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Abstract

Search is a ubiquitous human activity. It is a rational response to the uncertainty inherent

in the tasks we seek to accomplish in our daily lives, from retrieving information to making

important decisions. Engineers have developed numerous tools to perform automated search,

but many tasks have too much uncertainty for these tools to perform adequately without

human intervention. Engineering solutions to such tasks therefore consist of human-machine

hybrid systems, where human supervisors interact with automated tools and make high-level

decisions to guide them. Novel rigorous models of human decision making in such situations

are required to facilitate the principled design of human-machine systems.

In this thesis, we develop a rigorous model of human decision-making behavior in search

tasks. We formally model search using the multi-armed bandit problem from the machine

learning literature, which allows us to derive bounds on optimal decision-making perfor-

mance. We focus on spatial search, for which we introduce the spatial multi-armed bandit

problem. We develop several models of human decision-making behavior in this problem

by extending heuristics from the neuroscience and machine learning literatures, and prove

conditions under which one model (UCL) achieves optimal performance.

We study human-subject data from a spatial multi-armed bandit problem and show that

human performance in this problem falls into several categories. Some humans outperformed

standard algorithms for multi-armed bandit problems, which we attribute to humans having

good intuition for spatial search. We show that the UCL model can achieve performance

that falls in the different categories by tuning the model parameters.

The model parameters quantify a human’s intuition and make it available to a human-

machine system. We develop a parameter estimator for the UCL model by relating it to the

Generalized Linear Model from the statistics literature. The UCL model together with the

estimator represent a plant–observer pair for human decision making which can be used for

system design.

Finally, we consider a so-called “satisficing” objective as an alternative to the maximizing

objective of the standard multi-armed bandit problem. We derive performance bounds in

terms of this new objective and develop an algorithm that achieves optimal performance.
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Chapter 1

Introduction

“To live effectively is to live with adequate information.”

(Norbert Wiener)

Search is a ubiquitous human activity. In our data-heavy age, the word search generally

conjures up thoughts of search for information, as with a search engine. However, informa-

tional search is only one of a variety of ways search appears in our professional and personal

lives. Search can be physical: I might search for my lost keys or a hiker in the woods. Search

can be logistical: I might search for a course of action, e.g., a route between two known

locations. Search can also be philosophical: I might search for meaning or my calling in life.

The common thread that connects all of these scenarios is uncertainty. Search is a rational

response to uncertainty, whether it be in where to find information or an object, uncertain

outcomes from a course of action, or in the right path to follow in life.

Just as there are many types of search problems which arise in practice, there are also

many solutions. In many situations, such as routing communications traffic, we have trusted

automated machines to perform search for decades [47]. At the other end of the spectrum,

searching for a car one wants to purchase is an essentially human endeavor. Technology

might help supply relevant information, but ultimately it must be a human who does the

searching, weigh the different options, and makes the final decision. In the middle are a

host of search tasks that can benefit from some automation but are too complicated to be

fully automated, for example because there is too much uncertainty about the task to able to

consider every possibility. Such tasks are commonplace in applications, where they are solved

by human-machine hybrid systems. As reported in [73], modern internet search engines are

an example of one such system where humans and automated machinery work together.

When the automation encounters new or unexpected queries, it asks human operators for

help in parsing them to ensure that the system outputs useful results.
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The field of control theory studies systems and develops technology to automate, or

control, their operation. Search is relevant to control theory, particularly when there is

significant uncertainty about the system to be controlled. In terms of the above taxonomy,

logistical search, i.e., search for policies, is a form of control. For example, consider a car

trying to reach a destination by traveling through rush hour traffic. The car’s best route will

be heavily affected by the traffic congestion, which is likely to be uncertain, due to unforeseen

accidents, etc. Therefore, finding the best route is a form of logistical search, where the best

route will change depending on the evolving and uncertain road conditions.

One major application area for control theory is in the field of robotics, where human-

machine hybrid systems are also common. In tightly-regulated environments like the interiors

of factories, automated robotic systems have proved greatly successful in performing repeti-

tive tasks like welding more quickly and with more precision than the humans they replaced

[80]. The tightly-regulated nature of the factory environment makes the welding task highly

predictable. Because of this predictability, uncertainty is not an important part of the task

and as such there is no need to actively search for policies. However, in other applications

where the environment is more poorly regulated, uncertainty is important and the robotic

control problem can be considered a search task. In such applications, human supervisors

form an essential part of the system for dealing with unforeseen circumstances and ensur-

ing that the overall system meets its goals. For example, in the field study described in

[67], a mobile sensor network was deployed to gather oceanographic information. There was

significant uncertainty about the environment, the state of the system (due to communica-

tion delays), and where best to deploy the sensors. These uncertainties made the network

resource allocation problem a search task which was solved by a human-machine system.

Human supervisors made high-level decisions to allocate the network’s resources (i.e., the

sensors), while the automated component carried out the low-level tasks to implement the

allocation and complete the task at hand.

Adaptive control [60, 5] is a subfield of control theory that has developed to attempt to

produce automated controllers with a capacity for adaptation and in-the-loop learning. Such

a capacity is useful for dealing with systems with considerable uncertainty, i.e., systems for

which the control problem is a form of logistical search, so there is a deep connection between

adaptive control and search. Autonomy is a broad concept that deals with the ability of an

agent to interact with its environment independently of external control. See [113] for a

study of the concept of autonomy in the context of robots and other agent-based systems.

Adaptive control and autonomy are valuable areas of active research, but as pointed out in

[5, Section 13.5], adaptive controllers often ultimately “attempt to mimic or describe human

learning ability.” Similarly, in the field of autonomy, humans are a natural model system
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to be mimicked or improved upon. As such it is of interest to understand how a human

operator performs search since it can advance the fields of adaptive control and autonomy.

Furthermore, applications will always push the field of control to address complex tasks that

are beyond the state of the art of fully autonomous control. The solution of such tasks

will necessarily include a human supervisor as part of the control loop. Control theory can

provide useful guarantees of stability and convergence about the automated component of a

human-in-the-loop control system, but understanding the overall performance of the system

requires a principled understanding of the human component of the system.

1.1 Motivation and goals

Machines and humans have different strengths that can be complementary in performing

search tasks. Compared with humans, machines have abundant computational power and

precise data storage. They can also reliably perform repetitive tasks without becoming bored

or otherwise losing focus. Conversely, humans are more flexible in their thinking, better at

discovering patterns in data, and develop experience-based knowledge that may be difficult

to represent quantitatively. The motivation for this thesis is the desire to develop tools that

benefit from these complementary strengths.

In most situations when a human performs a search task, it is rarely as an individual

acting alone, but rather as part of a group and often with some kind of technological aid.

For example, a search for a lost hiker would likely involve multiple people communicating

with each other and using maps or other technology to share information and decide where

to look next. The ultimate goal of this thesis is two-fold: first, to learn heuristics from

humans to improve automated search, and second, to use automation to help humans perform

search, thereby improving existing technological aids to search. We are interested in robotics

applications, so the prototypical problem of interest is that of spatial search.

Key to achieving this goal is building models of human decision making in search tasks.

These models should reflect empirical data from human subject experiments and capture

the trends evident in human behavior in such tasks. To be useful to automated search,

they should be sufficiently computationally simple to be implemented in real time: a model

that requires hours of computation to make a decision is not useful as part of a deployed

system. Key to improving technological aids to search is developing an understanding of

transferrable knowledge in search tasks, i.e., a way to represent the relevant information

that the human captures in his/her decision-making process so that it can be used by an

automated decision maker. In this thesis, we aim to develop a framework for human-machine

3



search by formulating a decision-making model that captures transferrable knowledge and

empirical trends in behavior in a form that can also be used as a deployable algorithm.

Central to both goals is the desire for mathematical rigor. The models we develop should

be plausible and accurate, but simple enough to allow analysis. As control theorists we are

interested in system properties such as stability, accuracy, and speed of convergence. In

particular, we want to be able to prove performance guarantees about the resulting systems.

This desire to produce provable guarantees leads us to pick a model problem in which proving

such guarantees is possible. We wish to model the search process in a way that is simple

enough to allow performance guarantees but general enough to encompass many applications.

1.2 Background and related work1

The mathematical tools at the core of this work are optimization theory [115] and Bayesian

statistics [66]. Search can often be mathematically formulated as an optimization problem,

so the technology of search is strongly linked with that of optimization. This link will become

apparent in the chapters that follow, as we develop a framework for human-machine search.

Search and Bayesian statistics go hand-in-hand, as was shown in the search for the wreckage

of Air France Flight AF 447 [123] as well as many other studies, such as [16], which studied

the problem of finding optimal search strategies for a lost target in physical space. Bayesian

methods are useful because they allow a decision maker to incorporate a variety of prior

knowledge about the search task. In the case of the Air France flight, Bayesian statistics

allowed the searchers to incorporate the possibility that the underwater locator beacon in

the aircraft had failed, which proved to be crucial in locating the wreck. In the case of

modeling human decision making, Bayesian statistics provides a natural way to incorporate

knowledge and intuition due to experience and previous learning.

We place an emphasis on spatial search, in particular in the context of robotics ap-

plications. In the robotic field experiments described in [68, 67], a human-automata team

composed of a number of underwater vehicles and human supervisors was deployed to gather

oceanographic data. The objective was to collect data to minimize the uncertainty in the

value of the scalar data field of interest, e.g., water temperature. As each vehicle moved

through the sampling domain, it periodically took measurements which reduced the uncer-

tainty in the value of the field at that time and place. In this way, an analogy can be made

between the measurement process and foraging, where each vehicle moves through space

and receives rewards in the form of information. By accumulating rewards, i.e., information,

the vehicles reduce the uncertainty in the value of the field. This analogy motivates us to

1Portions of this section are adapted from [99].
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consider search as a process in which the agent sequentially chooses locations to sample with

the goal of maximizing the cumulative rewards aggregated over the decision process. There

is uncertainty in the value of the reward at any given place because of the uncertainty in the

field, so the decision of where to take the next sample is non-trivial.

The decision process described above is well modeled by the multi-armed bandit problem,

introduced by Robbins [101]. In the multi-armed bandit problem, the decision-making agent

makes a series of sequential decisions, at each decision time picking one of a set of options

and receiving a stochastic reward. An agent solving the multi-armed bandit problem makes

decisions at each of sequence of times, at each time picking one of a set of options and

receiving a stochastic reward. The agent’s objective is to maximize the expected value of

the cumulative rewards received during the decision-making process. There is uncertainty

about the distribution of rewards at any given arm: in particular, the mean value of the

reward associated with a given arm is not known. Because of the uncertainty, the agent

has to simultaneously prioritize selecting arms to reduce the uncertainty of the associated

rewards and selecting arms that appear highly rewarding given the current information. The

tension between these priorities is known as the explore-exploit tradeoff, and is common to

many forms of decision making under uncertainty, including reinforcement learning [124] and

adaptive control, as well as human [30, 75] and animal decision-making behavior [58, 51, 45].

More generally, decision-making problems that involve interacting with uncertain envi-

ronments are often formulated as Markov Decision Processes (MDPs). MDPs are decision

problems in which the decision-making agent is required to make a sequence of choices along

a process evolving stochastically in time [124]. The stochastic nature of the process captures

the uncertainty of the environment, since the agent cannot be sure of the next state of the

process, even though he/she knows the current state. Partially Observable Markov Deci-

sion Processes (POMDPs) [112, 114] generalize MDPs to the case where the agent cannot

observe the current state directly, and therefore is more uncertain about the environment.

The theory of dynamic programming [12, 48] provides methods to find optimal solutions to

generic MDPs (and POMDPs [74]), but is subject to the so-called curse of dimensionality

[124], where the size of the problem often grows exponentially in the number of states.

The curse of dimensionality makes finding the optimal solution difficult, and in general

intractable for finite-horizon problems of any significant size. Many engineering solutions

of MDPs consider the infinite-horizon case, i.e., the limit where the agent will be required

to make an infinite sequence of decisions. In this case, the problem simplifies significantly

and a variety of reinforcement learning methods can be used to converge to the optimal

solution, for example [128, 48, 124, 69, 90]. However, these methods only converge to the

optimal solution asymptotically at a rate that is difficult to analyze. The UCRL algorithm
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[10] addressed this issue by deriving a heuristic-based reinforcement learning algorithm with

a provable learning rate.

However, the infinite-horizon limit may be inappropriate for finite-horizon tasks. In

particular, optimal solutions to the finite-horizon problem may be strongly dependent on

the task horizon. If a single decision is to be made, a human is likely to be conservative,

since selecting an unfamiliar option is risky and even if he/she chooses a rewarding option,

he/she will have no further opportunity to use the information in the same context. However,

if many successive decisions must be made, discovering rewarding options is valuable.

Although the finite-horizon problem may be intractable to computational analysis, hu-

mans and other animals are confronted with it all the time. Krebs et al. [58] showed that

birds are able to closely approximate the optimal solution of a finite-horizon two-armed ban-

dit task, and several works, e.g., [136, 122], have shown that humans can also approximate

optimal solutions of multi-armed bandit tasks. The fact that humans are able to find efficient

solutions quickly with inherently limited computational power suggests that they employ rel-

atively sophisticated heuristics for solving these problems. Elucidating these heuristics is of

interest both from a psychological point of view where they may help us understand human

cognitive control and from an engineering point of view where they may lead to development

of improved algorithms to solve MDPs [30]. In this thesis, we seek to elucidate the behavioral

heuristics at play with a model that is both mathematically rigorous and computationally

tractable.

1.3 Research overview

Our approach to reaching the ultimate goal of developing a framework for human-machine

search requires several steps:

1. Developing and validating models of human search behavior

2. Estimating parameters of these models

3. Systems integration to apply these models in the context of specific problems

There is an initial step 0 that we have not listed above, which is to develop a mathematical

model of the search problem. This step is crucial to developing the mathematical models

that underpin all the work that follows. The difficulty in doing so, as was discussed above, is

that search takes on many forms and arises in many different contexts. As discussed above,

the search problem we study should be sufficiently general to encompass the myriad types

of search while sufficiently simple to allow us to prove performance guarantees and to garner
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insight through analysis, such as sensitivities to parameters. This thesis makes contributions

to steps 1 and 2 listed above but also to the crucial initial step 0.

Our contribution to the initial step 0 is to make the connection between the multi-armed

bandit problem [101] and search. An agent playing a multi-armed bandit task sequentially

picks one of a finite set of options and receives a stochastic reward. His/her objective is to

maximize some aggregate measure of the rewards received over a given series of decisions.

As a model for the prototypical spatial search problem, we introduce the spatial multi-

armed bandit problem, where each option represents a discrete patch in the search space.

The multi-armed bandit problem has been extensively studied in both the psychology and

machine learning literatures, so it is ideal for our purposes. From the machine learning

literature, there is a known bound on optimal performance [62] and a number of algorithms

[40, 3, 27, 9] that achieve that bound. From the neuroscience literature, there are numerous

studies [1, 122, 2, 92, 65, 131] that investigate human behavior in multi-armed bandit tasks

and propose heuristic-based algorithms to explain the behavioral data. Chapter 2 provides

an extensive review of the relevant literatures.

Our approach is to rigorously link the machine learning and neuroscience literatures on

the multi-armed bandit problem, thereby providing a framework for human-machine search.

We do this by extending results from the neuroscience literature to develop several human-

inspired heuristics for solving the spatial multi-armed bandit problem. We connect the

resulting heuristics to those used by algorithms in the machine learning literature and use

mathematical tools from that literature to analyze the performance of the resulting human-

inspired algorithm.

We term the human-inspired algorithm the Upper Credible Limit (UCL) algorithm, show

that it captures empirically-observed trends in human behavior, and prove conditions under

which it achieves optimal performance. Crucially, UCL is a Bayesian algorithm that incor-

porates prior beliefs about the structure of the reward surface and updates these beliefs as it

receives new information by observing rewards at different locations. The prior beliefs form

the core of the transferrable knowledge that is key to improving technological aids to search.

The value of the knowledge encoded in priors is shown by data we collect from a human-

subject spatial search task. In particular, we show that human performance in this task

falls into a small number of well-defined categories and that the UCL algorithm captures

these categories as a function of priors. Some subjects show very good performance in this

short-horizon task, outperforming algorithms with known-optimal long-run performance. In

light of the UCL algorithm, we attribute this good performance to the subject having good

priors, either due to experience or fast adaptation to the task. Therefore, a human-machine

system could benefit from using the priors from a human operator with good performance.
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The UCL algorithm can be interpreted as a model of human choice behavior in spatial

search tasks. By fitting the parameters of this model to human choice data, one can provide

an estimate of the priors used to make the choices. This estimation is essential to performing

system integration and allowing an automated system to use the human operator’s trans-

ferrable knowledge. The UCL algorithm defines a likelihood function of the parameters in a

straightforward way. A maximum likelihood estimate of the parameters can be produced by

maximizing the likelihood function over the parameter space, but this optimization problem

is poorly-behaved and consequently difficult to solve. We develop an estimator for UCL

based on an approximate likelihood function and show that it accurately estimates the pa-

rameter values. In control-theoretic terms, the UCL algorithm and associated estimator

gives a plant-observer pair for human decision making in spatial search tasks that can then

be used for system design.

Finally, we consider some theoretical aspects of decision making in multi-armed bandit

problems with a different, human-inspired objective. In the standard multi-armed bandit

problem, the decision maker seeks to maximize the expected value of their cumulative reward

over the horizon of the decision process. However, the expected value objective has several

shortcomings. First, it ignores risk, i.e., the dispersion of the cumulative reward over repeated

tasks. Second, it fails to incorporate the cost of search, i.e., the fact that search is costly

and therefore a solution that is suboptimal in terms of expected reward may prove to be

good enough to obviate the need to perform further search. Simon [110, 111] argued that

humans and other organisms aim to satisfice (= satisfy + suffice) rather than optimize

in their decision making. We consider the multi-armed bandit problem with a satisficing

objective, derive bounds on optimal performance for the problem, and develop an algorithm

that achieves optimal performance.

1.4 Outline

This thesis is structured as follows. We provide detailed background on multi-armed bandit

problems in Chapter 2. In Chapters 3 and 4 we develop models of human decision mak-

ing in multi-armed bandit problems. In Chapter 3 we review a heuristic developed in the

neuroscience literature for a two-armed bandit task and generalize it to the case of multiple

arms. In Chapter 4 we develop the UCL algorithm and prove conditions under which it

achieves optimal performance. In Chapter 5 we present data from a human-subject spatial

search experiment and discuss how the UCL algorithm can be used as a model to fit these

data by adjusting the algorithm parameters. In Chapter 6 we develop a maximum likelihood

estimator to estimate the algorithm parameters, including the priors, from data. In Chapter
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7 we consider the extension of the multi-armed bandit problem using a satisficing objective.

In Chapter 8 we survey perspectives for future work and conclude.
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Chapter 2

Search and multi-armed bandits

“Essentially, all models are wrong, but some are useful.”

(George E. P. Box and Norman R. Draper)

In this chapter we introduce the multi-armed bandit problem as a model of spatial search.

This problem serves as the mathematical context for our study. First, we define the prob-

lem mathematically and introduce the relevant notation. We then discuss various types

of optimal solution of the problem before reviewing the relevant empirical findings on hu-

man behavior in multi-armed bandit problems from the neuroscience literature. Finally, we

close by making explicit the connection between the multi-armed bandit problem and spatial

search.

2.1 The multi-armed bandit problem

The multi-armed bandit problem, introduced by Robbins [101], is a sequential decision-

making task in which the decision-making agent is required to make a decision at sequential

instances t, t ∈ {1, . . . , T}, where T > 1 is the horizon of the task. At each decision instance

t, the agent selects one element it of a finite set i ∈ {1, . . . , N}, where N is the total number

of elements, and receives a stochastic reward rt associated with the selected element. By

analogy with the lever of a slot machine, also known as a one-armed bandit, each element

i is referred to as an arm and the overall structure as a multi-armed bandit. The reward r

due to picking an arm i is drawn from a stationary distribution pi(r) with mean mi, which

is constant over the duration of the problem. The agent may have some information about

the distribution, for example that it is Gaussian, but the value of the mean is unknown to

the agent.

The agent’s objective is to pick a sequence of arms in order to maximize the expected

value of the rewards it accumulates over the course of the decision process. Each choice of
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arm it is made conditional on the information available to the agent at time t, denoted Ft.
Mathematically, the objective is

max
{it|Ft}Tt=1

J = E

[
T∑
t=1

rt

]
, (2.1)

where the expectation is taken over the distribution of rewards observed by the agent. The

sum over choices t commutes with the expected value over rewards, so (2.1) can be equiva-

lently written as

J =
T∑
t=1

E [rt] =
N∑
i=1

miE
[
nTi
]
, (2.2)

where nTi is the number of times arm i has been selected up to time T and the final expec-

tation is taken over the distribution of choices made by the agent based on the rewards it

observes. We use ∗ to denote the arm that is most rewarding on average, so i∗ = arg maximi

and mi∗ = maximi. For purposes of exposition, we assume that i∗ is unique, although

nothing substantive changes if this is not the case.

Another transformation of the objective function is useful for analyzing the performance

of policies solving the multi-armed bandit problem. Define ∆i = mi∗ −mi as the expected

regret of picking arm i, i.e., the amount of reward foregone on average by selecting arm i

instead of the optimal one i∗. Furthermore, define Rt = ∆it as the expected regret at time

t due to the choice of arm it. Then the objective function J can be rewritten in terms of

cumulative expected regret JR:

JR = Tmi∗ − J = Tmi∗ −
T∑
t=1

E [rt] =
T∑
t=1

E [Rt] =
N∑
i=1

∆iE
[
nTi
]
. (2.3)

Maximizing cumulative expected reward J is equivalent to minimizing cumulative expected

regret JR, so the optimization problem (2.1) becomes

min
{it|Ft}Tt=1

JR, JR =
N∑
i=1

∆iE
[
nTi
]
. (2.4)

Note that this definition of regret is in the sense of an omniscient being who is aware of the

expected values of all options, rather than in the sense of an agent performing the task. As

such, it is not a quantity of direct psychological relevance but rather an analytical tool that

allows one to characterize performance. Alternative notions of regret can be psychologically

relevant, such as when a choice that looks promising a priori yields a result that appears
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poor in hindsight. See [120] for a study of psychological regret in animal decision making

and [32, 31, 75] for studies involving human subjects.

Writing the objective as a sum over arms i emphasizes that achieving good performance

relies on choosing good arms (i.e., those with high mi) as often as possible (and conversely,

bad arms as rarely as possible). Since the means are unknown to the agent, it must learn the

values mi by picking arm i and observing rewards from the distribution pi. For individual

choices, then, the requirement to learn about the mi by selecting arms where mi is uncertain

is in tension with the interest in obtaining immediate reward by preferentially selecting

arms with known high rewards. To maximize the objective J , the agent must balance the

requirement to gain information about the rewards by picking arms where the value of mi

is uncertain (termed exploration) and the requirement to maximize immediate reward by

picking arms where the value of mi appears relatively high (termed exploitation). This

tension between information and immediate reward, known as the explore-exploit tradeoff, is

common to many forms of decision making under uncertainty.

In the remainder of this thesis, we focus on the Gaussian multi-armed bandit problem,

i.e., the multi-armed bandit problem where the reward distribution pi(r) is normal with mean

mi and variance σ2
s,i. We denote this distribution by N (mi, σ

2
s,i). The mean mi is unknown

as assumed above, but we assume that the variance σ2
s,i is known to the decision maker. In

many cases, the variance is uniform across arms i, in which case we denote it simply by σ2
s .

2.2 Optimal solution of the multi-armed

bandit problem

In the literature on MDPs, the word policy refers to a function that maps the state of

the process to the action to be taken by the decision maker. Such a function constitutes

a solution of the MDP, which may be implemented using a particular algorithm. In the

following, we use the words policy, solution, and algorithm interchangeably.

If the values of the means mi were known, the optimal solution to the multi-armed

bandit problem would be trivial: select the best arm it = i∗ = arg maximi at each time

t. However, since the means are unknown, the agent must negotiate the explore-exploit

tradeoff, which is non-trivial. The multi-armed bandit problem can be thought of as a

POMDP where the action and state variables are conflated. In particular, the state space is

the set S = {(i,mi)|i ∈ {1, . . . , N}} of pairs of arms and mean rewards.

The methods of dynamic programming [12, 48, 74] can be used to find optimal solutions

to general MDPs, including the multi-armed bandit problem, but these methods quickly
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become computationally intractable as the horizon T grows, due to the well-known curse

of dimensionality [124]. The theory of approximate dynamic programming [90] provides

tools (e.g., the knowledge gradient algorithm [104]) to break the curse of dimensionality and

approximate the dynamic programming optimal solution, but the performance bounds for

the resulting approximate solutions can be difficult to interpret in the finite-horizon case

T < +∞.

Many engineering approaches to solving MDPs consider the infinite-horizon limit T →
+∞, in which case finding optimal solutions often simplifies dramatically. Gittins [40, 39]

considered the infinite-horizon limit of the multi-armed bandit problem and developed a

dynamic allocation index (Gittins’ index) for each arm. He showed that selecting the arm

with the highest allocation index at each decision time results in the optimal policy. Gittins’

index, therefore, provides an optimal solution to the infinite-horizon multi-armed bandit

problem, but it has several drawbacks. First, it is difficult to compute, and second, it does

not provide much insight into the nature of optimal policies, such as sensitivities to the

problem parameters.

In a seminal study [62], Lai and Robbins considered a case of the multi-armed bandit

problem where the reward distributions pi are members of a one-parameter exponential

family [50]. For this case, they derived a lower bound on E
[
nTi
]
, the number of times a

policy solving the multi-armed bandit problem will pick a suboptimal arm. In particular,

they showed [62, Theorem 2] that

E
[
nTi
]
≥
(

1

D(pi||pi∗)
+ o(1)

)
log T (2.5)

for each suboptimal arm i 6= i∗, where D(pi||pi∗) :=
∫∞
−∞ log

(
pi(x)
pi∗ (x)

)
pi(x)dx is the Kullback-

Leibler divergence between the reward distributions for arm i and i∗. The bound is asymp-

totic in the horizon T , i.e., o(1) → 0 as T → +∞ and the constant depends on the

distinguishability of the reward distributions. If pi and pi∗ are easily distinguished, the

Kullback-Leibler divergence D(pi||pi∗) will be large and the corresponding constant in (2.5)

will be small. By substituting the bound (2.5) into the regret objective (2.4), one obtains

the following asymptotic lower bound on regret:

JR =
N∑
i=1

∆iE
[
nTi
]
≥
∑
i 6=i∗

∆i

(
1

D(pi||pi∗)
+ o(1)

)
log T. (2.6)
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Therefore, this result shows that any policy solving the multi-armed bandit problem must

incur cumulative expected regret that grows logarithmically with the number of choices made

T .

In the case the the rewards are Gaussian with uniform variance σ2
s , the Kullback-Leibler

divergence is

D(pi||pi∗) =
∆2
i

2σ2
s

,

so the bound (2.5) is

E
[
nTi
]
≥
(

2σ2
s

∆2
i

+ o(1)

)
log T. (2.7)

This result can be interpreted as follows. For a given value of ∆i, a larger variance σ2
s makes

the rewards more variable and therefore it is more difficult to distinguish between the arms.

For a given value of σ2
s , a larger value of ∆i makes it easier to distinguish the optimal arm.

2.3 Heuristic solutions of the multi-armed

bandit problem

Since finding the strictly optimal solution of the multi-armed bandit problem is generally in-

tractable, the literature has focused on finding approximately optimal solutions, often based

on heuristics. Often the heuristics are forms of a metaheuristic known in the machine learn-

ing literature as optimism in the face of uncertainty [20]. The idea behind this metaheuristic

is that an agent interacting with an uncertain world should formulate a set of possible states

of the world that are consistent with the observed data, then act as if the true state of the

world were the one that is most favorable to the agent.

The Lai-Robbins bound (2.5) provides a way to identify approximately optimal policies

in terms of the growth rate of their cumulative expected regret. Two major categories of

results exist in the literature: 1) infinite-time policies that attempt to match the asymptotic

growth rate (2.5), and 2) finite-time policies that bound the cumulative expected regret for

any given finite horizon T . In the literature on infinite-time policies, optimal performance

refers to regret that matches the asymptotic bound, while for finite-time policies, optimal

performance refers to cumulative expected regret that is uniformly upper bounded in time

T by a logarithmic function with a leading constant that is within a constant factor of that

in (2.5). In the following, we refer to cumulative expected regret that obeys such a uniform

upper bound as logarithmic regret.
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2.3.1 Asymptotically-optimal policies

In the paper [62] where they proved the bound (2.5), Lai and Robbins also developed infinite-

time algorithms that asymptotically achieve the bound, i.e., asymptotically optimal perfor-

mance. Their algorithms use what they term “upper confidence bounds” on the mean

rewards mi, which give a value that is similar in function to Gittins’ index in that the al-

gorithms pick an arm based on a rule incorporating the upper confidence bound and the

empirically observed mean reward for each arm. Lai [61] simplified the rule by developing

a single upper confidence bound that incorporates all the relevant information. Lai’s algo-

rithm picks the arm that has the largest upper confidence bound at each decision time. In

Example 1 of [61], Lai develops a specific version of his algorithm for the case of Gaussian

bandits with known uniform variance σ2
s = 1.

The algorithms developed by Lai and Robbins [62] and Lai [61] use heuristic functions

that are complicated to compute. Agrawal [3] developed simplified heuristic functions that

depend only on the empirically observed mean reward and as such are easy to compute, yet

still achieve asymptotically optimal performance. His results depend on several results from

large deviation theory to bound the rate at which the observed mean reward converges to

the true mean.

2.3.2 Finite-time optimal policies1

Auer et al. [9] considered the finite-time multi-armed bandit problem where the rewards are

drawn from distributions with a bounded support. For this case they developed the Upper

Confidence Bound (UCB) algorithm UCB1 and its variants, and showed that they achieve

logarithmic regret. UCB1 is a heuristic-based algorithm that computes a heuristic value Qt
i

for each arm i at each decision time t. This heuristic value, derived by applying ideas from

Agrawal [3], provides an upper bound on the true mean reward value mi for that option

Qt
i = m̄t

i + Ct
i , (2.8)

where m̄t
i is the empirical mean reward observed from arm i up to time t and Ct

i is a measure

of the uncertainty associated with the estimate of the mean at time t. UCB1 then picks the

arm that maximizes the heuristic function Qt
i. Figure 2.1 depicts the components of the

UCB heuristic (2.8) in an N = 3 option case.

Auer et al. [9] showed that UCB1 achieves logarithmic regret, albeit with a larger constant

than the optimal asymptotic one (2.5). They also developed a slightly more complicated

1This section is adapted from Section II.C of [99] with some text taken verbatim.
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Figure 2.1: Components of the UCB1 algorithm in an N = 3 option (arm) case. The
algorithm forms a confidence interval for the mean reward mi for each option i at each time
t. The heuristic value Qt

i = m̄t
i+C

t
i is the upper limit of this confidence interval, representing

an optimistic estimate of the true mean reward. In this example, options 2 and 3 have the
same mean m̄ but option 3 has a larger uncertainty C, so the algorithm chooses option 3.
Previously published as Figure 1 of [99].

policy, called UCB2, which achieves logarithmic regret with a constant that can be made

arbitrarily close to the optimal one. Their analysis of UCB1 and UCB2 relies on Chernoff-

Hoeffding bounds, which is a result from large deviation theory that applies to distributions

with bounded support.

In the same paper, Auer et al. also considered the multi-armed bandit problem where the

rewards are drawn from Gaussian distributions with unknown mean and unknown variance

and developed a policy called UCB1-Normal. Since the Gaussian distribution has support

on the whole real line, they were unable to appeal to Chernoff-Hoeffding bounds in the

analysis and instead based their analysis on bounds on the tails of the χ2 and Student

distributions that they could only verify numerically. Assuming these bounds, they showed

that UCB1-Normal achieves logarithmic regret. Liu and Zhao [70] studied multi-armed

bandit problems where the rewards are drawn from a light-tailed distribution, which includes

Gaussian distributions with known variance as a special case. For such light-tailed rewards,

they extended UCB1 to achieve logarithmic regret. In contrast to the Bayesian algorithms

developed in this thesis, UCB1 and its variants rely on frequentist estimators, and therefore

cannot incorporate prior knowledge about the rewards.
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2.3.3 Bayesian algorithms2

UCB algorithms rely on a frequentist estimator m̄t
i of mi and therefore must sample each

arm at least once in an initialization step, which requires a sufficiently long horizon, i.e.,

T > N . Bayesian estimators allow the integration of prior beliefs into the decision process.

This enables a Bayesian UCB algorithm to treat the case T < N as well as to capture

the initial beliefs of an agent, informed perhaps through prior experience. Kauffman et

al. [49] considered the N -armed bandit problem from a Bayesian perspective and proposed

the quantile function of the posterior reward distribution as the heuristic function (2.8).

In their analysis, Kauffman et al. considered the case of an uninformative prior, in which

case the Bayesian estimator reduces to its frequentist equivalent. They do this because of

the difficulty of analyzing the information provided by an informative prior. Intuitively, an

informative prior represents information gained from previous experience. If this information

is accurate and relevant to the task, it can greatly improve performance. If, however, the

information is inaccurate or irrelevant, it may take time to realize that this is the case,

resulting in poor initial decisions and therefore poor performance. When we introduce the

UCL algorithm in Chapter 4, we also perform our analysis in the case of an uninformative

prior. However, we also derive a metric for determining the quality of an informative prior,

and we use this metric to develop intuition about the kind of information that is valuable

for improving performance.

For every random variable X having support R∪{±∞} with probability distribution

function (pdf) f(x), the associated cumulative distribution function (cdf) F (x) gives the

probability that the random variable takes a value of at most x, i.e., F (x) = P (X ≤ x). See

Figure 2.2. Conversely, the quantile function F−1(p) is defined by

F−1 : [0, 1]→ R∪{±∞},

i.e., F−1(p) inverts the cdf to provide an upper bound for the value of the random variable

X ∼ f(x):

P
(
X ≤ F−1(p)

)
= p. (2.9)

In this sense, F−1(p) is an upper confidence bound, i.e., an upper bound that holds with

probability, or confidence level, p. Now suppose that Fi(r) is the cdf for the posterior

estimate of the reward distribution pi(r) of option i. Then, Qi = F−1
i (p) gives a bound such

that P (mi > Qi) = 1− p. If p ∈ (0, 1) is chosen large, then 1− p is small, and it is unlikely

that the true mean reward for option i is higher than the bound. See Figure 2.3.

2This section is adapted from Section II.D of [99] with some text taken verbatim.
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Figure 2.2: The pdf f(x) of a Gaussian random variable X with mean µti. The probability
that X ≤ x is

∫ x
−∞ f(X) dX = F (x). The area of the shaded region is F (µti +Ct

i ) = p, so the
probability that X ≤ µti +Ct

i is p. Conversely, X ≥ µti +Ct
i with probability 1− p, so if p is

close to 1, X is almost surely less than µti + Ct
i . Previously published as Figure 2 of [99].

In order to be increasingly sure of choosing the optimal arm as time goes on, [49] sets p =

1−αt as a function of time with αt = 1/(t(log T )c), so that 1−p is of order 1/t. The authors

of [49] defined an algorithm that picks arms using the heuristic function Qt
i = F−1

i (1−αt) and

called it Bayes-UCB. In the case that the rewards are Bernoulli distributed, they proved that

with c ≥ 5 Bayes-UCB achieves logarithmic regret, i.e. optimal performance, for uniform

(uninformative) priors.

The choice of 1/t as the functional form for αt can be motivated as follows. Roughly

speaking, αt is the probability of making an error (i.e., choosing a suboptimal arm) at time

t. If a suboptimal arm is chosen with probability 1/t, then the expected number of times it

is chosen until time T will follow the integral of this rate, which is
∑T

1 1/t ≈ log T , yielding

a logarithmic functional form.

Another Bayesian algorithm that is the subject of active research is known as Thompson

sampling [125]. Recent work has shown that Thompson sampling is near-optimal for binary

bandits with a uniform prior [4]. Bubeck and Liu [21] studied Thompson sampling focusing

on the effect of priors on regret. In the following, inspired by models of human decision

making, we focus on the UCB approach.

18



0

0.5

1

µ
t
i

←C t
i →

Q t
i = F − 1(1 − α t)

= F − 1(p)

= µ
t
i + C t

i

↔

1 − p = α t = 0.1

x

F (x)
p

µ
t
i + C t

i

Figure 2.3: Decomposition of the Gaussian cdf F (x) and relation to the UCB/Bayes-UCB
heuristic value. For a given value of αt (here equal to 0.1), F−1(1 − αt) gives a value
Qt
i = µti + Ct

i such that the Gaussian random variable X ≤ Qt
i with probability 1 − αt. As

αt → 0, Qt
i → +∞ and X is almost surely less than Qt

i. Previously published as Figure 3 of
[99].

2.4 Results from neuroscience3

As discussed in the introduction, human decision making in the multi-armed bandit task has

been the subject of numerous studies in the cognitive psychology literature. We list the five

salient features of human decision making in this literature that we wish to capture in our

models.

(i) Familiarity with the environment: Familiarity with the environment and its structure

plays a critical role in human decision making [30, 122]. In the context of multi-armed bandit

tasks, familiarity with the environment translates to prior knowledge about the mean rewards

from each arm.

(ii) Ambiguity bonus: Wilson et al. [131] showed that the decision at time t is based on a

linear combination of the estimate of the mean reward of each arm and an ambiguity bonus

that captures the value of information from that arm. In the context of UCB and related

algorithms, the ambiguity bonus can be interpreted similarly to the Ct
i term of (2.8) that

defines the size of the upper bound on the estimated reward.

(iii) Stochasticity: Human decision making is inherently noisy [30, 1, 122, 136, 131]. This

is possibly due to inherent limitations in human computational capacity, or it could be the

3This section is adapted from Section III of [99]. In particular, the list of features is mostly taken verbatim,
as well as the final paragraph.
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signature of noise being used as a cheap, general-purpose problem-solving algorithm. In the

context of algorithms for solving the multi-armed bandit problem, this can be interpreted as

picking arm it at time t using a stochastic arm selection strategy rather than a deterministic

one.

(iv) Finite-horizon effects: Both the level of decision noise and the ambiguity bonus are

sensitive to the time horizon T of the bandit task [30, 131]. This is a sensible feature to

have, as shorter time horizons mean less time to take advantage of information gained by

exploration, therefore biasing the optimal policy towards exploitation. The fact that both

decision noise and the ambiguity bonus are affected by the time horizon suggests that they

are both working as mechanisms for exploration, as investigated in [100] and the following

chapter. In the context of algorithms, this means that the uncertainty term Ct
i and the

stochastic arm selection scheme should be functions of the horizon T .

(v) Environmental structure effects: Acuña et al. [2] showed that an important aspect

of human learning in multi-armed bandit tasks is structural learning, i.e., humans learn the

correlation structure among different arms, and utilize it to improve their decision.

In this thesis, we develop plausible models for human decision making that capture these

five features. The ambiguity bonus heuristic algorithm developed in Chapter 3 represents a

first step towards modeling features (i)-(iii) and (v) of human decision making. The UCL

algorithm developed in Chapter 4 develops a model that addresses all five features and is

more analytically tractable, allowing us to prove conditions under which it achieves optimal

performance.

Feature (i) of human decision making is captured through priors on the mean rewards

from the arms. The introduction of priors in the decision-making process suggests that non-

Bayesian upper confidence bound algorithms [9] cannot be used, and therefore, we focus

on Bayesian upper confidence bound (upper credible limit) algorithms [49]. Feature (ii) of

human decision making is captured by making decisions based on a metric that comprises

two components, namely, the estimate of the mean reward from each arm, and the width

of a credible set. It is well known that the width of a credible set is a good measure of the

uncertainty in the estimate of the reward. Feature (iii) of human decision making is captured

by introducing a stochastic arm selection strategy in place of the standard deterministic arm

selection strategy [9, 49]. In the spirit of Kauffman et al. [49], we choose the credibility

parameter αt as a function of the horizon length to capture feature (iv) of human decision

making. Feature (v) is captured through the correlation structure of the prior used for the

Bayesian estimation. This correlation structure proves crucial to applying the multi-armed

bandit problem to spatial search.
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2.5 A model of spatial search

An important contribution of this thesis is to make the connection between the multi-armed

bandit problem and spatial search. The connection is made by considering the arms of

the bandit to be spatially embedded, so each arm represents a discrete patch of the spatial

domain of interest. We refer to this multi-armed bandit problem with spatially-embedded

arms as the spatial multi-armed bandit problem.

In the spatial multi-armed bandit problem, the decision-making agent receives rewards

by sampling arms, i.e., patches of search space. As an example, this could be a model of

an animal’s foraging behavior. At each decision time t, the animal decides to forage in a

given region of its spatial domain and receives a stochastic reward in the form of food. The

decision time might represent a short period of several minutes, a day, or a season, depending

on the time scales involved. As a model of decision making on evolutionary time scales, the

decision-making agent could be an entire population and each decision time could represent

a generation. For a more detailed discussion of the connection between spatially embedded

multi-armed bandits and foraging theory, see [117].

The key mathematical difference between the standard and the spatial multi-armed ban-

dit problems is the introduction of a correlation structure. When the arms are embedded

in a metric space, it is natural to assume that arms that are spatially close have similar

rewards. In a Bayesian context, this corresponds to having a prior with correlation structure

where spatially close arms are highly correlated. The spatial multi-armed bandit problem is

closely related to the so-called continuous-armed bandit problem [54], where each point x of

a continuous space X is considered as an arm. In the continuous-armed bandit problem, the

mean reward value is the function m : X → R, where m(x) is the reward at “arm” x ∈ X.

Correlation structure is encoded in smoothness assumptions about the function m(·).
In one body of recent work, the mean reward function m(·) is assumed to be Lipschitz

(implying a little more than continuity), and the problem is referred to as a Lipschitz multi-

armed bandit problem. Kleinberg and Slivkins [55] and Kleinberg et al. [56] considered the

Lipschitz multi-armed bandit problem, where the arms are embedded in a metric space. They

showed that when the arms are embedded in an infinite metric space, the lower bound on the

regret growth rate is O
(√

T
)

as opposed to the slower rate O (log T ) from the Lai-Robbins

bound (2.5) for the finite-armed bandit problem. This implies that moving from a discrete

to a continuous space makes the bandit problem significantly more difficult. Bubeck et

al. [23] also considered Lipschitz multi-armed bandits and derived an algorithm that achieves

O
(√

T
)

regret. Azar et al. [11] extended the continuous-armed bandit formalism to include
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cases where the stochastic reward depends on the prior history of choices. This allowed them

to develop algorithms to perform policy search in MDPs.

In the Lipschitz multi-armed bandit problem the smoothness assumption about m(·) is

encoded in the Lipschitz constant. In a Bayesian framework, the mean function m(·) is

considered to be a random variable and the smoothness assumption is encoded in the prior

distribution over m(·). One distribution commonly used is the Gaussian process, which is

defined by a kernel function k : X × X → R and a mean function µ : X → R. The value

k(x, x′) represents the covariance of the belief about m(x) and m(x′), while the value µ(x)

represents the mean belief about m(x). The smoothness assumption about m(·) is encoded in

the structure of k(·, ·). Srinivas et al. [116] studied the continuous-armed bandit problem in

a Bayesian context using Gaussian processes as a prior and developed the Gaussian process

upper confidence bound (GP-UCB) algorithm and characterized its regret.

In the following, we consider the spatial multi-armed bandit problem, which can be

thought of as a discretized version of the continuous-armed bandit problem. In the Bayesian

context, the covariance structure comes from discretizing the kernel function: for example,

it is natural to think of a covariance structure defined by Σij = σ2
0 exp(−|xi − xj|/λ), where

xi is the location of arm i, λ ≥ 0 is the correlation length scale parameter that encodes the

spatial smoothness of the rewards, and σ2
0 ≥ 0 is a confidence parameter that encodes the

strength of the prior.
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Chapter 3

Human-inspired heuristics for

multi-armed bandit problems1

“When we talk mathematics, we may be discussing a secondary language built on the primary

language of the nervous system.”

(John von Neumann)

In this chapter, we review an empirical result, due to Wilson et al. [131], from the

neuroscience literature concerning a two-armed bandit task. The authors of [131] showed

that human decision-making behavior in such a task is well modeled by an ambiguity bonus

heuristic that resembles the UCB heuristic (2.8). This heuristic includes two mechanisms

for exploration: directed exploration to gain information about the reward values based on

the agent’s model of the world and random exploration that uses noise to stochastically try

new options in a model-free way. By weighting these two mechanisms with a mechanism for

exploitation, the heuristic negotiates the explore-exploit tradeoff.

Seeking to develop an analogous heuristic-based algorithm, we extend the ambiguity

bonus heuristic to the multi-armed spatial bandit task with N ≥ 2 arms and study its

properties both numerically and analytically. We show that, with proper parameter tunings,

the heuristic-based algorithm performs well but that finding the optimal parameter values is

non-trivial. However, in some cases the optimal parameter values can be found analytically

and suboptimal parameter values can provide robustness to modeling error. These results

suggest a feedback control law for dynamically optimizing the parameters.

1This chapter is adapted from [100] with most of the text taken verbatim. Some notation has been
changed for consistency with the rest of this thesis.
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3.1 Results from a two-armed bandit task

Wilson et al. [131] studied human behavior in a two-armed bandit task and showed that

decisions were well explained by an ambiguity bonus heuristic. This heuristic makes decisions

based on a value function Qt
i, which assigns to each option (i.e. arm) i at each decision time

t a value that trades off the expected payoff of that option, ∆Rt
i, with the information to be

gained by testing it, ∆I ti :

Qt
i = ∆Rt

i + A∆I ti , A ∈ R. (3.1)

The heuristic then picks the option it using softmax action selection [124, Section 2.3],

which is a stochastic strategy that preferentially chooses options with higher Q values. The

name of the heuristic derives from the influence of ∆I ti . Choosing options that have greater

ambiguity, i.e., less is known about their associated rewards, yields more information ∆I ti ;

for A > 0 these options are assigned greater values by the heuristic. Two limiting values

of A are of interest. When A = 0, the heuristic attaches no weight to information gain

and therefore reduces to a greedy strategy, i.e., one that selects the option whose currently-

estimated reward is highest. In terms of the explore-exploit tradeoff, this can be thought

of as a pure exploit strategy [124, Section 2.1]. Conversely, when A → +∞ the heuristic

weights only information and can be thought of as a pure explore strategy.

To make the tradeoff between these two limiting cases more explicit, in the following we

consider an alternative parametrization of (3.1) using a convex instead of a linear combina-

tion:

Qt
i = β∆Rt

i + (1− β)∆I ti , β ∈ R. (3.2)

Using this parametrization, β = 1 corresponds to a pure exploit strategy and β = 0 cor-

responds to pure explore. Intermediate values of β correspond to mixed explore-exploit

strategies.

3.2 Generalization to N arms

In Wilson et al.’s study [131], the subject’s belief about ∆Rt
i was experimentally controlled

and ∆I ti was approximated using the number of samples the subject had seen from a given

arm i. To formulate a generalization of the ambiguity bonus heuristic in the general case of

N ≥ 2 arms, we must pose the problem mathematically as a multi-armed bandit problem

and develop equivalent notions of ∆R and ∆I in the mathematical framework.

Consider a d-dimensional discrete grid with N = nd grid points, where each grid point

i ∈ {1, . . . , N} is located at xi ∈ (Zn)d. In the following, we consider the cases d ∈ {1, 2}, but
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the generalization to arbitrary dimensions is straightforward. Each of the N grid points xi

constitutes an arm i of a spatial multi-armed bandit and has an associated mean reward mi,

which remains fixed for the duration of the problem. The vector m =
[
m1 m2 · · · mN

]
∈

RN of the rewards is unknown to the agent but is assumed to be drawn from a distribution

D with mean µ̄ ∈ RN and covariance Σ ∈ RN×N .

We assume the rewards to be Gaussian, so the agent collects rewards by visiting one

grid point it at each time t ∈ {1, . . . , T} and receiving reward rt which is the mean reward

associated with the point plus Gaussian noise: rt ∼ N (mit , σ
2
s). The agent’s objective is to

maximize cumulative expected rewards by selecting a sequence of grid points {xit}, i.e., arms

{it} (cf. Equation (2.1)). Note that due to the stationary nature of the sampled reward,

in the long time horizon limit T � N this problem reduces to the problem of finding the

peak value among the mi. We are particularly interested in the case of large spaces or short

time horizons, in which case the explore-exploit tension is consequential. A similar situation

arises in the long time horizon limit if the rewards are non-stationary.

3.3 The ambiguity bonus heuristic algorithm

In order to solve the optimization problem, the agent needs to learn about the reward

surface and make a decision based on their beliefs. With reasonable assumptions on the

distribution of rewards m, Bayesian inference provides a tractable optimal solution to the

learning problem. The ambiguity bonus heuristic (3.2) then provides a tractable solution to

the decision problem.

3.3.1 Inference algorithm

We begin by assuming that the agent’s prior distribution on m is multivariate Gaussian with

mean µ0 and covariance Σ0:

m ∼ N (µ0,Σ0),

where µ0 ∈ RN and Σ0 ∈ RN×N is a positive-definite matrix. Note that this does not assume

that the rewards are truly described by these statistics, simply that these are the agent’s

initial beliefs, informed perhaps by previous measurements of the mean value and covariance.

With this prior, the posterior distribution is also Gaussian, so the Bayesian optimal

inference algorithm is linear and can be written down as follows. At each time t, the agent,

located at xit ∈ (Zn)d, observes a reward rt. Define φt ∈ RN to be the indicator vector

corresponding to xit , where (φt)i = 1 if i = it is the location in a vector representation of
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the grid, and zero otherwise. Then the belief state (µt,Σt) updates as follows [50, 133]:

q =
rtφt
σ2
s

+ Λt−1µt−1 (3.3)

Λt =
φtφ

T
t

σ2
s

+ Λt−1, Σt = Λ−1
t (3.4)

µt = Σtq, (3.5)

where Λt = Σ−1
t is the precision matrix. This assumes that the sampling noise σs is known,

e.g. from previous observations or known sensor characteristics.

This gives us the first component of the decision heuristic: at time t, the expected payoff

∆Rt
i of option i is µti, the ith component of µt. We now turn to the information value

component ∆I ti .

3.3.2 Information value

We use entropic information as our information metric. Since the posterior distribution is

Gaussian, its entropy at time t is

Ht =
N log 2π + log det Σt

2
=
N log 2π − log det Λt

2
,

where the second equality comes from the definition of Λt. This form of the expression for

the entropy is convenient because the Λt update rule (3.4) is linear and φtφ
T
t is a sparse

rank one matrix: at each time t,
(
φtφ

T
t

)
itit

= 1 is the only non-zero element.

Because of this sparsity, we can calculate the change in the determinant over one time

step analytically using the matrix determinant lemma [18, Equation 4.3]:

det Λt = det

(
φtφ

T
t

σ2
s

+ Λt−1

)
= det Λt−1 +

1

σ2
s

Mitit , (3.6)

where Mitit is the (it, it) minor of Λt−1.

Then the change in entropy due to selecting arm i at time t is

Ht −Ht−1 = −1

2
(log det Λt − log det Λt−1)

=
1

2

(
log det Λt−1−log

(
det Λt−1 +

1

σ2
s

Mii

))
= −1

2

Mii

σ2
s det Λt−1

+O
(
M2

ii

)
,
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where the first equality follows from Equation (3.6) and the second follows from the Taylor

series expansion of log(x) about x = det Λt−1. The O (M2
ii) term becomes increasingly

insignificant as t increases and the information gain decreases.

Motivated by this approximation we define the information value of location i at time t

to be

∆I ti =
Mii

σ2
s det Λt−1

. (3.7)

See also the Backward Selection for Gaussian method of Choi and How [29, 28], who

examine other, more general cases of information-based search.

3.3.3 Decision heuristic

An important aspect of human decision making is that it is noisy, so that humans do not

necessarily deterministically optimize a value function. For example, when faced with a

completely unknown situation, a good model is that human subjects will pick randomly

among their options.

We choose to incorporate decision noise in our model by adding i.i.d. (over i and t)

random noise to the heuristic value function (3.2). Putting all the terms together the value

function Qt
i becomes

Qt
i = βµti + (1− β)∆I ti + σDε

t
i, ε

t
i ∼ N (0, 1). (3.8)

The decision given by the heuristic at time t is

it = arg max
i
Qt
i.

For purposes of numerical implementation we scale both µti and ∆I ti by their maximum

values at each time step:
µti

maxj µtj
,

∆I ti
maxj ∆I tj

.

With this normalization, both deterministic elements of the value function are scaled to lie

in [0, 1]. The values of the decision noise parameter, σD, that need to be studied numerically

also lie in [0, 1], since for cases σD ≥ 1 the noise term dominates the deterministic terms in

Q and decisions will be made primarily at random. The intermediate cases σD ∈ [0, 1] are

the ones where the different components of the decision heuristic can all come into play, and

as such are the ones of interest to be studied numerically.

The introduction of decision noise results in another tradeoff in addition to the explore-

exploit tradeoff, this time between two different types of exploration: directed exploration
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driven by the ∆I term which seeks information about the rewards, and random exploration

driven by the σDε term. The following numerical example shows that these two terms can

trade off in an interesting way.

3.4 A motivating numerical example

In this section, we motivate the role of parameters β and σD in the explore-exploit tradeoff.

We study a numerical example using a reward structure previously used in human experi-

ments, as discussed in [126] and Chapter 4 of [83]. This reward structure is designed such

that an agent that carries out insufficient exploration is likely to get caught at a local max-

imum. If β is too high, the agent will pay excessive attention to immediate rewards µti and

not seek enough information ∆I ti ; however, the agent may be able to compensate by adding

decision noise σDε
t
i.

Consider a two-dimensional (d = 2) example with grid size n = 10, so there are N =

nd = 100 options. The reward surface is as shown in Figure 3.1: it has the characteristic

that there is no gradient along the y direction, both ends along the x direction are local

maxima, but the line x = 10 is the unique global maximum.

This reward surface intuitively requires exploratory behavior because it has two local

maxima: if started on the left side of the domain, a simple gradient following algorithm will

get stuck at the suboptimal local maximum. We choose the horizon of T = 90 time steps so

that the agent can sample at most 90% of the space. The variance of the sampling noise is

σ2
r = 1/1200 while the mean surface value is 0.25 so that the average signal-to-noise ratio is

0.25/σr ≈ 8.66.

The algorithm requires values of the priors µ0 and Σ0. For the means it is reasonable to

set the uniform prior µ0 = 0. The appropriate prior on covariance is less obvious. Following

[68], we choose a prior that is exponential with a spatial length scale λ:

Σ0(i, j) = exp(−‖xi − xj‖/λ)

where ‖xi − xj‖ is the 1-norm of the distance between points i and j. For the present

example, we set λ = 3.

In order to understand the tradeoff between directed exploration and noise-based explo-

ration, we computed via simulation the expected total rewards accumulated by the algorithm

for (β, σD) ∈ [0, 1] × [10−5, 100.25]. The resolution of the set of simulations was 30 linearly-

spaced points in β and 20 log-spaced points in σD, and for each pair of values (β, σD), the
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expected value was computed by simulating 200 runs of the problem. For each simulation,

the initial location of the agent was drawn from a uniform distribution.

Expected reward per time step as a function of the two parameters (β, σD) for this

experiment is shown in Figure 3.2. As expected, some exploration was required to perform

well in the task: in the deterministic decision limit σD → 0, maximum rewards are achieved

for a value of β of about 0.5. Comparison between Figures 3.1 and 3.2 shows that at the

optimal tunings of the parameters, the expected rewards per time step of about 0.5 are near

the value at the global optimum, so the algorithm is achieving near-optimal performance.

Furthermore, Figure 3.2 shows a tradeoff between weighting on directed exploration and

random exploration. As σD increases, making action selection more random, one can main-

tain high performance by increasing β, thereby paying more attention to immediate rewards

and reducing the weight on directed exploration.

We can develop a better understanding of the role of exploration by measuring it. The

agent’s trajectory {xit = (x(t), y(t))|t = 1, . . . , T} forms a curve on the grid. We define a

measure of exploration eT over the T time steps by taking the variance of the time series

representing this trajectory:

eT =
1

T

T∑
t=1

(
(x(t)− x̄)2 + (y(t)− ȳ)2

)
, (3.9)

where x̄ = 1
T

∑T
t=1 x(t) and ȳ = 1

T

∑T
t=1 y(t) are the average values of x and y. This measure

has the physical interpretation of being the moment of inertia of the trajectory curve. It is

bounded below by zero (representing an agent that does not move at all), and larger values

of eT correspond to more time being spent away from the average position.

Figure 3.3 plots eT for the same set of parameters as in Figure 3.2. Again there is a

tradeoff between β and σD: as random exploration is increased by increasing σD, a constant

level of total exploration (as measured by eT ) can be maintained by increasing β, thereby

paying more attention to immediate rewards and reducing the weight on directed exploration.

The monotonic nature of the tradeoff is intuitive, although its specific shape is not trivial to

explain.

Furthermore, the plots show that the level sets of eT and expected reward have essentially

the same structure. This strongly suggests that tuning β and σD has an effect by altering the

overall level of exploration, and it is this overall level of exploration that governs performance.

The effects of β in the σD → 0 deterministic decision case are also interesting. Although

it is difficult to develop intuition for the effect of β in this case because of the large values

of N and T , in the following section we derive analytical results for more tractable cases.
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Figure 3.1: Profile of the mean reward surface for the numerical example. The grid points
are at x = 1, 2, . . . , 10. There is no gradient in the y direction, while in the x direction there
is a local maximum at x = 1, a local minimum at x = 4, and a global maximum at x = 10.
Previously published as Figure 1 of [100].
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Figure 3.2: Expected reward per time step for various parameter values. Note the tradeoff
between weighting on immediate reward β and decision noise σD. For small decision noise,
expected rewards are highest for β ≈ 0.5, but as noise increases one can maintain performance
by increasing β. Previously published as Figure 2 of [100].

30



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
−4

10
−3

10
−2

10
−1

10
0

 

β

 

σ
D

0

2

4

6

8

10

12

14

16

18

Figure 3.3: Exploration measure eT (3.9) for the same parameter values as in Figure 3.2.
Here the tradeoff between the two types of exploration is made clear: level sets of eT represent
sets of constant total exploration. As one increases random exploration through σD, one can
maintain a constant level of total exploration by increasing β to decrease directed exploration.
The level sets of eT look very similar to the level sets of expected rewards, suggesting that
it is the overall level of exploration that drives performance. Previously published as Figure
3 of [100].
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3.5 Optimized heuristic and the role of β

As the previous example shows, the two parameters β and σD in the heuristic interact

in a complex way to affect the performance of the algorithm. In this section we derive

analytical results in the σD = 0 limit. The analysis provides insight into the role of β,

and we can compute optimal tunings in the cases addressed. In Section 3.5.1 we analyze a

low-dimensional case that yields key insights. In Section 3.5.2 we discuss generalizations to

higher dimensions, other true distributions of rewards, and the σD 6= 0 case.

3.5.1 Analytical optimization of a low-dimensional case

To start, consider the d = 1 dimensional problem where n = 2, i.e. a grid with N = 2

options. Furthermore, let σs = 0 so there is no sampling noise and let T = 2 so the objective

is simply maxE [r1 + r2]. Let the true reward values m be jointly Gaussian distributed as

m ∼ N

([
0

µ̄2

]
,

[
1 σρ

σρ σ2

])
.

Similarly, let the agent’s prior over those values be the joint Gaussian distribution

N (µ0,Σ0), where µ0 =

[
0

0

]
,Σ0 =

[
1 ρ

ρ 1

]
.

Also, assume that ρ ≥ 0 for convenience.

Note that in the case µ̄2 = 0 and σ = 1 the prior is identical to the actual distribution

of rewards, but in any other case they are distinct. The difference could be due to, e.g.,

measurement error in calibrating the prior or a change in the true statistics since the last

time the agent was confronted with the problem.

We are interested in choosing the value of β for our heuristic that maximizes total ex-

pected rewards over all possible reward values and initial locations. We assume that the agent

can begin in either of the two locations with equal probability, so E [r1] = µ̄2/2 independent

of β. Therefore the optimization problem reduces to

β̃ = arg max
β

max
x2

E [r2|r1] . (3.10)

That is, given r1, the algorithm has to decide whether to stay in its current location or to

switch to the alternative location. This is a well-studied problem in signal detection theory
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(see, e.g., [50, Chapter 12] or Example II.B.2 of [89]). The optimal β maximizes the expected

payoffs of the decision made by the algorithm.

The detection theory solution consists of setting a threshold m̃ on the observed reward

r1 and switching if r1 < m̃. The optimal threshold is a function of the prior beliefs about

m and the costs associated with each decision. If the agent is equally likely to be in either

initial location, the optimal threshold is

m̃ =
1

2
(0 + µ̄2) = µ̄2/2. (3.11)

We show that the optimal tuning of our algorithm reduces to the optimal solution of the

detection problem.

We begin by computing the expected value of the decision made by the algorithm for a

given value of β. At time t = 1, the agent picks i1 = 1 or 2, each with probability 1/2, and

observes either m1 or m2, respectively. In either case the observed reward mi1 is now known

with certainty, so its inferred value is µ1
i1

= mi1 and the inferred value of the unobserved

reward mj is µ1
j = ρmi. Similarly, Λ0 = Σ−1

0 = 1
1−ρ2

[
1 −ρ
−ρ 1

]
. The two minors Mii are

both equal to 1/(1−ρ2), so ∆I1
i = 0 for the observed location and ∆I1

j = Mjj = 1
1−ρ2 for the

unobserved location. For a given value of β, the expected value in the optimization problem

(3.10) is the average of the expected values E [r2|r1] for the two cases xi1 = 1, 2.

We proceed by computing the expected value of the algorithm for the case of starting in

location 1, so xi1 = 1. In this case the heuristic function Qt
i (3.8) (with σD = 0) takes the

following values:

Q1
1 = βm1, Q

1
2 = βµ2,1 +

1− β
1− ρ2

= βρm1 +
1− β
1− ρ2

.

The algorithm picks the maximum of {Q1
1, Q

1
2} and switches if Q1

2 > Q1
1, or equivalently

if βρm1 + 1−β
1−ρ2 > βm1. This is equivalent to setting a threshold value m̃ and switching if

r1 = m1 < m̃ =
1− β
β

1

(1− ρ)(1− ρ2)
, (3.12)

which sets a threshold m̃ as a function of β and ρ.

If the algorithm decides to switch locations, the agent will then obtain the reward r2 = m2.

Otherwise it stays in the original location and receives r2 = m1. The expected value of r2

given the algorithm’s decision is then given by

E [r2|xi1 = 1] = E [m1|m1 ≥ m̃] + E [m2|m1 < m̃] .
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Since m1 and m2 are jointly Gaussian, this expectation is analytically tractable and is equal

to

φ(m̃) + µ̄2Φ(m̃)− ρσφ(m̃) = µ̄2Φ(m̃) + (1− ρσ)φ(m̃),

where φ(z) and Φ(z) are the the pdf and cdf, respectively, of the standard normal distribution.

In the case where the agent’s initial location is xi1 = 2, the agent observes r1 = m2. The

function Qt
i takes the following values:

Q1
1 = βµ1

1 +
1− β
1− ρ2

= βρm2 +
1− β
1− ρ2

, Q1
2 = βm2.

This is symmetric to the case xi1 = 1 under interchange of i1 = 1 and i1 = 2 because of the

symmetry of the prior. Again, the algorithm switches to the alternate location if Q1
1 > Q1

2,

or

r1 = m2 < m̃ =
1− β
β

1

(1− ρ)(1− ρ2)
,

where the threshold m∗ is the same as above, again due to the symmetry of the prior. The

expected value of r2 given the algorithm’s decision is

E [r2|xi1 = 2] = E [m2|m2 ≥ m̃] + E [m1|m2 < m̃] .

This expectation can again be expressed in closed form, and takes the value

µ̄2

(
1− Φ

(
m̃− µ̄2

σ

))
+ σ(1− ρσ)φ

(
m̃− µ̄2

σ

)
.

Since xi1 = 1 or 2 with equal probability, for a given threshold m̃, the expected value in

the optimization problem (3.10) is the simple average of the expected reward for each initial

position E [r2|xi1 = 1] and E [r2|xi1 = 2]:

E[r2|r1] =
1

2

[
µ̄2

(
1 + Φ(m̃)− Φ

(
m̃− µ̄2

σ

))
+ (1− ρσ)φ(m̃) + σ(1− ρσ)φ

(
m̃− µ̄2

σ

)]
.

The parameter ρ is fixed, so the optimization (3.10) reduces to picking the value β = β̃ that

results in the threshold m̃ that maximizes E [r2|r1]. The expression for E [r2|r1] is somewhat

unwieldy, but several cases are informative.

First, consider the case µ̄2 = 0, σ = 1, which is the case where the prior is equal to the

actual distribution. In this case the expectation reduces to

E [r2|r1] = (1− ρ)φ(m̃).
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We want to pick the value of β that maximizes this expectation, which means maximizing

φ(m̃) since 1 − ρ is fixed. If ρ = 1 the expected rewards are zero independent of m̃, so

consider cases ρ < 1. The function φ(z) takes its unique maximum at z = 0, so we set the

threshold m̃ = 0. Equation (3.12) then implies that the optimal value of β is β∗ = 1, so the

optimal tuning of the heuristic is

Qt
i = µti.

In this case the optimal tuning of the algorithm is pure exploit and no explore. The

heuristic ignores the information gain component ∆I and only weights inferred rewards µ.

The threshold is set equal to 0, cf. Equation (3.11) where µ̄2 = 0. This is identical to the

standard optimal detection theory result [89], and the heuristic only weights µti because in

this case the linear inference model is optimal. In this case the heuristic is not particularly

beneficial, and setting β to anything less than one is suboptimal. However, we show next that

the heuristic provides robustness in cases where the field statistics are not known perfectly.

Consider the case above with σ = 1 but µ̄2 6= 0, so the prior is correct except for the

mean value µ̄2. In this case the inference is no longer optimal, so neither is weighting only

the inferred reward. The expected reward E [r2|r1] is

1

2
[µ̄2 (1 + Φ(m̃)− Φ (m̃− µ̄2)) + (1− ρ) (φ(m̃) + φ(m̃− µ̄2))] .

For any given µ̄2 and ρ, the expectation can be maximized with respect to the threshold

m̃, and in general the optimal threshold is non-zero. For example, if µ̄2 = 1, ρ = 0.5, the

maximum occurs at m̃ = 0.5, or β̃ = 16/19 ≈ 0.84. If, instead, µ̄2 = −1, ρ = 0.5, the

maximum occurs at m̃ = −0.5, or β̃ = 16/13 ≈ 1.23. Again, the optimal threshold in both

cases is m̃ = µ̄2/2, as in the detection theory solution. This shows how setting β 6= 1 provides

robustness by helping the algorithm recover the optimal threshold in the face of suboptimal

inference.

3.5.2 Discussion

The results in the previous section make intuitive sense because in the case where the true

distribution D is Gaussian and the prior statistics are correctly calibrated, the inference

model is optimal. In that case the inferred value term µti is the optimal expected value of

the option i at time t, and the optimal action at the terminal time t = T = 2 is simply to

pick the maximum of the µti, so the optimal β reflects that and is equal to one.

If, however, the true distribution D is not Gaussian or the prior statistics are incorrect,

the inference model will be suboptimal. If the world is “better” than expected by the prior,
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as in the case where µ̄2 = 1, setting β < 1 provides robustness by encouraging exploration,

whereas if it is “worse”, as in the case where µ̄2 = −1, setting β > 1 provides robustness by

weighting expected rewards more highly and discouraging exploration.

This suggests the form of a simple feedback control law for β: at each time step, if the

world appears “better” than implied by the prior, decrease β to encourage guided exploration.

If, instead, the world appears “worse”, increase β to discourage it. At time t, an estimate

pt of the degree to which the world is “better” or “worse” could be made, e.g., by the mean

difference between the inferred rewards at the current and previous time steps:

pt =
1

N

N∑
i=1

(
µti − µt−1

i

)
.

Then if the inferred values µti are increasing, the world appears to be “better” than expected

and pt > 0. Furthermore, since the field is stationary, the inference is getting monotonically

more accurate in time, so pt → 0 as t→∞. Then, setting K > 0 in the proportional control

law βt = βt−1 −Kpt biases β in the desired direction.

As we saw in the previous section, the optimal value of β is dependent on the agent’s

model of the world (i.e., prior). If the model is wrong, then the optimal value of β will

be wrong as well, which makes the algorithm’s performance sensitive to model errors. We

would like to reduce this sensitivity in order to make the algorithm more robust. The above

feedback control law is one way to do so by tuning β. The introduction of decision noise

σD > 0 is another way to do so, since the decision noise acts as a model-free mechanism for

exploration. The gains in robustness can be seen in Figure 3.2 by comparing the values of

expected reward along the lines σD = 0 and σD = 10−0.5. The range of values of β for which

the expected reward is high is larger for σD = 10−0.5 than for σD = 0, meaning that the

algorithm’s performance is less sensitive to the tuning of β.

3.6 Conclusions

In this chapter we have presented a heuristic that was developed to describe human be-

havior in a simple explore-exploit task. The heuristic includes two forms of exploratory

behavior: directed exploration, guided by seeking information about rewards, and random

exploration, provided by random noise. We use this heuristic to construct an algorithm to

solve explore-exploit problems in spatially distributed scalar fields. The algorithm uses an

optimal Bayesian inference algorithm for building beliefs about the field, and then applies

the heuristic to solve the decision problem of which location to visit next.
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Using a numerical example, we show that the two types of exploratory behavior trade

off in an interesting way, but that both influence an overall level of exploration which, when

measured, is shown to strongly correlate with task performance. In particular, in the case

where there is no random exploration, we show that there is a level of directed exploration

that produces optimal performance in the task.

To gain intuition for the role of the level of directed exploration in the case without

random exploration, we consider an example problem where the field is distributed over two

points. We show that in the case where the inference is optimal, the optimal tuning of the

heuristic is to put full weight on expected rewards at the expense of all directed exploration;

in this case the heuristic reduces to an optimal Bayesian detector. However, in the general

case where the inference is not optimal, for example if it was given incorrect field statistics,

including some directed exploration provides robustness to modeling errors.

The analytical result gives intuition into the signs of sensitivities to parameters, such as

the prior parameters µ0 and Σ0 and the decision parameter β. The analysis enabled us to

find the exact optimal tuning of the heuristic for a simple case of the multi-armed bandit

problem. However, it is difficult to extend these methods to find the optimal β̃ in a more

general case, in particular with a longer horizon T > 2 and incorporating sampling and

decision noise σs, σD > 0. In the following chapter we consider a slightly weaker notion of

optimality in terms of the growth rate of cumulative expected regret. We develop a new

algorithm that again has an interpretation as an ambiguity bonus heuristic but that allows

us to find parameter tunings that result in optimal performance in terms of cumulative

expected regret.
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Chapter 4

The Upper Credible Limit (UCL)

algorithms for Gaussian multi-armed

bandits1

“A mathematician, then, will be defined in what follows as someone who has published the

proof of at least one non-trivial theorem.”

(Jean Dieudonné)

In this chapter, we construct the UCL algorithm, a Bayesian UCB algorithm that captures

the features of human decision-making described in Section 2.4 above. This algorithm can

be interpreted similarly to the ambiguity bonus algorithm presented in the previous chapter,

but allows for more rigorous analysis, in particular performance guarantees. We begin with

the case of deterministic decision-making and show that for an uninformative prior the

resulting algorithm achieves logarithmic regret, i.e., optimal finite-time performance. We

then extend the algorithm to the case of stochastic decision-making using a Boltzmann (or

softmax) decision rule, and show that there exists a feedback rule for the temperature of the

Boltzmann distribution such that the stochastic algorithm achieves logarithmic regret. In

both cases we first consider uncorrelated priors and then extend to correlated priors.

1This chapter is adapted from Section IV of [99], from which Sections 4.1–4.4 in this chapter are mostly
taken verbatim. An abbreviated version of this material, including Theorems 4.1, 4.2, and 4.7 from this
chapter, appeared in the conference paper [98].
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4.1 The deterministic UCL algorithm with

uncorrelated priors

Let the prior on mi, the mean reward at arm i, be a Gaussian random variable with mean

µ0
i and variance σ2

0. In symbols, the agent’s prior on mi is N (µ0
i , σ

2
0). This is identical to

the prior assumed for the ambiguity bonus algorithm in Section 3.3.1 with (µ0)i = µ0
i and

Σ0 = σ2
0IN , where IN is the N -dimensional identity matrix. Since IN is a diagonal matrix,

the prior on each mi is uncorrelated with that on all the other mj, j 6= i, and the prior

N (µ0,Σ0) is referred to as uncorrelated. We are particularly interested in the case of an

uninformative prior, i.e., σ2
0 → +∞. Let the number of times arm i has been selected until

time t be denoted by nti. Let the empirical mean of the rewards from arm i until time t be

m̄t
i.

Recall that the reward sampling distribution for each arm i is Gaussian with unknown

mean mi and known variance σ2
s , which is assumed to be the same for all arms. Conditioned

on the number of visits nti to arm i and the empirical mean m̄t
i, the mean reward at arm i

at time t is a Gaussian random variable (Mi) with mean and variance

µti := E[Mi|nti, m̄t
i] =

δ2µ0
i + ntim̄

t
i

δ2 + nti
, and

(
σti
)2

:= Var[Mi|nti, m̄t
i] =

σ2
s

δ2 + nti
,

respectively, where σ2
s is the known reward sampling variance and δ2 = σ2

s/σ
2
0. The quantity

σ2
0 can be interpreted as a measure of the certainty of the prior, so δ2 can be interpreted

as a certainty measure normalized with respect to the uncertainty in the reward sampling

process. An uninformative prior, i.e., δ2 → 0+, corresponds to complete uncertainty about

the means mi, while δ2 = 1 corresponds to a moderately informative prior where the two

uncertainties have equal magnitudes. Moreover,

E[µti|nti] =
δ2µ0

i + ntimi

δ2 + nti
and Var[µti|nti] =

ntiσ
2
s

(δ2 + nti)
2
,

because the sample mean m̄t
i is a Gaussian random variable with mean mi and variance

σ2
s/n

t
i.

We now propose the UCL algorithm for the Gaussian multi-armed bandit problem. At

each decision instance t ∈ {1, . . . , T}, the UCL algorithm selects an arm with the maximum

value of the upper limit of the smallest (1 − 1/Kt)-credible interval, i.e., it selects an arm
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it = argmax{Qt
i | i ∈ {1, . . . , N}}, where

Qt
i = µti + σtiΦ

−1(1− 1/Kt), (4.1)

Φ−1 : (0, 1) → R is the inverse cumulative distribution function for the standard Gaussian

random variable, and K ∈ R>0 is a tunable parameter. For an explicit pseudocode imple-

mentation, see Algorithm 1 in Appendix A. In the following, we will refer to Qt
i as the

(1− 1/Kt)-upper credible limit (UCL).

It is known [57, 116] that an efficient policy to maximize the total information gained over

sequential sampling of options is to pick the option with highest variance (σti)
2

at each time

t. Thus, Qt
i is the weighted sum of the expected gain in the total reward µti (exploitation)

and the gain in the total information about arms σti (exploration) if arm i is picked at time

t. In terms of the ambiguity bonus heuristic (3.1) from the previous chapter, ∆I ti = σti is

the information gain component and A = Φ−1(1 − 1/Kt) is the ambiguity bonus, which is

now a function of decision time t rather than a constant. The following analysis allows us

to show that this functional form for ∆I ti and A results in optimal performance.

4.2 Regret analysis of the deterministic

UCL algorithm

In this section, we analyze the performance of the UCL algorithm. We first derive bounds

on the inverse cumulative distribution function of the standard Gaussian random variable

and then utilize them to derive upper bounds on the cumulative expected regret for the UCL

algorithm. We state the following theorem about bounds on the inverse Gaussian cdf.

Theorem 4.1 (Bounds on the inverse Gaussian cdf ). The following bounds hold for

the inverse cumulative distribution function of the standard Gaussian random variable for

each α ∈ (0, 1/
√

2π), and any β ≥ 1.02:

Φ−1(1− α) < β
√
− log(−(2πα2) log(2πα2)), and (4.2)

Φ−1(1− α) >
√
− log(2πα2(1− log(2πα2))). (4.3)

Proof. We start by establishing inequality (4.2). It suffices to establish this inequality for

β = 1.02. Since the cumulative distribution function of the standard normal random variable

is a continuous and monotonically increasing function, it suffices to show that

Φ(β
√
− log(−2πα2 log(2πα2))) + α− 1 ≥ 0, (4.4)
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for each α ∈ (0, 1). Equation (4.4) can be equivalently written as h(x) ≥ 0, where x = 2πα2

and h : (0, 1)→ (0, 1/
√

2π) is defined by

h(x) = Φ(β
√
− log(−x log x))) +

√
x√
2π
− 1.

Note that limx→0+ h(x) = 0 and limx→1− h(x) = 1/
√

2π. Therefore, to establish the theorem,

it suffices to establish that h is a monotonically increasing function. It follows that

g(x) := 2
√

2πh′(x) =
1√
x

+
β(−x log x)β

2/2−1(1 + log x)√
− log(−x log x)

.

Note that limx→0+ g(x) = +∞ and limx→1− g(x) = 1. Therefore, to establish that h is

monotonically increasing, it suffices to show that g is non-negative for x ∈ (0, 1). This is the

case if the following inequality holds:

g(x) =
1√
x

+
β(−x log x)β

2/2−1(1 + log x)√
− log(−x log x)

≥ 0,

which holds if
1√
x
≥ −β(−x log x)β

2/2−1(1 + log x)√
− log(−x log x)

.

The inequality holds if the right hand side is negative. If it is positive, one can take the

square of both sides and the inequality holds if

− log(−x log x) ≥ β2x(1 + log x)2(−x log x)β
2−2

= β2x(1 + 2 log x+ (log x)2)(−x log x)β
2−2.

Letting t = − log x, the above inequality transforms to

− log(te−t) ≥ β2e−t(1− 2t+ t2)(te−t)β
2−2,

which holds if

− log t ≥ β2tβ
2−2(1− 2t+ t2)e−(β2−1)t − t.

Dividing by t, this is equivalent to

− log t

t
≥ β2tβ

2−3(1− 2t+ t2)e−(β2−1)t − 1,
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which is true if

inf
t∈[1,+∞)

− log t

t
≥ max

t∈[1,+∞)
β2tβ

2−3(1− 2t+ t2)e−(β2−1)t − 1. (4.5)

The extrema in (4.5) can be calculated analytically, so we have

inf
t∈[1,+∞)

− log t

t
= −1

e
≈ −0.3679

for the left hand side of (4.5) and

t∗ = arg max
t∈[1,+∞)

β2tβ
2−3(1− 2t+ t2)e−(β2−1)t − 1

= 1 +
√

2/(β2 − 1)

=⇒ max
t∈[1,+∞)

β2tβ
2−3(1− 2t+ t2)e−(β2−1)t− 1 ≈ −0.3729,

for the right hand side of (4.5). Therefore, (4.5) holds. In consequence, g(x) is non-negative

for x ∈ (0, 1), h(x) is a monotonically increasing function. This establishes inequality (4.2).

Inequality (4.3) follows analogously.

The bounds in equations (4.2) and (4.3) were conjectured by Fan [36] without the factor

β. In fact, it can be numerically verified that without the factor β, the conjectured upper

bound is incorrect. We present a visual depiction of the tightness of the derived bounds

in Figure 4.1.

We now analyze the performance of the UCL algorithm. Recall from Equation (2.3) that

∆i = mi∗ −mi is the expected regret due to picking arm i and that Rt = ∆it is the expected

regret due to picking arm it. We define {RUCL
t }t∈{1,...,T} as the sequence of expected regret

for the UCL algorithm. The UCL algorithm achieves logarithmic regret uniformly in time

(i.e., number of decisions T ) as formalized in the following theorem. We use the phrase

“uniformly in time” as in Auer et al. [9] to contrast with the asymptotic results due to, e.g.,

Lai and Robbins [62].
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Figure 4.1: Depiction of the normal quantile function Φ−1(1−α) (solid line) and the bounds
(4.2) and (4.3) (dashed lines), with β = 1.02. Previously published as Figure 4 of [99].
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Theorem 4.2 (Regret of the deterministic UCL algorithm). The following state-

ments hold for the Gaussian multi-armed bandit problem and the deterministic UCL algo-

rithm with uncorrelated uninformative prior and K =
√

2πe:

1. the expected number of times a suboptimal arm i is chosen until time T satisfies

E
[
nTi
]
≤
(8β2σ2

s

∆2
i

+
2√
2πe

)
log T +

4β2σ2
s

∆2
i

(1− log 2− log log T ) + 1 +
2√
2πe

;

2. the cumulative expected regret until time T satisfies

T∑
t=1

RUCL
t ≤

N∑
i=1

∆i

((8β2σ2
s

∆2
i

+
2√
2πe

)
log T

+
4β2σ2

s

∆2
i

(1− log 2− log log T ) + 1 +
2√
2πe

)
.

Proof. We start by establishing the first statement. In the spirit of [9], we bound nTi as

follows:

nTi =
T∑
t=1

1(it = i)

≤
T∑
t=1

1
(
Qt
i > Qt

i∗

)
≤ η +

T∑
t=1

1
(
Qt
i > Qt

i∗ , n
(t−1)
i ≥ η

)
,

where η is some positive integer and 1(x) is the indicator function, with 1(x) = 1 if x is a

true statement and 0 otherwise.

At time t, the agent picks option i over i∗ only if

Qt
i∗ ≤ Qt

i.

This is true when at least one of the following equations holds:

µti∗ ≤ mi∗ − Ct
i∗ (4.6)

µti ≥ mi + Ct
i (4.7)

mi∗ < mi + 2Ct
i (4.8)
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where Ct
i = σs√

δ2+nit

Φ−1(1 − αt) and αt = 1/Kt. Otherwise, if none of the equations (4.6)-

(4.8) holds,

Qt
i∗ = µti∗ + Ct

i∗ > mi∗ ≥ mi + 2Ct
i > µti + Ct

i = Qt
i,

and option i∗ is picked over option i at time t.

We proceed by analyzing the probability that Equations (4.6) and (4.7) hold. Note that

the empirical mean m̄t
i is a normal random variable with mean mi and variance σ2

s/n
t
i, so,

conditional on nti, µ
t
i is a normal random variable distributed as

µti ∼ N
(
δ2µ0

i + ntimi

δ2 + nti
,

ntiσ
2
s

(δ2 + nti)
2

)
.

Equation (4.6) holds if

mi∗ ≥ µti∗ +
σs√
δ2 + nti

Φ−1(1− αt)

⇐⇒ mi∗ − µti∗ ≥
σs√
δ2 + nti

Φ−1(1− αt)

⇐⇒ z ≤ −

√
nti∗ + δ2

nti∗
Φ−1(1− αt) +

δ2

σs

∆mi∗√
nti∗

,

where z ∼ N (0, 1) is a standard normal random variable and ∆mi∗ = mi∗ − µ0
i∗ . For an

uninformative prior δ2 → 0+, and consequently, equation (4.6) holds if and only if z ≤
−Φ(1− αt). Therefore, for a uninformative prior,

P (Equation (4.6) holds) = αt =
1

Kt
=

1√
2πet

.

Similarly, Equation (4.7) holds if

mi ≤ µti −
σs√
δ2 + nti

Φ−1(1− αt)

⇐⇒ µti −mi ≥
σs√
δ2 + nti

Φ−1(1− αt)

⇐⇒ z ≥

√
nti + δ2

nti
Φ−1(1− αt) +

δ2

σs

∆mi√
nti
,
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where z ∼ N (0, 1) is a standard normal random variable and ∆mi = mi−µ0
i . The analogous

argument to that for the above case shows that, for an uninformative prior,

P (Equation (4.7) holds) = αt =
1

Kt
=

1√
2πet

.

Equation (4.8) holds if

mi∗ < mi +
2σs√
δ2 + nti

Φ−1(1− αt)

⇐⇒ ∆i <
2σs√
δ2 + nti

Φ−1(1− αt)

⇐⇒ ∆2
i

4β2σ2
s

(δ2 + nti) < − log(−2πα2
t log(2πα2

t )) (4.9)

=⇒ ∆2
i

4β2σ2
s

(δ2 + nti) < log(et2)− log log(et2)

=⇒ ∆2
i

4β2σ2
s

(δ2 + nti) < log(eT 2)− log log(eT 2) (4.10)

=⇒ ∆2
i

4β2σ2
s

(δ2 + nti) < 1 + 2 log T − log 2− log log T

where ∆i = mi∗ − mi, the inequality (4.9) follows from the bound (4.2), and the inequal-

ity (4.10) follows from the monotonicity of the function log x − log log x in the interval

[e,+∞). Therefore, for an uninformative prior, inequality (4.8) never holds if nti obeys

nti ≥
4β2σ2

s

∆2
i

(1 + 2 log T − log 2− log log T ).

Setting η = d4β2σ2
s

∆2
i

(1 + 2 log T − log 2− log log T )e, we get

E
[
nTi
]
≤ η +

T∑
t=1

P
(
Qt
i > Qt

i∗ , n
(t−1)
i ≥ η

)
= η +

T∑
t=1

P
(

Equation (4.6) holds, n
(t−1)
i ≥ η

)
+

T∑
t=1

P
(

Equation (4.7) holds, n
(t−1)
i ≥ η

)
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Substituting in the value of η, we arrive at the bound

E
[
nTi
]
<

4β2σ2
s

∆2
i

(1 + 2 log T − log 2− log log T ) + 1 +
2√
2πe

T∑
t=1

1

t
.

The sum over t in this last equation can be bounded by the integral

T∑
t=1

1

t
≤ 1 +

∫ T

1

1

t
dt = 1 + log T,

yielding the bound in the first statement

E
[
nTi
]
≤
(8β2σ2

s

∆2
i

+
2√
2πe

)
log T +

4β2σ2
s

∆2
i

(1− log 2− log log T ) + 1 +
2√
2πe

.

The second statement follows from the definition of the cumulative expected regret in Equa-

tion (2.3).

Remark 4.3 (Uninformative priors with short time horizon). When the deter-

ministic UCL algorithm is used with an uncorrelated uninformative prior, Theorem 4.2

guarantees that the algorithm incurs logarithmic regret uniformly in horizon length T . How-

ever, for small horizon lengths, the upper bound on the regret can be lower bounded by

a super-logarithmic curve. Accordingly, in practice, the cumulative expected regret curve

may appear super-logarithmic for short time horizons. For example, for horizon T less than

the number of arms N , the cumulative expected regret of the deterministic UCL algorithm

grows at most linearly with the horizon length. �

Remark 4.4 (Scaling of regret with N). Often, (see, e.g., results in [20]), authors report

the scaling of the regret with the number of arms N . Theorem 4.2 guarantees that the regret

will scale at most linearly with N . However, as noted in Section 2.4 of [20], it is clear that

the regret incurred from selecting an arm i can be at most T∆i. This idea can be used (see

[6]) to show that the overall cumulative expected regret of UCL will be upper bounded by a

term of order
√
NT log T . �

Remark 4.5 (Comparison with UCB). In view of the bounds in Theorem 4.1, for an

uninformative prior, the (1− 1/Kt)-upper credible limit obeys

Qt
i < m̄t

i + βσs

√
1 + 2 log t− log log et2

nti
.
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This upper bound is similar to the one in UCB1, which sets

Qt
i = m̄t

i +

√
2 log t

nti
.

This is also similar to the one in Lai’s upper confidence bound-based algorithm [61, Example

1], which sets

Qt
i = m̄t

i +

√
2g(nti/T )

nti
,

where g(t) is a function having the asymptotic expansion

g(t) = log(t−1)− 1

2
log log(t−1)− 1

2
log(16π) + o(1) as t→ 0. �

Remark 4.6 (Informative priors). For an uninformative prior, i.e., very large variance

σ2
0, we established in Theorem 4.2 that the deterministic UCL algorithm achieves logarithmic

regret uniformly in time. For informative priors, the cumulative expected regret depends on

the quality of the prior. The quality of a prior on the rewards can be captured by the metric

ζ := max{|mi − µ0
i |/σ0 | i ∈ {1, . . . , N}}, where mi is the true mean reward associated

with arm i and µ0
i the prior mean belief about mi. Recall that σ0 ≥ 0 can be interpreted

as a measure of the agent’s confidence about his/her prior belief. A good prior corresponds

to small values of ζ, while a bad prior corresponds to large values of ζ. In other words, a

good prior is one that has (i) mean close to the true mean reward, or (ii) a large variance.

Intuitively, a good prior either has a fairly accurate estimate of the mean reward, or has low

confidence about its estimate of the mean reward. For a good prior, the parameter K can

be tuned such that

Φ−1
(

1− 1

Kt

)
− max

i∈{1,...,N}

σs(|mi − µ0
i |)

σ2
0

> Φ−1
(

1− 1

K̄t

)
,

where K̄ ∈ R>0 is some constant, and it can be shown, using the arguments of Theorem 4.2,

that the deterministic UCL algorithm achieves logarithmic regret uniformly in time. A bad

prior corresponds to a fairly inaccurate estimate of the mean reward and high confidence.

For a bad prior, the cumulative expected regret may be a super-logarithmic function of the

horizon length. �

Remark 4.7 (Sub-logarithmic regret for good priors). For a good prior with a

small variance, even uniform sub-logarithmic regret can be achieved. Specifically, if the

variable Qt
i in Algorithm 1 is set to Qt

i = mt
i +σtiΦ

−1(1− 1/Kt2), then an analysis similar to
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Theorem 4.2 yields an upper bound on the cumulative expected regret that is dominated by

(i) a sub-logarithmic term for good priors with small variance, and (ii) a logarithmic term

for uninformative priors with a higher constant in front than the constant in Theorem 4.2.

Notice that such good priors may correspond to human operators who have previous training

in the task. �

4.3 The stochastic UCL algorithm with

uncorrelated priors

To capture the inherent stochastic nature of human decision-making, we consider the UCL

algorithm with stochastic arm selection. Stochasticity has been used as a generic optimiza-

tion mechanism that does not require information about the objective function. For example,

simulated annealing [13, 77, 53] is a global optimization method that attempts to break out

of local optima by sampling locations near the currently selected optimum and accepting

locations with worse objective values with a probability that decreases in time. By analogy

with physical annealing processes, the probabilities are chosen from a Boltzmann distribu-

tion with a dynamic temperature parameter that decreases in time, gradually making the

optimization more deterministic. An important problem in the design of simulated annealing

algorithms is the choice of the temperature parameter, also known as a cooling schedule.

Choosing a good cooling schedule is equivalent to solving the explore-exploit problem in

the context of simulated annealing, since the temperature parameter balances exploration

and exploitation by tuning the amount of stochasticity (exploration) in the algorithm. In

their classic work, Mitra et al. [77] found cooling schedules that maximize the rate of conver-

gence of simulated annealing to the global optimum. In a similar way, the stochastic UCL

algorithm (see Algorithm 2 in Appendix A for an explicit pseudocode implementation) ex-

tends the deterministic UCL algorithm (Algorithm 1) to the stochastic case. The stochastic

UCL algorithm chooses an arm at time t using a Boltzmann distribution with temperature

υt, so the probability Pit of picking arm i at time t is given by

Pit =
exp(Qt

i/υt)∑N
j=1 exp(Qt

j/υt)
.

In the case υt → 0+ this scheme chooses it = arg max{Qt
i | i ∈ {1, . . . , N}} and as υt increases

the probability of selecting any other arm increases. Thus Boltzmann selection generalizes

the maximum operation and is sometimes known as the soft maximum (or softmax) rule.
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The temperature parameter might be chosen constant, i.e., υt = υ. In this case the

performance of the stochastic UCL algorithm can be made arbitrarily close to that of the

deterministic UCL algorithm by taking the limit υ → 0+. However, [77] showed that good

cooling schedules for simulated annealing take the form

υt =
ν

log t
,

so we investigate cooling schedules of this form. We choose ν using a feedback rule on the

values of the heuristic function Qt
i, i ∈ {1, . . . , N} and define the cooling schedule υt as

υt =
∆Qt

min

2 log t
, (4.11)

where ∆Qt
min = min{|Qt

i − Qt
j| | i, j ∈ {1, . . . , N}, i 6= j} is the minimum gap between the

heuristic function value for any two pairs of arms. We define∞−∞ = 0, so that ∆Qt
min = 0

if two arms have infinite heuristic values, and define 0/0 = 1.

4.4 Regret analysis of the stochastic

UCL algorithm

In this section we show that for an uninformative prior, the stochastic UCL algorithm

achieves efficient performance. We define {RSUCL
t }t∈{1,...,T} as the sequence of expected regret

for the stochastic UCL algorithm. The stochastic UCL algorithm achieves logarithmic regret

as formalized in the following theorem.

Theorem 4.8 (Regret of the stochastic UCL algorithm). The following statements

hold for the Gaussian multi-armed bandit problem and the stochastic UCL algorithm with

uncorrelated uninformative prior and K =
√

2πe:

1. the expected number of times a suboptimal arm i is chosen until time T satisfies

E
[
nTi
]
≤
(8β2σ2

s

∆2
i

+
2√
2πe

)
log T +

π2

6

+
4β2σ2

s

∆2
i

(1− log 2− log log T ) + 1 +
2√
2πe

;
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2. the cumulative expected regret until time T satisfies

T∑
t=1

RSUCL
t ≤

N∑
i=1

∆i

((8β2σ2
s

∆2
i

+
2√
2πe

)
log T +

π2

6

+
4β2σ2

s

∆2
i

(1− log 2− log log T ) + 1 +
2√
2πe

)
.

Proof. We start by establishing the first statement. We begin by bounding E[nTi ] as follows

E
[
nTi
]

=
T∑
t=1

E [Pit] ≤ η +
T∑
t=1

E
[
Pit1

(
nti ≥ η

)]
, (4.12)

where η is a positive integer.

Now, decompose E [Pit] as

E[Pit] = E
[
Pit|Qt

i ≤ Qt
i∗

]
P
(
Qt
i ≤ Qt

i∗

)
+ E

[
Pit|Qt

i > Qt
i∗

]
P
(
Qt
i > Qt

i∗

)
≤ E

[
Pit|Qt

i ≤ Qt
i∗

]
+ P

(
Qt
i > Qt

i∗

)
. (4.13)

The probability Pit can itself be bounded as

Pit =
exp(Qt

i/υt)∑N
j=1 exp(Qt

j/υt)
≤ exp(Qt

i/υt)

exp(Qt
i∗/υt)

. (4.14)

Substituting the expression (4.11) for the cooling schedule υt in inequality (4.14), we obtain

the bound

Pit ≤ exp

(
−2(Qt

i∗ −Qt
i)

∆Qt
min

log t

)
= t
−

2(Qt
i∗−Qt

i)

∆Qt
min . (4.15)

For the purposes of the following analysis, define 0
0

= 1.

Since ∆Qt
min ≥ 0, with equality only if two arms have identical heuristic values, con-

ditioned on Qt
i∗ ≥ Qt

i the exponent on t in Equation (4.15) takes one of the following

magnitudes:

|Qt
i∗ −Qt

i|
∆Qt

min

=


0
0

= 1, if Qt
i∗ = Qt

i,

+∞, if Qt
i∗ 6= Qt

i and ∆Qt
min = 0,

x, if ∆Qt
min 6= 0,
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where x ∈ [1,+∞). The sign of the exponent is determined by the sign of Qt
i∗ −Qt

i.

Consequently, it follows from inequality (4.15) that

T∑
t=1

E[Pit|Qt
i∗ ≥ Qt

i] ≤
T∑
t=1

1

t2
≤

∞∑
t=1

1

t2
=
π2

6
,

where the last equality is a well-known result often credited to Euler. It follows from in-

equality (4.13) that

T∑
i=1

E[Pit] ≤
π2

6
+

T∑
i=1

P
(
Qt
i > Qt

i∗

)
≤ π2

6
+
(8β2σ2

s

∆2
i

+
2√
2πe

)
log T

+
4β2σ2

s

∆2
i

(1− log 2− log log T ) + 1 +
2√
2πe

,

where the last inequality follows from Theorem 4.2. This establishes the first statement. The

second statement follows from the definition (2.3) of the cumulative expected regret.

Comparing the first statement of Theorems 4.2 and 4.8, we see that the bounds on E
[
nTi
]

differ only by a constant π2/6 ≈ 1.64. This shows that the stochastic UCL algorithm pays

a relatively small penalty for using a stochastic arm selection strategy instead of the deter-

ministic one of UCL. This fact is of interest to neuroscience because it shows that stochastic

decision rules, like those employed by humans, can achieve near-optimal performance. While

the stochastic rule incurs a cost in terms of performance, it likely accrues an advantage in

human decision making because a stochastic rule is easier to implement using neural wet-

ware. From a neurological standpoint, the tuning rule we develop for υt using the minimum

gap ∆Qt
min is implausible. A more plausible rule might involve the max-vs-next gap, i.e.,

∆Qt = Qt
∗−Qt

∗∗, where Qt
∗ = maxiQ

t
i and Qt

∗∗ is the second-largest value at time t. Max-vs-

next rules have been investigated in neuroscience (e.g., [76]), and developing such a tuning

rule for υt would strengthen the connection of this work to the neuroscience literature.

4.5 The UCL algorithms with correlated priors

In the preceding sections, we considered the case of uncorrelated priors, i.e., the case with

diagonal covariance matrix of the prior distribution for mean rewards Σ0 = σ2
0IN . However,

in many cases there may be dependence among the arms that we wish to encode in the

form of a non-diagonal covariance matrix. In fact, one of the main advantages a human may
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have in performing a bandit task is prior experience with the dependency structure across

the arms resulting in a good prior correlation structure. We show that including covariance

information can improve performance and may, in some cases, lead to sub-logarithmic regret.

Let N (µ0,Σ0) and N (µ0,Σ0d) be correlated and uncorrelated priors on the mean rewards

from the arms, respectively, where µ0 ∈ RN is the vector of prior estimates of the mean

rewards from each arm, Σ0 ∈ RN×N is a positive definite matrix, and Σ0d is the same matrix

with all its non-diagonal elements set equal to 0. The inference procedure described in

Section 4.1 generalizes to a correlated prior as follows: Define {φt ∈ RN}t∈{1,...,T} to be the

indicator vector corresponding to the currently chosen arm it, where (φt)k = 1 if k = it, and

zero otherwise. Then the belief state (µt,Σt) updates as in equations (3.3)–(3.5), which we

repeat here for reference:

q =
rtφt
σ2
s

+ Λt−1µt−1

Λt =
φtφ

T
t

σ2
s

+ Λt−1, Σt = Λ−1
t

µt = Σtq,

(4.16)

where Λt = Σ−1
t is the precision matrix.

The upper credible limit for each arm i can be computed based on the univariate Gaussian

marginal distribution of the posterior with mean µti = (µt)i and variance (σti)
2

= (Σt)ii.

Consider the evolution of the belief state with the diagonal (uncorrelated) prior Σ0d and

compare it with the belief state based on the non-diagonal Σ0 which encodes information

about the correlation structure of the rewards in the off-diagonal terms. The additional

information means that the inference procedure will converge more quickly than in the

uncorrelated case, as seen in Theorem 4.9. If the assumed correlation structure correctly

models the environment, then the inference will converge towards the correct values, and

the performance of the UCL and stochastic UCL algorithms will be at least as good as that

guaranteed by the preceding analyses in Theorems 4.2 and 4.8.

Denoting σti
2

= (Σt)ii as the posterior at time t based on Σ0 and σtid
2

= (Σtd)ii as the

posterior based on Σ0d, for a given sequence of chosen arms {iτ}τ∈{1,...,T}, we have that the

variance of the non-diagonal estimator will be no larger than that of the diagonal one, as

summarized in the following theorem:

Theorem 4.9 (Correlated versus uncorrelated priors). For the inference procedure

in (4.16), and any given sequence of selected arms {iτ}τ∈{1,...,T}, σti
2 ≤ σtid

2
, for any t ∈

{0, . . . , T}, and for each i ∈ {1, . . . , N}.
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Proof. We use induction. By construction, σ0
i

2
= σ0

id
2
, so the statement is true for t = 0.

Suppose the statement holds for some t ≥ 0 and consider the update rule for Σt. From the

Sherman-Morrison formula for a rank-1 update [109], we have

(Σt+1)jk = (Σt)jk −
(

Σtφtφ
′
tΣt

σ2
s + φ′tΣtφt

)
jk

.

We now examine the update term in detail, starting with its denominator:

φ′tΣtφt = (Σt)itit ,

so σ2
s +φ′tΣtφt = σ2

s + (Σt)itit > 0. The numerator is the outer product of the itht column of

Σt with itself, and can be expressed in index form as

(Σtφtφ
′
tΣt)jk = (Σt)jit(Σt)itk.

Note that if Σt is diagonal, then so is Σt+1 since the only non-zero update element will be

(Σt)
2
itit . Therefore, Σtd is diagonal for all t ≥ 0.

The update of the diagonal terms of Σt only uses the diagonal elements of the update

term, so

σ
(t+1)
i

2
=(Σt+1)ii=(Σt)ii −

(Σt)iit(Σt)iti
σ2
s + φ′tΣtφt

.

In the case of Σtd, the update only changes the i = it element whereas with the non-diagonal

prior Σt the update may change all N terms. Define the function f(x) = x − x2

σ2
s+x

= σ2
sx

σ2
s+x

.

Note that f(x) is a monotonically increasing function for x > −σ2
s , and consider two cases:

i = it and i 6= it.

In the case i = it, performing the update to σti
2

is equivalent to applying the function

f(x), so we have

σ
(t+1)
i

2
= f(σti

2
), σ

(t+1)
id

2
= f(σtid

2
)

and the statement holds by the monotonicity of f since σti
2 ≤ σtid

2
implies that

σ
(t+1)
i

2
= f(σti

2
) ≤ f(σtid

2
) = σ

(t+1)
id

2
.

In the case i 6= it, we have

σ
(t+1)
id

2
= σtid

2
, and

σ
(t+1)
i

2
= σti

2 −
(Σt)

2
itit

σ2
s + φ′tΣtφt

,
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and the statement holds for t+ 1.

Note that the above result merely shows that the belief state converges more quickly

in the case of a correlated prior, without making any claim about the correctness of this

convergence. For example, consider a case where the prior belief is that two arms are perfectly

correlated, i.e., the relevant block of the prior is a multiple of ( 1 1
1 1 ), but in actuality the two

arms have very different mean rewards. If the algorithm first samples the arm with lower

reward, it will tend to underestimate the reward to the second arm. However, in the case of

a well-chosen prior the faster convergence will allow the algorithm to more quickly disregard

related sets of arms with low rewards.

4.6 Discussion

In this chapter we have developed two variants of the UCL algorithm for the Gaussian

multi-armed bandit problem. These algorithms use Bayesian inference to learn the value

of the mean rewards mi by combining prior beliefs with the information gathered from

observing rewards. They choose the next arm to sample using deterministic or stochastic

action selection strategies and a heuristic function of the belief state that can be interpreted

in terms of the ambiguity bonus heuristic from the neuroscience literature. In the case that

the agent’s prior on mi is uncorrelated and uninformative, we showed that both algorithms

achieve logarithmic regret, i.e., optimal performance.

Using informative priors allows the algorithms to encode an agent’s beliefs about the

correlation structure among the arms, for example the structure inherited from the spatial

embedding in a spatial multi-armed bandit problem. We showed that including correlation in

the prior results in the belief state converging more quickly than in the case of an uncorrelated

prior, but noted that depending on the quality of the correlation structure as a model

of the world, this may result in either increased or decreased performance relative to the

uncorrelated case. As a guide to the quality of a given prior, we developed the metric

ζ which gives a quantitative measure of prior quality. This metric yields insight into the

nature of good priors: in particular, they should either be accurate (close to the true value

of mi) or held with low confidence. Bad performance results when the prior encodes beliefs

that are inaccurate and held with a high degree of confidence.

In the following chapter we study data from a human subject study where individuals

performed a spatial multi-armed bandit task. We consider the data in the context of the

stochastic UCL algorithm and show that the algorithm can be used as a model of human

decision-making behavior in this task. Furthermore, we show that we can capture the types
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of human performance exhibited in the data by varying the priors of the algorithm. In

particular, we show that some humans exhibit high performance, which we interpret as

reflecting high-quality priors.

The two algorithms and associated analysis presented in this chapter have been extended

to two other generalizations of the Gaussian multi-armed bandit problem: the multi-armed

bandit problem with transition costs, where there is a cost associated with switching from

one arm to another, and the graphical multi-armed bandit problem, in which the arms are

embedded in a graph and the set of arms available for selection at each decision time is the

set of neighbors of the most recently selected arm. These extensions may prove valuable

in applying the multi-armed bandit framework to robotics and other applications, and were

studied in detail in [99].
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Chapter 5

Data from a human-subject spatial

search task1

“With four parameters I can fit an elephant, and with five I can make him wiggle

his trunk.”

(John von Neumann)

In this chapter, we consider data from a human-subject spatial multi-armed bandit task

and show how human performance can be classified as falling into one of several categories,

which we term phenotypes.2 A significant fraction of the subjects exhibited performance

better than that achievable with a frequentist multi-armed bandit algorithm. We then show

through simulation that the stochastic UCL algorithm can produce performance that is

analogous to the observed human performance. In light of these simulation results, we

interpret the subjects’ good performance as evidence that they have a high-quality prior.

5.1 Human behavioral experiment

In order to study human performance in multi-armed bandit tasks, we ran a spatial multi-

armed bandit task through web servers at Princeton University. Human participants were

recruited using Amazon’s Mechanical Turk (AMT) web-based task platform [24]. Upon

selecting the task on the AMT website, participants were directed to follow a link to a

1This chapter is adapted from Section V of [99]. Sections 5.1–5.3 in this chapter are mostly taken
verbatim. This data has also appeared in part in the conference paper [97] and associated poster.

2The Merriam-Webster dictionary defines the word phenotype as follows: “The set of observable char-
acteristics of an individual resulting from the interaction of its genotype with the environment.” In this
chapter we use the word to refer to the category of observed performance achieved by an individual subject.
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Princeton University website3, where informed consent was obtained according to protocol

number 4779 approved by the Princeton University Institutional Review Board.

After informed consent was obtained, participants were shown instructions that told them

they would be playing a simple game during which they could collect points, and that their

goal was to collect the maximum number of total points in each part of the game.

Each participant was presented with a set of N = 100 options in a 10× 10 grid. At each

decision time t ∈ {1, . . . , T}, the participant made a choice by moving the cursor to one

element of the grid and clicking. After each choice was made a numerical reward associated

to that choice was reported on the screen. The time allowed for each choice was manipulated

and allowed to take one of two values, denoted fast and slow. If the participant did not make

a choice within 1.5 (fast) or 6 (slow) seconds after the prompt, then the last choice was

automatically selected again. The reward was visible until the next decision was made and

the new reward reported. The time allotted for the next decision began immediately upon

the reporting of the new reward. Figure 5.1 shows the screen used in the experiment.

The task was designed to be compatible with the social foraging task studied in [25],

[126], [83], and [121], and to be a generalization of the problem considered in [100] and

Chapter 3 above. These considerations affected the structure of the task, the parameter

values (including time horizon T and reward surfaces), and pacing of the decision times.

The dynamics of the game were also experimentally manipulated, although we focus

exclusively here on the first dynamic condition. The first dynamic condition was a standard

bandit task, where the participant could choose any option at each decision time, and the

game would immediately sample that option. In the second and third dynamic conditions,

the participant was restricted in choices and the game responded in different ways. These

two conditions are beyond the scope of this thesis.

Participants first familiarized themselves with the task by performing three training

blocks of T = 10 choices each, one for each form of the game dynamics. Subsequently,

the participants performed two task blocks of T = 90 choices each in a balanced experimen-

tal design. For each participant, the first task had parameters randomly chosen from one of

the 12 possible combinations (2 timing, 3 dynamics, 2 landscapes), and the second task was

conditioned on the first so that the alternative timing was used with the alternative land-

scape and the dynamics chosen randomly from the two remaining alternatives. In particular,

only approximately 2/3 of the participants were assigned a standard bandit task, while other

subjects were assigned other dynamic conditions. The horizon T < N was chosen so that

3At the time of this writing, the task is still available as used for the experiment at the website http:

//dcsl.princeton.edu/surveys/survey, although the Institutional Review Board approval of the protocol
has lapsed.
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Figure 5.1: The screen used in the experimental interface. Each square in the grid corre-
sponded to an available option. The text box above the grid displayed the most recently
received reward, the blue dot indicated the participant’s most recently recorded choice, and
the smaller red dot indicated the participant’s next choice. In the experiment, the red dot
was colored yellow, but here we have changed the color for legibility. When both dots were
located in the same square, the red dot was superimposed over the blue dot such that both
were visible. Initially, the text box was blank and the two dots were together in a randomly
chosen square. Participants indicated a choice by clicking in a square, at which point the
red dot would move to the chosen option. During the time allotted for a given decision,
participants could change their decision without penalty by clicking on another square, and
the red dot would move accordingly. When the decision time had elapsed, the blue dot would
move to the new square, the text box above the grid would be updated with the most recent
reward amount, and the choice would be recorded. Previously published as Figure 5 of [99].
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prior beliefs would be important to performing the task. Each training block took 15 seconds

and each task block took 135 (fast) or 540 (slow) seconds. The time between blocks was

negligible, due only to network latency.

Mean rewards in the task blocks corresponded to one of two landscapes: Landscape

A (Figure 5.2(a)) and Landscape B (Figure 5.2(b)). Both landscapes are drawn from the

task presented in [126] and studied in [83]. In those works, Landscape A is referred to as

“Converging Gaussians” (CG) and Landscape B is referred to as “Rising Optimum” (RO).

Landscape B is identical to the reward surface studied in [100] and Chapter 3. Each landscape

was flat along one dimension and followed a profile along the other dimension. In the two

task blocks, each participant saw each landscape once, presented in random order. Both

landscapes had a mean value of 30 points and a maximum of approximately 60 points, and

the rewards rt for choosing an option it were computed as the sum of the mean reward mit

and an integer chosen uniformly from the range [−5, 5]. In the training blocks, the landscape

had a mean value of zero everywhere except for a single square with a value of 100 points

in the center. The participants were given no specific information about the value or the

structure of the reward landscapes.

To incentivize the participants to make choices to maximize their cumulative reward, the

participants were told that they were being paid based on the total reward they collected

during the tasks. As noted above, due to the multiple manipulations, not every participant

performed a standard bandit task block. Data were collected from a total of 417 participants:

326 of these participants performed one standard bandit task block each, and the remaining

91 participants performed no standard bandit task blocks.

5.2 Phenotypes of observed performance

For each 90 choice standard bandit task block, we computed observed regret by subtracting

the maximum mean cumulative reward from the participant’s cumulative reward, i.e.,

R(t) = mi∗t−
t∑

τ=1

rτ .

The definition of R(t) uses received reward rather than expected reward, so it is not identical

to cumulative expected regret. However, due to the large number of individual rewards

received and the small variance in rewards, the difference between the two quantities is

small.
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We study human performance by considering the functional form of R(t). Optimal

performance in terms of regret corresponds to R(t) = C log t, where C is the sum over i of

the factors in (2.6). The worst-case performance, corresponding to repeatedly choosing the

lowest-value option, corresponds to the form R(t) = Kt, where K > 0 is a constant. Other

bounds in the bandit literature, notably in the continuum-armed bandit problem, (e.g. [116])

are known to have the form R(t) = K
√
t.

To classify types of observed human performance in bandit tasks, we fit models repre-

senting these three forms to each individual participant’s observed regret from each task.

Specifically, we fit the three models

R(t) = a+ bt (5.1)

R(t) = atb (5.2)

R(t) = a+ b log(t) (5.3)

to the data from each task and classified the behavior according to which of the models (5.1)–

(5.3) best fit the data in terms of squared residuals. Model selection using this procedure

is tenable given that the complexity or number of degrees of freedom of the three models is

the same.

Of the 326 participants who performed a standard bandit task block, 59.2% were classified

as exhibiting linear regret (model (5.1)), 19.3% power regret (5.2), and 21.5% logarithmic

regret (5.3). This suggests that 40.8% of the participants performed better than a standard

algorithm based on frequentist statistics would have and 21.5% achieved effectively opti-

mal performance. We observed no significant correlation between performance and timing,

landscape, or order (first or second) of playing the standard bandit task block.

Averaging across all tasks, mean performance was best fit by a power model with exponent

b ≈ 0.9, so participants on average achieved sub-linear regret, i.e., better than linear regret.

The nontrivial number of positive performances are noteworthy given that T < N , i.e., a

relatively short time horizon which makes the task challenging. By comparison, an algorithm

based on a frequentist estimator, such as UCB-Normal, would have to initialize its estimates

by sampling each arm once. Consequently, such an algorithm would, on average, achieve

linear regret on a task with a short horizon T < N .

Averaging over subjects in each phenotype, conditional on the best-fit model for each

subject, separates the performance of the participants into the three categories of regret

performance as can be observed in Figure 5.3. The difference between linear and power-law

performance is not statistically significant until near the task horizon at t = 90, but log-law

performance is statistically different from the other two from t ≈ 30, as seen using the con-
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fidence intervals in the figure. We therefore interpret the linear and power-law performance

phenotypes as representing participants with low performance and the log-law phenotype as

representing participants with high performance. Interestingly, the three models are indis-

tinguishable for time less than sufficiently small t . 30. This may represent a fundamental

limit to performance that depends on the complexity of the reward surface: if the surface is

smooth, skilled participants can quickly find good options, corresponding to a small value of

the constant K, and thus their performance will quickly be distinguished from that of less

skilled participants. However, if the surface is rough, identifying good options is harder and

will therefore require more samples, i.e., a large value of K, even for skilled participants.

5.3 Comparison with UCL

Having identified the three phenotypes of observed human performance in the above section,

we show that the stochastic UCL algorithm (Algorithm 2) can produce behavior correspond-

ing to the linear-law and log-law phenotypes by varying a minimal number of parameters.

Parameters are used to encode the prior beliefs and the decision noise of the participant. A

minimal set of parameters is given by the four scalars µ0, σ0, λ and υ, defined as follows.

(i) Prior mean The model assumes prior beliefs about the mean rewards to be a Gaussian

distribution with mean µ0 and covariance Σ0. It is reasonable to assume that participants

set µ0 to the uniform prior µ0 = µ01N , where 1N ∈ RN is the vector with every entry equal

to 1. Thus, µ0 ∈ R is a single parameter that encodes the participants’ beliefs about the

mean value of rewards.

(ii,iii) Prior covariance For a spatially-embedded task, it is reasonable to assume that

arms that are spatially close will have similar mean rewards. Following [68] we choose the

elements of Σ0 to have the form

Σij = σ2
0 exp(−|xi − xj|/λ), (5.4)

where xi is the location of arm i and λ ≥ 0 is the correlation length scale parameter that

encodes the spatial smoothness of the reward surface. The case λ = 0 represents complete

independence of rewards, i.e., a very rough surface, while as λ increases the agent believes

the surface to be more smooth. The parameter σ0 ≥ 0 can be interpreted as a confidence

parameter, with σ0 = 0 representing absolute confidence in the beliefs about the mean µ0,

and σ0 = +∞ representing complete lack of confidence.

(iv) Decision noise In Theorem 4.8 we show that for an appropriately chosen cooling sched-

ule, the stochastic UCL algorithm with softmax action selection achieves logarithmic regret.
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However, the assumption that human participants employ this particular cooling schedule is

unreasonably strong. It is of great interest in future experimental work to investigate what

kind of cooling schedule best models human behavior. The Bayes-optimal cooling schedule

can be computed using variational Bayes methods [38]; however, for simplicity, we model the

participants’ decision noise by using softmax action selection with a constant temperature

υ ≥ 0. This yields a single parameter representing the stochasticity of the decision-making:

in the limit υ → 0+, the model reduces to the deterministic UCL algorithm, while with

increasing υ the decision-making is increasingly stochastic.

With this set of parameters, the prior quality ζ from Remark 4.6 reduces to ζ =

(maxi |mi − µ0|)/σ0. Uninformative priors correspond to very large values of σ0. Good

priors, corresponding to small values of ζ, have µ0 close to mi∗ = maximi or little confidence

in the value of µ0, represented by large values of σ0.

We compare the model to observed behavioral data by fixing parameter values and having

the model make choices in simulated games. We then categorize the behavior observed in

simulation using the same fitting procedure used for human subjects. By adjusting the

parameters, we can replicate both linear and logarithmic observed regret behaviors as seen

in the human data.

Figure 5.4 shows examples of simulated observed regret R(t) that capture linear and log-

arithmic regret, respectively. In both examples, Landscape B was used for the mean rewards.

The example with linear regret shows a case where the agent has fairly uninformative and

fully uncorrelated prior beliefs (i.e., λ = 0). The prior mean µ0 = 30 is set equal to the

true surface mean, but with σ2
0 = 1000, so that the agent is not very certain of this value.

Moderate decision noise is incorporated by setting υ = 4. The values of the prior encourage

the agent to explore most of the N = 100 options in the T = 90 choices, yielding regret

that is linear in time. As emphasized in Remark 4.3, the deterministic UCL algorithm (and

any agent employing the algorithm) with an uninformative prior cannot in general achieve

sub-linear cumulative expected regret in a task with such a short horizon. The addition of

decision noise to this algorithm will tend to increase regret, making it harder for the agent

to achieve sub-linear regret.

In contrast, the example with logarithmic regret shows how an informative prior with

an appropriate correlation structure can significantly improve the agent’s performance. The

prior mean µ0 = 200 encourages more exploration than the previous value of 30, but the

smaller value of σ2
0 = 10 means the agent is more confident in its belief and will explore

less. The correlation structure induced by setting the length scale λ = 4 is a good model

for the reward surface, allowing the agent to more quickly reject areas of low rewards.

Furthermore, a lower softmax temperature υ = 1 means that the agent’s decisions are made
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more deterministically. Together, these differences lead to the agent’s logarithmic regret

curve; this agent suffers less than a third of the total regret during the task as compared to

the agent with the poorer prior and linear regret.

The simulations in Figure 5.4 suggest that there are various regions of parameter space

that result in qualitatively different regret behaviors, and that there may be phase transitions

between these different regions. Characterization of these regions and phase transitions is

an open question, but it is clear that the agent’s prior plays an important role. We have

begun to characterize the effect of the prior on regret and will discuss the findings in future

work [119].

5.4 Discussion

In this chapter, we have studied human subject data from a spatial multi-armed bandit task.

We showed that human performance in this task falls into one of several phenotypes that

can be interpreted in terms of performance bounds from the multi-armed bandit literature.

A significant fraction of the subjects exhibited performance that is better than the average

performance achievable using a multi-armed bandit algorithm based on frequentist statistics,

which we interpret as showing that some humans have high-quality priors for spatial search

tasks.

Through simulation, we showed that the stochastic UCL algorithm could be used as a

model of human choice behavior and capture the various phenotypes of human performance

using a minimal set of four parameters that encode the human’s prior and decision noise

level. If one can fit these four parameters to empirical human choice data, one can extract

the prior used to make the decisions. By extracting the prior from a human with a high-

quality prior, we can improve the performance of a human-machine system over that of a

machine with an uninformative prior.
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Figure 5.2: The two task reward landscapes: (a) Landscape A, (b) Landscape B. The two-
dimensional reward surfaces followed the profile along one dimension (here the x direction)
and were flat along the other (here the y direction). The Landscape A profile is designed
to be simple in the sense that the surface is concave and there is only one global maximum
(x = 6), while the Landscape B profile is more complicated since it features two local maxima
(x = 1 and 10), only one of which (x = 10) is the global maximum. Previously published as
Figure 6 of [99]. 65
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Figure 5.3: Mean observed regret R(t) conditional on the best-fit model (5.1)–(5.3), along
with bands representing 95% confidence intervals based on the standard error of the mean.
The width of the confidence intervals indicates the spread in the regret curves among different
subjects in each phenotype. The black curve shows the linear expected regret that would be
achieved by a frequentist algorithm, which would make its first N = 100 choices at random.
Subjects who incur linear regret do so at a slower average rate than a frequentist algorithm
would, indicating that their choices are not made purely at random. Note how the difference
between linear and power-law regret is not statistically significant until near the task horizon
T = 90, while logarithmic regret is significantly less than that of the linear and power-law
cases. Adapted from Figure 7 of [99].
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Figure 5.4: Observed regretR(t) from simulations (solid lines) that demonstrate linear regret
(5.1), blue curves, and log regret (5.3), green curves. The best fits to the simulations are
shown (dashed lines). The simulated task parameters were identical to those of the human
participant task with Landscape B from Figure 5.2(b). In the example with linear regret,
the agent’s prior on rewards was the uncorrelated prior µ0 = 30, σ2

0 = 1000, λ = 0. Decision
noise was incorporated using softmax selection with a constant temperature υ = 4. In the
example with log regret, the agent’s prior on rewards was the correlated prior with uniform
µ0 = 200 and Σ0 an exponential prior (5.4) with parameters σ2

0 = 10, λ = 4. The decision
noise parameter was set to υ = 1. Previously published as Figure 8 of [99].
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Chapter 6

Parameter estimation for softmax

decision-making models1

“If your experiment needs statistics, you ought to have done a better experiment.”

(Ernest Rutherford)

In this chapter, we consider the stochastic UCL algorithm as a model of human behavior

and study the problem of estimating the model parameters from observed choice data. By

estimating the model parameters, one can extract the human subject’s prior over the rewards.

As shown in the previous chapter, many humans have high-quality priors that can result in

better performance than is possible with an uninformative prior, so estimating the prior will

be valuable to constructing integrated human-machine systems.

We study the parameter estimation problem using a likelihood-based approach. The

stochastic UCL model trivially defines a likelihood function, which quantifies how likely the

observed data would be under a given model as a function of the parameters. Maximizing

the likelihood function (perhaps with a penalty for parameter values thought to be unlikely)

produces the estimate of parameter values that best explains the data for the given model.

Unfortunately the stochastic UCL model likelihood function is poorly behaved in general,

meaning that finding the optimum parameter values is difficult and the convergence proper-

ties of the resulting estimator are difficult to quantify.

In this chapter, we develop an estimator for the stochastic UCL model parameters using

approximations to the likelihood function. The development proceeds as follows: we first

consider decision-making models that use softmax action selection with an objective function

that is a linear function of the unknown model parameters. For such models, we prove

conditions under which the likelihood function is concave and show that in this case the

maximum likelihood estimator converges to the true parameter value. The concavity of the

1This chapter is adapted from [94], with most text taken verbatim.
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likelihood function permits the estimator to be computed using standard convex optimization

tools. We also develop an iterative parameter estimation algorithm that could allow better

performance in some cases. We then show that this algorithm can be applied to the stochastic

UCL model by linearizing the heuristic function about a nominal point in parameter space.

The resulting estimator is relevant for models involving softmax action selection, which

includes a wide variety of models in neuroscience and machine learning.

The remainder of the chapter is organized as follows. In Section 6.1 we introduce softmax

decision-making models and briefly review the relevant literature. In Section 6.2 we review

the literature on Generalized Linear Models (GLMs) and show that softmax decision-making

models with linear objective functions are a special case of this general class of statistical

models. In Section 6.3 we adopt a maximum likelihood estimation framework and define the

estimation problem for softmax decision-making models in terms of optimizing the model

likelihood function. We review two relevant results from the literature: 1) an approach to

solving the resulting optimization problem, and 2) standard results concerning the conver-

gence of the maximum likelihood estimator. In Section 6.4 we provide several examples of

softmax decision models that appear in the literature. In Section 6.5 we analytically compute

the gradient and Hessian matrix of the likelihood function and use these to develop an iter-

ative algorithm to solve the likelihood maximization problem. We study the Hessian matrix

in detail to derive conditions under which the iterative algorithm converges to the correct

parameter values. These conditions also imply that the likelihood function is concave. In

Section 6.6 we demonstrate the convergence results by presenting results from several ex-

amples where we applied the estimator to simulated data. In Section 6.7 we show that this

estimator can be applied to the stochastic UCL model by linearizing the likelihood function

about a nominal point in parameter space. In Section 6.8 we discuss the implications for

human-machine systems and conclude.

6.1 Introduction

In a variety of decision-making scenarios an agent selects one among a discrete set of options

i ∈ {1, . . . ,m}. In the literature, decision-making models are derived and applied to study

and predict the strategies that agents use to make their selections and to evaluate decision-

making performance. One common approach is to derive a decision-making model as the

solution of an optimization problem. An objective function Qi is defined for each option i,

and the model agent selects the option i∗ that maximizes the objective function:

i∗ = arg maxiQi.
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The maximum operation is deterministic and non-differentiable, so for many applications it is

replaced by the so-called softmax operation, under which option i is chosen with probability

P (i) =
exp(Qi)∑m
j=1 exp(Qj)

.

The softmax operation is a stochastic, biologically-plausible approximation of the maximum

operation [124]. Furthermore, it is differentiable with respect to its arguments Q, which

makes it more analytically tractable.

In contexts such as inverse reinforcement learning [103, 87] and neuroscience [82], a central

goal is to understand the decision-making process by finding the objective function values

{Qi} that explain observed decisions. In this chapter, we consider this problem in the case

that the objective function Q is linear in a set of nobj known objective variables x, i.e.,

Qi = θTxi, θ,xi ∈ Rnobj . (6.1)

Our goal is to learn the vector of parameters θ, which is assumed to be constant across

options and decisions.

The problem of learning the objective function that can explain observed decision-making

behavior is relevant for several different disciplines. In econometrics and signal processing,

it is a parameter estimation problem. In system identification, it can be considered as a

grey-box modeling problem. As a motivating example, consider the case of m = 2 options

and nobj = 1 known variables, such that both θ = θ and xi = xi are scalar. Then the

probability of picking option 1 is

P (pick option 1) =
1

1 + exp(−θ(x1 − x2))
. (6.2)

Figure 6.1 plots the probability (6.2) as a function of the difference in value of the two options

∆x = x1 − x2. When the values of the two options are identical, the probability is equal to

0.5 and it increases monotonically with increasing ∆x. The rate of the increase is controlled

by θ, which sets the slope of the function at ∆x = 0. Large values of θ increase the slope and

make the choice represented by (6.2) discriminate between x1 and x2 with more sensitivity,

while small values of θ decrease the slope and make the choice less sensitive to ∆x. Models

of this form have been used to study a variety of decision-making tasks [64, 105, 34, 84, 121],

where finding the value of θ that explains a given set of decisions is an important problem.

Our problem has similarities to ones previously studied in the literature, in particular

multinomial logistic regression [14, 59]. In multinomial logistic regression, one is given a
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Figure 6.1: The probability (6.2) from the model (6.1) with m = 2 options and a scalar
(nobj = 1) parameter θ. The probability of picking option 1 is a logistic function of ∆x =
x1 − x2 and the sensitivity to ∆x is controlled by θ, which sets the slope at ∆x = 0.
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vector of explanatory variables x that may belong to one of m classes i ∈ {1, . . . ,m}, and

the goal is to predict the class to which the observed variables belong. The multinomial

logistic regression model defines a weight vector wi for each class and uses the softmax

operation with the objective function Qi(x) = wT
i x. The parameter estimation problem

for the multinomial logistic regression model involves learning the values of all the weight

vectors wi, i ∈ {1, . . . ,m}, i.e., m × nobj individual numbers. Both our model and the

multinomial logistic regression model are instances of Generalized Linear Models, or GLMs

[85]. However, our problem is dual to the standard multinomial logistic regression problem

in that the dependence of the weight vector and the explanatory variables on the class has

been reversed.

The assumption of a linear form for the objective function (6.1) may appear restrictive,

but many relevant models can be reduced to this form, at least locally or in certain limits.

In Chapter 4, we developed the stochastic UCL algorithm, and in Chapter 5 we showed that

it can be used as model for human behavior in spatial search tasks. Stochastic UCL is a

softmax decision model with an objective function QUCL that depends on several parameters

which encode the human subject’s prior and level of decision noise. We wish to estimate

the values of these parameters both to enable more rigorous analysis of the human subject

data presented in Chapter 5 and to facilitate the integration of the stochastic UCL model

in engineered systems. In Section 6.7 below we show that QUCL can be transformed into a

linear function of the form (6.1) by linearizing about a point in parameter space.

Previous work, e.g. Krishnapuram et al. [59], has developed fast algorithms for learning

the parameters of multinomial logistic regression models, but the dual structure of the model

(6.1) precludes the use of Krishnapuram et al.’s algorithm here. Krishnapuram et al.’s bound

optimization framework is applicable to the model (6.1), but additional work is required to

derive the analogous algorithm and to analyze its convergence behavior. We develop an

algorithm for the parameter estimation problem for the general case of model (6.1) and

prove conditions under which the algorithm converges to the true model parameters. We

then apply this algorithm to the problem of estimating parameters of the UCL model.

There are three major contributions of the work reported in this chapter. The first

two concern the case of a linear objective function of the form (6.1). First, we derive

conditions under which the likelihood function of a model with such an objective function

is concave (Lemma 6.10). In the case these conditions are satisfied, we develop and prove

the convergence of a fast iterative algorithm for performing maximum likelihood parameter

estimation of softmax decision-making models with linear objective functions. Second, in

proving the concavity of the likelihood function, we construct several new matrix operations

and derive some of their important properties. The first is a binary matrix product that
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generalizes the Hadamard product to the case where one matrix has a block structure,

while the second is a block-wise matrix contraction operator. For the block Hadamard

product, which is a special case of the Khatri-Rao product [52, 72], we prove a theorem

analogous to the Schur product theorem for the standard Hadamard product. The third

major contribution concerns the extension to softmax decision-making models with nonlinear

objective functions. In Section 6.7 we show in the case of UCL that the approach developed

for linear objective functions can be applied by linearizing about a nominal point in parameter

space, which produces an estimator for the UCL model. Linearization makes this approach

applicable to more general models with nonlinear objective functions.

6.2 Generalized Linear Models

Linear models of the form

E [y] = µ = wTx; y ∼ N (µ, σ2), (6.3)

are the basis of most analyses of continuous data. In such a model, the observed data consists

of the explanatory variables x and the response variable y. For example, the explanatory

variables might be a child’s age and height and the response variable their weight. In this

case, the model predicts the child’s weight given their age and height. The model assumes

that the expected value of the response y is a linear combination of the explanatory variables

x with the unknown parameters w. Such a model is appropriate when the response variable

follows a normal distribution N (µ, σ2).

However, this sort of model has two important limitations: 1) the response variables

y often follow a distribution other than the normal distribution, for example they may be

discrete rather than continuous, and 2) the relationship between the response variables y

and the explanatory variables x need not be linear.

To help deal with these issues, a variety of researchers considered generalizations of the

linear model (6.3), which Nelder and Wedderburn [85] unified in the generalized linear model,

or GLM. In the GLM, there is a nonlinear function relating the expected response E [y] = µ

to the linear predictor wTx:

f(µ) = wTx.

The function f(·) is termed the link function. For example, consider the example with m = 2

options from Figure 6.1. In this case, the explanatory variable is the difference in values ∆x

and the response variable y takes value 1 if option 1 is chosen and zero otherwise. Therefore,
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the response variable y is binomial with success probability given by (6.2), i.e.,

y =

1, with probability µ,

0, else.

Its expected value is

E [y] = µ = P (choose option 1) =
1

1 + exp(−wTx)
,

where w = θ and x = ∆x.

Inverting this equation, we get the link function

f(µ) = wTx = log

(
µ

1− µ

)
,

which is known as the logit function. In the case of m > 2 options, the response data is

referred to as multinomial and the response variable can be encoded as a vector y whose ith

component yi takes value 1 if option i is chosen and zero otherwise:

(y)i = yi =

1, option i is chosen,

0, else.

Letting µi = E [yi], the following link function holds:

f(µi) = wT
i x = log

(
µi

1− µi

)
,

where wi are the parameters associated with option i. This model is known as multinomial

logistic regression. In Section 6.2.2 we will show that softmax decision-making models with

linear objective functions of the form (6.1) are a special case of the multinomial logistic

regression model where the parameters wi have a certain sparse structure. This allows us to

develop a parameter estimation algorithm by extending the framework of Krishnapuram et

al. [59].

6.2.1 Multinomial logistic regression

In the spirit of [59], we set the following notation. We assume we have n observations,

and for each observation we have data consisting of explanatory variables and a response,

which falls into one of m categories. Specifically, for each observation k ∈ {1, . . . , n} we
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have data (xk,yk), where xk =
[
xk1 · · · xkd

]T
∈ Rd are the d explanatory variables and

yk =
[
yk1 · · · ykm

]T
represents the response variable. The element yki = 1 if the observation

corresponds to category i and zero otherwise. For each category i ∈ {1, . . . ,m} we define a

corresponding unknown weight vector wi ∈ Rd, and define w ∈ Rd(m−1) as the concatenation

of the individual categories’ weight vectors:

w =


w1

w2

...

wm−1

 ,

where without loss of generality, as explained below, we set wm = 0.

Under a multinomial logistic regression model, the probability that xk corresponds to

category i is written as

P
(
yki = 1|xk,w

)
=

exp
(
wT
i xk

)∑m
j=1 exp

(
wT
j xk

)
,

(6.4)

for i ∈ {1, . . . ,m}, where wi is the weight vector corresponding to category i. In this model,

the weight vector changes from category to category and the explanatory variables xk are

held fixed over all categories. Because of the normalization condition

m∑
i=1

P
(
yki = 1|xk,w

)
= 1,

the weight vector for one of the categories need not be estimated. Without loss of generality,

we thus set wm = 0 and the only parameters to be learned are the weight vectors wi for

i ∈ {1, . . . ,m − 1}. In the remainder of the chapter, we use w as defined above to denote

the (d(m− 1))-dimensional vector of parameters to be learned.

6.2.2 Softmax decision models

We now make the connection between multinomial logistic regression and the softmax

decision-making model (6.1). We let d = m · nobj, so there are nobj explanatory variables for

each of the m categories. Consider a single observation k with data (xk,yk), where xk ∈ Rd

is partitioned into m blocks, each of length nobj:

xk = [xk1; xk2; · · ·xkm].
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Motivated by models of decision making like stochastic UCL, we consider a variant of the

multinomial logistic regression model (6.4) with the following structure:

P
(
yki = 1|xk,θ

)
=

exp
(
θTxki

)∑m
j=1 exp

(
θTxkj

) (6.5)

for i ∈ {1, . . . ,m}, where θ ∈ Ro is a weight vector that is the same for all categories and

xki ∈ Rnobj is the subset of the explanatory variables that correspond to category i. This

is the softmax decision-making model with linear objective function (6.1) introduced above.

When referring to this variant of the model, we use the word option instead of the word

category to emphasize the connection to decision making.

The model (6.5) can be related to the model (6.4) more commonly studied in the literature

as follows. Denote the unique weights by θ ∈ Rnobj and the vector xk as above. Then the

weight vectors wi are given by wi = φi⊗θ, where φi ∈ Rm is the indicator vector with (φi)j =

δij and ⊗ is the Kronecker product of two matrices. For model (6.5) the estimation procedure

needs only learn the nobj-dimensional parameter θ. Note that the redundancy in parameters

that led to setting wm = 0 has been transformed into a redundancy in explanatory variables,

which could be dealt with by, e.g., subtracting xkm from each set of explanatory variables

for each observation k. In the following, we will assume this transformation has been made.

Concretely, if the original data is given by x̃k = [x̃k1; x̃k2; · · · x̃km], then xk is the transformed

data xk = [x̃k1 − x̃km; x̃k2 − x̃km; · · · x̃km−1 − x̃km; 0].

The new model (6.5) is dual to the standard model in the sense that the dependence on

categories i is transferred from the weights wi to the explanatory variables xi. This duality

means the algorithms developed in [59] are not applicable to such a model, though the general

framework applies. In Section 6.3 we pose the parameter estimation problem for the model

(6.5) and review the bound optimization framework that [59] used to develop parameter

estimation algorithms for the multinomial logistic regression model (6.4). In Section 6.5 we

apply this framework to develop a new algorithm for learning the vector parameters θ of the

softmax model (6.5).

6.3 Parameter estimation for softmax

decision-making models

In this section, we define the parameter estimation problem for multinomial logistic regres-

sion and review relevant results from the literature. In particular we review the bound

optimization approach, which was used in [59], and standard convergence results for maxi-
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mum likelihood estimators. The bound optimization approach provides an efficient way to

solve the parameter estimation problem, and several results from the econometrics literature

provide conditions under which the estimator is guaranteed to converge asymptotically. The

development in Sections 6.3.1–6.3.3 largely follows Sections 2 and 3 of [59], while Section

6.3.4 summarizes results from the standard econometrics reference [86].

6.3.1 The parameter estimation problem

In the parameter estimation problem for the softmax decision-making model (6.5), we wish

to estimate the values of θ based on the observed data (xk,yk). A standard way to perform

parameter estimation is using the maximum likelihood method [50, Chapter 7]. To perform

maximum likelihood (ML) estimation of θ, one maximizes the log-likelihood function,

`(θ) =
n∑
k=1

logP
(
yk|xk,θ

)
(6.6)

=
n∑
k=1

[
m∑
i=1

yki θ
T
i xk − log

m∑
i=1

exp
(
θTi xk

)]
, (6.7)

yielding the ML estimate

θ̂ML = arg maxθ `(θ). (6.8)

This estimate can be interpreted as the parameter value that makes the observed data most

likely under the given model. In the following, we occasionally write `(θ; x) to emphasize

that ` is a function of θ that depends on the data x. The data can be thought of as fixed

parameters of the function `.

A prior on θ can be incorporated by adopting a maximum a posteriori (MAP) estimate

[50, Chapter 11],

θ̂MAP = arg maxθ L(θ) = arg maxθ[`(θ) + log p(θ)], (6.9)

with p(θ) being the prior on θ. The MAP estimate penalizes ML estimates that are consid-

ered unlikely under the prior.

6.3.2 Bound optimization algorithms

The optimization problem (6.9) can be solved by a variety of methods, for example Itera-

tively Reweighted Least Squares [85]. However, bound optimization algorithms can provide

a faster solution. In [59], the authors develop fast bound optimization algorithms for MAP
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parameter estimation of the standard multinomial logistic regression model (6.4). In Section

6.5 we develop a similar algorithm for parameter estimation of the model (6.5) with Kro-

necker product structure. In this section, we review the basic theory of bound optimization

algorithms following [59] and [63].

Bound optimization algorithms solve the optimization problem (6.9) by iteratively max-

imizing a surrogate function V [63]:2

θ̂
(t+1)

= arg maxθ V
(
θ|θ̂

(t)
)
. (6.10)

Then L(θ̂
(t+1)

) ≥ L(θ̂
(t)

) if V satisfies the following key condition: L(θ)− V (θ|θ̂
(t)

) attains

its minimum when θ = θ̂
(t)

. The proof is as follows:

L(θ̂
(t+1)

) = L(θ̂
(t+1)

)− V (θ̂
(t+1)
|θ̂

(t)
) + V (θ̂

(t+1)
|θ̂

(t)
)

≥ L(θ̂
(t)

)− V (θ̂
(t)
|θ̂

(t)
) + V (θ̂

(t+1)
|θ̂

(t)
)

≥ L(θ̂
(t)

)− V (θ̂
(t)
|θ̂

(t)
) + V (θ̂

(t)
|θ̂

(t)
)

= L(θ̂
(t)

).

The standard Expectation Maximization algorithm [79] for maximum likelihood estima-

tion with missing data is a special case of this approach, where the key condition comes

from using Jensen’s inequality on the likelihood function. The bound optimization approach

allows us to derive surrogate functions using purely analytical means, without recourse to

the concept of missing data. The iterative update procedure guarantees that θ̂
(t)

converges

to a local maximum of L(θ). If L(θ) is concave, this local maximum is in fact the desired

global maximum. When L(θ) is concave, an analytical method for obtaining a surrogate

function V (θ|θ̂) is by using a bound on the Hessian H(θ) of L(θ).

For two square matrices A,B of the same size, let A � B denote that A− B is positive

semidefinite. If the Hessian H of L(θ) is lower bounded, i.e., if there exists a negative definite

matrix B such that H(θ) � B for all values of θ, then it is easy to prove that, for any θ′,

L(θ) ≥ L(θ′) + (θ − θ′)Tg(θ′) +
1

2
(θ − θ′)TB(θ − θ′),

where g(θ′) denotes the gradient of L(θ) computed at θ′. Define V (θ|θ′) = L(θ′) + (θ −
θ′)Tg(θ′) + 1

2
(θ − θ′)TB(θ − θ′). Then we have L(θ) − V (θ|θ′) ≥ 0, with equality if and

2References [59] and [63] denote the surrogate function by Q, but here we use V to avoid confusion with
the objective function Qi.
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only if θ = θ′. Therefore, V (θ|θ′) is a valid surrogate function and we can let

V (θ|θ̂
(t)

) = θTg(θ̂
(t)

)− θTBθ̂
(t)

+
1

2
θTBθ, (6.11)

where we have omitted terms that are constants as a function of θ since they have no effect

on the maximization step.

In the case of ML estimation, L(θ) is simply the likelihood function `(θ) (6.6). Maxi-

mizing V (θ|θ̂
(t)

), we get the iterative update equation

θ̂
(t+1)

= θ̂
(t)
−B−1g(θ̂

(t)
), (6.12)

where g(θ) is simply the gradient of the likelihood function evaluated at θ.

6.3.3 Prior for MAP estimation

To apply a Bayesian approach to the estimation problem, we consider a prior on the param-

eter θ and perform maximum a posteriori estimation. Let the prior on θ be Gaussian with

mean θ̄ and precision λ, i.e.,

p(θ) ∝ exp

(
λ

2
‖θ − θ̄‖2

2

)
.

The mean θ̄ encodes the average value of the prior belief, and the parameter λ > 0 encodes

the strength of that belief, i.e., the scaling of the penalty for deviating from the prior mean

belief.

Then the objective function is

L(θ) = `(θ)− λ

2
‖θ − θ̄‖2

2, (6.13)

where ‖ · ‖2
2 is the squared Euclidean norm. This requires the straightforward modification

of the update equation (6.12):

θ̂
(t+1)

=

(
B − λ

2
I

)−1(
Bθ̂

(t)
− λ

2
θ̄ − g(θ̂

(t)
)

)
, (6.14)

where I is the identity matrix. The factors
(
B − λ

2
I
)−1

B and
(
B − λ

2
I
)−1

can be precom-

puted once and stored, so each iterative update is computationally inexpensive and fast.
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While we have only considered a Gaussian prior here, these methods can be extended to

other priors, for example the sparsity-inducing Laplacian prior

p(θ) ∝ exp (−λ‖θ‖1) ,

where ‖θ‖1 =
∑

i |wi| denotes the l1 norm and λ again denotes the strength of the prior.

See [59] for more details of how to extend the bound optimization approach to multinomial

logistic regression with a Laplacian prior.

6.3.4 Asymptotic behavior of the ML estimator

The ML estimator θ̂ML solves the estimation problem in the frequentist framework, which

posits that there is a true value θ0 of the parameters that we attempt to recover from

analyzing the given data. In this framework, natural questions to be asked are 1) does

θ̂ML → θ0 as the number of observations n grows, and 2) how dispersed is the difference

θ̂ML − θ0? These questions have been studied in the literature, for which [86] is a standard

reference. The remainder of this section summarizes the relevant results from [86]. The

answers to these two questions depend on two properties of the model, identification and

concavity, defined as follows.

Definition 6.1 (Identification). A statistical model with likelihood function ` : Rq → R and

observed data x is said to be identified if, for all θ,θ0 ∈ Rq,

θ 6= θ0 ⇒ `(θ0; x) 6= `(θ; x).

Definition 6.2 (Concavity). A statistical model with likelihood function ` : Rq → R is said

to be concave if `(θ; x) is strictly concave in θ.

If a model is identified and concave (see [86, Theorem 2.7] for details), the answer to

question 1) is yes. These two conditions imply that the true value θ0 of the parameter is the

unique maximum of the log-likelihood `(θ).

Concavity is a property only of the functional form of `(θ; x), but identification may

depend on the observed data x. As an example of how a model may fail to be identified

due to data, consider the model (6.5) with xi being the zero vector for each i. In this case,

P (yi = 1|x, θ) = 1/m for each i independent of θ and the estimation procedure will be unable

to distinguish among the possible parameter values.

In the following sections, we show that the functional form (6.6) of `(θ; x) ensures weak

concavity and provide conditions on the data x that ensure identification. These condi-
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tions also ensure that `(θ; x) is strictly concave and are useful guidelines for the design of

experiments for estimating θ.

The answer to question 2) is that, under mild regularity conditions, the distribution of

θ̂ML approaches a normal distribution as the number of samples n grows. In particular, the

following limit holds:

θ̂ML
d→ N (θ0, J

−1/n), (6.15)

where
d→ signifies a limit in distribution as n → ∞ and J = −E [H(θ0)] is the negative of

the expected value of the Hessian. See [41, Chapter 9] for more details about the concept

of a limit in distribution and see [86, Theorem 3.3] for full details of the conditions under

which (6.15) holds. In practice one uses Ĵ = −H(θ̂ML)/n as an estimate of J. This permits

construction of standard frequentist analysis tools, such as confidence intervals for the pa-

rameter estimates and hypothesis tests. The estimate θ̂ML is efficient [50, Theorem 7.3] in

the sense that it obeys the Cramér-Rao lower bound on the variance of estimators θ̂, so no

other unbiased estimator can have lower variance than θ̂ML.

6.4 Several examples of softmax decision-making mod-

els with linear objective functions

In this section, we provide several concrete examples of the softmax decision model (6.5).

The goal is to make the connection between this functional form and others that appear in

the literature.

Example 1 (Softmax with unknown temperature). A standard decision model in reinforce-

ment learning [124] is the so-called softmax action selection rule, which selects an option i

with probability

P (i) =
exp (Vi/τ)∑n
j=1 exp (Vj/τ)

,

where Vi is the value associated with option i and τ is a positive parameter known as the

temperature. This rule selects options stochastically, preferentially selecting those with higher

values. The degree of stochasticity is controlled by the temperature τ : in the limit τ → 0+,

the rule reduces to the standard maximum and deterministically selects the option with the

highest value of Vi, while in the limit τ → +∞, all options are equally probable and the rule

selects options according to a uniform distribution.

This model is clearly similar to (6.5) with nobj = 1. Specifically, assume that the tem-

perature τ is constant but unknown, and the values Vi are known. Then the two models are
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identical if we identify

θ = 1/τ, xi = Vi.

In the reinforcement learning literature, the quantity 1/τ is sometimes known as the inverse

temperature and referred to by the symbol β. Applying our methods allows one to estimate

θ = 1/τ from observed choice data.

Example 2 (Softmax with known cooling schedule form). A slightly more complicated model

might let the softmax temperature τ follow a known functional form, called a cooling schedule,

that depends on an unknown parameter. For example, in simulated annealing, Mitra et

al. [77] showed that good cooling schedules follow a logarithmic functional form:

τ(t) =
ν

log t
,

where t is the decision index and ν > 0 is a parameter.

In Chapter 4 we consider tuning rules to dynamically adjust ν and show that there exists

a tuning rule that results in stochastic UCL achieving logarithmic regret. If, however, ν is

constant but unknown, this model can be represented in the form of (6.5) with nobj = 1 by

identifying

θ = 1/ν, xi = Vi log t.

Example 3 (Softmax Q-learning with unknown temperature and learning rate). According

to a simple Q-learning model [128], for each choice t the agent assigns an expected value V t
i

to each option i. The values are initialized to 0 at t = 1 and then for each trial, the agent

picks option it, receives reward rt, and updates the value of the chosen option it according to

V t+1
it

= V t
it + αδt,

where α ∈ [0, 1] is a free parameter called the learning rate and δt = rt−V t
it is the prediction

error.

A common model in reinforcement learning [33] is for the agent to make decisions using

a softmax rule on the value function V t
i , so the probability of selecting an option i at time t

is

P (it = i) =
exp (V t

i /τ)∑n
j=1 exp

(
V t
j /τ
) =

exp
(
V t−1
i /τ + αδt−1/τ

)∑n
j=1 exp

(
V t−1
j /τ + αδt−1/τ

) .
Similar models are used in the analysis of fMRI data, e.g. [132]. If V t−1

i , V t−2
i , and rt are

known while τ and α are unknown, this is in the form of (6.5) with nobj = 2 and identifying

θ =
[
1/τ ; α/τ

]
, xi =

[
V t−1
i ; δt−1

]
.
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If only the initial value V t=1
i = 0 is known, then the value function V t

i becomes a nonlinear

function of the parameters α, τ and the model is not of the form (6.5), although it may be

possible to find a transformation that puts it in such a form.

6.5 A fast iterative algorithm for softmax decision mod-

els with linear objective functions

In this section we develop fast iterative algorithms for multinomial logistic regression with

Kronecker product structure (6.5) by specifying the form of the likelihood gradient g(θ) and

the bound B on the Hessian in the update equations (6.12) and (6.14). This study of the

Hessian leads us to prove Theorem 6.11, which provides conditions under which the likelihood

function `(θ) is concave, which implies the convergence of the ML estimator and reduces

the maximization problem (6.8) to a convex optimization problem. When (6.8) is a convex

optimization problem, it can be solved by a variety of standard methods, such as the various

variants of Newton’s method. See [17] for a standard textbook on convex optimization theory

and methods. In Section 6.5.4 we develop an alternative iterative algorithm for solving (6.8)

that may be faster than standard convex optimization methods in some cases.

6.5.1 Likelihood function

Considering the log-likelihood function (6.6) of the model (6.5) for just one observation

(yk,xk), we have

`(θ) =
m∑
i=1

yki θ
T
i xk − log

m∑
i=1

exp
(
θTi xk

)
(6.16)

=
m∑
i=1

yki (φi ⊗ θ)T xk

− log
m∑
i=1

exp
(

(φi ⊗ θ)T xk
)

The gradient of `(θ) is easily computed:

g(θ) = ∇`(θ) =
m∑
i=1

(
yki − pki

) (
φi ⊗ Inobj

)
xk, (6.17)

where pki is defined as

pki = pki (θ) = P
(
yki = 1|xk,θ

)
(6.18)
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and Inobj
is the nobj-dimensional identity matrix.

6.5.2 Two operations for block matrices

The algorithm requires a lower bound B on the Hessian of the likelihood function, and

convergence of the algorithm requires that the Hessian be negative-definite, i.e. that the

Hessian be upper bounded by the zero matrix. To study the Hessian, we require some

additional notation. We define two operations on block matrices: one a generalization of the

Hadamard product (often called the Schur product, [46, Section 7.5]), and another a block

contraction, and prove several properties of these operations.

We begin with the following generalization of the Hadamard product to block matrices:

Definition 6.3. Let n,m, p and q be positive integers. Let A be an n×m real-valued matrix,

and let B be an np×mq real-valued block matrix, where each block is of size p× q. Denote

the i, j element of A as aij and the i, j block of B as Bij. Then the block Hadamard product

A�B is defined as the np×mq block matrix whose i, j block is aijBij. That is,

(A�B)ij = aijBij.

For two matrices A and B of equal size, the Hadamard (or element-wise) product A ◦B
is defined as the element-by-element product, i.e., (A ◦ B)ij = aijbij. The block Hadamard

product can be thought of as an analogy of the Hadamard product in the case where one of

the two matrices is a block matrix and the other is of conformable size. The block Hadamard

product is a special case of the Khatri-Rao product A ∗B [52, 72], defined as follows in the

case where both A and B are block matrices:

(A ∗B)ij = Aij ⊗Bij,

where the i, j block of the product is the mipi × njqj-sized Kronecker product of the corre-

sponding blocks of A and B.

The Schur product theorem [106],[46, Theorem 7.5.3] states that the Hadamard product

of two positive definite (semidefinite) matrices is positive definite (semidefinite). Liu [71]

proved an analogous result for the Khatri-Rao product:

Theorem 6.4 ([71], Theorem 5). Let M � P � 0, N � Q � 0, and M,P,N and Q be

compatibly partitioned matrices. Then

M ∗N � P ∗Q � 0. (6.19)
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This result is somewhat more general than the Schur product theorem because it not

only shows that the product is positive semidefinite, but also that the product preserves

ordering, as shown by the first inequality in (6.19). Since the block Hadamard product is a

special case of the Khatri-Rao product, it obeys Theorem 6.4. In particular, the following

holds.

Corollary 6.5. Let A be a positive definite (semidefinite) matrix of size n, and let B be

a positive definite (semidefinite) block matrix of size mn, where each block is square and of

size m. Then their block Hadamard product A � B is positive definite (semidefinite), i.e.,

A�B � 0.

This result can be proved by applying Theorem 6.4. We develop a second, more direct

proof using an argument analogous to the proof of the Schur product theorem as follows.

Proof. Let x,y ∈ Rmn be considered as block vectors with each block of length m and denote

block i of each vector as xi,yi, respectively. Consider the quantity

xT (A�B)y =
n∑

i,j=1

xTi aijBijyj =
n∑

i,j=1

aijx
T
i Bijyj.

This can be rewritten as
n∑

i,j=1

aij(diag(xT )B diag(y))ij,

where diag(xT ) is the n×nm block diagonal matrix with xTi as the i, i block, and diag(y) is

defined similarly. Using the formula for the trace of a product, this can in turn be rewritten

as

tr
(
A(diag(xT )B diag(y)

)
= tr

(
A1/2A1/2(diag(xT )B1/2B1/2 diag(y)

)
= tr

(
A1/2(diag(xT )B1/2B1/2 diag(y)A1/2

)
, (6.20)

where the first equality is valid since the positive (semi)definiteness of A and B allows us to

define the square roots, and the second equality is due to the cyclic property of the trace.

If x = y, (6.20) can be rewritten as tr
(
CTC

)
, where C = A1/2 diag(x)B1/2. It is therefore

the sum of C2
ij and thus non-negative, and we have

xT (A�B)x ≥ 0.

If A and B are strictly positive definite, then equality holds if and only if x = 0.
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We define the following operation for block matrices:

Definition 6.6. Let n,m, p and q be positive integers, and let A be the np×mq block matrix

where each block is of size p× q. Denote the i, j block of A by Aij. Then sum (A) is the p× q
matrix defined by

sum (A) =
n∑
i=1

m∑
j=1

Aij.

This is the block-wise sum (or contraction) of the matrix A.

Recall that for two n×n matrices A and B, A � B denotes that A−B is positive semidef-

inite. A similar relationship holds for matrices related via the block Hadamard product and

block-wise sum, as specified in the following lemma:

Lemma 6.7. Let A and B be square matrices of size n such that aij ≤ bij ∀ i, j ∈ {1, . . . , n},
i.e., each element of B is at least as large as the corresponding element of A. Let C be a

square block matrix of size np, where each block is square of size p, and let C be nonnegative

definite. Then,

sum (A� C) � sum (B � C) .

Proof. Let z ∈ Rp and z̃ = [z; z; · · · z] ∈ Rnp. Define M = sum (B � C)− sum (A� C), and

define ∆ = mini,j(bij − aij). Note that sum (A� C) � sum (B � C) ⇔ M � 0. By the

definition of M , we have

M =
∑
i,j

(bij − aij)Cij.

Then, the following sequence of inequalities holds:

zTMz =
n∑
i=1

m∑
j=1

(bij − aij)zTCijz

≥ ∆
n∑
i=1

m∑
j=1

zTCijz

= ∆z̃TCz̃ ≥ 0,

where the first inequality follows from the definition of ∆ and the second from the fact that

C is nonnegative definite. Therefore M � 0 and sum (A� C) � sum (B � C).

6.5.3 Hessian of the log-likelihood function

In this section, we consider the Hessian H(θ) of the likelihood function (6.6) for a single

observation (yk,xk). We establish the upper and lower bounds on the Hessian of the like-

86



lihood function required to implement the iterative updates (6.12) and (6.14). To study

the Hessian, we use the matrix operations introduced in the previous section. Recall that

xki =
(
φTi ⊗ Inobj

)
xk is the subset of explanatory variables that correspond to option i.

Recall from (6.18) that pki = pki (θ) is the probability of selecting option i given parameters

θ and define

pk = pk(θ) = [pk1(θ), pk2(θ), . . . , pkm(θ)] ∈ Rm, (6.21)

P k = P k(θ) = diag(pk(θ)) ∈ Rm×m, (6.22)

so P k is the diagonal matrix with pk on the diagonal. The likelihood function `(θ) defined

in (6.16) has the Hessian matrix

H(θ) = −
m∑
i=1

(
pki x

k
i ⊗ xki − pki

m∑
j=1

xkj ⊗ xkj

)
.

Defining Ak = P k − pkTpk and using the two operations introduced in the previous section,

this can be rewritten as

H(θ) = − sum
(
Ak � xkTxk

)
. (6.23)

Define 1 as the vector where each element is equal to 1, and let B = 1T1 ∈ Rnobj×nobj be

a matrix with each element equal to 1. In order to apply the bound optimization algorithm

from Section 6.3.2 we require the likelihood function to be concave, and the Hessian to be

lower bounded by a matrix B that is independent of the parameter θ. Setting

B = − sum
(
xkTxk

)
, (6.24)

these conditions are ensured by the following main theorem:

Theorem 6.8. The Hessian matrix H(θ) for a single observation (yk,xk) given by (6.23)

satisfies

B � H(θ) � 0,

where B = − sum
(
xkTxk

)
.

In order to prove Theorem 6.8 we will use the following lemma.

Lemma 6.9. The matrix Ak = P k − pkTpk, where pk and P k are defined in (6.21) and

(6.22), respectively, is symmetric and obeys the following bounds:

0 � Ak � (Im − 1T1/m).
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Proof. The matrix Ak is symmetric because it is the difference of two symmetric matrices.

We begin by proving the lower bound. Note that Ak is the covariance matrix of a

multinomial distribution with one sample and probabilities pk [35, pp. 134–136]. Therefore,

for any vector c ∈ Rnobj , the quantity cTAkc represents the variance of a linear combination

of random variables drawn from the multinomial distribution. Furthermore, variance is

non-negative [102], so therefore cTAkc ≥ 0 and the lower bound holds.

For a proof of the upper bound, see Lemma 2.2 of [14].

With these pieces in place, we can now prove Theorem 6.8.

Proof of Theorem 6.8. We begin with the lower bound. Picking B = 1T1 and applying

Lemma 6.7, we find that H(θ) is bounded below by

H(θ) � − sum
(
B � xkTxk

)
= − sum

(
1T1� xkTxk

)
= − sum

(
xkTxk

)
= B.

For the upper bound, note that Ak is positive-semidefinite by Lemma 6.9 and that xkTxk

is positive-semidefinite by construction. Then apply Corollary 6.5 to conclude that the

product Ak � xkTxk is positive-semidefinite, and therefore

yT
(
Ak � xkTxk

)
y ≥ 0, ∀ y ∈ Rd.

In particular, let y = [ỹ; ỹ; · · · ỹ] and note that

0 ≤ yT
(
Ak � xkTxk

)
y

=
∑
i,j

ỹT
(
Ak � xkTxk

)
ỹ

= ỹT sum
(
Ak � xkTxk

)
ỹ.

Therefore sum
(
Ak � xkTxk

)
is positive-semidefinite and H(θ) = − sum

(
Ak � xkTxk

)
is

negative-semidefinite.

Theorem 6.8 shows that the log-likelihood function ` for a single observation (yk,xk)

given by (6.16) is weakly concave and that its Hessian is lower-bounded by a matrix B

that is independent of the data xk. If B has a non-trivial null space, Theorem 6.8 cannot

guarantee that H(θ) is strictly negative definite. In such a case, `(θ) may have multiple

maxima and a maximum likelihood estimator is not guaranteed to converge. In Lemma 6.10

below, we derive conditions such that H(θ) is strictly negative definite, which implies the

convergence of a maximum likelihood estimator.
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When there are multiple observations (yk,xk), k ∈ {1, . . . , n}, the log-likelihood function

`(θ), its gradient g(θ), its Hessian H(θ), and the bound B are computed by summing

the single observation expressions (6.16), (6.17), (6.23), and (6.24), respectively, over the

observations k. Using g(θ) and B we can apply the bound optimization approach from

Equations (6.12) and (6.14).

6.5.4 Iterative algorithm

We now bring together the results of the previous sections to construct an iterative algorithm

for solving the ML estimation problem (6.8) for softmax decision-making models (6.5). This

algorithm is analogous to the one developed in [59] for the multinomial logistic regression

model (6.4). The surrogate function approach (6.12) applied to the ML estimation problem

(6.8) gives the simple update equation

θ̂
(t+1)

ML = θ̂
(t)

ML −B−1g
(
θ̂

(t)
ML

)
, (6.25)

where g(θ) is the gradient of the likelihood function (6.17) andB is the bound matrix (6.24).

We define the bound ML algorithm for softmax decision-making models with linear objective

functions (6.1) as the procedure that begins with an initial guess θ̂
(0)

ML and applies (6.25)

until a desired convergence tolerance is achieved. Define θ̂
∞
ML as the limit

θ̂
∞
ML = lim

t→+∞
θ̂

(t)

ML.

We know from Section 6.3.2 that the update procedure will monotonically converge to a

maximum of the likelihood function `. In the following section we will prove conditions

under which the bound ML algorithm converges to the true parameter value θ0.

For the MAP estimation problem (6.9), the Gaussian prior p on θ has mean θ̄ and

precision λ, i.e.,

p(θ) ∝ exp

(
λ

2
‖θ − θ̄‖2

2

)
.

The update equation (6.14) becomes

θ̂
(t+1)

MAP =

(
B − λ

2
Inobj

)−1(
Bθ̂

(t)

MAP −
λ

2
θ̄ − g

(
θ̂

(t)

MAP

))
. (6.26)

We define the bound MAP algorithm for softmax decision-making models with linear ob-

jective functions (6.1) as the procedure that begins with an initial guess θ̂
(0)

MAP and applies

(6.26) until a desired convergence tolerance is achieved. As with the bound ML algorithm,
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we define θ̂
∞
MAP as the limit

θ̂
∞
MAP = lim

t→+∞
θ̂

(t)

MAP .

6.5.5 Asymptotic and finite-sample behavior

Recall from Section 6.3.4 that two properties that guarantee asymptotic convergence of the

ML estimator are identification and concavity. In Section 6.5.4 above we showed that the

functional form (6.16) ensured that ` is weakly concave in θ. Whether or not the model

(6.5) is strictly concave can be a function of the data xk, k ∈ {1, . . . , n}. Recall our example

where xki = 0 for each i and k. In this case the probability P
(
yki |xk,θ

)
= 1/m for each i and

k independent of θ, the bound matrix (6.24) is the zero matrix B = 0 and the likelihood

function is flat, so neither identification nor concavity is satisfied.

However, a sufficient condition for identification is as follows: Define the nobj×m matrix

Xk by transforming the explanatory variable xk of a single observation k:

Xk = [xk1x
k
2 · · ·xkm−10]. (6.27)

Note that XkXkT = sum(xkTxk). Considering Xk as a random variable, the following lemma

ensures identification.

Lemma 6.10. If the second-moment matrix E
[
XkXkT

]
exists and is positive definite, where

Xk is defined by (6.27), then the softmax model (6.5) is identified.

Proof. The probability of choosing an option i under the model (6.5) is a monotonic function

of the objective value Qi, so it suffices to show that there exists a one-to-one mapping between

the parameter vector θ and the objective values Qi.

Let θ,θ′ ∈ Rnobj and define the vectors of objective function values Q = θTXk and

Q′ = θ′TXk. Define ∆Q = Q − Q′ = (θ − θ′)TXk ∈ Rm. Then the magnitude of ∆Q

satisfies E [‖∆Q‖2] = (θ−θ′)TE
[
XkXkT

]
(θ−θ′). Then by the assumption that E

[
XkXkT

]
is positive definite, E [‖∆Q‖2] = 0 implies (θ−θ′) = 0, so θ = θ′ and Q = Q′. Therefore the

mapping between the parameters θ and the objective values Qi is one-to-one, which implies

that `(θ|xk,yk) 6= `(θ′|xk,yk) and the softmax model (6.5) is identified.

The condition of Lemma 6.10 is given in terms of an expectation, but in practice one has

a given sample of data. In this case the expectation can be replaced by the sample average.

Specifically, define Xk for each observation k ∈ {1, . . . , n} by transforming xk according to
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(6.27). Then E
[
XkXkT

]
is estimated by

E
[
XkXkT

]
≈ 1

n

n∑
k=1

XkXkT .

If this sample average is positive definite, then the model is identified. For the sample average

to be positive definite it must be full rank = nobj, and each observation k can add at most

m to the rank, where m is the number of options. Therefore, the following inequality must

be satisfied for the model to be identified:

mn ≥ nobj.

This gives a lower bound n ≥ dnobj/me on the minimum number of observations required

for identification. For most applications, the number of options m will be larger than the

number of parameters nobj, so the lower bound is trivial, but for cases with large numbers

of parameters the bound can be useful for experimental design.

The following theorem summarizes the conditions under which the ML estimator (6.8)

converges.

Theorem 6.11 (Convergence of the ML estimator). If the second-moment matrix

1

n

n∑
k=1

XkXkT

exists and is positive definite, where X is defined by (6.27), then the ML estimator θ̂ML for

(6.5) is asymptotically approximately distributed as

θ̂ML ∼ N (θ0, Ĵ
−1/n), (6.28)

where Ĵ = −H(θ̂ML)/n is the Hessian “per observation” of the likelihood function evaluated

at the estimated parameter value.

Proof. By Theorem 6.8, the likelihood function is weakly concave, and by Lemma 6.10, the

sample second-moment matrix being positive definite implies that the likelihood function is

strictly concave and that the model (6.5) is both identified and concave. Therefore, by the

results summarized in Section 6.3.4, θ̂ML is asymptotically normally distributed and (6.28)

holds.

By Theorem 6.11, the ML estimator θ̂ML is the unique maximum of `, and will be

asymptotically normally distributed around its true value θ0. Since the bound ML algorithm
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(6.25) monotonically increases the likelihood value `
(
θ̂

(t)

ML

)
of its iterative estimates, the

algorithm asymptotically converges to θ̂ML. In finite samples where the model is identified,

Equation (6.15) gives the approximate distribution of θ̂ML. This distribution can be used

to formulate frequentist confidence intervals for the estimated parameter θ̂ML.

6.6 Numerical examples

In this section we present several numerical examples to demonstrate the theory and the

bound ML algorithm (6.25) developed in the previous sections. In the process we also

discuss several issues relating to implementation of the algorithm.

6.6.1 Scalar parameter

First, we consider an instance of problem (6.5) with m = 10 options and where the parameter

θ is a scalar with θ0 = 4. This corresponds to Example 1 above, where a decision-maker

is making choices using a softmax model with unknown constant temperature θ, which we

wish to estimate. Equivalently, as in Example 2, the temperature could be varying with

decision number k according to a known function with a single unknown parameter, e.g.,

τk = θ/ log k. In this case the log k term can be absorbed into the explanatory variables and

we proceed as before.

Figure 6.2 shows how the estimator converges in distribution to the normal distribution

(6.28). The explanatory variables xk ∼ N (0, 1) were drawn from a Gaussian distribution

with mean zero and unit variance, and the response variables yk drawn according to probabil-

ity distribution (6.5) with θ0 = 4. The estimates in the figure were computed by solving the

optimization problem (6.8) using a BFGS quasi-Newton algorithm [19, 37, 42, 108] (Matlab

R2013a function fminunc). This standard algorithm tends to converge more quickly than

the iterative algorithm (6.25). This is likely because the bound matrix B used in iterative

algorithm (6.25) does not tightly bound the Hessian H(θ). Both algorithms use forms of

Newton’s method, but the approximate Hessian computed by the BFGS algorithm is more

accurate than the bound matrix B used by the iterative algorithm, leading to faster conver-

gence. If the problem were high dimensional (i.e., had nobj � 1), then the relative efficiency

of the two algorithms may be different.

Note that the analysis of the preceding sections is still relevant when one uses the BFGS

algorithm, as it guarantees concavity of the objective function and therefore that the BFGS

algorithm will converge to the correct solution. The analysis is demonstrated by the conver-

gence behavior seen in Figure 6.2, which plots estimates from an ensemble of 100 simulated
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Figure 6.2: Depiction of the estimator’s convergence to the asymptotic normal distribution
(6.28) as the number of observations n grows. The dashed lines show the true value of the
parameter θ0 = 4 and the accompanying 95% confidence intervals implied by the asymptotic
normal distribution (6.15). For each value of n, an ensemble of 100 parameter estimates was
formed by repeatedly simulating the data y while holding the explanatory variables x fixed,
and using the estimator to compute the value of the parameter. The black line shows the
mean parameter estimate and the shaded region the empirical 95% confidence interval.

data sets. It can easily be shown that the conditions of Theorem 6.11 are satisfied, so we

expect the estimate θ̂ML to obey the asymptotic normal distribution (6.28). As seen in

the figure, not only does the mean parameter estimate (solid black line) converge to the

true value θ0, but the empirical 95% confidence intervals on θ̂ML converge to the 95% con-

fidence intervals implied by the asymptotic normal distribution (6.28). The convergence of

the confidence intervals is evidence that θ̂ML obeys the asymptotic distribution.
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6.6.2 Vector parameter

Second, we consider an instance of the model (6.5) with m = 100 options and a vector pa-

rameter θ with nobj = 3 elements. The model was simulated 100 times with the explanatory

variables xk ∼ N (0, I3) drawn according to independent Gaussian distributions, and the

response variables yk drawn according to the model (6.5) conditional on xk and θ0.

As in the previous section, it can easily be shown that the conditions of Theorem 6.11 are

satisfied, so we expect the estimate θ̂ML to obey the asymptotic normal distribution (6.28).

Figure 6.3 shows that the estimator indeed converges to the true value θ0 = [1, 2, 3]T as the

number of samples n increases. The dashed lines in the figure show the true value of each

element (θ0)i, while the solid lines show the value of each element of the mean parameter

estimate (θ̂n)i. The shaded regions represent the empirical 95% confidence interval around

that mean value, computed from an ensemble of 100 parameter estimates. For clarity, we

omit the confidence intervals implied by the asymptotic normal distribution (6.15) from the

figure, but the behavior is similar to that shown in Figure 6.2.

6.7 Application to the stochastic UCL decision-making

model via linearization

The development up to this point has assumed that the objective function takes the linear

form (6.1). However, many relevant objective functions are nonlinear functions of the un-

known parameters θ, so the nonlinear function must be converted to a linear form in order

to apply the algorithms developed above. A standard way of performing this conversion

is by linearization around some nominal point. In this section, we consider the nonlinear

objective function from the stochastic UCL algorithm and show that its parameters can be

estimated using the bound ML algorithm by linearizing about a nominal point in parameter

space.

As a model of human behavior, the stochastic UCL algorithm assumes that the agent’s

prior distribution of m (i.e. the agent’s initial beliefs about the mean reward values m and

their covariance) is multivariate Gaussian with mean µ0 and covariance Σ0:

m ∼ N (µ0,Σ0),

where µ0 ∈ RN and Σ0 ∈ RN×N is a positive-definite matrix.

In Chapter 5 we picked a minimal set of three parameters to specify (µ0,Σ0) in the case

of a spatial multi-armed bandit problem. For the mean we pick a uniform prior µ0 = µ01N ,
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Figure 6.3: Depiction of the estimator’s convergence in a vector parameter case as the
number of observations n grows. The dashed lines show the true value of each element θi of
the parameter θ0 = [1, 2, 3]T . For each value of n, an ensemble of 100 parameter estimates
was formed by repeatedly simulating the data y while holding the explanatory variables x
fixed, and using the estimator to compute the value of the parameter. The solid lines show
the mean parameter estimate and the shaded regions the empirical 95% confidence interval.
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where 1N ∈ RN is the vector with every entry equal to 1 and µ0 ∈ R is a single parameter

that encodes the agent’s belief about the mean value of the rewards. For the spatial multi-

armed bandit problem, it is reasonable to assume that arms that are spatially close will have

similar mean rewards. Therefore, for the covariance Σ0 we set Σ0 = σ2
0Σ where Σ is an

exponential prior and each element has the form

Σij = exp(−|xi − xj|/λ), (6.29)

where xi is the location of arm i and λ ≥ 0 is the correlation length scale. The parameter

σ0 ≥ 0 can be interpreted as a confidence parameter, with σ0 = 0 representing absolute

confidence in the beliefs about the mean µ0, and σ0 = +∞ representing complete lack of

confidence.

With this prior, the posterior distribution is also Gaussian, so the Bayesian optimal

inference algorithm is linear and can be written down as follows. At each time t, the agent

selects option it and receives a reward rt. Let rt be the t× 1 vector composed of the rt. Let

nti be the number of times the agent has selected option i up to time t, and let nt be the

vector composed of the nti. For each time t, define the precision matrix Λt = Σ−1
t . Then the

belief state at time t is [50, Theorem 10.3]

Λt =
diag(nt)

σ2
s

+ Λ0, Σt = Λ−1
t (6.30)

µt = µ0 + Σ0H
T
t

(
HtΣ0H

T
t + σ2

sIt
)−1

(rt −Htµ0), (6.31)

where Ht is the t × N observation matrix with Ht(t, j) = 1 if it = j and zero otherwise

and recalling that It is the t-dimensional identity matrix. These equations perform the

same update as (4.16), but are written using different notation to facilitate the linearization

process.

Based on the belief state (µt,Σt), the stochastic UCL algorithm chooses arm it with

probability

P
(
it = i|Q̃, υt

)
=

exp(Q̃t
i/υt)∑N

j=1 exp(Q̃t
i/υt)

, (6.32)

where Q̃t
i is the heuristic function value (4.1) for arm i at time t and υt is the temperature

corresponding to the cooling schedule at time t. The cooling schedule is assumed to take the

form υt = ν/ log t, so the probabilities (6.32) become

P
(
it = i|Q̃, ν

)
=

exp((Q̃t
i log t)/ν)∑N

j=1 exp((Q̃t
i log t)/ν)

. (6.33)
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The heuristic function value is

Q̃t
i = µti + σtiΦ

−1(1− αt), (6.34)

where µti = (µt)i is the posterior mean reward of arm i at time t and σti =
√

(Σt)ii its

associated standard deviation. The quantity Φ−1(·) is the inverse cumulative distribution

function of the standard normal distribution and αt = 1/
√

2πet is a decreasing function of

time.

The model (6.33) is a softmax decision model with unknown parameters (µ0, σ0, λ, ν)

but not yet in the form (6.1) since the quantity (Q̃t
i log t)/ν is a nonlinear function of the

parameters. However, we can locally approximate this quantity with a linear function by

linearizing it about a nominal prior. By estimating the parameter values of the linearized

model, we can produce approximate estimates of the parameters of the original nonlinear

model (6.33).

6.7.1 Linearization

We assume the value of ν is unknown but fixed and linearize the model (6.33) about a

nominal prior. Let δ2
0 = σ2

s/σ
2
0 be the relative precision of a reward measurement compared

to the certainty of the prior. Fix a nominal prior with parameters (µ̄0, δ̄
2
0, λ), where λ takes

its (assumed known) true value, and consider small deviations ∆µ and ∆δ in µ̄0 and δ̄2
0,

respectively:

µ0 = µ̄0 + ∆µ, δ
2
0 = δ̄2

0 + ∆δ.

In the case that the true value of λ is unknown, this method is easily generalized to include

deviations in λ, but for simplicity of exposition we consider it fixed at a known value. Recall

that the covariance prior is Σ0 = σ2
0Σ, where Σ is defined by Equation (6.29), and denote its

inverse by Λ = Σ−1.

In terms of δ2
0, Equation (6.30) becomes

Λt =
1

σ2
s

(
diag(nt) + δ̄2

0Λ + ∆δΛ
)
.

Therefore, to first order in ∆δ, Σt is given by

Σt = σ2
sA
−1
t − σ2

sA
−1
t BA−1

t ∆δ +O
(
∆2
δ

)
, (6.35)
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where At = δ̄2
0Λ + diag(nt) and B = Λ = Σ−1. Expanding the square root, we get

σti =
√

(Σt)ii =
√
cti −

dti

2
√
cti

∆δ +O
(
∆2
δ

)
, (6.36)

where cti is the ith element on the diagonal of Ct = σ2
sA
−1
t and dti is the ith element on

the diagonal of Dt = σ2
sA
−1
t BA−1

t . The standard deviation σti must be non-negative, which

implies an upper bound on ∆δ, which is already assumed to be small. Similarly, δ2
0 must be

non-negative, which implies a lower bound on ∆δ. The implied bounds on ∆δ are

−δ̄2
0 = −σ

2
s

σ̄2
0

≤ ∆δ ≤
2cti
dti
,

which, together with the requirement that ∆δ be small with respect to δ̄2
0, gives a bound on

the values of ∆δ for which the linearization is valid.

Similarly, Equation (6.31) for µt becomes

µt = Et + Ft∆µ +Gt∆δ +O
(
∆2
)
, (6.37)

where ∆2 denotes second-order terms in the deviation variables ∆δ and ∆µ, and Et, Ft, and

Gt are the N × 1 vectors

Et = µ̄01N +
ΣHT

t

δ̄2
0

(
It −HtA

−1
t HT

t

)
(m̄t −Htµ̄01N) (6.38)

Ft = 1N −
ΣHT

t

δ̄2
0

(
It −HtA

−1
t HT

t

)
Ht1N (6.39)

Gt = −A−1
t BA−1

t (HT
t mt − ntµ̄0). (6.40)

Define eti, f
t
i , and gti as the ith components of Et, Ft, and Gt, respectively. Then the

linearized heuristic is

Q̃t
i log t

ν
≈ Qt

i = θTxti = θ1x
t
i,1 + θ2x

t
i,2 + θ3x

t
i,3, (6.41)

where the parameters θ are defined by

θ1 =
1

ν
, θ2 =

∆µ

ν
, θ3 =

∆δ

ν
(6.42)
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and the explanatory variables xti are defined as

xti,1 =
(
eti +

√
ctiΦ

−1(1− αt)
)

log t (6.43)

xti,2 = f ti log t (6.44)

xti,3 =

(
gti −

dti

2
√
cti

Φ−1(1− αt)

)
log t. (6.45)

The linearized heuristic (6.41) defines a softmax decision-making model with a linear

objective function, so we can apply the bound ML algorithm to estimate its parameters θ.

By inverting the definition of the parameters (6.42) we can use the estimate of θ to provide

an estimate of the parameters (µ0, σ
2
0, ν).

6.7.2 Example fits

We tested the estimation procedure described above by simulating runs of the stochastic UCL

algorithm using Landscape B from Chapter 5 for various parameter values. See Figures 6.4

and 6.5 for two example fits to simulated data from the stochastic UCL algorithm with

parameters (µ0, σ
2
0, λ, ν) = (200, 1, 1, 4). These parameters result in the algorithm achieving

logarithmic regret in numerical simulations (see Figure 5.4). Figure 6.4 shows the fit based

on linearization about (µ̄, σ̄2
0) = (150, 2). Following (6.42), this corresponds to parameters

θ1, θ2, and θ3 having true values θ1 = 1
ν

= 0.25, θ2 = µ0−µ̄0

ν
= 12.5, and θ3 = 1.25 × 10−3.

Figure 6.5 shows the fit based on linearization about (µ̄, σ̄2
0) = (250, 0.5). This corresponds

to true parameter values θ1 = 0.25, θ2 = −12.5, and θ3 = −2.5× 10−3.

In both cases the estimator converges to the true value of θ within the horizon T = 100

of the decision task and the true value of the parameter is within the 95% confidence interval

after 30 observed choices. There are two implications from this result. First, the estimation

procedure is at least somewhat robust to the choice of linearization point for this set of

algorithm parameters. Second, the estimator is useful for the empirical data reported in

Chapter 5. In this case the horizon is T = 90 choices. For this amount of data, the

simulations show that the estimation procedure can identify the true value of the parameter

in a statistically significant way.

The amount of data required to get a reliable estimate can depend on the true value of the

algorithm parameters, as shown in Figure 6.6. In this case, the true value of the algorithm pa-

rameters are (µ0, σ
2
0, λ, ν) = (30, 103, 0, 0.5) and the linearization point is (µ̄, σ̄2

0) = (40, 950).

This corresponds to true parameter values θ1 = 2, θ2 = −20, and θ3 = −1.05 × 10−6. With

this prior, the agent is sufficiently uncertain about the rewards to make most of the initial
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100 choices at random in order to gain information about the rewards. This choice behavior

results in linear regret (see Figure 5.4). Since the initial choices are effectively made at ran-

dom, they do not provide useful information about the parameter values (except that they

represent an uncertain prior). This can be seen from the width of the confidence interval

around the mean parameter estimates shown in Figure 6.6. For θ1 and θ2 their width is

effectively infinite and they are not displayed. For θ3, the estimate exhibits persistent bias

away from the true value, but the width of the associated confidence interval is significantly

larger than the bias. Therefore, for such parameter values, one must observe more data to

be able to shrink the confidence intervals and provide precise estimates of the parameter

values.

6.7.3 Discussion

The linearization procedure described above yields a local linear approximation to the like-

lihood maximization problem (6.8), and Theorem 6.10 provides conditions under which the

local approximation results in an identified model for which the parameter estimation prob-

lem is a convex optimization problem. However, the performance of the estimator based on

the linearized model is dependent on the linearization point (µ̄, δ̄2
0), which must be chosen

by the person using the estimator. This choice may be non-trivial, since it requires picking

a linearization point such that the linear approximation is valid at the true value of the

parameters. In the worst case, one might not have any intuition about which linearization

point to choose, making the above procedure no better than any other local optimization

technique for which one must choose a starting point.

Fortunately, several aspects of the problem come to the rescue. The first is generic to any

heuristic function, and relies on the fact that the likelihood function forms a unique objective

for judging the “goodness” of the estimated parameter. If one is unsure of which linearization

point to choose, one can simply fit the model assuming two different linearization points and

compare the resulting estimates θ̂. If the two linearization points result in identical estimates

there is no conflict, while if the estimates differ the one with the higher likelihood value is

better.

Second, one may have intuition about the location of an acceptable linearization point

due to the structure of the model. In Chapter 5, we showed that behavior of the stochastic

UCL model falls broadly into three classes as a function of the parameters (µ0, σ
2
0, λ, ν):

linear, power law, or logarithmic regret. By categorizing a given data set into one of the

three classes, one can narrow the search for a linearization point to the associated region of

parameter space. Third, the stochastic UCL model is relatively insensitive to the choice of
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Figure 6.4: Estimates of the vector of parameters θ fitted to simulated data from the UCL
algorithm. The linearization point was taken to be µ̄0 = 150, σ̄2

0 = 2. The true algorithm
parameters were µ0 = 200, σ2

0 = 1, λ = 1, and ν = 4. The dashed lines show the true value of
each element θi of the parameter vector for the linearized objective function. The estimator
converges to the true parameter values as the number of observations t grows. For each value
of t, an ensemble of 100 parameter estimates was formed by repeatedly simulating the data
{(xt,yt)}Tt=1 while holding the parameters θ fixed, and using the estimator to compute the
value of the parameter. The solid lines show the mean parameter estimates and the 95%
confidence intervals implied by the asymptotic normal distribution (6.28). The width of the
confidence intervals roughly scales with the magnitude of the parameter values, similar to
the behavior seen in Figure 6.3.
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Figure 6.5: Estimates of the vector of parameters θ fitted to simulated data from the UCL
algorithm. The linearization point was taken to be µ̄0 = 250, σ̄2

0 = 0.5. The true algorithm
parameters were µ0 = 200, σ2

0 = 1, λ = 1, and ν = 4. The dashed lines show the true value of
each element θi of the parameter vector for the linearized objective function. The estimator
converges as the number of observations t grows. For each value of t, an ensemble of 100
parameter estimates was formed by repeatedly simulating the data {(xt,yt)}Tt=1 while holding
the parameters θ fixed, and using the estimator to compute the value of the parameter. The
solid lines show the mean parameter estimates and the 95% confidence intervals implied by
the asymptotic normal distribution (6.28). The width of the confidence intervals roughly
scales with the magnitude of the parameter values, similar to the behavior seen in Figure
6.3.
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Figure 6.6: Estimates of the vector of parameters θ fitted to simulated data from the UCL
algorithm with a weakly-informative prior. This prior makes the algorithm’s choice be-
havior more random, which makes the estimation problem more difficult. The lineariza-
tion point was taken to be µ̄0 = 150, σ̄2

0 = 2. The true algorithm parameters were
µ0 = 200, σ2

0 = 1, λ = 1, and ν = 4. The dashed lines show the true value of each element θi
of the parameter vector for the linearized objective function. The estimator converges as the
number of observations t grows. For each value of t, an ensemble of 100 parameter estimates
was formed by repeatedly simulating the data {(xt,yt)}Tt=1 while holding the parameters θ
fixed, and using the estimator to compute the value of the parameter. The solid lines show
the mean parameter estimates and, in the panel corresponding to θ3, the 95% confidence
interval implied by the asymptotic normal distribution (6.28). For parameters θ1 and θ2, the
confidence intervals have essentially infinite width and are omitted for legibility.
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linearization point within the region of parameter space associated with a given behavioral

class, as we saw for the case of logarithmic regret in Figures 6.4 and 6.5.

6.8 Conclusions

Motivated by the parameter estimation problem for the stochastic UCL algorithm, we de-

veloped a general algorithm for likelihood-based parameter estimation in softmax decision-

making models with linear objective functions. Such models occur frequently in the neu-

roscience and machine learning literatures. We derived conditions under which the general

algorithm converges on the correct parameter value and characterized the rate of conver-

gence, which can be used to formulate confidence intervals for the parameter estimates. In

developing the algorithm, we constructed several new matrix operations and established

some of their important properties.

We then showed that the stochastic UCL algorithm could be transformed into a softmax

decision-making model with a linear objective function by linearizing the objective function

about a known point in parameter space. By performing parameter estimation on the lin-

earized model using simulated data, we showed that we could estimate the true value of

the stochastic UCL algorithm parameters. The amount of data required to perform useful

estimation depended on the region of parameter space, with parameters representing strong

priors being easier to estimate. This is intuitive, as a strongly-held belief will influence

behavior in a way that is more readily observable than a weakly-held belief.

The stochastic UCL algorithm, together with the estimation procedure developed in this

section, provides a plant-observer pair for human choice behavior in multi-armed bandit

problems. This pair allows the system-theoretic design of human-machine teams. Fortu-

nately for the development of such teams, humans with high-quality, strong priors are the

ones who can provide the most value in the form of intuition from experience. A key issue

is to identify humans with high-quality priors.

The methods devised in Chapter 5 to classify human performance in multi-armed bandit

tasks using observed regret R(t) provide a way to perform this identification. By estimating

observed regret (a quantity similar to the psychologically-relevant notions of regret discussed

in Section 2.1), a system could identify human operators with good performance, i.e., high-

quality priors, in real time. The system could then estimate these operators’ priors and

employ them to inform its decision making using the stochastic UCL algorithm. Such a

system would be an implementation of the framework for human-machine search that is a

core goal of this thesis.
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Chapter 7

Satisficing in Gaussian multi-armed

bandits1

Multa petentibus

Desunt multa.

Bene est, cui Deus obtulit

Parca, quod satis est manu.2

(Horace)

In this chapter we turn to some more theoretical questions concerning decision making

with a human-inspired objective function. We stay within the context of the multi-armed

bandit problem but consider the so-called “satisficing” objective, in which the decision-

making agent is satisfied if its reward is above some known threshold value. This objective

induces different behavior from the standard maximizing objective (2.1). Notably, it encour-

ages the decision maker to balance risk, in the form of variance of the rewards from a given

decision, and return, in the form of the expected value of the rewards. Such a risk-return

tradeoff can be intuitively desirable in decision-making problems, for example in ecology or

finance.

The work in this chapter is complementary to the work presented in the previous chapters

in that it provides an alternative objective for the decision-making process. We show that

the multi-armed bandit problem with the satisficing objective is equivalent to a standard

multi-armed bandit problem with a maximizing objective. In the case of Gaussian rewards,

we show that this equivalent standard multi-armed bandit problem can be optimally solved

by the UCL algorithm, so the framework from the previous chapters can be brought to bear.

1This chapter is adapted from [95], with most text taken verbatim.
2Those who seek much are left wanting much. Happy is he to whom God has given, with sparing hand,

as much as is enough.
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The risk-return tradeoff is one example of a more general class of objectives that could be

applied to multi-armed bandit problems. In general, one can consider an objective defined

by a utility function that accounts for any number of tradeoffs between different desirable

outcomes. As such, the work in this chapter is a first step towards a theory of multi-armed

bandit problems with utility function objectives.

7.1 Introduction

Engineering solutions to decision-making problems are often designed to maximize an objec-

tive function. However, in many contexts maximization of an objective function as in (2.1) is

an unreasonable goal, either because the objective itself is poorly defined or because solving

the resulting optimization problem is intractable or costly. In these contexts, it is valuable

to consider alternative decision-making frameworks.

Herbert Simon considered alternative models of rational decision making with the goal of

making them “compatible with the access to information and the computational capacities

that are actually possessed by organisms, including man, in the kinds of environments in

which such organisms exist” [110]. A major feature of the models he considered is what he

called “satisficing”. In [110], Simon discussed in very broad terms a variety of simplifications

to the classical economic concept of rationality, most importantly the idea that payoffs should

be simple, defined by doing well relative to some threshold value. In [111], he introduced the

word “satisficing” to refer to this thresholding concept and considered an ecological example

of food foraging behavior in detail using mathematical terms. He also briefly discussed how

satisficing relates to problems in inventory control and more complicated decision processes

like playing chess.

Since Simon’s pioneering work, satisficing has been studied in many fields such as psy-

chology [107], economics [15], management science [78, 134], and ecology [127, 26]. In en-

gineering, satisficing is of interest for the same reasons that motivated its introduction in

the social science literature, specifically that it can simplify decision-making problems. Fur-

thermore, many engineering problems are naturally posed using a satisficing objective, for

example design problems that have to meet given specifications. A design that meets all the

required specifications is acceptable, and the designers may be indifferent among all such

designs. In this context, optimization may be poorly defined, for example if there are several

competing performance measures that trade off in complicated ways. Satisficing can be a

simpler decision paradigm than maximizing, which requires additional information about

preferences among possible tradeoffs.
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Satisficing has been studied in the engineering literature in several contexts. In [81],

Nakayama studied design optimization using a satisficing objective and found that it is

effective in many practical fields. In [43], the authors studied control theory using a satisficing

objective function, and in [135], the authors used satisficing to study optimal software design.

Satisficing can be implemented in a variety of ways. In this chapter, we consider satisficing

in the context of the multi-armed bandit problem. The standard multi-armed bandit problem

uses a maximizing objective, for which there is a known performance bound. We propose a

satisficing objective for the multi-armed bandit problem based on the number of times the

decision maker receives a reward that is above a threshold value and show that the multi-

armed bandit problem with this objective is equivalent to a related standard multi-armed

bandit problem. We use the equivalent problem to derive a performance bound for the new

satisficing problem.

For Gaussian bandit problems, i.e., where the reward distributions are Gaussian with

unknown mean and known variance, we show that solving the problem with the satisficing

objective is equivalent to solving a standard Gaussian multi-armed bandit problem. We then

apply the UCL algorithm developed in Chapter 4 to the standard problem, and show that

this algorithm achieves optimal performance in terms of the original satisficing objective.

7.2 The multi-armed bandit problem with

satisficing objective

The standard multi-armed bandit problem is defined with a maximizing objective. We now

propose a new satisficing objective for the multi-armed bandit problem and find bounds on

optimal performance in terms of the new objective.

Consider an N -armed bandit problem. As before, the reward associated with each arm

i is drawn from a stationary probability distribution pi, whose mean mi is unknown to the

decision maker. At time t ∈ {1, . . . , T}, the decision maker selects arm it and receives a

stochastic reward rt ∈ R.

The decision maker has a certain satisfaction level M ∈ R, and is satisfied at time t only

if the reward rt is at least M . Let st be the random variable denoting the decision maker’s

satisfaction at time t:

st =

0, rt < M

1, rt ≥M.
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Then st is a Bernoulli random variable with success probability πit , where

πi = P (st = 1|it = i) = P (rt ≥M |it = i) (7.1)

is the probability of satisfaction upon picking arm i. We propose a satisficing objective in

terms the number of times the satisfaction level is met.

Definition 7.1 (Satisficing objective). The satisficing objective is to maximize the function

E

[
T∑
t=1

st

]
=

T∑
t=1

πit . (7.2)

The satisficing objective differs from the maximization objective in several important

ways. First, it exhibits thresholding, that is, it is indifferent among rewards rt above the

threshold value M . Second, it exhibits risk aversion, that is, it prefers smaller, consistent

rewards (that will often be above the threshold) to larger, more variable ones (that may often

be below it). Risk aversion is a characteristic often studied in economics and psychology [91],

and is often incorporated in models of human decision-making.

The satisficing objective consists of maximizing the number of times the agent is satisfied,

which is equivalent to minimizing the number of times they are not satisfied. Let πi∗ =

maxi πi and define ∆̄i = πi∗−πi as the expected regret of selecting an arm i. We can rewrite

(7.2) in terms of minimizing cumulative regret JS:

JS = Tπi∗ − E

[
T∑
t=1

st

]
= E

[
T∑
t=1

∆̄it

]
=

N∑
i=1

∆̄iE
[
nTi
]
, (7.3)

where nTi is the number of times arm i has been chosen up to time T . This is a standard

multi-armed bandit problem with Bernoulli rewards. Therefore the Lai-Robbins bound (2.5)

holds, yielding a logarithmic lower bound on E
[
nTi
]

and cumulative regret JS, as formalized

by the following corollary:

Corollary 7.2 (Satisficing regret bound). Any policy solving the multi-armed bandit problem

with the satisficing objective (7.3) obeys

E
[
nTi
]
≥
(

1

D(πi||πi∗)
+ o(1)

)
log T, (7.4)

for suboptimal arms i 6= i∗ where D(πi||πi∗) = πi∗ log
(
πi
πi∗

)
+ (1 − πi∗) log

(
1−πi
1−πi∗

)
is the

Kullback-Leibler divergence between the two Bernoulli distributions with success probabilities

πi and πi∗.
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Proof. Apply the Lai-Robbins bound (2.5) to the standard multi-armed bandit problem with

Bernoulli rewards.

The implication of writing the satisficing objective as the minimizing of cumulative regret

is that if one can use the rewards rt to estimate the satisfaction probability πit , one can use

algorithms designed to solve the multi-armed bandit problem with a maximizing objective

to solve the satisficing problem. In the next sections we study the Gaussian multi-armed

bandit problem with a satisficing objective and show how to link rewards and probabilities

in this case.

7.3 Satisficing with Gaussian rewards

In this section we study a Gaussian multi-armed bandit problem with the satisficing objective

(7.3). By Gaussian multi-armed bandit problem, we mean that the reward rt due to selecting

arm it is rt ∼ N (mit , σ
2
s,it), where σ2

s,it is the known variance of arm it.

Define the quantity

xi =
mi −M
σs,i

(7.5)

for each arm i. The following lemma states that the Gaussian multi-armed bandit problem

with a satisficing objective is equivalent to a standard Gaussian multi-armed bandit problem

with transformed reward distributions.

Lemma 7.3 (Equivalence for Gaussian rewards). The Gaussian multi-armed bandit problem

with satisficing objective is equivalent to a standard Gaussian multi-armed bandit problem

with rewards r̃t ∼ N (xit , 1) in the sense that the ordering of the arms in terms of xi is

identical to the ordering in terms of πi. In particular, the arm with maximal xi is the arm

with maximal πi

Proof. With Gaussian rewards, the probability (7.1) of satisfaction from choosing arm i is

πi = P (mi + σs,iz ≥M)

= Φ

(
mi −M
σs,i

)
= Φ(xi),

where z ∼ N (0, 1) is a standard normal random variable and Φ(z) is its cumulative distribu-

tion function. Let i∗ = arg maxi πi. The key insight is that Φ(·) is a monotonically increasing

function, which implies that the ordering of arms in terms of πi is identical to the ordering

in terms of xi. In particular, arm i∗ is the arm with maximal xi. Therefore, the goal of an

agent playing the satisficing bandit problem is to find the arm i∗ that maximizes xi.
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This is again a Gaussian bandit problem: consider the transformed reward

r̃t =
rt −M
σs,i

,

which is a Gaussian random variable r̃t ∼ N (xit , 1). The quantity xi plays the role of the

mean reward mi from the original maximizing problem and the transformed rewards have

uniform variance σ̃2
s = 1. Solving this problem with a maximizing objective is equivalent to

solving the original problem with the satisificing objective.

Remark 7.4 (Location-scale families). The above analysis is easily generalized to reward

distributions belonging to location-scale families. A location-scale family is a set of probability

distributions closed under affine transformations, i.e., if the random variable X is in the

family, so is the variable Y = a + bX, where a, b ∈ R. Any random variable X in such a

family with mean µ and standard deviation σ can be written as X = µ + σZ, where Z is a

zero-mean, unit-variance member of the family. Examples include the Uniform or Student’s

t-distribution.

7.4 Logarithmic satisficing regret

In Section 7.3, we showed that solving the Gaussian multi-armed bandit problem with a

satisficing objective is equivalent to a transformed standard Gaussian multi-armed bandit

problem with maximizing objective. Therefore, we can apply the UCL algorithm to the

satisficing problem. A prior belief m ∼ N (µ0,Σ0) is transformed into prior beliefs on x by

x ∼ N (µ̃0, Σ̃0),

where (µ̃0)i = ((µ0)i −M)/σs,i, (Σ̃0)ij = (Σ0)ij/(σs,iσs,j), and M is the satisfaction level.

Define xi∗ = maxi xi and ∆̃i = xi∗ − xi.
We refer to the UCL algorithm using the transformed reward r̃t and prior as the satisficing

UCL algorithm. We define {RSaUCL
t }t∈{1,...,T} as the sequence of expected regret for the

satisficing UCL algorithm. The satisficing UCL algorithm achieves logarithmic regret, as

formalized in the following theorem.

Theorem 7.5 (Regret of the satisficing UCL algorithm). The following statements hold for

the Gaussian multi-armed bandit problem with a satisficing objective and the satisficing UCL

algorithm with uncorrelated uninformative prior and K =
√

2πe:
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1. the expected number of times a suboptimal arm i is chosen until time T satisfies

E
[
nTi
]
≤
(

8β2

∆̃2
i

+
2√
2πe

)
log T

+
4β2

∆̃2
i

(1− log 2− log log T ) + 1 +
2√
2πe

;

2. the cumulative expected regret until time T satisfies

T∑
t=1

RSaUCL
t ≤

N∑
i=1

∆̃i

((8β2

∆̃2
i

+
2√
2πe

)
log T (7.6)

+
4β2

∆̃2
i

(1− log 2− log log T ) + 1 +
2√
2πe

)
.

Proof. Apply Theorem 4.2 to the Gaussian multi-armed bandit problem with mean rewards

x and reward distributions r̃t ∼ N (xit , 1) defined in Lemma 7.3.

The regret in the satisficing problem is upper bounded by a logarithmic function of T .

Therefore, the satisficing UCL algorithm achieves optimal performance in the satisficing

problem up to a constant factor.

7.5 Numerical example

In this section, we present the results of two numerical simulations of the satisficing UCL

algorithm solving a multi-armed bandit problem with Gaussian rewards and the satisficing

objective. The first simulation demonstrates the performance guarantees and allows us to

compare the optimal regret bound (7.4) and the bound (7.6) obeyed by the satisficing UCL

algorithm. The second simulation demonstrates the risk-averse nature of the satisficing

objective.

For the simulations presented in Figure 7.1, we set N = 4. The satisfaction level M was

set equal to 2, the mean rewards m were equal to [1 2 3 4] and the standard deviations

equal to [1 1 1 3], so x = [−1 0 1 2
3
] and i∗ = 3 was the optimal arm. The algorithm used

an uninformative prior. These values were chosen such that the arm with maximal mean

reward was not the optimal arm, so satisficing induces different behavior than maximizing.

Figure 7.1 plots the regret incurred by the satisficing UCL algorithm along with the two

regret bounds (7.4) and (7.6). The mean regret obeys the performance bound (7.6) from

Theorem 7.5. Mean regret from the 1,000 simulations is actually better than the asymptotic
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lower bound (7.4). This apparent violation of the bound is due to the fact that even at

horizon T = 103, we are not yet in the asymptotic regime where the bound applies.

For the simulations presented in Figure 7.2, we set N = 2. The mean rewards m were

equal to [12.2 12.1] and the standard deviations equal to [10 1], so x = [0.02 0.1]. This meant

i = 1 was the optimal arm for the maximizing objective while i = 2 was the optimal arm

for the satisficing objective. The algorithm used an uninformative prior. The problem was

simulated 100 times with each objective.

Figure 7.2 demonstrates the risk aversion inherent in the satisficing objective by compar-

ing the results of the same problem solved with the satisficing and the maximizing objectives.

The satisfaction level M was set equal to 12. We considered cumulative surplus (rewards

in excess of the satisfaction level) for both objectives. Negative values of the surplus repre-

sent deficits, which are to be avoided. Results from the maximizing objective are presented

in black. The solid line shows mean cumulative surplus and the shaded region the 95%

confidence interval around that mean. Results from the satisficing objective are presented

in blue. The solid line shows the mean cumulative surplus, and the dashed lines show the

95% confidence interval. The lower limit of the confidence intervals measures worst-case

performance. The measure for the satisficing objective is consistently above the one for the

maximizing objective, so satisficing results in better worst-case performance in this example.

7.6 Conclusion

Satisficing, the concept of doing well relative to a reference value, is a useful alternative

to maximizing that can be applied to a variety of decision-making scenarios. Considering

satisficing objectives instead of maximizing ones can simplify decision-making problems and

can result in policies that are more robust in the sense that they are risk-averse.

In this chapter, we considered the multi-armed bandit problem using a satisficing ob-

jective. The multi-armed bandit problem is a canonical decision-making problem that is

widely studied in machine learning and adaptive control using a maximization objective.

We proposed a satisficing objective for stochastic multi-armed bandit problems and showed

that solving the problem with a satisficing objective is equivalent to solving the problem

with a modified maximization objective. Using the modified maximization objective, we

derived bounds on optimal performance in these problems. We studied the case of Gaussian

rewards and showed how to use the UCL algorithm to solve this problem, achieving optimal

performance.

This work opens the door to many future extensions. The satisficing objective with

Gaussian rewards bears a strong resemblance to the CreditMetrics two-state credit risk
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Figure 7.1: Regret incurred by the UCL algorithm while solving a satisficing Gaussian
multi-armed bandit problem, along with two theoretical bounds, plotted against time t on
a logarithmic scale. The solid black line shows mean cumulative expected regret from 1,000
simulations. The dashed blue line shows the asymptotic bound on regret (7.4), which appears
as a straight line due to the scaling of the axes. The dash-dotted red line shows the regret
bound (7.6), which provides guarantees on the algorithm’s performance.

model used in quantitative finance [44]. This could allow the credit investment portfolio

problem studied in finance to be posed as a multi-armed bandit problem with satisficing

objective.

The risk aversion effects of multi-armed bandits with satisficing objectives will result in

more robust policies for solving the multi-armed bandit problem in cases with reward vari-

ance σ2
s that are heterogeneous across arms. Precisely quantifying the gains in robustness

will be the subject of future work. Risk aversion and robustness are important for engineer-

ing applications (where standard bandit algorithms are known to have poor risk-aversion

characteristics [8]), and also in the field of optimal foraging theory [26]. The multi-armed

bandit framework has been used to study foraging [117] using a maximizing objective, but

a satisficing objective is more ecologically plausible.

We developed a policy for the satisficing problem with Gaussian rewards, but development

of optimal policies for the satisficing problem with other reward distributions remains an

open problem. For all satisficing problems, picking the appropriate satisfaction level is a

non-trivial problem in its own right. Both of these problems will be the subject of future

work.
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Figure 7.2: Cumulative surplus earned by the UCL algorithm while solving a Gaussian multi-
armed bandit problem, once with a satisficing (blue curves) and again with a maximizing
objective (black curve and shaded region). Both objectives achieve similar mean performance
(solid curves) but using the satisficing objective results in better worst-case performance. The
shaded region shows the 95% confidence interval around the mean cumulative surplus for
the satisficing objective and the blue dashed lines show the same interval for the maximizing
objective. The lower limit of the confidence intervals measures worst-case performance. The
lower limit for the satisficing objective is consistently above the one for the maximizing
objective, so satisficing results in better worst-case performance.
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Chapter 8

Conclusions

“A human must turn information into intelligence or knowledge. We’ve tended to forget that

no computer will ever ask a new question.”

(Grace Hopper)

This thesis has been motivated by applications in adaptive sensing and robotics, such

as spatial search, that push the boundary of what is achievable with current automation

technology. For such applications, human supervision of automated systems is essential to

guarantee that the automated system performs as desired. The goal of this thesis is to

facilitate the principled integration of humans and automation in mixed human-machine

decision-making teams. We make progress towards this goal by developing a framework for

human-machine search, which is the word we use to describe rational decision making under

uncertainty.

We have considered the problem of decision making under uncertainty in a variety of

tasks. To such tasks, humans bring the ability to quickly discern patterns in data and

intuition based on prior experience, while machines bring abundant computational power

and memory, as well as the ability to precisely follow repetitive rules. The desire to integrate

humans and machines has led us to build a series of models of human decision-making

behavior in search tasks. The models are based on statistical representations of the task,

and rely on Bayesian estimators to allow us to quantitatively capture human intuition. By

formally modeling the tasks as well-defined optimization problems, we make the models

quantitatively rigorous. This allows us to prove conditions under which the models perform

optimally.
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8.1 Summary

In this section we review the work presented in this thesis in detail and highlight the major

contributions made. The overarching contribution of this thesis is to develop a principled

model of human decision-making under uncertainty, whose parameters quantify the human’s

representation of the decision-making task, and an estimator for the model parameters. We

rigorously analyze the performance of the model and prove conditions under which the model

achieves optimal performance. We also consider empirical data from a human-subject spatial

search task and show that the model captures the major features in the data. For future

applications, the model provides a common language for humans and machines to share

relevant information about the task. By estimating the parameters, a machine can access

this representation and potentially improve its performance. In control systems terminology,

the model and associated estimator form a plant–observer pair for human decision making

that can be used for system design.

As explained in Chapter 2, the key step that facilitated the framework was the choice

to model the spatial search task as a spatial multi-armed bandit problem, which is a multi-

armed bandit problem where the arms are embedded in an underlying space. The spatial

multi-armed problem is related to recent work [55, 23, 116] on so-called continuous-armed

bandit problems, where each point of a continuous metric space is considered as an arm of

a multi-armed bandit. All multi-armed bandit problems are prototypical models of decision

making under uncertainty, where an important tradeoff is between exploration, which is

making decisions to learn more about the decision space, and exploitation, which is making

decisions to maximize the quality of the immediate decision.

Key to the development of our framework is the fact that the multi-armed bandit problem

has been well studied in both the machine learning and neuroscience literatures, so there is a

wealth of results on which to draw. From the machine learning literature we drew on results

that bounded the achievable performance in multi-armed bandit problems and developed

algorithms that achieve optimal performance in some cases. From the neuroscience literature,

we drew on recent work that studied the features of human decision making in multi-armed

bandit problems.

In Chapter 3, we made a first step towards connecting these two literatures by taking

the ambiguity bonus heuristic, a model of human decision making that was developed in

the neuroscience literature for a two-armed bandit, and extending it to the general case

of N ≥ 2 arms. We studied the properties of the resulting model through simulation and

showed that the optimal values of the model parameters implied an interesting tradeoff

between exploration, which could be generated by either a directed or a random mechanism,
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and exploitation. We studied the parameter tuning problem analytically in some simple

cases and gained some insight into the ways the different parameters interact.

In Chapter 4, we developed an alternative heuristic-based model, which we term the Up-

per Credible Limit (UCL) algorithm. We developed UCL by adapting algorithms from the

machine learning literature, notably Bayes-UCB [49], to the spatial multi-armed bandit prob-

lem. UCL captures the major features of human decision-making behavior in multi-armed

bandit problems using a heuristic that is similar to the ambiguity bonus heuristic developed

in Chapter 3 but its performance is simpler to analyze in terms of regret. By extending anal-

ysis from the machine learning literature, we proved that UCL achieves logarithmic regret,

which is optimal performance in the multi-armed bandit task. The components of the UCL

heuristic can be interpreted in terms of the components of the ambiguity bonus heuristic, so

UCL can be interpreted as giving optimal tunings to the heuristic parameters. The UCL al-

gorithm is a major contribution because it formalizes the link between the heuristics studied

in the neuroscience literature and the algorithms studied in the machine learning literature.

Key to the value of the UCL algorithm as a model of human decision making and as an

algorithm for solving the spatial multi-armed bandit task is the introduction of correlated

priors in the Bayesian estimator used to maintain its belief state. Such priors model the (hu-

man or algorithmic) agent’s beliefs about the smoothness of the reward surface, and allow

information learned about the reward values in one location to be propagated to neighboring

areas. This propagation of information causes the estimator to converge more quickly than

in the case of an uncorrelated prior, where the rewards are assumed to be independent and

no propagation takes place. When the reward surface is smooth, propagating information is

valuable and allows the UCL algorithm to achieve sub-logarithmic, i.e., better than logarith-

mic, regret. The idea of assuming a degree of smoothness in the reward surface exists in the

literature on continuous-armed bandit problems, but to the best of our knowledge our work

is the first time correlation has been introduced into the literature on multi-armed bandits

with a finite number of arms.

In Chapter 5 we studied data from an experiment in which human subjects performed a

spatial multi-armed bandit task. We showed that the performance of many human subjects

was very good. We further showed that human performance could be classified into three

categories, termed phenotypes, that align with various known bounds on performance from

the machine learning literature. We also showed that the UCL algorithm could emulate

behavior falling into these various categories by tuning a small number of algorithm param-

eters, in particular the algorithm’s prior. On the basis of this evidence, we interpreted the

high performance of the subjects in the best-performing phenotype as due to these subjects

having a good prior for the reward surface. We noted that such good priors would provide
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useful information for a human-machine system if a machine could estimate the correspond-

ing model parameter values.

In Chapter 6, we focused on the parameter estimation problem for the UCL algorithm

as parametrized in Chapter 5. The UCL algorithm trivially defines a likelihood function for

observed choice data which can be used to perform parameter estimation but the likelihood

function is poorly behaved in general, which makes the estimation problem difficult. Having

noted that a linearized version of the likelihood function can be interpreted as a special type

of Generalized Linear Model (GLM), a well-known class of statistical models, we studied the

parameter estimation problem for the relevant form of GLM. We proved conditions under

which the GLM’s likelihood function is convex, which implies that the estimator can be

implemented using off-the-shelf optimization routines and that it converges to the correct

parameter value. We then showed that this estimator can be applied to the parameter

estimation problem for the UCL algorithm by linearizing the heuristic function and that it

can provide accurate estimates of the parameters in some regions of parameter space. This

provides an estimator to complete the plant–observer model pair for human decision making.

In proving conditions under which the GLM’s likelihood function is convex, we define a

binary operation for block matrices, which is a special case of the Khatri-Rao product [52],

and a block contraction operator for block matrices. As far as we are aware, both of these

operators are novel contributions. We elucidate some of the important properties of these

operators and use them to prove a result analogous to the Schur product theorem [106] for

block matrices. These results are contributions to the mathematics literature in their own

right.

In Chapter 7, we returned to the study of decision-making behavior and studied the

multi-armed bandit problem with a satisficing objective. Satisficing refers to an alternative

to optimization in which the objective is not to achieve the best possible outcome but rather

to achieve an outcome that is above a desired threshold. It has been studied in a variety

of contexts including in psychology, organizational theory, engineering, and ecology, and

can provide a more natural objective than optimization. We showed that the multi-armed

bandit problem with a satisficing objective could be related to a standard multi-armed

bandit problem with optimizing objective. Using the related standard multi-armed bandit

problem, we proved bounds on optimal performance in terms of the satisficing objective and

derived conditions under which an adapted version of the UCL algorithm achieved optimal

performance. This result is important as an analysis of optimal decision making, and also

because it strengthens the connection between the multi-armed bandit problem and problems

such as optimal foraging behavior in ecology. It is also a first step towards a more general

theory of multi-armed bandits with a general utility function objective.
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8.2 Ongoing and future work

The questions addressed in this thesis have raised a variety of followup questions that are

the subject of ongoing work. These questions span the fields of decision theory, neuroscience,

and a number of engineering applications.

8.2.1 Decision theory

The work presented in this thesis leads naturally to a number of questions in decision theory.

In decision theory the generic question is, for a given decision-making situation, what is the

optimal strategy to take, and how do the various aspects of that strategy trade off against

each other? In the context of multi-armed bandit problems, the work of Lai and Robbins

provides bounds on the performance of optimal strategies and the various UCB algorithms

from the literature and the UCL algorithms from this thesis provide strategies that achieve

optimal performance.

However, there are a number of issues with the UCB algorithms, notably robustness. The

standard multi-armed bandit problem optimizes an objective which consists of the expected

value of cumulative rewards. Therefore, good performance in this problem corresponds to

having large rewards “on average”, where the average is taken over many instantiations

of the problem. However, having good average performance does not imply having good

performance on any individual task. Standard UCB algorithms that achieve logarithmic

regret, i.e., optimal average performance, are known to have poor risk-aversion characteristics

in that they occasionally suffer from anomalously bad performance due to an unlucky series

of rewards [8]. These instances of bad performance are rare enough not to adversely affect

the average performance of the algorithm but could be an issue if a bound on worst-case

performance is required.

In this thesis we have studied two mechanisms that could improve the robustness of al-

gorithms for solving multi-armed bandit problems: noise and satisficing. In the simulations

presented in Chapter 3 we noted a tradeoff between information-based exploration based

on the agent’s statistical model of the task and noise-based exploration that operated in a

model-free way. We postulated that the inclusion of decision noise provided a mechanism

for exploration that could compensate for an incorrect statistical model, thereby increasing

robustness at the cost of decreased average performance. Decision noise is known to im-

prove the robustness of optimization algorithms [88], and it has recently been shown [129]

that human decision-making behavior in multi-armed bandit tasks is stochastic. Therefore,

providing an analytical quantification of the tradeoff between robustness and performance

would be a major contribution to the field of decision theory and provide an explanation for

119



the stochasticity of human decision making. As far as this author is aware, deriving such an

analytical quantification is an open research question.

Another mechanism for improving robustness is the use of a satisficing objective, as

studied in Chapter 7. By maximizing the probability that the reward from a given decision is

above a threshold value, the satisficing objective naturally improves worst-case performance

relative to the standard objective which maximizes expected value of rewards. Further work

needs to be done to quantify this improvement.

8.2.2 Neuroscience

The work presented in this thesis has been strongly connected with concurrent work in

neuroscience. The heuristics used by the ambiguity bonus algorithm (Chapter 3) and the

UCL algorithm (Chapter 4) were inspired by work in neuroscience that studied the heuristics

used by humans to make decisions in multi-armed bandit problems. By rigorously developing

these heuristics into algorithms with provably optimal performance, we have developed a

model of human decision making that can serve as a reference to neuroscientists. Further

work needs to be done to enhance the utility of this model in neuroscience.

First, fitting to human subject data should be performed. The stochastic UCL algorithm

serves as a model of human decision making that depends on a number of parameters,

including the decision noise parameter υ, the priors (µ0,Σ0), and the credible limit parameter

αt. These parameters should be fit to data to better understand the strategies used by human

subjects. The estimator developed in Chapter 6 provides a tool to do so.

Second, a connection should be made with the literature on psychological regret. As

described in Chapter 2, the cumulative expected regret in the multi-armed bandit objective

is a purely analytical quantity that is not directly psychologically relevant. However, there

are other notions of regret that are psychologically relevant and are known to affect decision-

making behavior [120, 32, 31, 75]. These notions of regret should be formally quantified and

could enter as an additional term in the heuristic function of a new model.

Third, the structure of the UCL algorithm should be linked to the relevant neural hard-

ware. The UCL algorithm provides a structured model of human decision making that is

computationally simple and neurologically plausible. For example, approximate Bayesian

inference should be implementable in the brain [130]. If UCL is an accurate model of what

is truly occurring in the brain, then there should be neural signatures in areas corresponding

to, e.g., information gain ∆I ti . These areas could be detected in experiments involving fMRI.

Previous work has been done involving multi-armed bandit tasks and fMRI, for example [83],

but work should investigate the structure of the UCL model.
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8.2.3 Engineering

There are a host of potential applications of this work in various fields of engineering. In

some situations, the representation of foraging as a multi-armed bandit problem can be

used to develop more advanced purely automated systems, while the overall framework for

human-machine collaboration can be used in other situations where human input is essential.

In robotics and autonomy, the spatial multi-armed bandit framework could provide a

method to improve automation. For robotics applications, where each arm might represent

a patch of physical space, it is likely that there would be a cost for transitioning from one arm

to another, or that only a subset of the arms would only be accessible from a given currently-

selected arm. In such a case, additional work needed to be done to develop algorithms that

could handle the transition costs and motion constraints. This work has been done in [99],

resulting in the block UCL and graphical block UCL algorithms, respectively. Some work has

been done to apply the graphical block UCL algorithm to robotics [118], but more remains

to be done.

To apply the multi-armed bandit framework to the original motivating problem in adap-

tive sensor networks, work needs to be done to interpret gathered information as reward.

This will result in a reward surface that is time-varying in response to the arms that are

selected by the algorithm, so additional work is required to address this case of time-varying

rewards.

In a number of applications, which often involve solving optimization problems, humans

are essential components to a system. For such applications the models developed in this

thesis should be used to develop human-machine systems. Many optimization problems are

formulated so that the objective function is convex, in which case there are many off-the-

shelf algorithms that can solve them quickly. However, in many applications, the objective

function is non-convex, and most optimization algorithms can only find local optima. The

likelihood function from the stochastic UCL algorithm is one such example. In practice peo-

ple often solve non-convex optimization problems by applying a local optimization algorithm

at a variety of initial points and choosing the best solution that results. Fortunately, humans

often have intuition about where the global optimum lies, which guides their choice of initial

points. The process of finding a global optimum by selecting initial points can be cast in

a multi-armed bandit framework by identifying patches of the optimization space as arms

of the bandit and posing a so-called best-arm identification problem [7, 22]. By casting the

optimization problem as a multi-armed bandit problem, one could rationalize this process

and formally incorporate human intuition into the initial point selection problem. As we

saw in Chapter 5, such intuition can drastically increase performance in a multi-armed ban-
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dit problem, so it is reasonable to assume that similar benefits would result in the global

optimization problem.

An additional application is in the field of multi-objective optimization, where there are

several objectives to be optimized simultaneously. Because of the multiple objectives, a

generic multi-objective optimization problem is not well-posed and requires additional in-

formation to identify a unique solution. This information must ultimately come from a hu-

man supervisor, so any multi-objective optimization system is inherently a human-machine

system. By casting the multi-objective optimization problem as a best-arm identification

multi-armed bandit problem, one could use the human-machine multi-armed bandit frame-

work to rationalize the human-machine decision-making process as well. We have already

taken beginning steps towards this goal [96, 93], and further work is ongoing.

8.3 Closing remarks

In this thesis, we have studied decision making under uncertainty with a focus on human

decision making in spatial search tasks. We formally modeled such tasks using the spatial

multi-armed bandit problem, and used results from the multi-armed bandit literature to link

human and algorithmic decision making. This work is relevant both to neuroscience and to

engineering.

For neuroscience, we provide mathematically rigorous models of human decision making

(in particular the UCL algorithm) in multi-armed bandit problems. These models capture

the main empirically-observed features of human decision making in such problems, and can

be shown to achieve optimal performance with appropriate parameter tunings.

For engineering, we show that the quality of Bayesian decision making can be improved

by the availability of a high-quality prior. This is not a new result, but importantly we

show through experiments with human subjects that humans often have good priors for

spatial search tasks which allow them to achieve better performance than an algorithm with

an uninformative prior. Therefore, engineered systems could benefit from human intuition

captured in the form of an informative prior. The UCL algorithm can be used as a model to

learn a human operator’s prior by observing their choices, thereby making the prior accessible

to a machine.

The work presented in this thesis will form the basis for future work in neuroscience

(helping further elucidate the behavioral and neural mechanisms behind human decision

making) and engineering (providing a principled framework for human-machine systems,

and a methodology for developing automation that can perform abstract decision making).
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We hope that this thesis has shown the utility of collaboration between neuroscience and

engineering and that it can be the basis of further mutually fruitful work.
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Appendix A

Pseudocode implementations of the

UCL algorithms

Algorithm 1: Deterministic UCL Algorithm

Input : prior N (µ0, σ
2
0IN ), variance σ2

s ;
Output : allocation sequence {it}t∈{1,...,T};

1 set ni ← 0, m̄i ← 0, for each i ∈ {1, . . . , N};

2 set δ2 =
σ2
s

σ2
0

; K ←
√

2πe; T end
0 ← 0;

% at each time pick the arm with maximum upper credible limit

3 for τ ∈ {1, . . . , T} do
4 for i ∈ {1, . . . , N} do

5 Qi ←
δ2µ0

i + nim̄i

δ2 + ni
+

σs√
δ2 + ni

Φ−1
(

1− 1

Kτ

)
;

6 iτ ← argmax{Qi | i ∈ {1, . . . , N}};
7 collect reward mreal;

8 m̄iτ ←
niτ m̄iτ +m

niτ + 1
;

9 niτ ← niτ + 1 ;
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Algorithm 2: Stochastic UCL Algorithm

Input : prior N (µ0, σ
2
0IN ), variance σ2

s ;
Output : allocation sequence {it}t∈{1,...,T};

1 set ni ← 0, m̄i ← 0, for each i ∈ {1, . . . , N};

2 set δ2 =
σ2
s

σ2
0

; K ←
√

2πe; T end
0 ← 0;

% at each time pick an arm using Boltzmann probability distribution

3 for τ ∈ {1, . . . , T} do
4 for i ∈ {1, . . . , N} do

5 Qi ←
δ2µ0

i + nim̄i

δ2 + ni
+

σs√
δ2 + ni

Φ−1
(

1− 1

Kτ

)
;

6 ∆Qmin = mini,t |Qi −Qj |;

7 υτ ←
∆Qmin

2 log τ
;

8 select iτ with probability pi ∝ exp(Qi/υτ );

9 collect reward mreal;

10 m̄iτ ←
niτ m̄iτ +m

niτ + 1
;

11 niτ ← niτ + 1 ;
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