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Towards optimization of a human-inspired heuristic for solving
explore-exploit problems

Paul Reverdy1, Robert C. Wilson2, Philip Holmes1,3 and Naomi E. Leonard1

Abstract— Motivated by models of human decision making,
we consider a heuristic solution for explore-exploit problems. In
a numerical example we show that, with appropriate parameter
values, the algorithm performs well. However, the parameters
of the algorithm trade off exploration against exploitation
in a complicated way so that finding the optimal parameter
values is not obvious. We show that the optimal parameter
values can be analytically computed in some cases and prove
that suboptimal parameter tunings can provide robustness to
modeling error. The analytic results suggest a feedback control
law for dynamically optimizing parameters.

I. INTRODUCTION

The problem of choosing among a set of actions with
unknown and uncertain payoffs is pervasive in many fields
of control, as well as everyday life. When exploring such a
set, there is a tension between continuing to carry out the
best of the known actions (termed exploitation) and trying
new actions in the hopes of finding something better than
one’s current best option (termed exploration).

Given sufficient information about the structure of the
space and the associated payoffs, an optimal solution to this
explore-exploit problem can, in principle, be found using
dynamic programming. Unfortunately, due to the well-known
curse of dimensionality phenomenon, the fully optimal solu-
tion is intractable for all but very small problems. Because
of this intractability, there is great interest in approximations
to the optimal solution, for example using heuristics [1].

Understanding how humans solve the explore-exploit
problem is an active area of research in neuroscience and
cognitive psychology [2], [3]. Such understanding is of in-
terest to the controls community for several reasons. Humans
have been shown to perform optimally in simple decision-
making tasks [4], and they perform reasonably well across
a wide range of tasks. The degree of flexibility they provide
in dealing with complex problems and environments is a
desirable characteristic of an automated decision maker.
Additionally, models based on this understanding would
provide the possibility to integrate humans and automated
decision makers using a common framework.
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Recent work has investigated how humans solve the
explore-exploit problem in a simple context, where it was
shown that human behavior is well explained by an ambiguity
bonus heuristic [5]. This heuristic makes decisions based on
a value function Q, which assigns to each option i a value
that trades off the expected payoff of that option, ∆Ri, with
the information to be gained by testing it, ∆Ii:

Qi = β∆Ri + (1− β)∆Ii, β ∈ R. (1)

The name of this heuristic derives from the influence of ∆Ii.
Trying options that have greater ambiguity, i.e. less is known
about their associated rewards, yields more information ∆Ii;
for β < 1 these options are assigned greater values by the
heuristic.

The parameter β trades off between explore and exploit
strategies. In the case β = 0, the heuristic only weights
information gain and therefore produces a pure explore
strategy. By contrast, if β = 1, the heuristic only weights
expected rewards and so produces a pure exploit strategy.
If β is too high, the strategy may not explore enough to
discover the best possible option, while if it is too low the
strategy may find the best option but not value it sufficiently
to profit from its discovery.

In this paper we consider an extension of the heuristic
to a larger problem of resource collection in a scalar field,
which can be modeled as a multi-dimensional explore-exploit
problem. The problem is similar to that of optimal foraging
in ecology [6]. It is also an example of a multi-armed
bandit problem studied in the operations research literature;
see the recent review [7] and references therein. We show
that, with proper parameter tunings, the heuristic-based algo-
rithm performs well but that finding the optimal parameter
values is non-trivial. However, in some cases the optimal
parameter values can be found analytically and suboptimal
parameter values can provide robustness to modeling error.
These results suggest a feedback control law for dynamically
optimizing the parameters.

The remainder of the paper is organized as follows. In
Section II we pose the resource collection problem, while in
Section III we detail the algorithm based on the ambiguity
bonus heuristic. In Section IV we present a motivating
numerical example. In Section V we compute optimal pa-
rameter values for certain cases in which they can be found
analytically and present the optimizing algorithm. In Section
VI we suggest extensions and conclude.



II. RESOURCE COLLECTION PROBLEM

Consider a d-dimensional discrete grid with Nd grid
points. In the following, we consider the cases d ∈ {1, 2}, but
the generalization to arbitrary dimensions is straightforward.
Each of the Nd grid points has an associated reward mi,
which remains fixed for the duration of the problem. The
vector m ∈ RNd

of the rewards is unknown to the agent
but drawn from a distribution D with mean µ̄ ∈ RNd

and
covariance Σ.

The agent collects rewards by visiting one point at each
time interval t = 1, . . . , T , receiving reward rt which is
the mean reward associated with the point plus Gaussian
noise: rt ∼ N (mi, σr). The agent’s objective is to maximize
cumulative rewards by choosing a sequence of points {xt}:

max
{xt}

V, V =
T∑
t=1

rt. (2)

Note that due to the stationary nature of the sampled reward,
in the long time horizon limit T � Nd this problem reduces
to the problem of finding the peak value among the mi.
We are particularly interested in the case of large spaces or
short time horizons, in which case the explore-exploit tension
is consequential. A similar situation arises in the long time
horizon limit if the rewards are non-stationary.

III. THE AMBIGUITY BONUS HEURISTIC
ALGORITHM

In order to solve the optimization problem, the agent needs
to learn about the reward surface and make a decision based
on their beliefs. With reasonable assumptions on the distri-
bution of rewards m, Bayesian inference provides a tractable
optimal solution to the learning problem. The ambiguity
bonus heuristic (1) then provides a tractable alternative to
solving the full dynamic programming problem.

A. Inference algorithm

We begin by assuming that the agent’s prior distribution
of m (i.e. the agent’s initial beliefs about the mean reward
values µ̄ and their covariance Σ) is multivariate Gaussian
with mean µ0 and covariance Σ0:

m ∼ N (µ0,Σ0),

where µ0 ∈ RNd

and Σ0 ∈ RNd×Nd

is a positive-definite
matrix. Note that this does not assume that the field is truly
described by these statistics, simply that these are the agent’s
initial beliefs, informed perhaps by previous measurements
of the mean value and covariance.

With this prior, the posterior distribution is also Gaussian,
so the optimal inference algorithm is linear and can be
written down as follows. At each time t, the agent, located at
xt ∈ (ZN )d, observes a reward rt. Define φt ∈ RNd

to be
the indicator vector corresponding to xt where (φt)k = 1 if
k = (xt) is the location in a vector representation of the grid,
and zero otherwise. Then the belief state (µt,Σt) updates as
follows:

q = rtφt + Λt−1µt−1 (3)

Λt =
φtφ

T
t

σ2
r

+ Λt−1, Σt = Λ−1
t (4)

µt = Σtq, (5)

where Λt = Σ−1
t is the precision matrix. This assumes

that the sampling noise σr is known, e.g. from previous
observations or known sensor characteristics.

This gives us the first component of the decision heuristic:
at time t, the expected payoff ∆Ri,t of option i is µi,t, the
ith component of µt.

We now turn to the information value component ∆Ii,t.

B. Information value

We use entropic information as our information metric.
Since the posterior distribution is Gaussian, its entropy at
time t is

Ht =
Nd log 2π + log det Σt

2
=
Nd log 2π − log det Λt

2
,

where the second equality comes from the definition of Λt.
This form of the expression for the entropy is convenient
because the Λt update rule (4) is linear and φtφ

T
t is sparse.

For (xt) = k,
(
φtφ

T
t

)
kk

= 1 is the only non-zero element.
Because of this sparsity, we can calculate the change in

the determinant over one time step analytically:

det Λt = det

(
φtφ

T
t

σ2
r

+ Λt−1

)
= det Λt−1 +

1
σ2
r

Mkk, (6)

where Mkk is the (k, k) minor of Λt−1.
Then the change in entropy is

Ht −Ht−1 = −1
2

(log det Λt − log det Λt−1)

=
1
2

(
log det Λt−1−log

(
det Λt−1 +

1
σ2
r

Mkk

))
≈ −1

2
Mkk

σ2
r det Λt−1

,

where the last approximation becomes increasingly valid as t
increases and the information gain gets smaller and smaller.

Motivated by this approximation we define the information
value of location i at time t to be

∆Ii,t =
Mii

σ2
r det Λt−1

, (7)

where Mii is the (i, i) minor of Λt−1 as above.
See also the Backward Selection for Gaussian method of

Choi and How [8],[9], who examine other, more general
cases of information-based search.

C. Decision heuristic

An important aspect of human decision making is that it
is noisy, so that humans do not necessarily deterministically
optimize a value function. For example, when faced with a
completely unknown situation, a good model is that human
subjects will pick randomly among their options.

We choose to incorporate decision noise in our model by
adding i.i.d. (over i and t) random noise to the heuristic value



function. Putting all the terms together the value function
Qi,t becomes

Qi,t = βµi,t + (1− β)∆Ii,t + σDεi,t, εi,t ∼ N (0, 1). (8)

The decision given by the heuristic at time t is

arg max
i
Qi,t.

For purposes of numerical implementation we scale both
µi,t and ∆Ii,t by their maximum values at each time step:

µi,t
maxj µj,t

,
∆Ii,t

maxj ∆Ij,t
.

With this normalization, both deterministic elements of the
value function are scaled to lie in [0, 1]. The magnitude of
the decision noise, σD, also naturally lies in [0, 1], since for
cases σD ≥ 1 the noise term dominates the deterministic
terms in Q and decisions will be made at random.

The introduction of decision noise results in another
tradeoff in addition to the explore-exploit tradeoff, this
time between two different types of exploration: directed
exploration driven by the ∆I term which seeks information
about the rewards, and random exploration driven by the σDε
term. The following numerical example shows that these two
terms can trade off in an interesting way.

IV. MOTIVATING NUMERICAL EXAMPLE

In this section, we motivate the role of parameters β and
σD in the explore-exploit tradeoff. We study a numerical
example using a reward structure previously used in human
experiments, as discussed in [10] and Chapter 4 of [11]. This
reward structure is designed such that an agent that carries
out insufficient exploration is likely to get caught at a local
maximum. If β is too high, the agent will pay excessive
attention to immediate rewards µi,t and not seek enough
information ∆Ii,t; however, it may be able to compensate
by adding decision noise σDεi,t.

Consider a two-dimensional (d = 2) example with grid
size N = 10. The reward surface is as shown in Figure 1:
it has the characteristic that there is no gradient along the y
direction, both ends along the x direction are local maxima,
but the line x = 10 is the unique global maximum.

This reward surface intuitively requires exploratory behav-
ior because of the two local maxima: if started on the left
side of the domain, a simple gradient following algorithm
will get stuck at the suboptimal local maximum. We choose
T = 90 time steps so that the agent can sample at most
90% of the space. The variance of the sampling noise is
σ2
r = 1/1200 while the mean surface value is 0.25 so that

the average signal-to-noise ratio is 0.25/σr ≈ 8.66.
The algorithm requires values of the priors µ0 and Σ0.

For the means it is reasonable to set the uniform prior
µ0 = 0. The appropriate prior on covariance is less obvious.
Following [12], we choose a prior that is exponential with a
spatial length scale:

Σ0(i, j) = exp(−‖xi − xj‖/λ)

where ‖xi−xj‖ is the 1-norm of the distance between points
i and j. For the present example, we set λ = 3.

In order to understand the tradeoff between directed
exploration and noise-based exploration, we computed via
simulation the expected total rewards accumulated by the
algorithm for (β, σD) ∈ [0, 1]×[10−5, 100.25]. The resolution
of the set of simulations was 30 linearly-spaced points in β
and 20 log-spaced points in σD, and for each pair of values
(β, σD), the expected value was computed by simulating 200
runs of the problem. For each simulation, the initial location
of the agent was drawn from a uniform distribution.

Expected reward per time step as a function of the two
parameters (β, σD) for this experiment is shown in Figure
2. As expected, some exploration was required to perform
well in the task: in the deterministic decision limit σD → 0,
maximum rewards are achieved for a value of β of about 0.5.
Comparison between Figures 1 and 2 shows that at the opti-
mal tunings of the parameters, the expected rewards per time
step of about 0.5 are near the value at the global optimum,
so the algorithm is achieving near-optimal performance.

Furthermore, Figure 2 shows a tradeoff between weighting
on directed exploration and random exploration. As σD
increases, making action selection more random, one can
maintain high performance by increasing β, thereby paying
more attention to immediate rewards and reducing the weight
on directed exploration.

We can develop a better understanding of the role of
exploration by measuring it. The agent’s trajectory xt =
(x(t), y(t)) forms a curve on the grid. We define a measure
of exploration eT over the T time steps by taking the variance
of the time series representing this trajectory:

eT =
1
T

T∑
t=1

(
(x(t)− x̄)2 + (y(t)− ȳ)2

)
,

where x̄ = 1
T

∑T
t=1 x(t) and ȳ = 1

T

∑T
t=1 y(t) are the

average values of x and y. This measure has the physical
interpretation of being the moment of inertia of the trajectory
curve. It is bounded below by zero (representing an agent that
does not move at all), and larger values of eT correspond to
more time being spent away from the average position.

Figure 3 plots eT for the same set of parameters as in
Figure 2. Again there is a tradeoff between β and σD:
as random exploration is increased by increasing σD, a
constant level of total exploration (as measured by eT ) can be
maintained by increasing β, thereby paying more attention
to immediate rewards and reducing the weight on directed
exploration. The monotonic nature of the tradeoff is intuitive,
although its specific shape is not trivial to explain.

Furthermore, the plots show that the level sets of eT and
expected reward have essentially the same structure. This
strongly suggests that tuning β and σD has an effect by
altering the overall level of exploration, and it is this overall
level of exploration that governs performance.

The effects of β in the σD → 0 deterministic decision
case are also interesting. Although it is difficult to develop
intuition for the effect of β in this case because of the
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Fig. 1. Profile of the mean reward surface for the numerical example.
The grid points are at x = 1, 2, . . . , 10. There is no gradient in the y
direction, while in the x direction there is a local maximum at x = 1, a
local minimum at x = 4, and a global maximum at x = 10.
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Fig. 2. Expected reward per time step for various parameter values. Note
the tradeoff between weighting on immediate reward β and decision noise
σD . For small decision noise, expected rewards are highest for β ≈ 0.5,
but as noise increases one can maintain performance by increasing β.

large values of N and T , in the following section we derive
analytical results for more tractable cases.

V. OPTIMIZED HEURISTIC AND THE ROLE OF β

As the previous example shows, the two parameters β
and σD in the heuristic interact in a complex way to affect
performance of the algorithm. In this section we derive
analytical results in the σD = 0 limit. The analysis provides
insight into the role of β, and we can compute optimal
tunings in the cases addressed. In Section V.A we analyze
a low-dimensional case that yields key insights. In Section
V.B we discuss generalizations to higher dimensions, other
true distributions of rewards, and the σD 6= 0 case.

A. Analytical optimization of a low-dimensional case

To start, consider the d = 1 dimensional problem where
N = 2, i.e. a grid with two options. Furthermore, let σr = 0
so there is no sampling noise and T = 2 so the objective
is simply max(r1 + r2). Let the true reward values m be
jointly Gaussian distributed as

m ∼ N
([

0
µ̄2

]
,

[
1 σρ
σρ σ2

])
.

Similarly, let the agent’s prior over those values be the joint
Gaussian distribution

N (µ0,Σ0),where µ0 =
[
0
0

]
,Σ0 =

[
1 ρ
ρ 1

]
.

Also, assume that ρ ≥ 0 for convenience.
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Fig. 3. Exploration measure eT for the same parameter values as in Figure
2. Here the tradeoff between the two types of exploration is made clear:
level sets of eT represent sets of constant total exploration. As one increases
random exploration through σD , one can maintain a constant level of total
exploration by increasing β to decrease directed exploration. The level sets
of eT look very similar to the level sets of expected rewards, suggesting
that it is the overall level of exploration that drives performance.

Note that in the case µ̄2 = 0 and σ = 1 the prior is
identical to the actual distribution of the rewards, but in any
other case they are distinct. The difference could be due to,
e.g., measurement error in calibrating the prior or a change in
the true statistics since the last time the agent was confronted
with the problem.

We are interested in choosing the value of β for our
heuristic that maximizes expected total rewards over all
possible reward values and initial locations.

Since the agent can begin in either of the two locations
with equal probability, E[r1] = µ̄2/2 independent of β.
Therefore the optimization problem reduces to

β∗ = arg max
β

max
x2

E[r2|r1]. (9)

That is, given r1, the algorithm has to decide whether to stay
in its current location or switch to the alternative location.
This is a well-studied problem in signal detection theory
(see, e.g., [13] or Example II.B.2 of [14]). The optimal β
maximizes the expected payoffs of the decision made by the
algorithm.

The detection theory solution consists of setting a thresh-
old m∗ on the observed reward r1 and switching if r1 < m∗.
The optimal threshold is a function of the prior beliefs about
m and the costs associated with each decision. If the agent
is equally likely to be in either initial location, the optimal
threshold is

m∗ =
1
2

(0 + µ̄2) = µ̄2/2. (10)

We show that the optimal tuning of our algorithm reduces
to the optimal solution of the detection problem.

We begin by computing the expected value of the algo-
rithm for a given value of β. At time t = 1, the agent
observes either m1 or m2, each with probability 1/2. In either
case the observed reward mi is now known with certainty,
so its inferred value is µi,1 = mi and the inferred value



of the unobserved reward mj is µj,1 = ρmi. Similarly,

Λ0 = Σ−1
0 = 1

1−ρ2

[
1 −ρ
−ρ 1

]
. The two minors Mkk are

both equal to 1/(1 − ρ2), so ∆Ii,1 = 0 for the observed
location and ∆Ij,1 = Mjj = 1

1−ρ2 for the unobserved
location. For a given value of β, the expected value in
the optimization problem (9) is the average of the expected
values E[r2|r1] for the two cases x1 = 1, 2.

We proceed by computing the expected value of the
algorithm for the case of starting in location 1, so x1 = 1.
In this case the function Qi,t (8) takes the following values:

Q1,1 = βm1, Q2,1 = βµ2,1 +
1− β
1− ρ2

= βρm1 +
1− β
1− ρ2

.

The algorithm picks the maximum of {Q1,1, Q2,1} and
switches if Q2,1 > Q1,1, or equivalently if βρm1 + 1−β

1−ρ2 >
βm1. This is equivalent to setting a threshold value m∗ and
switching if

r1 = m1 < m∗ =
1− β
β

1
(1− ρ)(1− ρ2)

, (11)

which sets a threshold m∗ as a function of β and ρ.
If the algorithm decides to switch locations, the agent will

then obtain the reward r2 = m2. Otherwise it stays in the
original location and receives r2 = m1. The expected value
of r2 given the algorithm’s decision is then given by

E[r2|x1 = 1] = E[m1|m1 ≥ m∗] + E[m2|m1 < m∗].

Since m1 and m2 are jointly Gaussian, this expectation is
analytically tractable and is equal to

φ(m∗)+µ2Φ(m∗)−ρσφ(m∗) = µ2Φ(m∗)+(1−ρσ)φ(m∗),

where φ(z) and Φ(z) are the the pdf and cdf, respectively,
of the standard normal distribution.

In the case where the agent’s initial location is x1 = 2,
the agent observes r1 = m2. The function Qi,t takes the
following values:

Q1,1 = βµ1,1 +
1− β
1− ρ2

= βρm2 +
1− β
1− ρ2

, Q2,1 = βm2.

This is symmetric to the case x1 = 1 under interchange of
i = 1 and i = 2 because of the symmetry of the prior. Again,
the algorithm switches to the alternate location if Q1,1 >
Q2,1, or

r1 = m2 < m∗ =
1− β
β

1
(1− ρ)(1− ρ2)

,

where the threshold m∗ is the same as above, again due to
the symmetry of the prior. The expected value of r2 given
the algorithm’s decision is

E[r2|x1 = 2] = E[m2|m2 ≥ m∗] + E[m1|m2 < m∗].

This expectation can again be expressed in closed form, and
takes the value

µ̄2

(
1− Φ

(
m∗ − µ̄2

σ

))
+ σ(1− ρσ)φ

(
m∗ − µ̄2

σ

)
.

Since x1 = 1 or 2 with equal probability, for a given
threshold m∗, the expected value in the optimization problem
(9) is the simple average of the expected rewards for each
initial position E[r2|x1 = 1] and E[r2|x1 = 2]:

E[r2|r1] =
1
2

[
µ̄2

(
1 + Φ(m∗)− Φ

(
m∗ − µ̄2

σ

))
+(1− ρσ)φ(m∗) + σ(1− ρσ)φ

(
m∗ − µ̄2

σ

)]
.

The parameter ρ is fixed, so the optimization (9) reduces to
picking the value β = β∗ that results in the threshold m∗ that
maximizes E[r2|r1]. The expression for E[r2|r1] is somewhat
unwieldy, but several special cases are informative.

First, consider the case µ̄2 = 0, σ = 1, which is the case
where the prior is equal to the actual distribution. In this case
the expectation reduces to

E[r2|r1] = (1− ρ)φ(m∗).

We want to pick the value of β that maximizes this ex-
pectation, which means maximizing φ(m∗) since 1 − ρ is
fixed. If ρ = 1 the expected rewards are zero independent
of m∗, so consider cases ρ < 1. The function φ(z) takes its
unique maximum at z = 0, so we set the threshold m∗ = 0.
Equation (11) then implies that the optimal value of β is
β∗ = 1, so the optimal tuning of the heuristic is

Qi,t = µi,t.

In this case the optimal tuning of the algorithm is pure
exploit and no explore. The heuristic ignores the information
gain component ∆I and only weights inferred rewards µ.
The threshold is set equal to 0, cf. Equation (10) where µ̄2 =
0. This is identical to the standard optimal detection theory
result [14], and the heuristic only weights µi,t because in
this case the linear inference model is optimal. In this case
the heuristic is not particularly beneficial, and setting β to
anything less than one is suboptimal. However, we show next
that the heuristic provides robustness in cases where the field
statistics are not known perfectly.

Consider the case above with σ = 1 but µ̄2 6= 0, so the
prior is exact except for the mean value µ̄2. In this case the
inference is no longer optimal, so neither is weighting only
the inferred reward. The expected reward E[r2|r1] is

1
2

[µ̄2 (1 + Φ(m∗)− Φ (m∗ − µ̄2))

+(1− ρ) (φ(m∗) + φ(m∗ − µ̄2))] .

For any given µ̄2 and ρ, the expectation can be maximized
with respect to the threshold m∗, and in general the optimal
threshold is non-zero. For example, if µ̄2 = 1, ρ = 0.5, the
maximum occurs at m∗ = 0.5, or β∗ = 16/19 ≈ 0.84. If,
instead, µ̄2 = −1, ρ = 0.5, the maximum occurs at m∗ =
−0.5, or β∗ = 16/13 ≈ 1.23. Again, the optimal threshold in
both cases is m∗ = µ̄2/2, as in the detection theory solution.
This shows how setting β 6= 1 provides robustness by helping
the algorithm recover the optimal threshold in the face of
suboptimal inference.



B. Discussion and generalizations

The results in the previous section make intuitive sense
because in the case where the true distribution D is Gaussian
and the prior statistics are correctly calibrated, the inference
model is optimal. In that case the inferred value term µi,t is
the optimal expected value of the option i at time t, and the
optimal action at each time t is simply to pick the maximum
of the µi,t, so the optimal β reflects that and is equal to one.

If, however, the true distribution D is not Gaussian or
the prior statistics are incorrect, the inference model will
be suboptimal. If the world is “better” than expected by
the prior, as in the case where µ̄2 = 1, setting β < 1
provides robustness by encouraging exploration, whereas if
it is “worse”, as in the case where µ̄2 = −1, setting β > 1
provides robustness by weighting expected rewards more
highly and discouraging exploration.

This suggests the form of a simple feedback control law
for β: at each time step, if the world appears “better”
than implied by the prior, decrease β to encourage guided
exploration. If, instead, the world appears “worse”, increase
β to discourage it. At time t, an estimate pt of the degree to
which the world is “better” or “worse” could be made, e.g.,
by the mean difference between the inferred rewards at the
current and previous time steps:

pt =
1
Nd

Nd∑
i=1

(µi,t − µi,t−1) .

Then if the inferred values µi,t are increasing, the world
appears to be “better” than expected and pt > 0. Further-
more, since the field is stationary, the inference is getting
monotonically more accurate in time, so pt → 0 as t→∞.
Then, setting K > 0, the proportional control law βt =
βt−1 −Kpt biases β in the desired direction.

In the case that the true distribution D is Gaussian and the
prior statistics are correctly calibrated, we make the claim
that the optimal value of β is β∗ = 1 in the general case of
N > 2, d > 1. The proof of this claim, as well as a more
rigorous claim about when the optimal value of β lies above
or below 1 will be the subject of future work.

VI. CONCLUSION

In this paper we have presented a heuristic that was devel-
oped to describe human behavior in a simple explore-exploit
task. The heuristic includes two forms of exploratory be-
havior: directed exploration, guided by seeking information
about rewards, and random exploration, provided by random
noise. We use this heuristic to construct an algorithm to solve
explore-exploit problems in spatially distributed scalar fields.
The algorithm uses an optimal Bayesian inference algorithm
for building beliefs about the field, and then applies the
heuristic to solve the decision problem of which location
to visit next.

Using a numerical example, we show that the two types
of exploratory behavior trade off in an interesting way, but
that both influence an overall level of exploration which,
when measured, is shown to strongly correlate with task

performance. In particular, in the case where there is no
random exploration, we show that there is a level of directed
exploration that produces optimal performance in the task.

To gain intuition for the role of the level of directed explo-
ration in the case without random exploration, we consider
an example problem where the field is distributed over two
points, and show that in the case where the inference is
optimal, the optimal tuning of the heuristic is to put full
weight on expected rewards at the expense of all directed
exploration; in this case the heuristic reduces to an optimal
Bayesian detector. However, in the general case where the
inference is not optimal, for example if it was given incorrect
field statistics, including some directed exploration provides
robustness to modeling errors.

We make the claim that in the general case of N ≥ 2, d ≥
1, if the inference is optimal, then the optimal value of β is
still β∗ = 1. We also provide the intuition that if the prior is
“pessimistic” compared to the true distribution of rewards,
β∗ should be less than 1, whereas if it is “optimistic”, the
opposite should be the case. This intuition suggests the form
of a feedback control law for β. The relationship between
the true distribution D, the prior reward statistics µ0 and Σ0,
and the optimal value of β will be the subject of future work.
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