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Abstract

We present methods to stabilize a class of motion pattemsrib speed particles in the

plane. From their initial positions within a compact sethe plane, all particles converge
to travel along a closed curve. The relative distance beiveaeh pair of particles along

the curve is measured using the relative arc-length betweeparticles. These distances
are controlled to converge to constant values.
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1 Introduction

Agile sensor networks can collect information in the skytloeground and under-
water. Sensor networks with fixed nodes are able to contslyaaonitor specific
locations for long periods of time. Great research proghassbeen achieved and
commercial products are emerging c.f. [1].

A new direction for sensor network research employs sts]lunmanned aerial
vehicles (UAVs), ground robots and unmanned underwateickesh(UUVS) as
moving sensor platforms. Such a mobile sensor network caarcd large area
with a relatively small number of platforms by performingoperative motion that
ensures the optimal distribution of sensing power acrasatba. Some of the latest
research results demonstrate that control over relatisgipos among sensor plat-
forms has significant impact on the quality of informatiodlected by the entire
network c.f. [2-5].

Influenced by the study of swarming behaviors of animal gsaup [6], researchers
are developing cooperative control methods to achievedbeetl relative positions
among a group of moving sensor platforms. The problem inafédied the swarm-
ing or formation problem. The dynamics of each platform iaietwork is usually
complicated. For coordination purposes, however, it istoral to use the simpler
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model of an individual platform modeled as a particle in taese of classical me-
chanics. One advantage of using this simple model is thah#wretical results are
platform independent. Error caused by this simplificat®mnisually reduced by a
lower level, platform specific controlling mechanism. Thadrue, for example, in
the case of a recent experimental demonstration of comigodl fleet of underwa-
ter gliders [7]. The particles interact with each other tigio synthetic forces that
are induced by feedback control laws. The goal is to devigalda control laws
so that the particles attain desired motion patterns. kghirit, methods such as
energy shaping ([8],[9]) are applied with promising resutir formations in the
plane c.f. [10],[11]. The literature is also rich with refsutegarding cooperative
control where particles are replaced by agents with simyteachics, for example
in [12-14].

Operational objectives for UAVs and UUVs often require thatforms to travel
at the highest constant speed to survey the largest areaititima. Therefore,
one may also view the platforms as particles moving at (comyraonstant speed.
Particles under gyroscopic forces obey a constant speetiraon. Certain patterns
for a system of particles with unit speed can be classifiethdlse group theoretic
methods, Justh and Krishnaprasad have shown that in the,garticles moving
along parallel lines or around the same circle are the ortive equilibria if
the particles are subjected to steering laws that dependamntelative positions
and headings. Steering control laws are proposed to asyicglp achieve those
patterns as relative equilibria c.f. [15] and an earliesiar [16]. The insight also
enabled the work in [17] and [18] to design (time varying)esteg control for
obstacle avoidance and boundary following for a single torispeed particle.

The steering control laws given in [15] are justified for asing planar formations
of two unit speed particles. Extension to many particlesraade in [19]. Sepulchre,
Paley and Leonard [20] noticed that patterns of many conhsfaeed particles can
be achieved in the plane by extending methods previouslgldped for coupled
oscillators [21]. In [20], steering control laws are de\dd to stabilize formations
on circles and parallel lines. It is later shown in [4] thdtpsles can be mapped
to circles using a nonlinear transform so that some of theltsegn [20] can be
generalized to ellipses.

In applications such as the Adaptive Sampling and Predicidhe ocean (ASAP)
project [22], desired coordinated trajectories for moligmsor platforms are de-
fined by a collection of closed curves of various shape wigsgribed relative
spacing of vehicles on the curves. These are computed batinionize sensing
error and to address operational challenges. This has atedithe need for a sys-
tematic method to design steering control laws that stabpiatterns on a closed
curve with arbitrary shape. In this paper, we first modify Inoets in [17] and [18]
to steer one agent so that its trajectory converges to theedadosed curve. Next,
to achieve a prescribed collective motion pattern, we atdiee major challenge of
the inhomogeneity of phase angles of particles around treedlcurve. Influenced
by the ideas in [23] and [24], we propose a method that use®thive arc-length
between particles instead of phase angle differences tsuneghe relative posi-



tion between agents on a closed curve. Our steering coatssl are proved stable
using a Lyapunov function that converges to its criticalnp@long the controlled
dynamics.

The paper is organized as follows. In Section 2, we define lam foinction on the
plane. The level sets of this orbit function can be viewedrbgowith energy equal

to the function value. In Section 3, we develop the equati@ssribing the motion

of a unit speed particle with respect to the orbits. In Secfica control law for two
particles is developed to stabilize patterns on any givbit.drhe coupling between
the two patrticles is a function of the relative curve lenitle. generalize the control
law to a collection oN particles in Section 5. We demonstrate the control laws with
simulation results presented in Section 6.

2 Orbit function

Let yo() represent a simple, closed, regular curve in the plane mresed by its
arc-lengths. The total length of such a curve is finite. A poirdp on the curve is
selected as thstarting pointand at this point we assig= 0. The Frenet-Serret
frame (Xo(S),Yo(S)) can be constructed witky(s) the unit tangent vector to the
curve andyp(s) the unit normal vector to the curve @f(s). We use the convention
such that(Xy(s),Yo(s)) forms a right-handed coordinate frame wWi(s) x Yo(S)
pointing to the reader. Lat(s) be the curvature of the curve gi(s). The Frenet-
Serret equations describe how the frame formeXbis), Yo(s)) is translated along
the curve:

:?Eji = K(9(9
Yo(s
o) k(9%(s). )

Without loss of generality, we assume that the origin of afitedd coordinate sys-
tem is placed at a point in the plane encircledybfy). Notice that since the curve
is a compact subset of the plane, we can construct a closk8 bahtered at the
origin such thayp(-) € int(B).

Lemma 1 Assume that at every point on the cupgethe curvature is uniformly
bounded. There exists a functionB — R, satisfying the following properties:

Al) yois alevel curve of ) i.e. Zy(-)) is a constant function of s.

A2) There exists a finite intervéds, cy] such that any level curve of-z with its
value belonging tdcy, c;| is entirely contained in B. Also(f(-)) € (c1,Cp).

A3) The function z is smooth on the open®et {T € B|c; < z(T) < ¢, }. Further-
more, || Oz|| # 0 for all points inQ .

PROOF. Neary(-), a family of curvesy, (-), called the Bertrand family c.f. [25],
can be constructed a5 (S) = y(S) + AYo(S) whereA is a real number. The tan-



gent vector toy, (S) is X, (S) = (1 — K(S)A)Xo(S). There is a singularity at = %
Because we assume thats) is uniformly bounded for alk, we may choose an

€ € (0, m) so that all Bertrand curves witld | < € are regular and are con-
tained inB. We let the sefQ be defined as the set of all points on the Bertrand
curves with|A| < €. It can be verified tha® is an open connected subseBof

Since every point iQ belongs to a Bertrand curve, we can construct a function
z(r) on Q by lettingz(r') = A if T € y, (-). Each Bertrand curve is a level curve for
z(r). We now select an arbitrary poinand prove tha(r) is differentiable at. In
fact, within a small neighborhood @f the directional derivative af(r') along the
tangent vector,), (s) is always 0. The directional derivative rfr) along the nor-
mal vectory, (s) is always constantly 1 or1. The sign depends on whetheiis
increasing or decreasing along #jedirection. The continuity of these two direc-
tional derivatives implies tha(T) is differentiable in the selected neighborhood. It
is a property of the Bertrand family of curves that(s) = yo(s). Therefore, since
0z = yo(s) or Oz= —¥yp(s), Oz is a smooth vector field. Thugr) is smooth in the
neighborhood. Since these arguments hold for all poin€,in) is smooth inQ.
Notice also thaf [z|| = 1 # 0 for all points inQ.

We may letz(T) = 0 for 7 € B/Q and letc; = —& andc; = +¢. This concludes
the proof since we have given one method to construct a fumzthat satisfies all
properties in the lemma.O

We emphasize that the method given in the proof is often rebést for construct-
ing the functiore(-). Simple methods for special curves often result in a mudelar

Q. For example, suppose an ellipse is giverrby (x,y) € R? andg—i +f;—i =1 for

constants, b € R. We may define a functioa(r) = §—§+ é. The level curves of
z(-) are families of concentric ellipses. We can choos® be an arbitrarily small
positive number and, > c; to be an arbitrarily large positive number. The set
Q = {T € R?|c; < z(T) < ¢} is an arbitrarily large bounded set without the origin.

Fig. 1. A set of concentric ellipses. The inner ellipse has orbitigat, and outer ellipse
has orbit value g¢. The curve length s is measured from the starting poing60# (solid
ellipse) to the position of the particle (black circle) gs1-).

In the above example, if we let the starting point of eaclpsdibe the intersection
of the ellipse with the horizontal axis, then all startingrie are on a smooth curve
which is a straight line. In general, we have the followinguie

Lemma 2 A starting point for each level curve of z in the §&tcan be selected
such that the starting points form a smooth curve.



PROOF. We can write down a differential equation describing thedggat flow
of z(F) that generates trajectories with their tangent vectonstidal to the gradient
vectors

dg

o = 02(d(1) . )

Starting from the poingjp which is the starting point foyy(-), the solution of this
equationd(t) produces a smooth curve. Becaliseis smooth orQ, the solution
of this differential equation exists and is unique foincreasing or decreasing.
Furthermore, the solution curve intersects all level camveQ. We may choose
one intersection point for each curve to be the startingtpoin

We call the functiore(-) which satisfies the properties in Lemma 1 @it func-
tion. Each level curve of this orbit function is called arbit. We call the selected
curve yp(-) the reference orbit A pointT in the setQ is uniquely determined by
knowing z(r) which we call theorbit valueands(r) which is the arc-length mea-
sured from the starting point of the orbit with vala@). These definitions are il-
lustrated in Figure 1. Note that we do not require the orbitseiong to a Bertrand
family, even though we can construct a set of orbits thatrigeto a Bertrand fam-
ily for a single-looped regular curve with arbitrary shaseng the methods in the
proof of Lemma 1.

3 Orbit of unit speed patrticle

LetT be the position of a unit speed particle. Suppose at timet, thenr belongs

to an orbity(-) with orbit valuez(t). The tangent vector to the curves) is not
necessarily aligned with the velocity vector of the paetiatr. Let the Frenet-Serret
frame along orbity(-) be (X1,Y1). Let the velocity vector of the particle be We

can establish another Frenet-Serret frame for the actjattory of the particle by
selecting a normal vect@rperpendicular t& that forms a right-handed coordinate
frame withy so thatX x ¥ points to the reader, as shown in Figure 2. Our goal is to
develop the differential equations that describe the caaighe two frames and
their relative displacement as the particle moves.

The motion of the frame formed K, y) of the unit speed particle is

X = Uy
y=—uX 3)

whereu; is the steering control of the vehicle. We define an afgle (-, 11 as

cosf =X-X1=VY-¥1
sinBp=y-X=—-X-y1. (4)



Fig. 2. The two Frenet-Serret frames established at the positicnwofit speed particl&.
X1 is tangent to the closed level curve of functidn .z is the velocity vector of the particle.
The anglef; is also shown. In this case, the gradient veditx(T') andy; point in the same
direction.

As the particle moves, the orbit valaef the particle changes as a function of time:

d—Z:Dz-@:DZ-X’:i||Dz||Vl-X’=$|IDz||sin61. (5)
dt dt
The sign depends on whetheér is aligned withy; or points in the opposite direc-

tion of y;. The plus sign in the final expression of (5) is assumed VW@“‘HB—?H
_dz_

and the minus sign is assumed whan= =R Notice that once the sign is de-

termined, because the level curves are all closed curvesewel intersect one
another, the sign is fixed for all points . In this paper, for simplicity, we adopt

the convention tha; = % so that only the minus sign is assumed in (5).

The frame(Xy, Y1) changes as the particle moves. We first computeyicsvolves:

2zF  (Oz-0%zr)0z 1

I 0z]| | Oz)2 I 0z]|

(0228 — (Y1~ O%zX)%1) (6)

whereJ?zis the Hessian matrix of functiaz(-) at pointr. Taking derivatives with
respect to time on both sides of the second equation in (4)ave h

cosh b= —X-Y1—X-Y1
=—(Wy)-$1—X-N

1 .
— — Uy COSB; — T (- 0%2%+ (Y1 - O%zR) sinby) . (7)

SinceX = cosB; X1 — sinB1y1, we know that

- 022X+ (1 - 0%zX) sin6y
= oS 01 (%y - 0%z%1) — sinBy cosby (%1 - 0%zyy). (8)

Therefore, _
61 = K5C0S01 + K, SinB; — Uy (9)



where we define

(__ 1
T

%4 - 0%z . (10)

Y]_ . DZZX]_

Knh =
T Dz]

We observe that the motion of the particle projectes,toauses the arc-leng#to
change along the orbit. On the other hand, the motion of thecfeaprojected tg/;
causes orbit change which also induces variation in théeagths. Therefore, to
compute the total variation of the arc-length, we reparamestll curves using the
arc-length parameter of the reference orbi(-). Then the arc-length between
the pointr € Q and the starting point of the orbit wherebelongs is a function
S(z,0). Furthermore, we can write,

9 0s(z,1)
= =~ Jdr. 11
s(z.0) /0 Fracl (11)
Then, the total variation of arc-length is

ds ds(z,0)do N ds(z.o)dz ds 0s(z,0)dz

— = — — = — —. 12
dt do dt 0z dt dt|,_.ne Jz dt (12)
We have g o
—S :—-21:%?1200891. (13)
dt z=const dt
Therefore,
ds ds(z.o)dz Js :
g c0s6; + 9, di cos6y — 0—2(2, o) ||Dz|| sind; . (14)
Since 05(2.0) 5%5(2.1)
s(z,o) [90°s(zT
0z Jo “dzat (15)
if % is not constantly 0 along a simple closed curve, t@%is not a constant

when a particle moves along that curve.

4 A two particle pattern

We now consider the case of controlling two unit speed pagito a common orbit
with prescribed arc-length separation. kgt ) andys(-) be the instantaneous orbits
for particles 1 and 2 respectively. Lgtands, be the curve lengths measured from
the starting points ofy (-) andys(-) respectively. Lez; andz, be the corresponding
orbit values of the two instantaneous orbits. We want togiesi controller that
drives the system asymptotically to

21=2=C, ands; —S =Cg (16)



wherec; € (c1,C2) (see Lemma 1) and; € [0,L) whereL is the total length of the
orbit with orbit valuec,. We sayc, andcs determine annvariant patternfor two
unit speed patrticles defined by (16). Without loss of geiitgrale select orbit,
as the reference orbit. Then our goal is to stabilize an iamépattern for two unit
speed particles on the reference orbit.

The total length of4 and the total length of are finite. To preverd; ands, from
getting arbitrarily large, we make use of two angle variable

o

U = ZTH(sl modL) andy,p = T S, modL) a7

where (s modL) and (s, modL) are bounded by.. The derivative ofy; with
respect to time satisfies

dyi 2m 0s i
G (cosG. ~ 9 10z | Sln9.> (18)

where 6 is the angle between the velocity vector and the tangenbwéctthe
instantaneous orbit, as defined in (4) but for itieparticle.

Using the curve length parameteifor the reference orbit, we have
2 (9% 0s(z, 1)

(s modL):T o 0T

dr (19)

fori = 1,2, whereay marks the latest point on the orbit whesechanges froni
to 0. Therefore in (18)

ﬁ_/"‘ 0%5(2,7)
0z,  Joy 0701

As a function ofo;, g—: is not continuous whefo; — 0g ) — L. But it is straightfor-

dr. (20)

ward to see thaf? is piecewise continuous. The functigd is still smooth for the
values ofg; such thato; € (0gi, 0gi + L). Later we will see that this discontinuity
requires special treatment in the proof for convergencaiotontrol laws.

In order to measure the relative arc-length difference, @fmd® = ¢ — y»n —271%
where 0< cs < L represents the desired arc-length separation betweemnwthe t
particles. Without loss of generality we study the case wibea (—r1, 7). The
state of the two particles are now determined(by z, 61, 6>, ®). We define the
state spacé& to be the set of all the states satisfyimge (c1,¢2), 2 € (€1,C2),

01 € (—mm), 62 € (—m,m) and® € (—mm, ). We will later show that under our
feedback control, the value ai, 2z, 61, 6, and ® remain inS if they initially
belongs tcs.

Our control law will be based on a candidate Lyapunov fumctoSas

V=V, +V2+%Q(<D) (21)



where fori = 1,2,

Vi = —2Iog(cos%) + :—2Lh(2i> (22)

andh(z) andQ(®) are smooth functions. We lé{z) = ‘3—2 andP(®) = 2—"g—8 and
require that(z), f(z), Q(®) andP(®) satisfy the following conditions:

B1) h(z) — 4+ whenz— ¢ or z— ¢p. Q(®) — +o when® — £7r.

B2) f(z) andP(®) are monotone increasing smooth functions.

B3) f(c;) =0andP(0) =0.

In this Lyapunov candidate function the termisandV, will guide the particles to
follow the orbit determined byg,. This has been shown in [17] and [18]. The term
Q(®P) serves as a coupling term to establish desired separatiorede the two
particles. For example, we may B{®) = atar(®/2) and letQ(P) be the integral
of P(P).

We now design the steering control for both particles soVhat0. The derivative
of the candidate Lyapunov function with respect to time is

n&

sin&
2 91——f(21) |0z [|sin6; + 52 92——f(22) |0z sin6,
s

V=

COS

+%P(<D)(cos@1 —costy) — %P((D) oS, || Oz || sSinBy
10 .
+222p(o) | Oz, | sinés. (23)
202,
We apply the identity cos = 1 — Zsir‘?% so that
. 91 . 92
cos6; — cosh, = —23|r12? +25|r12?. (24)
We also use the fact that, foe 1,2,
.6 .6
= sina
2s r12 2 2 sin6 and }sine. = —~2 cos ﬂ (25)
cos 2 cos3 2

Then, substituting the identities (24) and (25) into (233, get

6
sin2 > . 91 1 .
- (8 1 Ieod § - Jpc@)sine
s 0,
P n c0# 5 )
92 .

P2 (ez— f(z2) |02zl coé & + 2p(@)sine,

COS7a ;
-i—P(dD)a—ZHDzzHcosz?z) . (26)



We choose

Uy = Kq1C0SO1 + Kp1 SinBy — (f(zl) +%P(CD)) [ Dzl||cosz%
1
1 . 6
_EP(CD) S|n61-|-S|n?1
Up = Ka2C0S02 + Kp2SinBo — (f(zz) - g—zszP(cb)) | Oz || cosz%
2
+%P(¢) sin92+sin% (27)

where fori = 1, 2, K5 andkp; are defined in (10) but indexed by
Plugging (27) into (9) and (9) into (26) gives,

_ sif% sif%

6 6,
COS7 COS7

<0. (28)

Note thatV is finite on the state spa@since6 # +Tt.
The closed-loop system equations are

N 081 61 1 . . 9]_
91_(f(21)+0—21P(¢)) [ Dzl||0052§+§P(¢)S|n91—sm§
21:— H DZ]_HSinel
- 0sp 6 1 . . 6
92_<f(22) a_zzp(q’)) ||Dz2||coszE SP(®)sind, —sin—
'22:— || D22||sin92

p _27'[ s . 0s) .
P= 3 (cos@l cos6, (021 | Oz1 || sin6y 92 ||D22Hsm92)>. (29)

Note that the system is non-autonomous bec%%se%, Oz andOz depend on

time explicitly. Furthermore? and 22 are only piecewise continuous in time.
9z, 02

Fortunately both the Lyapunov function and its derivatieendt depend explicitly
on time. We apply the invariance theorem 4.4 on page 192 ¢fifibe following
to show that ag — o, 6; — 0 and6, — 0.

Theorem 3 Consider a family of orbits given by Lemma 1 and Lemma 2 with
being the arc-length parameter for the reference orbit vaithit value ¢. Suppose

along any orbit that belongs to the €&tin Lemma 1,‘9252(;’(‘;) is a smooth function

that is not constantly zero. Suppose the initial conditiohthe two particles make
the initial value of V given in (21) finite. Then as-t o, the states of the two
particles under the control laws in (27) satisly — 0, 6, — 0, 21 — C;, 2 — C;

and® — 0.

PROOF. LetM be any sub-level set &f in the state spac8 The value oWV is
finite within M. From the definition oV it is easy to see tha¥l is compact. For

10



i=1,2, we have

ds _ [%0%s(z,1)
a_a_/oo. g (30)
By assumption, the integranﬁ(# is a smooth function on the compact sub

level setM and hence is bounded both below and above. Sineeoy < [O,L),
we know that 3—2 is bounded. We also know thétlz || is bounded for all the

possible orbits. Therefore, the right hand side of the cdeep system given by
(29) satisfies the Lipschitz condition &h. As guaranteed by the derivative of the
Lyapunov functiorlV being non-positive, starting within the 9t a solution will
not escapé. Therefore, starting from any point M, the solution of the closed-
loop system exists and is unique fog [0, ).

The finiteness of the initial value &f guarantees that initiallg # ¢, andz # ¢,

on the state spac®whereV is defined. Therefore, initiallg; € (c1,c2). SinceV
never increases, the particles will stay(ngiven in Lemma 1. Ag — o, using
Theorem 4.4 in [26], we can conclude that%irand sin% vanish. In this case,
since the initial value oY is finite andV is not increasing, then starting in the in-
terval (—r, M), 6, and 8, can only converge to zero. This means that the controlled
dynamics converge to a sub&ebf the state space withy = 6, = 0. According to

the closed-loop system equations in (29), this also imphasz — 0 and® — 0

on the sek.

We next prove thafy — 0 andf, — 0 by the following steps:

S1) Note thab; and8, are piecewise continuous functions of titne

S2) Inthe seE wherez;, z, and® are constant, the functioi$(z;) + 3 g8, 2 P(®)) || Oz |
and(f(z) — S—Z (®)) ||Ozz || are piecewise uniformly contlnuous functions
of t when the particles move along the orbits determined;andz.

Proof for S2)
Sincez;, z, and® are constant anfiJz || are smooth functions with bounded

derivatives in the sdf, we only need to show th% are piecewise uniformly
continuous functions dffor i = 1,2. Becauseg; is constant,

dds 0%s(z,s)ds

dtoz ~ ozds dt (31)
We know‘ ‘7; (Z;SS) ‘ is bounded in the sé& and
ds| SIS
'a'— costi — 52 |z sin6| - 1 (32)

because) = 0. Therefore 22 has bounded derivative with respectttd-ur-

’5Z|
thermore, becausg is constant, discontinuity n% only happens when the
curve lengths between the particle and the startlng point changes ftom
to 0. The interval between two consecutive dlSCOhtIﬂuMﬂE%% has length

11



L. Applying Corollary 7 in the appendix, we have shown thatare piece-
wise uniformly continuous for= 1,2. Next, applying Corollary 8 in the ap-
pendix, we concludef(z) + 3 g8, P( ) || Oz || and(f(z2) — Z—ZP(CD)) | Oz ||
are piecewise uniformly contlnuous functions of time in sle¢E.

S3) Sincedi(t) — 0 fori =1,2, 65(t) — (f(z1) + J2P(P)) | Dza || and bx(t) —
(f(z2)— Z—ZP(GJ)) | Oz2 || in the se wherez;, z, and® are constant, Lemma

9 in the appendix leads us to the conclusion that 0 fori=1,2.
The fact tha® (t) — 0 and6,(t) — 0 whent — « implies that
0s1 0

(f(21)+0—P( )0z —0 and (f(Zz)—a—P( NI0z[| =0  (33)

ast — o. The finiteness of the initial value & guarantees that the particles will
stay inQ. Thus|| Oz, || and|| Oz || can not be zero. Thereforfdz; ) + aslP((D) -0

andf(z) — a—ZZP(CD) — O ast — co.

We know thaa—ii andg—Z are time varying on the s&. Then becausé(z), f(z)

and P(®) are constants we can conclude that they all vanish. Thisiesiphat
Z1—Cz, o — C;and® — 0. O

5 Pattern for N particles

The control law (27) can be generalized to stabilize pastémolvingN particles
moving along a single-looped regular curve. Ror- 2, the coupling schemes for
theys,i= .,N, are not unique. We consider the “chain” case, where exoept f
particleN, each partlcle Is coupled to the next partlcle accordlng\terglndlces

We define, forj =1,2,.. .N—-1,®j = {j — j;1— 27'[— wherecl is the desired sep-
aration between particlejsandj +1. We then deflne functior®;(®;) andP,(dJ,)
so thatP; = ZL”SQQ,’ and the following properties are satisfied foe 1,2,...,N— 1:
Cl) Qj(®j) — +w asd; — £,

C2) Pj(®;) is a monotone increasing function,

C3) Pj(0) =0.

We defineV;, = —2Iog(cos%) + %h(zi) fori=1,2,...,N. The derivative o¥; along
the controlled dynamics is

6
"2 4 21(a) |0z sine. (34)

V=
cos—

For theN patrticle pattern, the total Lyapunov function is

N 1N71
M= 3V 3 Q). (35)

12



The derivative oRQ;j(®j) is

. 1
Qj(®Pj) = 5Pj(Pj)(coshj — cosbj1)

2
1 08 10si11 .
—5Pi(®)) - H Oz || sin®; + ZdzHlpl(q)') | Dzj11 | sin6j+1
9 1
R >sm“ Lo 02 | 05 s
.50 10s .
-I-Pj((Dj)SmZ 12+1_|_§‘32§in D) HDzHlemejH. (36)

For convenience we defirgg = ®n = 0 andPy(Pg) = Py(Pn) = 0. Py(Pg) and
Pu(Pn) will be used purely as place holders in computing the devieaaf the
Lyapunov function along the controlled dynamics. We comput

N [ sins} 2 § 1 :
=y 0 - (z) Oz || cos’ 5 — S(Pi(®j) — Pj-1(®j 1)) sing
1\ cosY

B0 ~Pa@y )53 |5 c0d T ) ). @7)

We now design the control law to be

Uj = Kaj COSBj + Kp;j SING;

—~ (f(z,-) +Z—2(P,-(cb,-) —~ Pj_l(cbj—l))) | Oz; Hco§%
1

. .6
—5(Pi(®}) = P-1(®;-1)) sinG, +S'n§' (38)
for j = 1,2,...,N wherekaj andky; are defined in (10) but indexed Qhy This will
resultin o
: N sir? 2
L=-3% 92 <0. (39)
= =1 COS7

The closed-loop system equations are:

4= (@) + 2 R@) - a010) ) | Calc0d 3

+%(P|((Di> —R_1(Pi_1))sin6 — sin%

: 2m Js; . 0Sj+1
D =" <cos€,— —C0sBj 11— (0—21 | Oz; || sin6; — 5 j+ | Ozj41 HS|n9,+1))
4 =—| 0z sin6

(40)
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wherei =1,2,....Nandj=1,2,....N—1.

Corollary 4 Consider a family of orbits given by Lemma 1 and Lemma 2 with
being the arc-length parameter for the reference orbit vaithit value ¢. Suppose
along any orbit that belongs to the €&tin Lemma 1,‘9252(;’(‘;) is a smooth function
that is not constantly zero. Suppose the initial conditiohthe N particles make
the initial value of Y given in (35) finite. Then under the control law given by (38),
ast— oo, the states of the particles satigly— Oand z — c,fori=1,2,...,N and

®j —0forj=1,2,..,.N-1

PROOF. As in the proof of Theorem 3, we conclude thattas «, 6 — 0 for
alli=1,2,...,N. We define a subsé&t of the state space where 8llvanish,z are
constant an@j are constantfor=1,2,...,Nandj=1,2,...,N—1. On this subset
E, the closed-loop system equations éhare

. 0s

6 = (f(Ze)+a—Z(H(¢i>—P.1(¢i1)>) 10z || (41)
wherei = 1,2,...,N. We can show that the right hand side of (41) is uniformly
piecewise continuous. We then apply Lemma 9 in the appendibaim thatd, — O

which further implies thaf (z) + g—z(P.(qu) —R_1(Pj_1)) = 0fori=1,2...N.

Because?—i is time-varying butf (z) and P (®;) are constant on the sét, then
f(z) — 0 and R (®;) —R_1(®_1) — O for all i = 0,1,...,N. Since Py(Pg) =
Pu(Pn) = 0, we conclude thal () — 0fori=1,2,...,.N—1. O

6 Simulation results

We first show one example of stabilizing an invariant pattertwo particles mov-

ing on the super-ellipse given 22 + % = 1 whereag > 0 andbg > 0. Notice

0
that whenp = 1 this describes an ellipse. Whenis an odd integer greater than
one, the curve looks like a rectangle with rounded cornees c@nstruct the orbit

functionz(x,y) = (x?P + é;)flp wheree = %. If pis an odd integer, the curve with

orbit valueag can be parametrized by= ag(cosf)/P andy = by(sin6)Y/P. From
these equations, we are able to compute the arc-lengthatcwevand tangent vec-
tors of any super-ellipse in the family. For coupling betwé&eo particles, we let
P(®) = Katan(®/2) where the gaik > 0 can be adjusted for performance.

In our simulation, we first control the two unit speed pagscto that they move to
the outer super-ellipse shown in Figure 3 vath= 4, by = 3, p= 3 and relative arc-
length equal to 2. Then we command them to the inner suppselWwithag = 3,
bp = 2 p = 3 and relative arc-length equal to 1. Figure 3 shows thediajiees and
Figure 4 shows the arc-length separation with respect te.tdotice that we do
not change the control law, we only change the value of thamatersag andbg
for the transition to happen.

14



% 4 -2 0 2 4 6

Fig. 3. The trajectories of two unit speed particles stabilizedrizariant patterns on su-
per-ellipses. The outer super-ellipse has-a4, by = 3 and p= 3 and the inner super-el-
lipse has @ = 3, by = 2 and p= 3. The desired relative separation, measured by the ar-
c-length difference, is 2 on the outer super-ellipse and therinner super-ellipse. Label A
indicates the initial positions of the two particles. Lalgeindicates the stabilized pattern
on the outer super-ellipse. Label C indicates when the twtighes start to move from the
outer super-ellipse to the inner super-ellipse. Label Dicates the stabilized pattern on
the inner super-ellipse.

=
5}

Arc-length Separation

N

Commanded arc-length separation

0 10 20 30 Time 40 50 60 70
Fig. 4. The arc-length difference between the two unit speed pestieersus time for stabi-
lization of two particles moving around super-ellipses.

In Figure 5, we demonstrate the control of eight particlaatariant patterns along
various star shapes that can be constructed using the fanm{27]. We control
the particles to distribute uniformly on each star. The camivation topology is
a chain i.e., thgth particle is coupled to thej — 1)th and(j + 1)th particle for
j =2,3,...,N—1; the first and last particles are only coupled to one othergba
and not to each other.
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(a) five point star (b) six point star

Fig. 5. Patterns of eight unit speed particles on two star-shapatiesi The particles are
distributed uniformly as they move around each curve.

7 Summary and Future Directions

In this paper, we have introduced a new method for desigriesgiag control laws
for a system ofN unit speed particles. The control steers the particles tman
variant pattern corresponding to a constant orbit value @ntstant separations
measured by the relative arc-lengths along the refererme By extending curve
tracking methods, we prove convergence to closed simplegnearves. This class
of curves is much more general than what were treated in reekted works (e.g.
[15],[20]). Although the convergence is not global in tham, the orbit function
we introduce often allows convergence from a large set tidrpositions.

In our cooperative control laws, we use relative arc-lerigtbouple particles be-
cause of the constant speed constraint. A simple chaintsteutor coupling al-

lows us to stabilize the invariant patterns. Other more daraed coupling struc-
tures may also be applied according to communication orisgmequirements.
We have not yet addressed collision avoidance in this getlihe challenge here
derives from the constant speed constraint. In practicea eollision avoidance
mechanisms are often introduced that break the constaetspmnstraint when
safety instead of performance is the major concern.

The problem of stabilizing an invariant pattern along orrn@alosed curve or
boundary is also interesting if the constant speed constimrelaxed. In [28], a

PDE based algorithm inspired by computer vision algorithg¥j is developed

to distribute agents along a boundary. Convergence is detmaded but not yet
proved. In recent preprint [30], Kumar and Hsieh have shawnesinteresting the-
oretical and simulation results using potential functiddsme experimental works
are documented in [31]. Our results, although based on thergstion that all par-

ticles travel at identical constant speed, suggest a sgsie@pproach to solving
this pattern generation problem. We have shown some of guitseon achieving

invariant patterns without the constant speed constraif&4].

This paper is concerned with the planar setting. Of coursmynimportant mo-
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tion control problems evolve in three-dimensional phylssgeace. For underwater
gliders, our results are applied by projecting the threeedisional motion onto the
plane [7]. New developments have been made in [33] to useuaah@itame setting
to model three dimensional motion. The resulting steerugslare similar to those
derived in the planar setting. This suggests that the casadmrbit function and
relative arc-length coupling established in this paper @an be extended to the
three dimensional setting.

A Appendix on uniformly continuous functions

We first review one classical result on uniformly continuéwsctions c.f. [34,35].

Theorem 5 Suppose(t) is differentiable ori0, «) and|¢/| is bounded. Thep(t)
is uniformly continuous.

The concept of uniformly continuous can be extended to piesgecontinuous
functions.

Definition 6 A piecewise continuous function is piecewise uniformlyinanus on
[to, ) if VK1 > 0andVT; > to, Iko such that eithe¥t € [Ty, Ti+ka), |@(t) — @(T1)| <
3ka or alternatively,vt € (Ty — ko, Ta],|@(t) — @(T1)| < 3ka.

We have the following corollaries for piecewise uniform touity.

Corollary 7 Suppose a piecewise continuous functig) is differentiable on
[to, ) except for the points where discontinuities occur. Supp@$ewhen it ex-
ists, is bounded by N> 0. Suppose the length of each sub-interval whe( is
differentiable is bounded below by 0. Theng(t) is piecewise uniformly contin-
uous.

Corollary 8 Let ¢ (t) be uniformly continuous angh(t) be piecewise uniformly
continuous orjtg, ), then

(1) (@u(t)+ @(t)) is piecewise uniformly continuous @g, «);
(2) »3(@(t)) is piecewise uniformly continuousgg is a smooth function on the
image ofgy(t) and | ¢} is bounded;
(3) ;u(t)@(t) is piecewise uniformly continuougé (t)| and|g(t)| are bounded.
The well-known Barbalat’s lemma can be generalized to pressuniformly con-
tinuous functions.

Lemma 9 Let ¢ be a piecewise continuous function andoe a piecewise uni-
formly continuous function oy, ©). Suppose thdim; . ftto @(o)do exists and is
finite. Suppose thadim;_...(¢(t) —n(t)) =0. Theng(t) - O0ast— .

PROOF. If ¢(t) does not go to zero, them(t) does not go to zero either. Since
n(t) does not go to zero, there exists positiyesuch that for every’ > tg, we can
find Ty andk whereT; > T + k so that|n(Ty)| > ki. By the assumption thaj(t)
is piecewise uniformly continuous, givém,T; andk, there exists positivik, < k
suchthatn(t) —n(T1)| < k—21 either for allt € [T1, T1 + ko] or forallt € [Ty — ko, Tq.
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Hence either for all € [T1,T; + ko] or for allt € [T1 — kp, T1], we must have

InM®=1n) —n(T) +n(Tw)|

1 1
>[n( 1)|—|n()—n<T1)|>k1—§k1:§k1 (A1)
Therefore, either

Ti+ko Ti+ko 1
| ) = )] dt> Skiko (A.2)

T T 2

or T T 1
| nwdt = [ in@ldt> Sk (A3)

Ti—ko Ti—ko 2

is true. The equality holds singg(t) retains the same sign fore [Ty, T; + k) or
fort € (T1 — ko, Tq].

We define a functiorf (t) = @(t) — n(t). Sinceé(t) — 0 ast — oo, then for the
positive numbek; /4, we can find a tim@ * > 0 such thaié (t)| < ki/4 for all

t > T*. Then for anyT > T*, we letT; > T + ko so that one of (A.2) and (A.3)
is satisfied. Fot € [Ty — ko, T1] andt € [T1, Ty + kp|, we still have|& (t)| < ki/4.
Therefore, either

Ti+ko Ti+ko 1
|7 Ewat < [T )< Jlake (A4)
T T 4
or
T1 T1 1
/ £(t)dt g/ ()] dt < Zkeko (A5)
Ti—k2 Ti—ko 4
is true. We then have either
Ti+ko Ti+ko
L ) =| [ o+ e
T T
Ti+ko Ti+ko 1
2/ n(t)dt‘—/ é(t)dt‘>—k1k2 (A.6)
T T 4
or
T1
dt’ ’ / )dt‘
T1 kz 1* ko
T1 1
/ n(t )dt‘ / é(t)dt‘ > Zkiko . (A7)
Ti—ko Ti—ko 4

In summary, we have shown that there exists a tifrie> tog such that for any

T > T*, there existk; > 0 andT; > T + ky such that one of (A.6) and (A.7) is
satisfied. Thus the integrﬁ[) @(o)do can not converge to a finite limit ds— oo,

a contradiction. This proof is inspired by a proof for an @sien of Barbalat’s

lemmain[36]. O
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