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Abstract

We present methods to stabilize a class of motion patterns for unit speed particles in the
plane. From their initial positions within a compact set in the plane, all particles converge
to travel along a closed curve. The relative distance between each pair of particles along
the curve is measured using the relative arc-length betweenthe particles. These distances
are controlled to converge to constant values.
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1 Introduction

Agile sensor networks can collect information in the sky, onthe ground and under-
water. Sensor networks with fixed nodes are able to continuously monitor specific
locations for long periods of time. Great research progresshas been achieved and
commercial products are emerging c.f. [1].

A new direction for sensor network research employs satellites, unmanned aerial
vehicles (UAVs), ground robots and unmanned underwater vehicles (UUVs) as
moving sensor platforms. Such a mobile sensor network can cover a large area
with a relatively small number of platforms by performing cooperative motion that
ensures the optimal distribution of sensing power across the area. Some of the latest
research results demonstrate that control over relative positions among sensor plat-
forms has significant impact on the quality of information collected by the entire
network c.f. [2–5].

Influenced by the study of swarming behaviors of animal groups c.f. [6], researchers
are developing cooperative control methods to achieve the desired relative positions
among a group of moving sensor platforms. The problem is often called the swarm-
ing or formation problem. The dynamics of each platform in the network is usually
complicated. For coordination purposes, however, it is practical to use the simpler
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model of an individual platform modeled as a particle in the sense of classical me-
chanics. One advantage of using this simple model is that thetheoretical results are
platform independent. Error caused by this simplification is usually reduced by a
lower level, platform specific controlling mechanism. Thisis true, for example, in
the case of a recent experimental demonstration of controlling a fleet of underwa-
ter gliders [7]. The particles interact with each other through synthetic forces that
are induced by feedback control laws. The goal is to devise suitable control laws
so that the particles attain desired motion patterns. In this spirit, methods such as
energy shaping ([8],[9]) are applied with promising results for formations in the
plane c.f. [10],[11]. The literature is also rich with results regarding cooperative
control where particles are replaced by agents with simple dynamics, for example
in [12–14].

Operational objectives for UAVs and UUVs often require the platforms to travel
at the highest constant speed to survey the largest area in unit time. Therefore,
one may also view the platforms as particles moving at (common) constant speed.
Particles under gyroscopic forces obey a constant speed constraint. Certain patterns
for a system of particles with unit speed can be classified. Using Lie group theoretic
methods, Justh and Krishnaprasad have shown that in the plane, particles moving
along parallel lines or around the same circle are the only relative equilibria if
the particles are subjected to steering laws that depend only on relative positions
and headings. Steering control laws are proposed to asymptotically achieve those
patterns as relative equilibria c.f. [15] and an earlier version [16]. The insight also
enabled the work in [17] and [18] to design (time varying) steering control for
obstacle avoidance and boundary following for a single constant speed particle.

The steering control laws given in [15] are justified for achieving planar formations
of two unit speed particles. Extension to many particles aremade in [19]. Sepulchre,
Paley and Leonard [20] noticed that patterns of many constant speed particles can
be achieved in the plane by extending methods previously developed for coupled
oscillators [21]. In [20], steering control laws are developed to stabilize formations
on circles and parallel lines. It is later shown in [4] that ellipses can be mapped
to circles using a nonlinear transform so that some of the results in [20] can be
generalized to ellipses.

In applications such as the Adaptive Sampling and Prediction of the ocean (ASAP)
project [22], desired coordinated trajectories for mobilesensor platforms are de-
fined by a collection of closed curves of various shape with prescribed relative
spacing of vehicles on the curves. These are computed both tominimize sensing
error and to address operational challenges. This has motivated the need for a sys-
tematic method to design steering control laws that stabilize patterns on a closed
curve with arbitrary shape. In this paper, we first modify methods in [17] and [18]
to steer one agent so that its trajectory converges to the desired closed curve. Next,
to achieve a prescribed collective motion pattern, we address the major challenge of
the inhomogeneity of phase angles of particles around the closed curve. Influenced
by the ideas in [23] and [24], we propose a method that uses therelative arc-length
between particles instead of phase angle differences to measure the relative posi-
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tion between agents on a closed curve. Our steering control laws are proved stable
using a Lyapunov function that converges to its critical point along the controlled
dynamics.

The paper is organized as follows. In Section 2, we define an orbit function on the
plane. The level sets of this orbit function can be viewed as orbits with energy equal
to the function value. In Section 3, we develop the equationsdescribing the motion
of a unit speed particle with respect to the orbits. In Section 4, a control law for two
particles is developed to stabilize patterns on any given orbit. The coupling between
the two particles is a function of the relative curve length.We generalize the control
law to a collection ofN particles in Section 5. We demonstrate the control laws with
simulation results presented in Section 6.

2 Orbit function

Let γ0(·) represent a simple, closed, regular curve in the plane parametrized by its
arc-lengths. The total lengthL of such a curve is finite. A point~q0 on the curve is
selected as thestarting pointand at this point we assigns= 0. The Frenet-Serret
frame (~x0(s),~y0(s)) can be constructed with~x0(s) the unit tangent vector to the
curve and~y0(s) the unit normal vector to the curve atγ0(s). We use the convention
such that(~x0(s),~y0(s)) forms a right-handed coordinate frame with~x0(s)×~y0(s)
pointing to the reader. Letκ(s) be the curvature of the curve atγ0(s). The Frenet-
Serret equations describe how the frame formed by(~x0(s),~y0(s)) is translated along
the curve:

d~x0(s)
ds

= κ(s)~y0(s)

d~y0(s)
ds

=−κ(s)~x0(s) . (1)

Without loss of generality, we assume that the origin of a labfixed coordinate sys-
tem is placed at a point in the plane encircled byγ0(·). Notice that since the curve
is a compact subset of the plane, we can construct a closed ball B centered at the
origin such thatγ0(·) ∈ int(B).

Lemma 1 Assume that at every point on the curveγ0, the curvature is uniformly
bounded. There exists a function z: B→ R, satisfying the following properties:

A1) γ0 is a level curve of z(·) i.e. z(γ0(·)) is a constant function of s.
A2) There exists a finite interval[c1,c2] such that any level curve of z(·) with its

value belonging to[c1,c2] is entirely contained in B. Also, z(γ0(·)) ∈ (c1,c2).
A3) The function z is smooth on the open setΩ = {~r ∈ B|c1 < z(~r) < c2}. Further-

more,‖∇z‖ 6= 0 for all points inΩ .

PROOF. Nearγ0(·), a family of curvesγλ (·), called the Bertrand family c.f. [25],
can be constructed asγλ (s) = γ0(s)+ λ~y0(s) whereλ is a real number. The tan-
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gent vector toγλ (s) is~xλ (s) = (1−κ(s)λ )~x0(s). There is a singularity atλ = 1
κ .

Because we assume thatκ(s) is uniformly bounded for alls, we may choose an
ε ∈ (0, 1

sup{|κ(s)|}) so that all Bertrand curves with|λ | ≤ ε are regular and are con-
tained inB. We let the setΩ be defined as the set of all points on the Bertrand
curves with|λ | < ε. It can be verified thatΩ is an open connected subset ofB.

Since every point inΩ belongs to a Bertrand curve, we can construct a function
z(~r) on Ω by lettingz(~r) = λ if ~r ∈ γλ (·). Each Bertrand curve is a level curve for
z(~r). We now select an arbitrary point~r and prove thatz(~r) is differentiable at~r. In
fact, within a small neighborhood of~r, the directional derivative ofz(~r) along the
tangent vector~xλ (s) is always 0. The directional derivative ofz(~r) along the nor-
mal vector~yλ (s) is always constantly 1 or−1. The sign depends on whetherλ is
increasing or decreasing along the~yλ direction. The continuity of these two direc-
tional derivatives implies thatz(~r) is differentiable in the selected neighborhood. It
is a property of the Bertrand family of curves that~yλ (s) =~y0(s). Therefore, since
∇z=~y0(s) or ∇z= −~y0(s), ∇z is a smooth vector field. Thusz(~r) is smooth in the
neighborhood. Since these arguments hold for all points inΩ, z(~r) is smooth inΩ.
Notice also that‖∇z‖ = 1 6= 0 for all points inΩ.

We may letz(~r) = 0 for~r ∈ B/Ω and letc1 = −ε andc2 = +ε. This concludes
the proof since we have given one method to construct a functionz that satisfies all
properties in the lemma.2

We emphasize that the method given in the proof is often not the best for construct-
ing the functionz(·). Simple methods for special curves often result in a much larger

Ω. For example, suppose an ellipse is given by~r = (x,y) ∈ R
2 and x2

a2 + y2

b2 = 1 for

constantsa,b ∈ R. We may define a functionz(~r) = x2

a2 + y2

b2 . The level curves of
z(·) are families of concentric ellipses. We can choosec1 to be an arbitrarily small
positive number andc2 > c1 to be an arbitrarily large positive number. The set
Ω = {~r ∈ R

2|c1 < z(~r) < c2} is an arbitrarily large bounded set without the origin.

Fig. 1. A set of concentric ellipses. The inner ellipse has orbit value c1 and outer ellipse
has orbit value c2. The curve length s is measured from the starting point ofγ0(·) (solid
ellipse) to the position of the particle (black circle) onγ0(·).

In the above example, if we let the starting point of each ellipse be the intersection
of the ellipse with the horizontal axis, then all starting points are on a smooth curve
which is a straight line. In general, we have the following result.

Lemma 2 A starting point for each level curve of z in the setΩ can be selected
such that the starting points form a smooth curve.
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PROOF. We can write down a differential equation describing the gradient flow
of z(~r) that generates trajectories with their tangent vectors identical to the gradient
vectors

d~q
dτ

= ∇z(~q(τ)) . (2)

Starting from the point~q0 which is the starting point forγ0(·), the solution of this
equation~q(τ) produces a smooth curve. Because∇z is smooth onΩ, the solution
of this differential equation exists and is unique forτ increasing or decreasing.
Furthermore, the solution curve intersects all level curves in Ω. We may choose
one intersection point for each curve to be the starting point. 2

We call the functionz(·) which satisfies the properties in Lemma 1 theorbit func-
tion. Each level curve of this orbit function is called anorbit. We call the selected
curveγ0(·) the reference orbit. A point~r in the setΩ is uniquely determined by
knowingz(~r) which we call theorbit valueands(~r) which is the arc-length mea-
sured from the starting point of the orbit with valuez(~r). These definitions are il-
lustrated in Figure 1. Note that we do not require the orbits to belong to a Bertrand
family, even though we can construct a set of orbits that belong to a Bertrand fam-
ily for a single-looped regular curve with arbitrary shape using the methods in the
proof of Lemma 1.

3 Orbit of unit speed particle

Let~r be the position of a unit speed particle. Suppose~r ∈Ω at timet, then~r belongs
to an orbitγ(·) with orbit valuez(~r). The tangent vector to the curve atγ(s) is not
necessarily aligned with the velocity vector of the particle at~r. Let the Frenet-Serret
frame along orbitγ(·) be (~x1,~y1). Let the velocity vector of the particle be~x. We
can establish another Frenet-Serret frame for the actual trajectory of the particle by
selecting a normal vector~y perpendicular to~x that forms a right-handed coordinate
frame with~y so that~x×~y points to the reader, as shown in Figure 2. Our goal is to
develop the differential equations that describe the change of the two frames and
their relative displacement as the particle moves.

The motion of the frame formed by(~x,~y) of the unit speed particle is

~̇x= u1~y
~̇y=−u1~x (3)

whereu1 is the steering control of the vehicle. We define an angleθ1 ∈ (−π,π] as

cosθ1 =~x·~x1 =~y·~y1
sinθ1 =~y·~x1 = −~x ·~y1 . (4)
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Fig. 2.The two Frenet-Serret frames established at the position ofa unit speed particle~r.
~x1 is tangent to the closed level curve of function z(·).~x is the velocity vector of the particle.
The angleθ1 is also shown. In this case, the gradient vector∇z(~r) and~y1 point in the same
direction.

As the particle moves, the orbit valuezof the particle changes as a function of time:

dz
dt

= ∇z·
d~r
dt

= ∇z·~x = ±‖∇z‖~y1 ·~x = ∓‖∇z‖sinθ1 . (5)

The sign depends on whether∇z is aligned with~y1 or points in the opposite direc-
tion of~y1. The plus sign in the final expression of (5) is assumed when~y1 =− ∇z

‖∇z‖

and the minus sign is assumed when~y1 = ∇z
‖∇z‖ . Notice that once the sign is de-

termined, because the level curves are all closed curves andnever intersect one
another, the sign is fixed for all points inΩ. In this paper, for simplicity, we adopt
the convention that~y1 = ∇z

‖∇z‖ so that only the minus sign is assumed in (5).

The frame(~x1,~y1) changes as the particle moves. We first compute how~y1 evolves:

~̇y1 =
∇2z~̇r
‖∇z‖

−
(∇z·∇2z~̇r)∇z

‖∇z‖3 =
1

‖∇z‖

(

∇2z~x− (~y1 ·∇2z~x)~y1
)

(6)

where∇2z is the Hessian matrix of functionz(·) at point~r. Taking derivatives with
respect to time on both sides of the second equation in (4) we have

cosθ1 θ̇1 =−~̇x·~y1−~x ·~̇y1

=−(u1~y) ·~y1−~x·~̇y1

=−u1cosθ1−
1

‖∇z‖

(

~x·∇2z~x+(~y1 ·∇2z~x)sinθ1
)

. (7)

Since~x = cosθ1~x1−sinθ1~y1, we know that

~x·∇2z~x+(~y1 ·∇2z~x)sinθ1

= cos2θ1(~x1 ·∇2z~x1)−sinθ1cosθ1(~x1 ·∇2z~y1). (8)

Therefore,
θ̇1 = κacosθ1+κbsinθ1−u1 (9)
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where we define

κa=−
1

‖∇z‖
~x1 ·∇2z~x1

κb =
1

‖∇z‖
~x1 ·∇2z~y1 . (10)

We observe that the motion of the particle projected to~x1 causes the arc-lengths to
change along the orbit. On the other hand, the motion of the particle projected to~y1

causes orbit change which also induces variation in the arc-lengths. Therefore, to
compute the total variation of the arc-length, we reparametrize all curves using the
arc-length parameterσ of the reference orbitγ0(·). Then the arc-lengths between
the point~r ∈ Ω and the starting point of the orbit where~r belongs is a function
s(z,σ). Furthermore, we can write,

s(z,σ) =
∫ σ

0

∂s(z,τ)

∂τ
dτ . (11)

Then, the total variation of arc-length is

ds
dt

=
∂s(z,σ)

∂σ
dσ
dt

+
∂s(z,σ)

∂z
dz
dt

=
ds
dt

∣

∣

∣

∣

z=const
+

∂s(z,σ)

∂z
dz
dt

. (12)

We have
ds
dt

∣

∣

∣

∣

z=const
=

d~r
dt

·~x1 =~x·~x1 = cosθ1 . (13)

Therefore,

ds
dt

= cosθ1 +
∂s(z,σ)

∂z
dz
dt

= cosθ1−
∂s
∂z

(z,σ)‖∇z‖sinθ1 . (14)

Since
∂s(z,σ)

∂z
=

∫ σ

0

∂ 2s(z,τ)

∂z∂τ
dτ, (15)

if ∂ 2s(z,τ)
∂z∂τ is not constantly 0 along a simple closed curve, then∂s

∂z is not a constant
when a particle moves along that curve.

4 A two particle pattern

We now consider the case of controlling two unit speed particles to a common orbit
with prescribed arc-length separation. Letγ1(·) andγ2(·) be the instantaneous orbits
for particles 1 and 2 respectively. Lets1 ands2 be the curve lengths measured from
the starting points ofγ1(·) andγ2(·) respectively. Letz1 andz2 be the corresponding
orbit values of the two instantaneous orbits. We want to design a controller that
drives the system asymptotically to

z1 = z2 = cz and s1−s2 = cs (16)
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wherecz ∈ (c1,c2) (see Lemma 1) andcs ∈ [0,L) whereL is the total length of the
orbit with orbit valuecz. We saycz andcs determine aninvariant patternfor two
unit speed particles defined by (16). Without loss of generality, we select orbitcz

as the reference orbit. Then our goal is to stabilize an invariant pattern for two unit
speed particles on the reference orbit.

The total length ofγ1 and the total length ofγ2 are finite. To prevents1 ands2 from
getting arbitrarily large, we make use of two angle variables:

ψ1 =
2π
L

(s1 modL) andψ2 =
2π
L

(s2 modL) (17)

where(s1 modL) and (s2 modL) are bounded byL . The derivative ofψi with
respect to time satisfies

dψi

dt
=

2π
L

(

cosθi −
∂si

∂zi
‖∇zi ‖sinθi

)

(18)

whereθi is the angle between the velocity vector and the tangent vector to the
instantaneous orbit, as defined in (4) but for theith particle.

Using the curve length parameterσ for the reference orbit, we have

(si modL) =
2π
L

∫ σi

σ0i

∂s(zi ,τ)

∂τ
dτ (19)

for i = 1,2, whereσ0i marks the latest point on the orbit wheresi changes fromL
to 0. Therefore in (18)

∂si

∂zi
=

∫ σi

σ0i

∂ 2si(zi,τ)

∂zi ∂τ
dτ . (20)

As a function ofσi ,
∂si
∂zi

is not continuous when(σi −σ0i)→ L. But it is straightfor-

ward to see that∂si
∂zi

is piecewise continuous. The function∂si
∂zi

is still smooth for the
values ofσi such thatσi ∈ (σ0i ,σ0i + L). Later we will see that this discontinuity
requires special treatment in the proof for convergence of our control laws.

In order to measure the relative arc-length difference, we defineΦ = ψ1−ψ2−2π cs
L

where 0< cs < L represents the desired arc-length separation between the two
particles. Without loss of generality we study the case whenΦ ∈ (−π ,π). The
state of the two particles are now determined by(z1,z2,θ1,θ2,Φ). We define the
state spaceS to be the set of all the states satisfyingz1 ∈ (c1,c2), z2 ∈ (c1,c2),
θ1 ∈ (−π,π), θ2 ∈ (−π,π) andΦ ∈ (−π,π). We will later show that under our
feedback control, the value ofz1, z2, θ1, θ2 and Φ remain inS if they initially
belongs toS.

Our control law will be based on a candidate Lyapunov function onSas

V = V1+V2 +
1
2

Q(Φ) (21)
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where fori = 1,2,

Vi = −2log(cos
θi

2
)+

1
2

h(zi) (22)

andh(z) andQ(Φ) are smooth functions. We letf (z) = dh
dz andP(Φ) = 2π

L
dQ
dΦ and

require thath(z), f (z), Q(Φ) andP(Φ) satisfy the following conditions:

B1) h(z) → +∞ whenz→ c1 or z→ c2. Q(Φ) → +∞ whenΦ →±π .
B2) f (z) andP(Φ) are monotone increasing smooth functions.
B3) f (cz) = 0 andP(0) = 0.

In this Lyapunov candidate function the termsV1 andV2 will guide the particles to
follow the orbit determined bycz. This has been shown in [17] and [18]. The term
Q(Φ) serves as a coupling term to establish desired separation between the two
particles. For example, we may letP(Φ) = atan(Φ/2) and letQ(Φ) be the integral
of P(Φ).

We now design the steering control for both particles so thatV̇ ≤ 0. The derivative
of the candidate Lyapunov function with respect to time is

V̇ =
sinθ1

2

cosθ1
2

θ̇1−
1
2

f (z1)‖∇z1‖sinθ1+
sinθ2

2

cosθ2
2

θ̇2−
1
2

f (z2)‖∇z2‖sinθ2

+
1
2

P(Φ)(cosθ1−cosθ2)−
1
2

P(Φ)
∂s1

∂z1
‖∇z1‖sinθ1

+
1
2

∂s2

∂z2
P(Φ)‖∇z2‖sinθ2. (23)

We apply the identity cosα = 1−2sin2 α
2 so that

cosθ1−cosθ2 = −2sin2 θ1

2
+2sin2 θ2

2
. (24)

We also use the fact that, fori = 1,2,

2sin2 θi

2
=

sinθi
2

cosθi
2

sinθi and
1
2

sinθi =
sinθi

2

cosθi
2

cos2
θi

2
. (25)

Then, substituting the identities (24) and (25) into (23), we get

V̇ =
sinθ1

2

cosθ1
2

(

θ̇1− f (z1)‖∇z1‖cos2
θ1

2
−

1
2

P(Φ)sinθ1

−P(Φ)
∂s1

∂z1
‖∇z1‖cos2

θ1

2

)

+
sinθ2

2

cosθ2
2

(

θ̇2− f (z2)‖∇z2‖cos2
θ2

2
+

1
2

P(Φ)sinθ2

+P(Φ)
∂s2

∂z2
‖∇z2‖cos2

θ2

2

)

. (26)
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We choose

u1 = κa1cosθ1 +κb1sinθ1−

(

f (z1)+
∂s1

∂z1
P(Φ)

)

‖∇z1‖cos2
θ1

2

−
1
2

P(Φ)sinθ1+sin
θ1

2

u2 = κa2cosθ2 +κb2sinθ2−

(

f (z2)−
∂s2

∂z2
P(Φ)

)

‖∇z2‖cos2
θ2

2

+
1
2

P(Φ)sinθ2+sin
θ2

2
(27)

where fori = 1,2, κai andκbi are defined in (10) but indexed byi.

Plugging (27) into (9) and (9) into (26) gives,

V̇ = −
sin2 θ1

2

cosθ1
2

−
sin2 θ2

2

cosθ2
2

≤ 0 . (28)

Note thatV̇ is finite on the state spaceSsinceθi 6= ±π .

The closed-loop system equations are

θ̇1=

(

f (z1)+
∂s1

∂z1
P(Φ)

)

‖∇z1‖cos2
θ1

2
+

1
2

P(Φ)sinθ1−sin
θ1

2
ż1=−‖∇z1‖sinθ1

θ̇2=

(

f (z2)−
∂s2

∂z2
P(Φ)

)

‖∇z2‖cos2
θ2

2
−

1
2

P(Φ)sinθ2−sin
θ2

2
ż2=−‖∇z2‖sinθ2

Φ̇=
2π
L

(

cosθ1−cosθ2−

(

∂s1

∂z1
‖∇z1‖sinθ1−

∂s2

∂z2
‖∇z2‖sinθ2

))

. (29)

Note that the system is non-autonomous because∂s1
∂z1

, ∂s2
∂z2

, ∇z1 and∇z2 depend on

time explicitly. Furthermore,∂s1
∂z1

and ∂s2
∂z2

are only piecewise continuous in time.

Fortunately both the Lyapunov function and its derivative do not depend explicitly
on time. We apply the invariance theorem 4.4 on page 192 of [26] in the following
to show that ast → ∞, θ1 → 0 andθ2 → 0.

Theorem 3 Consider a family of orbits given by Lemma 1 and Lemma 2 withσ
being the arc-length parameter for the reference orbit withorbit value cz. Suppose

along any orbit that belongs to the setΩ in Lemma 1,∂
2s(z,σ)
∂z∂σ is a smooth function

that is not constantly zero. Suppose the initial conditionsof the two particles make
the initial value of V given in (21) finite. Then as t→ ∞, the states of the two
particles under the control laws in (27) satisfyθ1 → 0, θ2 → 0, z1 → cz, z2 → cz

andΦ → 0.

PROOF. Let M be any sub-level set ofV in the state spaceS. The value ofV is
finite within M. From the definition ofV it is easy to see thatM is compact. For
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i = 1,2, we have
∂si

∂zi
=
∫ σi

σ0i

∂ 2si(zi,τ)

∂zi ∂τ
dτ . (30)

By assumption, the integrand∂
2si(zi ,τ)
∂zi ∂τ is a smooth function on the compact sub

level setM and hence is bounded both below and above. Sinceσi −σ0i ∈ [0,L),

we know that
∣

∣

∣

∂si
∂zi

∣

∣

∣
is bounded. We also know that‖∇zi ‖ is bounded for all the

possible orbits. Therefore, the right hand side of the closed-loop system given by
(29) satisfies the Lipschitz condition onM. As guaranteed by the derivative of the
Lyapunov functionV being non-positive, starting within the setM, a solution will
not escapeM. Therefore, starting from any point inM, the solution of the closed-
loop system exists and is unique fort ∈ [0,∞).

The finiteness of the initial value ofV guarantees that initiallyzi 6= c1 andzi 6= c2

on the state spaceS whereV is defined. Therefore, initiallyzi ∈ (c1,c2). SinceV
never increases, the particles will stay inΩ given in Lemma 1. Ast → ∞, using
Theorem 4.4 in [26], we can conclude that sinθ1

2 and sinθ2
2 vanish. In this case,

since the initial value ofV is finite andV is not increasing, then starting in the in-
terval(−π,π), θ1 andθ2 can only converge to zero. This means that the controlled
dynamics converge to a subsetE of the state space withθ1 = θ2 = 0. According to
the closed-loop system equations in (29), this also impliesthat żi → 0 andΦ̇ → 0
on the setE.

We next prove thaṫθ1 → 0 andθ̇2 → 0 by the following steps:

S1) Note thaṫθ1 andθ̇2 are piecewise continuous functions of timet.
S2) In the setE wherez1, z2 andΦ are constant, the functions( f (z1)+

∂s1
∂z1

P(Φ))‖∇z1‖

and( f (z2)−
∂s2
∂z2

P(Φ))‖∇z2‖ are piecewise uniformly continuous functions
of t when the particles move along the orbits determined byz1 andz2.
Proof for S2):
Sincez1, z2 andΦ are constant and‖∇zi ‖ are smooth functions with bounded
derivatives in the setE, we only need to show that∂si

∂zi
are piecewise uniformly

continuous functions oft for i = 1,2. Becausezi is constant,

d
dt

∂si

∂zi
=

∂ 2si(zi ,si)

∂zi ∂si

dsi

dt
. (31)

We know
∣

∣

∣

∂ 2si(zi ,si)
∂zi ∂si

∣

∣

∣
is bounded in the setE and

∣

∣

∣

∣

dsi

dt

∣

∣

∣

∣

=

∣

∣

∣

∣

cosθi −
∂si

∂zi
‖∇zi ‖sinθi

∣

∣

∣

∣

= 1 (32)

becauseθi = 0. Therefore,∂si
∂zi

has bounded derivative with respect tot. Fur-

thermore, becausezi is constant, discontinuity in∂si
∂zi

only happens when the
curve lengthsi between the particle and the starting point changes fromL
to 0. The interval between two consecutive discontinuitiesin ∂si

∂zi
has length

11



L. Applying Corollary 7 in the appendix, we have shown that∂si
∂zi

are piece-
wise uniformly continuous fori = 1,2. Next, applying Corollary 8 in the ap-
pendix, we conclude( f (z1)+ ∂s1

∂z1
P(Φ))‖∇z1‖ and( f (z2)−

∂s2
∂z2

P(Φ))‖∇z2‖
are piecewise uniformly continuous functions of time in thesetE.

S3) Sinceθi(t) → 0 for i = 1,2, θ̇1(t) → ( f (z1)+ ∂s1
∂z1

P(Φ))‖∇z1‖ and θ̇2(t) →

( f (z2)−
∂s2
∂z2

P(Φ))‖∇z2‖ in the setE wherez1, z2 andΦ are constant, Lemma

9 in the appendix leads us to the conclusion thatθ̇i → 0 for i = 1,2.

The fact thatθ̇1(t)→ 0 andθ̇2(t)→ 0 whent → ∞ implies that

( f (z1)+
∂s1

∂z1
P(Φ))‖∇z1‖→ 0 and ( f (z2)−

∂s2

∂z2
P(Φ))‖∇z2‖→ 0 (33)

ast → ∞. The finiteness of the initial value ofV guarantees that the particles will
stay inΩ. Thus‖∇z1‖ and‖∇z2‖ can not be zero. Thereforef (z1)+ ∂s1

∂z1
P(Φ)→ 0

and f (z2)−
∂s2
∂z2

P(Φ) → 0 ast → ∞.

We know that∂s1
∂z1

and ∂s2
∂z2

are time varying on the setE. Then becausef (z1), f (z2)

and P(Φ) are constants we can conclude that they all vanish. This implies that
z1 → cz, z2 → cz andΦ → 0. 2

5 Pattern for N particles

The control law (27) can be generalized to stabilize patterns involvingN particles
moving along a single-looped regular curve. ForN > 2, the coupling schemes for
theψi , i = 1,2, ...,N, are not unique. We consider the “chain” case, where except for
particleN, each particle is coupled to the next particle according to given indices.

We define, forj = 1,2, ...,N−1,Φ j = ψ j −ψ j+1−2π c j
s

L wherec j
s is the desired sep-

aration between particlesj and j +1. We then define functionsQ j(Φ j) andPj(Φ j)

so thatPj = 2π
L

dQj
dΦ j

and the following properties are satisfied forj = 1,2, ...,N−1:

C1) Q j(Φ j) → +∞ asΦ j →±π ,
C2) Pj(Φ j) is a monotone increasing function,
C3) Pj(0) = 0.

We defineVi = −2log(cosθi
2 )+ 1

2h(zi) for i = 1,2, ...,N. The derivative ofVi along
the controlled dynamics is

V̇i =
sinθi

2

cosθi
2

θ̇i −
1
2

f (zi)‖∇zi ‖sinθi . (34)

For theN particle pattern, the total Lyapunov function is

VL =
N

∑
i=1

Vi +
1
2

N−1

∑
j=1

Q j(Φ j) . (35)

12



The derivative ofQ j(Φ j) is

Q̇ j(Φ j)=
1
2

Pj(Φ j)(cosθ j −cosθ j+1)

−
1
2

Pj(Φ j)
∂sj

∂zj

∥

∥∇zj
∥

∥sinθ j +
1
2

∂sj+1

∂zj+1
Pj(Φ j)

∥

∥∇zj+1
∥

∥sinθ j+1

=−Pj(Φ j)sin2 θ j

2
−

1
2

Pj(Φ j)
∂sj

∂zj

∥

∥∇zj
∥

∥sinθ j

+Pj(Φ j)sin2 θ j+1

2
+

1
2

∂sj+1

∂zj+1
Pj(Φ j)

∥

∥∇zj+1
∥

∥sinθ j+1 . (36)

For convenience we defineΦ0 = ΦN ≡ 0 andP0(Φ0) = PN(ΦN) ≡ 0. P0(Φ0) and
PN(ΦN) will be used purely as place holders in computing the derivative of the
Lyapunov function along the controlled dynamics. We compute

V̇L =
N

∑
i=1

V̇i +
1
2

N−1

∑
j=1

Q̇ j(Φ j)

=
N

∑
j=1

(

sinθ j
2

cosθ j
2

(

θ̇ j − f (zj)
∥

∥∇zj
∥

∥cos2
θ j

2
−

1
2
(Pj(Φ j)−Pj−1(Φ j−1))sinθ j

−(Pj(Φ j)−Pj−1(Φ j−1))
∂sj

∂zj

∥

∥∇zj
∥

∥cos2
θ j

2

))

. (37)

We now design the control law to be

u j = κaj cosθ j +κb j sinθ j

−

(

f (zj)+
∂sj

∂zj
(Pj(Φ j)−Pj−1(Φ j−1))

)

∥

∥∇zj
∥

∥cos2
θ j

2

−
1
2
(Pj(Φ j)−Pj−1(Φ j−1))sinθ j +sin

θ j

2
(38)

for j = 1,2, ...,N whereκaj andκb j are defined in (10) but indexed byj. This will
result in

V̇L = −
N

∑
j=1

sin2 θ j
2

cosθ j
2

≤ 0 . (39)

The closed-loop system equations are:

θ̇i =

(

f (zi)+
∂si

∂zi
(Pi(Φi)−Pi−1(Φi−1))

)

‖∇zi ‖cos2
θi

2

+
1
2
(Pi(Φi)−Pi−1(Φi−1))sinθi −sin

θi

2

Φ̇ j =
2π
L

(

cosθ j −cosθ j+1−

(

∂sj

∂zj

∥

∥∇zj
∥

∥sinθ j −
∂sj+1

∂zj+1

∥

∥∇zj+1
∥

∥sinθ j+1

))

żi =−‖∇zi ‖sinθi (40)

13



wherei = 1,2, ...,N and j = 1,2, ...,N−1.

Corollary 4 Consider a family of orbits given by Lemma 1 and Lemma 2 withσ
being the arc-length parameter for the reference orbit withorbit value cz. Suppose

along any orbit that belongs to the setΩ in Lemma 1,∂
2s(z,σ)
∂z∂σ is a smooth function

that is not constantly zero. Suppose the initial conditionsof the N particles make
the initial value of VL given in (35) finite. Then under the control law given by (38),
as t→ ∞, the states of the particles satisfyθi → 0 and zi → cz for i = 1,2, ...,N and
Φ j → 0 for j = 1,2, ...,N−1.

PROOF. As in the proof of Theorem 3, we conclude that ast → ∞, θi → 0 for
all i = 1,2, ...,N. We define a subsetE of the state space where allθi vanish,zi are
constant andΦ j are constant fori = 1,2, ...,N and j = 1,2, ...,N−1. On this subset
E, the closed-loop system equations forθ̇i are

θ̇i =

(

f (zi)+
∂si

∂zi
(Pi(Φi)−Pi−1(Φi−1))

)

‖∇zi ‖ (41)

where i = 1,2, ...,N. We can show that the right hand side of (41) is uniformly
piecewise continuous. We then apply Lemma 9 in the appendix to claim thatθ̇i → 0
which further implies thatf (zi)+ ∂si

∂zi
(Pi(Φi)−Pi−1(Φi−1)) → 0 for i = 1,2, ...,N.

Because∂si
∂zi

is time-varying butf (zi) andPi(Φi) are constant on the setE, then
f (zi) → 0 and Pi(Φi)− Pi−1(Φi−1) → 0 for all i = 0,1, ...,N. SinceP0(Φ0) =
PN(ΦN) = 0, we conclude thatPi(Φi) → 0 for i = 1,2, ...,N−1. 2

6 Simulation results

We first show one example of stabilizing an invariant patternfor two particles mov-

ing on the super-ellipse given byx
2p

a2p
0

+ y2p

b2p
0

= 1 wherea0 > 0 andb0 > 0. Notice

that whenp = 1 this describes an ellipse. Whenp is an odd integer greater than
one, the curve looks like a rectangle with rounded corners. We construct the orbit

functionz(x,y) = (x2p + y2p

e2p )
1

2p wheree= b0
a0

. If p is an odd integer, the curve with

orbit valuea0 can be parametrized byx = a0(cosθ)1/p andy = b0(sinθ)1/p. From
these equations, we are able to compute the arc-length, curvature and tangent vec-
tors of any super-ellipse in the family. For coupling between two particles, we let
P(Φ) = K atan(Φ/2) where the gainK > 0 can be adjusted for performance.

In our simulation, we first control the two unit speed particles so that they move to
the outer super-ellipse shown in Figure 3 witha0 = 4,b0 = 3, p= 3 and relative arc-
length equal to 2. Then we command them to the inner super-ellipse witha0 = 3,
b0 = 2 p = 3 and relative arc-length equal to 1. Figure 3 shows the trajectories and
Figure 4 shows the arc-length separation with respect to time. Notice that we do
not change the control law, we only change the value of the parametersa0 andb0

for the transition to happen.
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Fig. 3. The trajectories of two unit speed particles stabilized to invariant patterns on su-
per-ellipses. The outer super-ellipse has a0 = 4, b0 = 3 and p= 3 and the inner super-el-
lipse has a0 = 3, b0 = 2 and p= 3. The desired relative separation, measured by the ar-
c-length difference, is 2 on the outer super-ellipse and 1 onthe inner super-ellipse. Label A
indicates the initial positions of the two particles. LabelB indicates the stabilized pattern
on the outer super-ellipse. Label C indicates when the two particles start to move from the
outer super-ellipse to the inner super-ellipse. Label D indicates the stabilized pattern on
the inner super-ellipse.
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Fig. 4.The arc-length difference between the two unit speed particles versus time for stabi-
lization of two particles moving around super-ellipses.

In Figure 5, we demonstrate the control of eight particles toinvariant patterns along
various star shapes that can be constructed using the formula in [27]. We control
the particles to distribute uniformly on each star. The communication topology is
a chain i.e., thejth particle is coupled to the( j − 1)th and( j + 1)th particle for
j = 2,3, ...,N−1; the first and last particles are only coupled to one other particle
and not to each other.
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Fig. 5.Patterns of eight unit speed particles on two star-shaped curves. The particles are
distributed uniformly as they move around each curve.

7 Summary and Future Directions

In this paper, we have introduced a new method for designing steering control laws
for a system ofN unit speed particles. The control steers the particles to anin-
variant pattern corresponding to a constant orbit value andconstant separations
measured by the relative arc-lengths along the reference orbit. By extending curve
tracking methods, we prove convergence to closed simple smooth curves. This class
of curves is much more general than what were treated in recent related works (e.g.
[15],[20]). Although the convergence is not global in the plane, the orbit function
we introduce often allows convergence from a large set of initial positions.

In our cooperative control laws, we use relative arc-lengthto couple particles be-
cause of the constant speed constraint. A simple chain structure for coupling al-
lows us to stabilize the invariant patterns. Other more complicated coupling struc-
tures may also be applied according to communication or sensing requirements.
We have not yet addressed collision avoidance in this setting. The challenge here
derives from the constant speed constraint. In practice, extra collision avoidance
mechanisms are often introduced that break the constant speed constraint when
safety instead of performance is the major concern.

The problem of stabilizing an invariant pattern along or near a closed curve or
boundary is also interesting if the constant speed constraint is relaxed. In [28], a
PDE based algorithm inspired by computer vision algorithms[29] is developed
to distribute agents along a boundary. Convergence is demonstrated but not yet
proved. In recent preprint [30], Kumar and Hsieh have shown some interesting the-
oretical and simulation results using potential functions. Some experimental works
are documented in [31]. Our results, although based on the assumption that all par-
ticles travel at identical constant speed, suggest a systematic approach to solving
this pattern generation problem. We have shown some of our results on achieving
invariant patterns without the constant speed constraint in [32].

This paper is concerned with the planar setting. Of course, many important mo-
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tion control problems evolve in three-dimensional physical space. For underwater
gliders, our results are applied by projecting the three dimensional motion onto the
plane [7]. New developments have been made in [33] to use a natural frame setting
to model three dimensional motion. The resulting steering laws are similar to those
derived in the planar setting. This suggests that the concepts of orbit function and
relative arc-length coupling established in this paper canalso be extended to the
three dimensional setting.

A Appendix on uniformly continuous functions

We first review one classical result on uniformly continuousfunctions c.f. [34,35].

Theorem 5 Supposeφ(t) is differentiable on[0,∞) and|φ ′| is bounded. Thenφ(t)
is uniformly continuous.

The concept of uniformly continuous can be extended to piecewise continuous
functions.

Definition 6 A piecewise continuous function is piecewise uniformly continuous on
[t0,∞) if ∀k1 > 0and∀T1 > t0,∃k2 such that either∀t ∈ [T1,T1+k2), |φ(t)−φ(T1)|<
1
2k1 or alternatively,∀t ∈ (T1−k2,T1],|φ(t)−φ(T1)| <

1
2k1.

We have the following corollaries for piecewise uniform continuity.

Corollary 7 Suppose a piecewise continuous functionφ(t) is differentiable on
[t0,∞) except for the points where discontinuities occur. Suppose|φ ′|, when it ex-
ists, is bounded by Nb > 0. Suppose the length of each sub-interval whereφ(t) is
differentiable is bounded below by l> 0. Thenφ(t) is piecewise uniformly contin-
uous.

Corollary 8 Let φ1(t) be uniformly continuous andφ2(t) be piecewise uniformly
continuous on[t0,∞), then

(1) (φ1(t)+φ2(t)) is piecewise uniformly continuous on[t0,∞);
(2) φ3(φ2(t)) is piecewise uniformly continuous ifφ3 is a smooth function on the

image ofφ2(t) and
∣

∣φ ′
3

∣

∣ is bounded;
(3) φ1(t)φ2(t) is piecewise uniformly continuous if|φ1(t)| and|φ2(t)| are bounded.

The well-known Barbalat’s lemma can be generalized to piecewise uniformly con-
tinuous functions.

Lemma 9 Let φ be a piecewise continuous function andη be a piecewise uni-
formly continuous function on[t0,∞). Suppose thatlimt→∞

∫ t
t0 φ(σ)dσ exists and is

finite. Suppose thatlimt→∞(φ(t)−η(t)) = 0. Thenφ(t)→ 0 as t→ ∞ .

PROOF. If φ(t) does not go to zero, thenη(t) does not go to zero either. Since
η(t) does not go to zero, there exists positivek1 such that for everyT > t0, we can
find T1 andk whereT1 ≥ T + k so that|η(T1)| ≥ k1. By the assumption thatη(t)
is piecewise uniformly continuous, givenk1,T1 andk, there exists positivek2 < k
such that|η(t)−η(T1)|<

k1
2 either for allt ∈ [T1,T1+k2] or for all t ∈ [T1−k2,T1].
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Hence either for allt ∈ [T1,T1+k2] or for all t ∈ [T1−k2,T1], we must have

|η(t)|= |η(t)−η(T1)+η(T1)|

≥ |η(T1)|− |η(t)−η(T1)| > k1−
1
2

k1 =
1
2

k1 (A.1)

Therefore, either
∣

∣

∣

∣

∫ T1+k2

T1

η(t)dt

∣

∣

∣

∣

=
∫ T1+k2

T1

|η(t)|dt >
1
2

k1k2 (A.2)

or
∣

∣

∣

∣

∫ T1

T1−k2

η(t)dt

∣

∣

∣

∣

=
∫ T1

T1−k2

|η(t)|dt >
1
2

k1k2 (A.3)

is true. The equality holds sinceη(t) retains the same sign fort ∈ [T1,T1 + k2) or
for t ∈ (T1−k2,T1].

We define a functionξ (t) = φ(t)−η(t). Sinceξ (t) → 0 ast → ∞, then for the
positive numberk1/4, we can find a timeT∗ > 0 such that|ξ (t)| < k1/4 for all
t > T∗. Then for anyT > T∗, we letT1 ≥ T + k2 so that one of (A.2) and (A.3)
is satisfied. Fort ∈ [T1− k2,T1] and t ∈ [T1,T1 + k2], we still have|ξ (t)| < k1/4.
Therefore, either

∣

∣

∣

∣

∫ T1+k2

T1

ξ (t)dt

∣

∣

∣

∣

≤
∫ T1+k2

T1

|ξ (t)|dt <
1
4

k1k2 (A.4)

or
∣

∣

∣

∣

∫ T1

T1−k2

ξ (t)dt

∣

∣

∣

∣

≤

∫ T1

T1−k2

|ξ (t)|dt <
1
4

k1k2 (A.5)

is true. We then have either

∣

∣

∣

∣

∫ T1+k2

T1

φ(t)dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ T1+k2

T1

(η(t)+ξ (t))dt

∣

∣

∣

∣

≥

∣

∣

∣

∣

∫ T1+k2

T1

η(t)dt

∣

∣

∣

∣

−

∣

∣

∣

∣

∫ T1+k2

T1

ξ (t)dt

∣

∣

∣

∣

>
1
4

k1k2 (A.6)

or

∣

∣

∣

∣

∫ T1

T1−k2

φ(t)dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ T1

T1−k2

(η(t)+ξ (t))dt

∣

∣

∣

∣

≥

∣

∣

∣

∣

∫ T1

T1−k2

η(t)dt

∣

∣

∣

∣

−

∣

∣

∣

∣

∫ T1

T1−k2

ξ (t)dt

∣

∣

∣

∣

>
1
4

k1k2 . (A.7)

In summary, we have shown that there exists a timeT∗ > t0 such that for any
T > T∗, there existsk2 > 0 andT1 > T + k2 such that one of (A.6) and (A.7) is
satisfied. Thus the integral

∫ t
t0 φ(σ)dσ can not converge to a finite limit ast → ∞,

a contradiction. This proof is inspired by a proof for an extension of Barbalat’s
lemma in [36]. 2
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