satisficing UCL algorithm achieves efficient per-

formance as guaranteed by the following theorem.
Theorem 11: Consider the (M, δ)-satisficing UCL algo-

rithm with an uninformative prior. The number of times the
picked arm it is non-satisfying with probability greater than δ
is upper bounded as

nT
i <

4σ2
s(

ΔM
i

)2

(
Φ−1 (1 − δ/3)

)2 + 1.

Proof: The proof is very similar to the proofs of
Theorems 8 and 10. As in Theorem 8, we bound nT

i by

nT
i =

T∑
t=1

1(it = i)

≤ η +
T∑

t=1

(
1
(
Qt

i ≥ M, nt
i ≥ η

)
+ 1

(
Qt

i ≥ Qt
i∗ , n

t
i ≥ η

))
.

The condition Qt
i ≥ M, which means arm i is in the eligible

set, can be decomposed into the two conditions

μt
i ≥ mi + Ct

i (43)

M < mi + 2Ct
i . (44)

Equation (44) is equivalent to

ΔM
i = M− mi < 2Ct

i =
2σs√

nt
i

Φ−1(1 − δ/3).

Squaring and rearranging, we see that (44) never holds if

nt
i >

4σ2
s(

ΔM
i

)2

(
Φ−1(1 − δ/3)

)2 = η.
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The same argument as in the proof of Theorem 10 shows that
for nt

i ≥ 1, (43) holds with probability at most δ/3, so nt
i > η

implies that a non-satisfying arm is in the eligible set with
probability at most δ/3.

As in the proof of Theorem 10, a non-satisfying arm i is
picked due to the eligible set being empty only if Qt

i ≥ Qt
i∗ ,

where i∗ is the arm with maximal mean reward. This condition
can again be decomposed into the three conditions (40)–(42).
Equation (42) does not hold if nt

i > η, so the probability that
Qt

i ≥ Qt
i∗ is bounded by the probability that either (40) or (41)

holds. For nt
i > 1, each of these holds with probability δ/3, so

the probability of a non-satisfying arm being chosen due to the
eligible set being empty is at most 2δ/3. Thus, for nt

i > η + 1,
a non-satisfying arm is selected with probability at most δ. �

Theorem 11 guarantees that the (M, δ)-satisficing UCL
algorithm achieves finite regret. Furthermore, the algorithm
is efficient in that the regret matches the dependence on ε
and δ in the bound (16). Applying the bound (30) on the in-
verse Gaussian cdf to the statement in the theorem, we see
that nT

i is upper bounded by 8σ2
s log(3/δ)/

(
ΔM

i

)2
. Sum-

ming this bound over non-satisfying arms i shows that the
total number of times the algorithm incurs regret is at most
8σ2

s log(3/δ)
∑

{i|ΔM
i >0} 1/

(
ΔM

i

)2
. This matches the depen-

dence on ε and δ in the bound (16) up to constant factors.
Note that lower bound (16) counts the number of selections

of all arms including the optimal arm, while the upper bound
counts only the suboptimal arms. Hence, we can only claim that
we achieve cumulative regret bounded in T . With a better lower
bound on nT

i , we may be able to claim that, similar to δ-sufficing
UCL, (M, δ)-sufficing UCL achieves the optimal dependence
on ε and δ. However, this remains an open problem to pursue.

D. Robust Satisficing UCL Algorithms

The UCL algorithm solves Problem 1, the Gaussian stan-
dard problem. The modified versions of the UCL algorithm in
Sections VI-A, VI-B, and VI-C solve the other three Gaussian
satisficing-in-mean-reward Problems 2–4. All four UCL algo-
rithms achieve efficient performance in solving their respective
problems, as guaranteed by Theorems 8, 10, and 11.

The equivalence result of Lemma 5 shows for Gaussian dis-
tributed rewards that we can modify the four UCL algorithms
developed for Problems 1–4 to solve Problems 5–8 as follows.
The modified UCL algorithms make decisions based on the
standardized mean reward (20) using priors on the standardized
mean rewards. A prior belief m ∼ N (μ0 ,Σ0) on the mean re-
wards m is transformed into a prior belief on the standardized
mean rewards x ∼ N (μ̃0 , Σ̃0) by

(μ̃0)i = ((μ0)i − M)/σs,i , (Σ̃0)ij = (Σ0)ij /(σs,iσs,j ).

Problem 5: Robust UCL Algorithm: The robust UCL
algorithm is the UCL algorithm where the prior is given in terms
of the standardized mean rewards, and the observed reward rt is
standardized according to the transformation (22) before being
input to the inference equations (25).

Problem 6: Robust Satisfaction UCL Algorithm:
The robust satisfaction UCL algorithm is the satisfaction-in-

mean-reward UCL algorithm where the prior is given in terms
of the standardized mean rewards, the observed reward rt is
standardized according to the transformation (22) before being
input to the inference equations (25), and the parameter M is
set equal to X = Φ−1(Π) defined in (23).

Problem 7: δ-Robust Sufficing Algorithm: The δ-
robust sufficing UCL algorithm is the δ-sufficing UCL algorithm
where the prior is given in terms of the standardized mean
rewards, and the observed reward rt is standardized according
to the transformation (22) before being input to the inference
equations (25).

Problem 8: (Π, δ)-Robust Sufficing Algorithm: The
(Π, δ)-robust sufficing UCL algorithm is the (M, δ)-satisficing
UCL algorithm where the prior is given in terms of the stan-
dardized mean rewards, the observed reward rt is standardized
according to the transformation (22) before being input to the
inference equations (25), and the parameter M is set equal to
X = Φ−1(Π) defined in (23).

Lemma 5 implies that the performance guarantees that hold
for the UCL algorithms developed for Problems 1–4 also hold
for the four new UCL algorithms defined above when applied
to Problems 5–8.

E. Relaxations of Gaussian and Known Variance
Assumptions

The algorithms presented so far have been developed assum-
ing that the reward distribution associated with each arm i is
Gaussian with unknown mean mi and known variance σ2

s,i . The
reward variance may be known, e.g., estimated from known
sensor characteristics or prior data. When the reward variance is
not known, a simple modification to the heuristic (27) yields an
algorithm that achieves efficient performance. Similar simple
modifications extend our results to the case where the reward
distribution is sub-Gaussian, which includes distributions with
bounded support. We state modifications for the case of an un-
informative prior. Prior information can be incorporated using
a conjugate prior, as discussed in [24].

Remark 12 (Gaussian Rewards With Unknown Variance):
When the reward distribution is Gaussian with unknown
variance, the heuristic developed by Auer et al. [4] for their
algorithm UCB1-NORMAL results in algorithms that achieve
efficient performance. Recall that nt

i is the number of times
arm i has been selected up to time t, and m̄t

i is the empirical
mean reward observed at arm i up to time t. Define

qt
i =

∑
t|it =i

r2
t

as the sum of the squared rewards obtained from arm i.
The UCB1-NORMAL algorithm is composed of two rules:

if there is an arm that has been played less than 
8 log t� times,
it selects that arm. Otherwise it selects the arm i that maximizes
the heuristic

Qt,UCB1−NORMAL
i = m̄t

i +

√
16

qt
i − nt

i(m̄
t
i)2

nt
i − 1

log t

nt
i

.
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This heuristic can be used directly in the standard and
satisfaction-in-mean-reward UCL algorithms. For the δ-
sufficing and (M, δ)-satisficing UCL algorithms, use k̃ = 2 and
k̃ = 3, respectively, in the heuristic

Qt
i = m̄t

i +

√
4
qt
i − nt

i(m̄
t
i)2

nt
i − 1

log(k̃/δ)
nt

i

.

The Gaussian distribution with unknown mean and variance
is again a location-scale family, so Lemma 5 implies that these
modified algorithms can be used to solve the robust satisficing
problems as well.

Prior information can be incorporated by means of a conjugate
prior, as discussed in [24]. For the following remarks, define the

generalized heuristic Q̄t
i(β) = m̄t

i +
√

β log t
nt

i
.

Remark 13 (Sub-Gaussian Rewards): Another generaliza-
tion of Gaussian rewards with known variance is the case
where the reward distribution is sub-Gaussian, also known
as light-tailed. The distribution of a random variable X is
called sub-Gaussian if its moment generating function M(u) =
E [exp(uX)] is finite for all u ∈ R. Then, one can find a constant
ζ such that M(u) ≤ exp(ζu2/2) [9].

In this case, a heuristic function due to Liu and Zhou [21]
Qt,SG

i = Q̄t
i(8ζ) can be used to achieve efficient performance.

Remark 14 (Reward Distributions With Bounded Support):
Another common assumption in the bandit literature is that the
reward distributions are arbitrary but have a known bounded
support [a, b] ⊂ R. Without loss of generality, we assume that
the support is contained in the unit interval [0, 1]. In this case
the UCB1 heuristic due to Auer et al. [4] Qt,UCB1

i = Q̄t
i(2) can

be used in the standard and satisfaction-in-mean-reward UCL
algorithms.

For the δ-sufficing and (M, δ)-satisficing UCL algo-
rithms, k̃ = 2 and k̃ = 3, respectively, in the heuristic Qt

i =

Q̄
(k̃/δ)
i (1/2) can be used to achieve efficient performance.
For the robust satisficing problems the relevant reward, hap-

piness ht (17), is a Bernoulli random variable which is sup-
ported on [0, 1]. Therefore, each robust satisficing problem can
be solved by the appropriate variant of UCB1. However, if ad-
ditional information is available about the distribution of the
raw rewards rt , e.g., that they are Gaussian with known vari-
ance, then the robust UCL algorithms can achieve improved
performance relative to UCB1, for example if the Kullback-
Leibler divergence between the rt distributions is larger than
the Bernoulli distributions associated with ht .

Additional extensions to heavy-tailed distributions may be
possible using the techniques of [7].

VII. NUMERICAL EXAMPLES

In this section, we present the results of numerical simu-
lations of the modified UCL algorithms solving multi-armed
bandit problems with Gaussian rewards and satisficing objec-
tives. We consider both thresholding in the mean rewards mi , as
in Problems 1–4 (Table I), and thresholding in the instantaneous
rewards, as in Problems 5–8 (Table II). In all of the cases pre-
sented, the algorithms used an uninformative prior. We use the

Fig. 1. Comparison of regret incurred by the UCL algorithms when solv-
ing the standard problem (Problem 1) and satisfaction-in-mean-reward
problem (Problem 2). Both problems define regret by thresholding mean
reward values; the standard bandit objective incurs regret when the mean
reward of the chosen option is less than the maximum reward mi∗ , while
the satisfaction-in-mean-reward problem incurs regret when the mean
reward is less than M ≤ mσ (2) , here set equal to 2.5. For both prob-
lems, the cumulative expected regret and its upper bound increase at a
logarithmic rate since the agent seeks certainty that its threshold is met,
which it cannot achieve in finite time.

Fig. 2. Comparison of regret incurred by the UCL algorithms when
solving the δ- and (M, δ)-satisficing problems, (Problems 3 and 4, re-
spectively). As in Fig. 1, the problems define regret by thresholding the
mean reward values; the δ-sufficing objective incurs regret when the
mean reward of the chosen option is less than the maximum reward
mi∗ , while the (M, δ)-sufficing problem incurs regret when the mean re-
ward is less than M ≤ mσ (2) , here set equal to 2.5. In contrast to Fig. 1,
the agent only seeks to have 1 − δ = 95% confidence that its threshold
is met, which it can achieve in finite time. Thus, the upper bounds on
cumulative expected regret are constant functions of horizon length and
the mean regret plateaus at a finite value.

simulations to illustrate performance of the algorithms relative
to the bounds proved in the theorems of Section IV. We also
use the simulations to compare how the different algorithms
trade off accumulation of reward with reduction in exploration
cost as measured by number of switches among arms. As shown
in the figures, satisficing can significantly decrease the explo-
ration cost while incurring little cost in terms of the rewards
received by the agent.

We first consider the satisficing objectives with threshold-
ing in the mean rewards. We illustrate how the objectives of
Problems 1 and 2 yield logarithmic regret (Fig. 1) whereas the
objectives of Problems 3 and 4 yield finite regret (Fig. 2), as
predicted by the bounds proved in Theorems 7, 8, 10 and 11.
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For the simulations presented in Figs. 1 and 2, we set N = 4.
The mean rewards m were set equal to [1 2 3 4] and the standard
deviations σs,i were each set equal to 1.

In Fig. 1, the agent’s regret is defined by comparing the mean
rewards mi with the satisfaction threshold M. For the standard
objective (Problem 1) the satisfaction level M was set equal
to mi∗ = 4, so the agent incurred regret if it selected any arm
other than i∗ = 4. For the satisfaction-in-mean-reward objective
(Problem 2) the satisfaction level M was set equal to 2.5, so
the agent incurred regret if it selected arms 1 or 2. Fig. 1 plots
mean cumulative regret from 100 simulations (solid lines) and
the bounds on regret from Theorems 7 and 8 (dashed lines) for
the standard and satisfaction-in-mean-reward UCL algorithms,
respectively. We observe from Fig. 1 that the algorithms’ regret
is significantly below the bounds, indicating that both bounds
are conservative. Because both objectives set the sufficiency
threshold δ = 0 and define regret in terms of the unknown mean
rewards mi , the agent must achieve certainty about the mean
reward values to stop incurring regret. It is impossible for the
agent to achieve this certainty in finite time, so the mean regret
and its bound both increase indefinitely at a logarithmic rate for
both objectives.

Fig. 2, in contrast, shows that by setting the sufficiency thresh-
old δ to a non-zero value, one can achieve finite regret. All the
parameters for the simulations shown in Fig. 2 were identical
to those for the simulations in Fig. 1, except that the sufficiency
threshold δ was set equal to 0.05. Setting δ to a non-zero value
transformed the standard and satisfaction-in-mean-reward ob-
jectives into the δ-sufficing and (M, δ)-satisficing objectives,
Problems 3 and 4, respectively. For these objectives, regret is
again defined by thresholding the mean rewards mi . However,
rather than seeking certainty that the threshold is met, the agent
only seeks to ensure that its threshold is met with a probability
of at least 1 − δ. Because of the allowance of uncertainty, the
agent only needs to perform a finite amount of exploration be-
fore settling on an arm that appears satisfying. The regret bounds
in the figure follow from Theorems 10 and 11 for the δ-sufficing
and (M, δ)-satisficing objectives, respectively. As in Fig. 1, we
observe from Fig. 2 that both bounds are conservative.

The reduction in exploring that comes with sufficing can be
advantageous when exploring is costly, e.g., when there is a cost
associated with making a switch from one arm to another. Fig. 3
suggests that this reduction in cost may require little sacrifice
in reward. The upper panel plots mean cumulative reward from
100 simulations for both the standard bandit problem 1 and
the δ-sufficing problem 3. The curve for δ-sufficing is slightly
below that for the standard bandit problem, showing that it
results in slightly lower cumulative rewards, but the difference
is insignificant in comparison to the overall magnitude of the
cumulative rewards. The lower panel plots the mean cumulative
number of switches between arms for both algorithms and shows
that δ-sufficing requires roughly half as much exploration.

We next consider the satisficing objectives with thresholding
in the instantaneous rewards. Fig. 4 presents a simulation that
demonstrates the equivalence result of Lemma 5 for the robust
bandit (Problem 5) using the robust UCL algorithm. The hap-
piness threshold M was set equal to 2. As in Figs. 1 and 2,

Fig. 3. Upper: Mean cumulative reward accrued by standard
(Problem 1) and δ-sufficing (Problem 3) UCL algorithms. Lower:
Mean cumulative number of switches between arms, quantifying the
algorithms’ exploration costs. The δ-sufficing UCL algorithm achieves
nearly the same cumulative rewards as the standard UCL algorithm, but
with roughly half the exploration cost.

Fig. 4. Regret incurred by the robust UCL algorithm (Problem 5). The
agent is happy if it receives a reward rt that is at least equal to M ,
here set equal to 2. The agent seeks to maximize its probability of being
happy at each time, so it incurs regret if it chooses an option with less than
maximal happiness probability. As in Fig. 1, the agent seeks certainty
that it maximizes its happiness probability, which it cannot achieve in
finite time. So it incurs regret that increases indefinitely at a logarithmic
rate.

the mean rewards m were set equal to [1 2 3 4], but for this
simulation the standard deviations were set equal to [1 1 1 3].
So the standardized mean rewards were x = [−1 0 1 2

3 ] and
i∗ = 3 the optimal arm, i.e., the arm with maximal happiness
probability. Fig. 4 shows mean cumulative regret from 100 sim-
ulations (solid line) and the regret bound (dashed line) implied
by Theorem 7 and the definition (19) of satisfaction. Because the
objective requires identifying the arm with highest probability of
satisfaction with certainty, both the regret and its upper bound
increase indefinitely at a logarithmic rate, as in the problems
illustrated in Fig. 1.

Fig. 5 shows the benefit of combining the robust objective
with sufficing in the δ-robust bandit objective (Problem 7). By
doing so, it is possible to retain the robustness benefit of the
robust bandit objective (Problem 5) relative to the standard
bandit objective (Problem 1) while reducing the exploration
cost. The parameter values used in the δ-robust UCL algorithm
(Problem 7) are the same as in Fig. 4, while the sufficiency
parameter δ was set equal to 0.05. Fig. 5 shows how robust
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Fig. 5. Upper: Mean cumulative number of times the agent is
happy (i.e., has reward rt ≥ M = 2, (17)) when using the standard
(Problem 1), robust UCL (Problem 5), and δ-robust (Problem 7) UCL
algorithms. Lower: Mean cumulative number of switches between arms,
quantifying the algorithms’ exploration costs. The robust bandit objective
is more robust in the sense that it is more likely to achieve a reward that is
above the threshold M , but in this case incurs a greater exploration cost.
The robust δ-sufficing objective combines the positive aspects of both
the δ-sufficing and robust bandit objectives: exhibiting high robustness
in terms of agent happiness and minimizing exploration costs.

satisficing algorithms (Problems 5 and 7) outperform the stan-
dard algorithm (Problem 1) for performance with respect to
instantaneous reward as measured by happiness (17). There is a
switching cost associated with achieving the higher rate of cu-
mulative happiness. However, this cost is significantly reduced
for the δ-robust algorithm (Problem 7), where sufficing is in-
cluded, as compared to the robust algorithm (Problem 5) and
it approaches the switching cost incurred by the standard UCL
algorithm.

VIII. CONCLUSION

Satisficing, the concept of doing well relative to a reference
value, is a useful alternative to maximizing that can be applied
to a variety of decision-making scenarios. In this paper, we
considered the multi-armed bandit problem using satisficing
objectives. The multi-armed bandit problem is a canonical
decision-making problem that is widely studied in machine
learning and adaptive control using a maximization objective.

We proposed a system of eight objectives for stochastic multi-
armed bandit problems that generalize the standard multi-armed
bandit problem by capturing aspects of satisficing, notably
thresholding effects that we termed satisfaction and sufficiency.
We showed that each of the four objectives of Problems 1–4,
defined by thresholding the unknown mean reward mi associ-
ated with each arm, is equivalent to a related problem studied
in the existing literature. We used these equivalences to de-
rive bounds on efficient performance. For the four objectives
of Problems 5–8 defined by thresholding the observed rewards
rt , we showed that, when the reward distributions belong to a
location-scale family, each objective is equivalent to one of the
first four objectives.

We then specialized to the case of Gaussian rewards (a par-
ticular location-scale family) and developed four variants of the
UCL algorithm [27] to solve Problems 1–4 defined by threshold-

ing the mean rewards. We analyzed each algorithm and showed
that it achieved efficient satisficing performance. We used the
equivalency result (Lemma 5) to show how to apply the four
variants of the UCL algorithm to Problems 5–8 defined by
thresholding the instantaneous rewards and again achieve ef-
ficient satisficing performance.

Satisficing objectives that threshold the mean can reduce ex-
ploration costs (and thus risk) as compared to the standard prob-
lem where the objective is to maximize expected reward with
certainty. Satisficing objectives that threshold observed rewards
can result in more risk-averse and robust algorithms than ob-
jectives that account only for mean rewards [26]. Risk aver-
sion and robustness are important for engineering applications
(where standard bandit algorithms are known to have poor risk-
aversion characteristics [3]). Thus, our proposed algorithms can
be usefully applied to a range of engineering problems, notably
those involving design of control policies.

Risk aversion and robustness are also important in the field
of optimal foraging theory [8]. Foraging has been studied using
the multi-armed bandit framework with a maximizing objective
[19], [18], [32]. The satisficing objectives and algorithms that
we have proposed in the present paper may provide an even
more biologically plausible framework.

For any satisficing problem, selecting the appropriate satisfac-
tion threshold remains an open problem. The results presented
here provide an efficient policy once the satisfaction threshold
has been chosen but leave the selection of the threshold up to
the end user. The problem of choosing a threshold also arises
when applying the Sequential Probability Ratio Test (SPRT)
in hypothesis testing [35]. To apply the SPRT, one must select
desired probabilities of type I and type II errors. Once these
probabilities are selected the SPRT provides the optimal policy,
but the SPRT itself does not provide optimal values for the error
probabilities.

In many decision-making scenarios, maximizing a reward
rate is used to optimize error probabilities [5]. A reward rate
criterion may provide an optimal threshold for the satisficing
algorithms developed here, but the specific criterion will de-
pend on the decision-making scenario. Natural extensions also
include considering cases where the mean rewards mi are al-
lowed to evolve over time, for example according to a jump
process [33]; such evolution will likely encourage satisficing
policies that incorporate adaptive thresholds. Finally, it is well
understood that satisficing is an important feature of human de-
cision making [29] and that the UCL algorithm can model many
features of human decision decision making in bandit tasks [27].
New empirical work should be undertaken to compare the sat-
isficing UCL algorithms with human behavior. It is an open
empirical question to determine which of our notions of regret
best explains human behavior.
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[16] E. Kaufmann, O. Cappé, and A. Garivier, “On Bayesian upper confi-
dence bounds for bandit problems,” In Int. Conf. Artificial Intelligence
and Statistics, pp. 592–600, La Palma, Canary Islands, Spain, Apr. 2012.

[17] S. M. Kay. Fundamentals of Statistical Signal Processing, Volume I :
Estimation Theory. Prentice Hall: Englewood Cliffs, NJ, 1993.

[18] T. Keasar, E. Rashkovich, D. Cohen, and A. Shmida, “Bees in two-armed
bandit situations: Foraging choices and possible decision mechanisms,”
Behavioral Ecology, vol. 13, no. 6, pp. 757–765, 2002.

[19] J. R. Krebs, A. Kacelnik, and P. Taylor, “Test of optimal sampling by
foraging great tits,” Nature, vol. 275, no. 5675, pp. 27–31, 1978.

[20] T. L. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Advances in Appl. Math., vol. 6, no. 1, pp. 4–22, 1985.

[21] K. Liu and Q. Zhao, “Extended UCB policy for multi-armed bandit with
light-tailed reward distributions,” arXiv:1112.1768, Dec. 2011.

[22] S. Mannor and J. N. Tsitsiklis, “The sample complexity of exploration
in the multi-armed bandit problem,” J. Mach. Learning Research, vol. 5,
pp. 623–648, 2004.

[23] T. M. Moe, “The new economics of organization,” Amer. J. of Political
Sci., vol. 28, no. 4, pp. 739–777, 1984.

[24] K. P. Murphy, “Conjugate Bayesian analysis of the Gaussian distribution,”
https://www.cs.ubc.ca/˜murphyk/Papers/bayesGauss.pdf, 2007.

[25] H. Nakayama and Y. Sawaragi. Satisficing trade-off method for multi-
objective programming. In Interactive Decision Analysis, pp. 113–122.
Springer: New York, 1984.

[26] P. Reverdy and N. E. Leonard, “Satisficing in Gaussian bandit problems,”
In Proc. IEEE Conf. Decision and Control, pp. 5718–5723, 2014.

[27] P. Reverdy, V. Srivastava, and N. E. Leonard, “Modeling human decision-
making in generalized Gaussian multi-armed bandits,” Proc. IEEE,
vol. 102, no. 4, pp. 544–571, 2014.

[28] H. Robbins, “Some aspects of the sequential design of experiments,”
Bulletin of the Amer. Math. Soc., vol. 58, pp. 527–535, 1952.

[29] B. Schwartz, A. Ward, J. Monterosso, S. Lyubomirsky, K. White, and
D. R. Lehman, “Maximizing versus satisficing: Happiness is a matter of
choice,” J. Personality and Social Psychology, vol. 83, no. 5, pp. 1178,
2002.

[30] H. A. Simon, “A behavioral model of rational choice,” The Quarterly J.
of Econ., vol. 69, no. 1, pp. 99–118, 1955.

[31] H. A. Simon, “Rational choice and the structure of the environment,”
Psychological Review, vol. 63, no. 2, pp. 129, 1956.

[32] V. Srivastava, P. Reverdy, and N. E. Leonard, “On optimal foraging and
multi-armed bandits,” In Proc. of the 51st Annu. Allerton Conf. on Com-
mun., Control, and Computing, pp. 494–499, 2013.

[33] V. Srivastava, P. Reverdy, and N. E. Leonard, “Surveillance in an abruptly
changing world via multiarmed bandits,” In Proc. IEEE Conf. Decision
and Control, pp. 692–697, 2014.

[34] L. G. Valiant, “A theory of the learnable,” Commun. of the ACM, vol. 27,
no. 11, pp. 1134–1142, Nov. 1984.

[35] A. Wald, “Sequential tests of statistical hypotheses,” Ann. of Math. Stat.,
vol. 16, no. 2, pp. 117–186, 1945.

[36] D. Ward, “The role of satisficing in foraging theory,” Oikos, pp. 312–317,
1992.

[37] S. G. Winter, “The satisficing principle in capability learning,” Strategic
Management Journal, vol. 21, no. 10–11, pp. 981–996, 2000.

[38] B. Yin et al., “Finding optimal solution for satisficing non-functional
requirements via 0–1 programming” In Proc. IEEE 37th Annu. Computer
Software and Applications Conf., pp. 415–424, 2013.

Paul Reverdy (M’14) received the B.S. degree in engineering physics
and the B.A. degree in applied mathematics from the University of
California, Berkeley, Berkeley, CA, USA, in 2007 and the M.A. and Ph.D.
degrees in mechanical and aerospace engineering from Princeton Uni-
versity, Princeton, NJ, USA, in 2011 and 2014, respectively.

From 2007 to 2009, he worked as a Research Assistant at the Federal
Reserve Board of Governors, Washington, DC, USA. He is currently a
Postdoctoral Fellow with the Department of Electrical and Systems Engi-
neering, University of Pennsylvania, Philadelphia, PA, USA. His research
interests are in the areas of control and robotics with current interests in
human and automated decision making, engineering design, and navi-
gation.

Vaibhav Srivastava received the B.Tech. degree in mechanical engi-
neering from the Indian Institute of Technology Bombay, Mumbai, India,
in 2007, and the M.S. degree in mechanical engineering, the M.A. de-
gree in statistics, and the Ph.D. degree in mechanical engineering from
the University of California at Santa Barbara, Santa Barbara, CA, in 2011
and 2012, respectively.

He served as a Lecturer and Associate Research Scholar with the
Mechanical and Aerospace Engineering Department, Princeton Univer-
sity, Princeton, NJ from 2013–2016. He is an Assistant Professor of
Electrical and Computer Engineering at Michigan State University. His
research interests include modeling and analysis of human cognition;
shared autonomous systems; socio-cognitive networks; computational
networks; and robotic search and surveillance problems.

Naomi Ehrich Leonard (F’07) received the B.S.E. degree in
mechanical engineering from Princeton University, Princeton, NJ, in 1985
and the M.S. and Ph.D. degrees in electrical engineering from the Uni-
versity of Maryland, College Park, in 1991 and 1994, respectively.

From 1985 to 1989, she was an Engineer in the electric power indus-
try. She is the Edwin S. Wilsey Professor of Mechanical and Aerospace
Engineering and Director of the Council on Science and Technology at
Princeton University. She is also an associated faculty member of Prince-
ton University’s Program in Applied and Computational Mathematics. Her
research and teaching are in control and dynamical systems with cur-
rent interests in coordinated control for multi-agent systems, mobile sen-
sor networks, collective animal behavior, and human decision-making
dynamics.



1

Correction to “Satisficing in Multi-Armed Bandit Problems”
Paul Reverdy, Vaibhav Srivastava, and Naomi Ehrich Leonard

Abstract—An unfortunate mistake in the proof of Theorem 8
of the above paper is corrected.

We correct an error in the published proof of Theorem
8 of [2]. The error arises from an incorrect application of
concentration inequalities. The correction follows the same
structure as that published in [3, Appendix G], which corrects
the proofs of performance bounds for UCL algorithms in
[4] and thus Theorems 7 and 8 of [2]. For simplicity of
presentation, we first state the correction and then provide the
associated proof.

The heuristic value Qti in [2, (27)] is

Qti = µti + σtiΦ
−1(1− αt). (C1)

To correct Theorem 8 of [2], set αt = 1/(Kta) with a >
4/(3(1− ε2/16)), ε ∈ (0, 4), and K =

√
2πe. The last part of

the statement of [2, Theorem 8] should be replaced by
“Then, the following statements hold for the
satisfaction-in-mean-reward UCL algorithm with un-
correlated uninformative prior and K =

√
2πe:

1) the expected number of times a non-satisfying
arm i is chosen until time T satisfies

E
[
nTi
]
≤

(
8a(

∆Mi
)2
)

log T + o(log T );

2) the cumulative expected satisfaction-in-mean-
reward regret until time T satisfies

JSM ≤
N∑
i=1

∆Mi

(
8a(

∆Mi
)2
)

log T+o(log T ).”

For the δ-sufficing and (M, δ)-satisficing UCL algorithms
of [2], similar corrections also hold with Qti defined by (C1)
and a modification to αt. For these algorithms, the modifica-
tion to αt and its consequences can be succinctly stated by
referring to the following Lemma which is a straightforward
application of Theorem 2 below.

Lemma 1. Let ε ∈ (0, 4) and define

αt = 1− Φ

(√
2

1− ε2/16
log

log((1 + ε)t)

δ log(1 + ε)

)
. (C2)

Then, at time t

Pr [[2, (40)] holds] = Pr

[
µti −mi

σti
≥ Φ−1(1− αt)

]
≤ δ.

The corrections to the four algorithms published in [2] and
the corresponding corrected expressions for the performance
bounds are summarized in Table I. For δ-Sufficing and (M, δ)-
Satisficing UCL, the bounds take the form

f(δ,∆) :=
8σ2

s

∆2(1− ε2/16)
log

log((1 + ε)T )

δ log(1 + ε)
+ 1. (C3)

TABLE I
SUMMARY OF THE CORRECTIONS FOR THE SATISFICING UCL

ALGORITHMS. DEFINE Qti BY (C1) WITH ε ∈ (0, 4),K =
√

2πe AND SET
αt AS FOLLOWS. THE CORRECTED PERFORMANCE BOUNDS WITH f IS

DEFINED BY (C3).

Algorithm αt Bound

Deterministic UCL αt = 1/Kta, a > 4
3(1−ε2/16)

E
[
nTi

]
≤ 8aσ2

s

∆2
i

log T + o(log T )

Satisfaction-in-
-mean-reward UCL αt = 1/Kta, a > 4

3(1−ε2/16)
E
[
nTi

]
≤ 8a

(∆Mi )2
log T + o(log T )

δ-Sufficing UCL αt from Equation (C2), δ 7→ δ/2 nTi ≤ f(δ/2,∆i)
(M, δ)-Satisficing UCL αt from Equation (C2), δ 7→ δ/3 nTi ≤ f(δ/3,∆Mi )

Note that with the correction, which accounts for the depen-
dence of nti on rewards accrued, the upper bound functional
form (C3) is no longer independent of T . However, the
dependence on T is of the form log log T , which is a very
slowly increasing function of T . Therefore, in any realistic
application the upper bound will effectively be constant and
the qualitative result of [2] does not change.

REVISED PROOF

We employ the following concentration inequality from
Garivier and Moulines [1] to fix the proof. Let (Xt)t≥1 be
a sequence of independent sub-Gaussian random variables
with E[Xt] = µt, i. e., E[exp(λ(Xt − µt))] ≤ exp(λ2σ2/2)
for some variance parameter σ > 0. Consider a previsible
sequence (εt)t≥1 of Bernoulli variables, i.e., for all t > 0, εt
is deterministically known given {Xτ}0<τ<t. Let

st =

t∑
s=1

Xsεs,m
t =

t∑
s=1

µsεs, n
t =

t∑
s=1

εs.

Theorem 2 ([1, Theorem 22], [3, Theorem 11]). Let (Xt)t≥1
be a sequence of sub-Gaussian1 independent random variables
with common variance parameter σ and let (εt)t≥1 be a pre-
visible sequence of Bernoulli variables. Then, for all integers
t and all δ, ε > 0,

Pr

[
st −mt

√
nt

> δ

]
(C4)

≤
⌈

log t

log(1 + ε)

⌉
exp

(
− δ2

2σ2

(
1− ε2

16

))
.

We will also use the following lower bound for Φ−1(1−α),
the quantile function of the normal distribution.

1The result in [1, Theorem 22] is stated for bounded rewards, but it extends
immediately to sub-Gaussian rewards by noting that the upper bound on the
moment generating function for a bounded random variable obtained using
a Hoeffding inequality has the same functional form as the sub-Gaussian
random variable.



2

Proposition 3. For any t ∈ N and a > 1, the following holds:

Φ−1
(

1− 1√
2πeta

)
≥
√
ν log ta, (C5)

for any 0 < ν ≤ 1.59.

Proof. We begin with the inequality Φ−1(1 − α) >√
− log(2πα2(1− log(2πα2))) established in [4]. It suffices

to show that

− log

(
1

et2

(
1− log

(
1

et2

)))
− ν log t ≥ 0,

for ν ∈ (0, 1.59]. The left hand side of the above inequality is

g(t) := 1− log 2 + (2− ν) log t− log(1 + log t).

It can be verified that g admits a unique minimum at t =
e(ν−1)/(2−ν) and the minimum value is ν− log 2+log(2−ν),
which is positive for 0 < ν ≤ 1.59.

In the following, we choose ν = 3/2.

Correction to the proof of [2, Theorem 8]. The structure of
the published proof carries through. Let i be a non-satisfying
arm, i.e., mi < M, and recall that i∗ denotes the arm with
maximum mean reward. Let η be a positive integer and let
ε ∈ (0, 4) and a > 4/(3(1− ε2/16)).

We first analyze the probability that [2, Eq. (31)] holds
by applying Theorem 2. Let {Xτ}0<τ<t be the sequence
of rewards associated with arm i, and let (εt)t≥1 equal 1
if the algorithm chooses arm i at time t. Note that, for an
uncorrelated uninformative prior, µti = m̄t

i = st/nt, σti =
1/
√
nti,mi = mt/nt, and nti = nt. [2, Eq. (31)] is thus

equivalent to

st

nt
− mt

nt
≥ 1√

nt
Φ−1(1− αt)⇒

st −mt

√
nt

≥ Φ−1(1− αt).

Letting δ = Φ−1(1− αt) and applying (C4) yields

Pr [[2, Eq. (31)] holds] = Pr

[
st −mt

√
nt

≥ δ
]

≤
⌈

log t

log(1 + ε)

⌉
exp

(
−3 log ta

4

(
1− ε2

16

))
=

⌈
log t

log(1 + ε)

⌉
t−

3a(1−ε2)/16
4 ,

where the second inequality follows from (C5). The same
bound holds for [2, Eq. (32)].

It can be verified that for the corrected Qti in equation (C1),
the constant “8” in [2, Eqns. (35, 38 and 39)] will be replaced
by 8a. Following the proof in [2] with the above corrections,

E
[
nTi
]
≤

⌈
8a(

∆Mi
)2 log T

⌉
+

T∑
t=1

3

⌈
log t

log(1 + ε)

⌉
t−

3a(1−ε2)/16
4 .

The sum can be bounded by the integral∫ T

1

(
log t

log(1 + ε)
+ 1

)
t−

3a(1−ε2/16)
4 dt+ 1. (C6)

It can be verified that the integral (C6) is of class o(log T ) as
long as the exponent 3a(1− ε2/16)/4 > 1. Putting everything
together, we have

E
[
nTi
]
≤ 8aσ2

s

∆2
i

log T + o(log T ).

The second statement follows from the definition of the
cumulative expected regret.

The corrections to the proofs of [2, Theorem 10] (δ-
Sufficing UCL) and [2, Theorem 11] ((M, δ)-Satisficing UCL)
follow the same structure.

Correction to proof of [2, Theorem 10]. For the corrected αt
defined in equation (C2) with δ 7→ δ

2 , [2, Eq. (42)] is
equivalent to

∆i = mi∗ −mi < 2Cti =
2σs√
nti

Φ−1(1− αt).

Squaring, rearranging, and applying Equation (C2), we see
that this never holds if

nti >
8σ2

s

∆2
i (1− ε2/16)

log
2 log((1 + ε)t)

δ log(1 + ε)
= η.

Then, Lemma 1 implies that [2, Eqns. (40, 41)] each hold
with probability at most δ/2. Therefore, for nti > η + 1 =
f(δ/2,∆i), a non-satisfying arm is selected with probability
at most δ.

Correction to proof of [2, Theorem 11]. For the corrected αt
defined in equation (C2) with δ 7→ δ

2 , an argument analogous
to that for [2, Eq. (42)] above shows that [2, Eq. (44)] never
holds for nti > η = f(δ/3,∆Mi )− 1.

Applying Lemma 1 implies that [2, Eq. (43)] holds with
probability at most δ/3. Similarly to the corrected proof for [2,
Theorem 10] above, for nti > η+1 = f(δ/3,∆Mi ), Qti ≥ Qti∗
with probability at most 2δ

3 . Thus, a non-satisfying arm is
selected with probability at most δ.
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