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Abstract. In this paper we address stabilization of a network of underactuated mechanical
systems with unstable dynamics. The coordinating control law stabilizes the unstable dynamics
with a term derived from the method of controlled Lagrangians and synchronizes the dynamics
across the network with potential shaping designed to couple the mechanical systems. The coupled
system is Lagrangian with symmetry, and energy methods are used to prove stability and coordinated
behavior. Two cases of asymptotic stabilization are discussed; one yields convergence to synchronized
motion staying on a constant momentum surface, and the other yields convergence to a relative
equilibrium. We illustrate the results in the case of synchronization of n carts, each balancing an
inverted pendulum.
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1. Introduction. Coordinated motion and cooperative control have become im-
portant topics of late because of growing interest in the possibility of faster data
processing and more efficient decision-making by a network of autonomous systems.
For example, mobile sensor networks are expected to provide better data about a
distributed environment if the sensors can be made to cooperate towards optimal
coverage and efficient coordination.

Much of the recent work explores coordination and cooperative control with very
simple dynamical systems, e.g., single or double integrator models (see, e.g., [10, 17,
18]) or nonholonomic models (see, e.g., [4]). For example, in some of these and related
works, stabilization of coordinated group dynamics is studied in the case of limited,
time-varying communication topologies. These authors deliberately choose to focus
on the coordination issues independently of issues in the stabilization of individual
dynamics.

However, for networks of autonomous systems such as unmanned helicopters or
underwater vehicles, stability of individual dynamics can be important and challeng-
ing, and it may not always be possible (or desirable) to decouple the stabilization
problem of individual dynamics from the coordination problem. In [22] the authors
consider stability of a group with dynamics that satisfy a leader-to-formation stabil-
ity (LFS) condition based on input-to-state stability [20]. Examples include linear
dynamical systems and kinematic nonholonomic robots; in the latter case feedback
linearization is used for stabilization. Using the LFS property, the authors are able to
quantify how leader inputs and disturbances affect group stability. In [6], an extension
to the previous work of [5] on unmanned aerial vehicle motion planning is presented
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662 SUJIT NAIR AND NAOMI EHRICH LEONARD

for identical multiple-vehicle stabilization and coordination. The single-vehicle mo-
tion planning is based on the interconnection of a finite number of suitably defined
motion primitives. The problem is set in such a way that multiple-vehicle motion co-
ordination primitives are obtained from the single-vehicle primitives. The technique
is applied to motion planning for a group of small model helicopters.

Networks of rigid bodies are addressed in [8]. Reduction theory is applied in the
case that control inputs depend only on relative configuration (relative orientation or
position). The reduction results are used to study coordinated behavior of satellite
and underwater vehicle network dynamics. Stability of a network of rotating rigid
satellites and a network of coordinated underwater vehicles is proved in [14, 15].

In this paper, we investigate the problem of coordination of a network of under-
actuated mechanical systems with unstable dynamics. As a first step we make use
of the method of controlled Lagrangians to stabilize the unstable dynamics of each
mechanical system. The method of controlled Lagrangians and the equivalent inter-
connection and damping assignment passivity-based control (IDA-PBC) method use
energy shaping for stabilization of underactuated mechanical systems (see [1, 19] and
references therein). The method of controlled Lagrangians provides a control law for
underactuated mechanical systems such that the closed-loop dynamics derive from a
Lagrangian. The approach is to choose the control law to shape the controlled kinetic
and potential energy for stability.

The class of underactuated mechanical systems we consider in this paper satis-
fies the simplified matching conditions (SMC) defined in [2, 1]. This class includes
the planar or spherical inverted pendulum on a (controlled) cart. The goal of the
development in this paper is to stabilize unstable dynamics for each individual me-
chanical system in the network and stably synchronize the actuated configuration
variables across the network. For example, for a network of pendulum/cart systems,
the problem is to stabilize each pendulum in the upright position while synchronizing
the motion of the carts.

For stabilization of individual unstable dynamics we use the approach in [1].
To simultaneously synchronize the dynamics across the network, we show that po-
tentials that couple the individual systems can be prescribed so that the complete
coupled system still satisfies the SMC. Accordingly, we can choose potentials, find
a Lagrangian for the coupled system, and prove Lyapunov stability of the stabilized
and synchronized network. Since the controlled Lagrangian has a symmetry, we use
Routh reduction and Routh criteria to prove stability.

We then design additional dissipative control terms and prove asymptotic stabil-
ity. We show, on the one hand, how to apply a dissipative control term that yields
convergence to synchronization staying on a constant momentum surface. In the pen-
dulum/cart system example, this corresponds to a synchronized motion of the carts
such that all the carts move together with a common velocity that is the sum of a
constant plus an oscillation. Likewise, the pendula synchronize and oscillate at the
same frequency as the carts. The oscillation frequency for the carts and pendula is
determined by the control parameters. On the other hand, we show how to apply
a dissipative control term that yields convergence to a relative equilibrium. In the
example, this corresponds to steady, synchronized motion of n carts, each balancing
its inverted pendulum.

In this paper we consider a homogeneous group of mechanical systems, i.e., no
leaders, and a fixed, bidirectional, connected communication topology. Possibilities
for extension include integration of the results with prior works cited above that
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address time-varying and directed communication topologies and/or the presence of
leaders in the group.

The organization of the paper is as follows. In section 2, we define notation and
the different kinds of stabilization studied. In section 3, we give a brief background
on the class of underactuated mechanical systems that satisfy the SMC defined in
[2, 1]. We discuss how unstable dynamics are stabilized with feedback control that
preserves Lagrangian structure. In section 4, we study a network of n systems, each
of which satisfies the SMC. We choose coupling potentials in section 5, and we prove
stability and coordination of the network. Asymptotic stabilization is investigated
in sections 6 and 7. We illustrate the theory with the example of n planar, inverted
pendulum/cart systems in section 8. In section 9 we conclude with a few remarks.

2. Definitions. In [1] the method of controlled Lagrangians is used to derive a
control law that asymptotically stabilizes a class of underactuated mechanical systems
with otherwise unstable dynamics. This class of systems satisfies a set of “simplified
matching conditions” and we denote such systems as SMC systems. SMC systems lack
gyroscopic forces; the planar inverted pendulum on a cart and the spherical inverted
pendulum on a 2D cart are two such systems.

Consider an underactuated mechanical system with an (m+ r)-dimensional con-
figuration space. Let xα denote the coordinates for the unactuated directions with
index α going from 1 to m. θa denotes the coordinates for the actuated directions with
index a going from 1 to r. In the case of a network of n mechanical systems, each with
the same (m + r)-dimensional configuration space, xαi and θai are the corresponding
coordinates for the ith mechanical system, i = 1, . . . , n. Beginning in section 5, we
will assume that the configuration space for the actuated variables for each individual
system is Rr. Note that we only require the configuration space for the individual
mechanical systems to be the same and do not require that each system be identical,
e.g., the individual systems can have different mass and inertia values. We will need
to make the assumption of individual systems being identical only in section 6.

The goal of coordination is to synchronize the actuated variables θai with the
variables θaj for all i, j = 1, . . . , n. We define stable synchronization of these variables
as stabilization of θai − θaj = 0 for all i "= j.

We define the following stability notions for the mechanical system network.
Definition 2.1 (SSRE). A relative equilibrium of the mechanical system network

dynamics is a stable synchronized relative equilibrium (SSRE) if it is defined by θai −
θaj = 0 for all i "= j, xαi = 0 for all i, and if it is Lyapunov stable. This implies that the
unactuated dynamics are stable and the actuated dynamics are stably synchronized.

Definition 2.2 (ASSRE). A relative equilibrium of the mechanical system
network dynamics is an asymptotically stable synchronized relative equilibrium
(ASSRE) if it is SSRE and asymptotically stable.

Definition 2.3 (ASSM). An asymptotically stable solution of the mechanical
system network dynamics is an asymptotically stable synchronized motion (ASSM)
if it is defined by xαi − xαj = 0 and θai − θaj = 0 for all i "= j and the dynamics of the
network evolve on a constant momentum surface.

We note that an ASSRE is a special case of an ASSM. In the example of the
network of pendulum/cart systems, the relative equilibrium of interest corresponds to
the carts moving together at the same constant speed with each pendulum at rest in
the upright position. In section 8 we asymptotically stabilize this synchronized relative
equilibrium as well as a family of synchronized motions that exhibit a synchronized
steady motion plus an oscillation of the carts and pendula.
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3. SMC. Let the Lagrangian for an individual mechanical system be given by

L(xα, θa, ẋβ , θ̇b) =
1

2
gαβẋ

αẋβ + gαaẋ
αθ̇a +

1

2
gabθ̇

aθ̇b − V (xα, θa),

where summation over indices is implied, g is the kinetic energy metric, and V is the
potential energy. It is assumed that the actuated directions are symmetry directions
for the kinetic energy; that is, we assume gαβ , gαa, gab are all independent of θa. The
equations of motion for the mechanical system with control inputs ua are given by

Exα(L) = 0,

Eθa(L) = ua,

where Eq(L) denotes the Euler–Lagrange expression corresponding to a Lagrangian L
and generalized coordinates q, i.e.,

(3.1) Eq(L) =
d

dt

∂L

∂q̇
− ∂L

∂q
.

For such a system, following [1], the SMC are
• gab = constant;

• ∂gαa

∂xβ = ∂gβa

∂xα ;

• ∂2V
∂xα∂θa g

adgβd = ∂2V
∂xβ∂θa g

adgαd.
Satisfaction of these SMC allows for a structured feedback shaping of kinetic and
potential energy. In particular, a control law ua = ucons

a is given in [1] such that the
closed-loop system is a Lagrangian system. The controlled Lagrangian Lc, parametrized
by constant parameters κ and ρ and by a potential term Vε, is given by

Lc(x
α, θa, ẋβ , θ̇b) =

1

2

(
gαβ + ρ(κ + 1)

(
κ +

ρ− 1

ρ

)
gαag

abgbβ

)
ẋαẋβ + ρ(κ + 1)gαaẋ

αθ̇a

+
1

2
ρgabθ̇

aθ̇b − V (xα, θb) − Vε(x
α, θb),

where Vε must satisfy

(3.2) −
(

∂V

∂θa
+

∂Vε
∂θa

)(
κ +

ρ− 1

ρ

)
gadgαd +

∂Vε
∂xα

= 0.

The results in [1] further give conditions on ρ, κ, and Vε that ensure stability of
the equilibrium in the full state space. Without loss of generality, we assume that the
equilibrium of interest is the origin. We further assume that it is a maximum of the
original potential energy V (the case when the origin is a minimum can be handled
similarly). The inverted pendulum systems fall into this category. In this case, κ > 0
and ρ < 0 and the potential Vε can be chosen such that the energy function Ec for the
controlled Lagrangian has a maximum at the origin of the full state space. Asymptotic
stability is obtained by adding a dissipative term udiss

a to the control law, i.e.,

ua = ucons
a +

1

ρ
udiss
a ,

which drives the controlled system to the maximum value of the energy Ec.
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In [1], it is also shown how to select new, useful coordinates (xα, ya, ẋα, ẏa). In
particular, for any SMC system, there exists a function ha(xα) defined on an open
subset of the configuration space of the unactuated variables such that

∂ha

∂xα
=

(
κ +

ρ− 1

ρ

)
gacgαc, ha(0) = 0.

The new coordinates are defined as

(xα, ya) = (xα, θa + ha(xα)).

Note that if the origin is an equilibrium in the original coordinates, it is also an
equilibrium in the new coordinates. In these coordinates, the closed-loop Lagrangian
takes the form

Lc =
1

2

(
gαβ −

(
κ +

ρ− 1

ρ

)
gαag

abgbβ

)
ẋαẋβ + gαaẋ

αẏa +
1

2
ρgabẏ

aẏb(3.3)

−V (xα, ya − ha(xα)) − Vε(y
a)

=
1

2
g̃αβẋ

αẋβ + g̃αaẋ
αẏa +

1

2
g̃abẏ

aẏb − V (xα, ya − ha(xα)) − Vε(y
a),(3.4)

where

g̃αβ =

(
gαβ −

(
κ +

ρ− 1

ρ

)
gαag

abgbβ

)
,

g̃αa = gαa,

g̃ab = ρgab .(3.5)

Further, after adding dissipation udiss
a , the Euler–Lagrange equations in the new co-

ordinates become

Exα(Lc) = 0,

Eya(Lc) = udiss
a .

4. Matching for a network of SMC systems. In this section we examine a
network of n systems, each of which satisfies the SMC. We determine what control
design freedom remains under the constraint that the complete network dynamics are
Lagrangian and satisfy the simplified matching conditions.

Consider n SMC systems and let the ith system have dynamics described by
Lagrangian Li, where

(4.1) Li(x
α
i , θ

a
i , ẋ

β
i , θ̇

b
i ) =

1

2
giαβẋ

α
i ẋ

β
i + giαaẋ

α
i θ̇

a
i +

1

2
giabθ̇

a
i θ̇

b
i−Vi(x

α
i , θ

a
i ),

and the index i on every variable refers to the ith system.
The Lagrangian for the total (uncontrolled, uncoupled) system is L =

∑n
i=1 Li =

1
2 ẋ

TM ẋ−
∑n

i=1 Vi(xαi , θ
a
i ), where x = (xα1 , . . . , x

β
n, θ

a
1 , . . . , θ

b
n)T , and

M =





g1
αβ 0 g1

αa 0
. . .

. . .
0 gnαβ 0 gnαa
g1
aα 0 g1

ab 0
. . .

. . .
0 gnaα 0 gnab





.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

666 SUJIT NAIR AND NAOMI EHRICH LEONARD

Since each system satisfies the SMC, giab = constant for each i = 1, . . . , n. It can
be easily verified that the SMC are satisfied for the total system L, since they are
satisfied for each individual system.

For the total system, the symmetry coordinates are (θa1 , . . . , θ
b
n). As in [1], we

can find a control law and a change of coordinates x = (xα1 , . . . , x
β
n, θ

a
1 , . . . , θ

b
n) #→

x′ = (xα1 , . . . , x
β
n, y

a
1 , . . . , y

b
n) such that the closed-loop system is equivalent to another

Lagrangian system with

(4.2) L′
c =

1

2
(ẋ′)TMcẋ

′ − V ′
ε (x

′)

and

(4.3) Mc =





g̃1
αβ 0 g̃1

αa 0
. . .

. . .
0 g̃nαβ 0 g̃nαa
g̃1
aα 0 g̃1

ab 0
. . .

. . .
0 g̃naα 0 g̃nab





:=

(
M11 M12

MT
12 M22

)
,

V ′
ε =

n∑

i=1

(
Vi(x

α
i , y

a
i − ha

i (x
α
i )) + Vεi(x

α
i , y

a
i )
)
.

Here, g̃iαβ , g̃iαa, and g̃iαa are defined as in (3.5) with all variables replaced with those

corresponding to the ith system, e.g., g̃iab = ρigiab, etc.
The control gains κi and ρi and control potentials Vεi can be chosen such that the

mass matrix Mc is negative definite and the potential V ′
ε has a maximum when the

configuration of each system, i.e., (xαi , θ
a
i ), is at the origin. This means the control

law brings each system independently to the origin without coordination.
To determine what additional freedom exists in the choice of the control, notably

in the choice of control potentials Vεi, such that the network system satisfies the SMC,
we specialize to a network of SMC systems which each satisfy the following condition.

AS1. The potential energy for each system in the original coordinates
satisfies Vi(xαi , θ

a
i ) = V1i(xαi ) + V2i(θai ).

The inverted pendulum examples satisfy this assumption in the general case that the
cart moves on an inclined plane. In the case that the cart moves in the horizontal
plane, V2 = 0.

As shown in [1], given the assumption AS1, Vεi in the new coordinates for i =
1, . . . , n can be chosen to take the form

Vεi(x
α
i , y

a
i ) = −V2i(y

a
i − ha

i (x
α
i )) + V̄εi(y

a
i ),

where V̄εi is an arbitrary function and ha
i (x

α
i ) satisfies

(4.4)
∂ha

i

∂xαi
=

(
κi +

ρi − 1

ρi

)
gaci giαc, ha

i (0) = 0.

We show next that a more general potential Vε can be used in V ′
ε in place of the

sum of potentials Vεi(xαi , y
a
i ).
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Proposition 4.1. Under assumption AS1, the potential V ′
ε = V + Vε satisfies

the SMC with

V =
n∑

i=1

(V1i(x
α
i )) + V2i(y

a
i − ha

i (x
α
i )) ,

Vε = −
(

n∑

i=1

V2i(y
a
i − ha

i (x
α
i ))

)
+ Ṽε(y

a
1 , . . . , y

a
n)(4.5)

and Ṽε an arbitrary function.
Proof. Recall that the potential V ′

ε = V + Vε given by (4.5) satisfies the SMC if
(3.2) holds. Following [1], we can use the definition of ha

i (x
α
i ) given by (4.4) to write

the SMC (3.2) for the potential as

(4.6)
∂Vε
∂xαi

=
∂V

∂yai

∂ha
i (x

α
i )

∂xαi
, i = 1, . . . , n .

By a direct computation, one can check that each side of (4.6) is equal to ∂V2i
∂va

i

∂va
i

∂xα
i
,

where vai = yai − ha
i (x

α
i ).

Proposition 4.1 implies that we can couple the n vehicles in the network using
the freedom in our choice of Ṽε = Ṽε(ya1 , . . . , y

a
n), and the network dynamics will still

satisfy the simplified matching conditions. This result is completely independent of
the degree of coupling; i.e., it extends from a network of uncoupled systems to a
network of completely connected systems.

5. Stable coordination of an SMC network. In this section we make use
of Proposition 4.1 to design coupling potentials Ṽε for stable coordination of the
network of SMC systems. We prove that the relative equilibrium of interest is an
SSRE. Recall from section 2 that to be an SSRE, a relative equilibrium should be
defined by θai − θaj = 0 for all i "= j and xαi = 0 for all i and should be Lyapunov
stable. We note that this is equivalent to showing that yai − yaj = 0 for all i "= j and
xαi = 0 for all i is Lyapunov stable. In the remainder of the paper we assume that
the configuration space for the actuated variables for each individual system is Rr.

To synchronize the actuated variables we use the results of Proposition 4.1 and
design coupling potentials for stabilization of yai − yaj = 0 for all i "= j. Note that the
condition yai −yaj = 0 for all i "= j by itself is necessary but not sufficient for θai −θaj = 0
for all i "= j and xαi = 0 for all i. We have yai − yaj = 0 for all i "= j under more
general conditions, e.g., if θai − θaj = 0 for all i "= j and hi(xαi ) = hj(xαj ) "= 0, i "= j.
This more general case makes possible interesting synchronized dynamics, when we
add dissipation for asymptotic stability, as will be discussed in section 6.

We choose Ṽε such that the closed-loop potential V ′
ε , defined in Proposition 4.1,

has a maximum when xαi = 0 and yai − yaj = 0 for all i "= j. This is possible since

from (4.5), the closed-loop potential is V ′
ε =

∑n
i=1(V1i(xi)) + Ṽε(ya1 , . . . , y

a
n) and the

V1i are assumed to already be maximized at xαi = 0. We choose in this paper Ṽε
to be quadratic in (yai − yaj ) with a maximum at yai − yaj = 0 for all i "= j. In
this case, consider a graph with one node corresponding to each individual system
in the network. There is an (undirected) edge between nodes k and l if the term
(yak − yal ) appears in the quadratic function Ṽε. Then, V ′

ε has a strict maximum when
xαi = 0 and yai − yaj = 0 for all i "= j if the (undirected) graph is connected. Figure
5.1 illustrates an example of a connected, undirected communication graph for four
vehicles.
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Fig. 5.1. Connected, undirected communication graph for four vehicles.

With coupling of the individual systems using terms that depend only on yai −yaj ,
the network system has a translational symmetry. Specifically, the system dynamics
are invariant under translation of the center of mass of the network. Consider a new
set of coordinates given by

(5.1) xc = (xα1 , . . . , x
β
n, z

a
1 , . . . , z

b
n)T ,

where

zai = ya1 − yai+1, i = 1, . . . , n− 1,

zbn = yb1 + · · · + ybn.

In this coordinate system, the controlled Lagrangian for the total system (with abuse
of notation for V ′

ε ) is

(5.2) L̃c =
1

2
ẋT
c M̃cẋc − V ′

ε (xr),

where xr = (xα1 , . . . , x
β
n, z

a
1 , . . . , z

b
n−1)

T and

(5.3) M̃c =

(
M̃11 M̃12

M̃T
12 M̃22

)
.

The transformation which takes the coordinates xc to the coordinates x′ =
(xα1 , . . . , x

β
n, y

c
1, . . . , y

d
n) is given by the matrix

(5.4) B =

[
Imn×mn 0

0 B22

]
,

where

(5.5) B22 =
1

n





Ir×r Ir×r . . . Ir×r

(1 − n)Ir×r Ir×r . . . Ir×r
...

... · · ·
...

Ir×r . . . (1 − n)Ir×r Ir×r





and Il×l denotes an l× l identity matrix and B22 is an rn×rn matrix. The expression
for M̃c in terms of Mc from (4.3) is

(5.6) M̃c = BTMcB.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MECHANICAL SYSTEM NETWORKS 669

We can compute the block elements in M̃c to be

(5.7) M̃11 = M11,

(5.8) M̃12 =
1

n





g̃1
αa g̃1

αa . . . g̃1
αa g̃1

αa

(1 − n)g̃2
αa g̃2

αa . . . g̃2
αa g̃2

αa
. . .

g̃n−1
αa g̃n−1

αa . . . g̃n−1
αa g̃n−1

αa

g̃nαa g̃nαa . . . (1 − n)g̃nαa g̃nαa




,

(5.9) M̃22 =
1

n2
BT

22M22B22,

where M11 and M22 are as defined in (4.3). From (5.5) and (4.3), we can calculate
the lowermost diagonal r × r block of M̃22 to be

(5.10) g̃ab =
1

n2

n∑

i=1

(g̃iab).

Thus, we can define M̄22 = g̃ab and M̄11 and M̄12 in terms of M̃c such that
(

M̄11 M̄12

M̄T
12 M̄22

)
= M̃c.

Then, we can rewrite (5.2) as

L̃c =
1

2

(
ẋT
r żTn

)( M̄11 M̄12

M̄T
12 M̄22

)(
ẋr

żn

)
− V ′

ε (xr),

where zn = (zan)T .
Note that in these coordinates zan is the symmetry variable. We are interested in

the relative equilibria given by

(5.11) vRE :=




xr

ẋr

żn



 ,

where

xr = 0, ẋr = 0, żdn = ζd,

and ζd corresponds to (n times) the constant velocity of the center of mass of the
network.

Definition 5.1 (amended potential [13]). The amended potential for the La-
grangian system with Lagrangian (5.2) is defined by

Vµ(xr) = V ′
ε (xr) +

1

2
g̃cdµcµd,

where V ′
ε is given by (4.5) and g̃ab is given by (5.10). If Ja is the momentum conjugate

to zan, then µa is Ja evaluated at the relative equilibrium corresponding to żan = ζa,
i.e.,

(5.12) Ja =
∂L̃c

∂żan
= (M̄T

12ẋr + M̄22żn)a, µa =
∂L̃c

∂żan

∣∣∣∣∣
xr=0,ẋr=0,ża

n=ζa

= g̃abζ
b.
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By the Routh criteria, the relative equilibrium is stable if the second variation of

(5.13) Eµ :=
1

2
ẋT
r (M̄11 − M̄12M̄

−1
22 M̄T

12)ẋr + Vµ(xr),

evaluated at the origin, is definite. Also, if Rµ(xr, ẋr) is defined as

(5.14) Rµ :=
1

2
ẋT
r (M̄11 − M̄12M̄

−1
22 M̄T

12)ẋr − Vµ(xr),

then the reduced Euler–Lagrange equations can be written as

Exα
r
Rµ = 0.

The Routhian Rµ plays the role of a Lagrangian for the reduced system in variables
(xr, ẋr). Since g̃iab is a constant for each i ∈ {1, 2, . . . , n}, the second term in the
amended potential Vµ does not contribute to the second variation. It follows that the
relative equilibrium with momentum µa is stable if the matrix (M̄11 − M̄12M̄

−1
22 M̄T

12)
evaluated at the origin is negative definite, since the potential V ′

ε is already maximum
at the equilibrium. But (M̄11 − M̄12M̄

−1
22 M̄T

12) is negative definite because it is the
Schur complement of the negative definite matrix M̃c [9].

Theorem 5.2 (SSRE). Consider a network of n SMC systems, each satisfying
assumption AS1. Suppose for each system that the origin is an equilibrium and
that the original potential energy is maximum at the origin. Consider the kinetic
energy shaping defined in section 4 and potential energy coupling defined above with a
connected graph so that the closed-loop dynamics derive from the Lagrangian L̃c given
by (5.2) and the potential energy V ′

ε is maximized at the relative equilibrium (5.11).
The corresponding control law for the ith mechanical system is

ua,i = ucons
a,i = − κi

{
giβa,γ − giδaA

δα
i

[
giαβ,γ − 1

2
giβγ,α − (1 + κi)g

i
αdg

da
i giβa,γ

]}
ẋβi ẋ

γ
i

+ κig
i
δaA

δα
i

∂Vi

∂xαi
+

∂Vi

∂θai
− 1

ρi

(
1 + κig

i
δaA

δα
i giαdg

db
i

) ∂V ′
ε

∂θai
,

(5.15)

where Ai
αβ = giαβ − (1 + κi)giαdg

da
i giβa, ρi < 0, and

κi + 1 > max
{
λ|det

(
giαβ − λgiαag

ab
i gibβ

)
|xα

i =0 = 0
}
.

Then, the relative equilibrium (5.11) is an SSRE for any ζd.
Proof. Since (M̄11 − M̄12M̄

−1
22 M̄T

12) evaluated at the origin is negative definite,
the second variation of Eµ evaluated at the origin is definite. Hence, the relative
equilibrium (5.11) is stable for the total network system independent of momentum
value µa.

6. Asymptotic stability of the constant momentum solution. In this sec-
tion we investigate asymptotic stabilization of the coordinated network to a solution
corresponding to a constant momentum Ja = µa. We prove that the solution is an
ASSM. Recall from section 2 that an ASSM is an asymptotically stable solution of
the mechanical system network defined by xαi = xαj and θai = θaj for all i "= j and
dynamics that evolve on a constant momentum surface. An ASSM describes a fully
synchronized motion, i.e., one in which each degree of freedom is synchronized across
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the whole network. If xαi = xαj = 0, then the solution is a relative equilibrium. How-
ever, in general, an ASSM is not a relative equilibrium. For example, in the case of a
network of pendulum/cart systems presented in section 8, the ASSM corresponds to
periodic solutions (synchronized oscillations of pendula and carts). In this section we
prove a control law that yields ASSM where the constant value of the momentum is
given by the initial conditions. Equivalently, given an arbitrary momentum value µa,
initial conditions on the corresponding momentum surface converge to the ASSM on
the same momentum surface. In the pendulum/cart example of section 8, we show
that control gains can be used to determine the frequency of the periodic solution
(ASSM). We discuss at the end of the section a second case in which a momentum
value is prescribed and a control term is added to drive the ASSM to the prescribed
constant momentum surface.

In this section we apply no dissipative control in the xαi directions for all i and
as our Case I below we use no control in the zan direction. Recall that for our closed-
loop system, zan is the symmetry direction. If there is no control applied in this
direction, Ja remains a constant; i.e., the system evolves on a constant momentum
surface. On this surface, Eµ as defined in (5.13) is a conserved quantity and can be
chosen as a Lyapunov function to prove stability. By choosing appropriate dissipation
in the nonsymmetry directions za1 , . . . , z

b
n−1, we prove that solutions on a constant

momentum surface, corresponding to xαi − xαj = 0 and θai − θaj = 0 for all i "= j, are
asymptotically stable, i.e., they are ASSM.

Let the control input for the ith mechanical system be

(6.1) ua,i = ucons
a,i +

1

ρi
udiss
a,i ,

where ucons
a,i is the “conservative” control term given by (5.15) and udiss

a,i is the dis-
sipative control term to be designed. The Euler–Lagrange equations in the original
coordinates for the ith uncontrolled system are

Exα
i
(Li) = 0; Eθai (Li) = ucons

a,i +
1

ρi
udiss
a,i ,

where Li is given by (4.1).
In the new coordinates given by (5.1), we have for i = 1, . . . , n,

(6.2) Exα
i
(L̃c) = 0; Eza

i
(L̃c) =

1

n
ũdiss
a,i ,

where L̃c is given by (5.2) and

ũdiss
a,i =

n∑

j=1,j &=i+1

udiss
a,j − (n− 1)udiss

a,i+1, i = 1, . . . , n− 1,

ũdiss
a,n =

n∑

j=1

udiss
a,j .

Case I. ũdiss
a,n = 0.

Let Ẽc be the energy function for the Lagrangian L̃c. Given momentum value
µa, let ξb = g̃abµa. Then, the function Ẽξ

c defined by

Ẽξ
c = Ẽc − Jaξ

a
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has the property that its restriction to the level set Ja = µa = g̃abξb of the momentum
gives Eµ (5.13). We can use this fact to calculate the time derivative of Eµ as follows.
From (6.2), we get

(6.3)
d

dt
Ẽc =

1

n

n∑

i=1

(żai ũ
diss
a,i ).

Using (6.3) and the fact that d
dtJa = 1

n ũ
diss
a,n , we get

(6.4)
d

dt
Ẽξ

c =
1

n

n∑

i=1

(żai ũ
diss
a,i ) −

(
1

n
ũdiss
a,n ξa

)
.

The expression for the time derivative of Eµ is obtained by restricting d
dt Ẽ

ξ
c to the

set Ja = µa. This and (5.12) give us

d

dt
Eµ =

1

n

n−1∑

i=1

(żai ũ
diss
a,i ) +

1

n
ũdiss
a,n ( żan|Jb=µb

− ξa)

=
1

n

n−1∑

i=1

(żai ũ
diss
a,i ) +

1

n
ũdiss
a,n (g̃ab(µb − (M̄T

12ẋr)b) − ξa)

=
1

n

n−1∑

i=1

(żai ũ
diss
a,i ) +

1

n
ũdiss
a,n (−g̃ab(M̄T

12ẋr)b).

Here, M̄T
12ẋr is a covariant vector just like a momentum. Hence, its components are

denoted by subscripts. Since ũdiss
a,n is chosen to be zero, we get

(6.5)
d

dt
Eµ =

1

n

n−1∑

i=1

(żai ũ
diss
a,i ).

Expressing ũdiss
a,i in terms of udiss

a,i , we can write the expression for Ėµ as

(6.6) n
d

dt
Eµ = udiss

a,1




n−1∑

j=1

żaj



 +
n−1∑

j=2

udiss
a,j



−(n− 1)żaj−1 +
n−1∑

k=1,k &=j−1

żak





and choose

udiss
a,1 = dab




n−1∑

j=1

żbj



 ,

udiss
a,j = dab



−(n− 1)żbj−1 +
n−1∑

k=1,k &=j−1

żbk



 ,

j = 2, . . . , n− 1,(6.7)

where dab is a positive definite control gain matrix, possibly dependent on xαi , i =
1, . . . , n, and zai , j = 1, . . . , n− 1. With the dissipative control term (6.7), d

dtEµ ≥ 0.
We note that this dissipative control term requires that each individual system

can measure the variables żai of all other vehicles. Recall that for Lyapunov stability
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the interconnection among individual systems need only be connected for the coupling
potential Ṽε which is a function of the yak , k = 1, . . . , n. That is, for Lyapunov sta-
bility, each individual system need only measure its relative position with respect to
some subset of the other individual systems. However, for ASSM we require complete
interconnection in the dissipative control term which is a function of the variables żn.
That is, each individual system feedbacks relative velocity with respect to every other
individual system. Figure 6.1 illustrates a complete interconnected graph for the case
of four vehicles. Complete interconnection is not needed for stabilization of group
dynamics in the simpler dynamical models used more typically in the literature, as
described in section 1. It is hoped that the interconnection limitation here in stabi-
lization of networks of underactuated mechanical systems can likewise be overcome
in future work.

Fig. 6.1. Complete interconnected communication graph for four vehicles.

We next study convergence of the system using the LaSalle invariance principle
[11]. For c > 0, let Ωc = {(xr, ẋr)|Eµ ≥ c}. Ωc is a compact and positive invariant
set with integral curves starting in Ωc and staying in Ωc for all t ≥ 0. Define the
LaSalle surface

E =

{
(xr, ẋr)

∣∣∣∣
d

dt
Eµ = 0

}
.

On this surface, udiss
a,j = 0, i = 1, . . . , n, which implies that żai = 0 for i = 1, . . . , n− 1.

Let M be the largest invariant set contained in E . By the LaSalle invariance principle,
solutions that start in Ωc approach M. The relative equilibrium (5.11) is contained
in M; however, there are other solutions in this set.

We now proceed to analyze in more detail the structure of solutions on the LaSalle
surface E . Using the condition żai = 0 for i = 1, . . . , n − 1, we get ẏai = ẏaj for all

i, j ∈ {1, . . . , n}. This gives yai − yaj = constant. Since we have chosen Ṽε to be a

quadratic function of the terms yai − yaj , we get ∂Ṽε
∂ya

i
= constant =: ∆i

a. The equations

of motion for the yai restricted to the LaSalle surface are Eya
i
(L′

c) = 0, where L′
c is

given by (4.2). Equivalently,

(6.8) ÿai +
d

dt

(
g̃abi giαbẋ

α
i

)
= −g̃abi

∂Ṽε
∂ybi

= −g̃abi ∆i
b .

As illustrated in [1], for SMC systems, there is a function lai (xαi ) for each vehicle
i defined on an open set of the configuration space for the ith vehicle’s unactuated
variables such that

(6.9)
∂lai
∂xαi

= g̃aci giαc .
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We can assume, by shrinking Ωc if necessary, that (6.9) holds in Ωc.
Let Kc be the projection of Ωc onto the coordinates (xn, ẋn), where xn =

(xα1 , . . . , x
α
n). Then, since lai is continuous and Kc is compact, there exist constants

mi and ni such that

(6.10) mi ≤ ||li(xi)|| ≤ ni

for all xαi such that xn ∈ Ωc. Using (6.8), (6.9), and the condition ẏai = ẏaj on E , we
get

(6.11)
d

dt
(l̇ai − l̇aj ) = g̃abj ∆j

b − g̃abi ∆i
b .

Therefore, on E ,

(6.12) lai − laj =
1

2
(g̃abj ∆j

b − g̃abi ∆i
b)t

2 + νa
1 t + νa

2

for some constant vectors νa
1 and νa

2 . The only way (6.10) can also be satisfied is if
g̃abj ∆j

b − g̃abi ∆i
b = 0 and νa

1 = 0.
To simplify our calculations, we assume that the n individual mechanical systems

are identical. In this case, g̃abj = g̃abj for any i, j ∈ {1, . . . , n}. This gives ∆i
a = ∆j

a

for any i, j ∈ {1, . . . , n}, and so for a connected network with potential V ′
ε having

a maximum at xαi = 0 and yai = yaj for all i "= j, we get that yai = yaj on E for all
i, j ∈ {1, . . . , n}.

Using the definition (6.9) and the assumption that the individual systems are
identical, the fact that l̇ai − l̇aj = 0 on E yields

(6.13) giαbẋ
α
i = gjαbẋ

α
j ,

where gkαb = gαb(xαk ) for all k = 1, . . . , n. Therefore, on the LaSalle surface E , we see
that solutions are of the form (xn(t), ẋn(t), ya1 (t), . . . , ybn(t), ẏc1(t), . . . , ẏ

d
n(t)), where

yai (t) = yaj (t) for any i, j ∈ {1, . . . , n}, Ja = µa, and condition (6.13) holds. Since
zan =

∑n
i=1 y

a
i and the individual systems are identical, we have

Ja =
∂L̃c

∂żan
=

n∑

i=1

(giαaẋ
α
i + g̃abẏ

b
i )

= g̃ab

n∑

i=1

(g̃bcgiαcẋ
α
i + ẏbi )

= ng̃ab(g̃
bcgiαcẋ

α
i + ẏbi )

for any i ∈ {1, . . . , n}, where we have used the facts that ẏai = ẏaj and (6.13) holds on
E . Therefore, for each i we get

(6.14) ẏai =
1

n
g̃abµb − g̃abgiαbẋ

α
i .

Substituting (6.14) into the closed-loop equations for the Lagrangian L′
c (4.2), we

get the following equations for the xαi variables:

(6.15)
d

dt

∂Lµ

∂ẋαi
=

∂Lµ

∂xαi
,
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where

Lµ =
n∑

i=1

(
1

2
(g̃iαβ − g̃abgiαag

i
βb)ẋ

α
i ẋ

β
i − V1i(x

α
i )

)

=
n∑

i=1

(
1

2
(giαβ − (κ + 1)gabgiαag

i
βb)ẋ

α
i ẋ

β
i − V1i(x

α
i )

)
,(6.16)

and V1i is defined by assumption AS1. Here, κi = κ for all i = 1, . . . , n.
Lµ is just the Routhian Rµ for a mechanical system with abelian symmetry vari-

ables without a linear term in velocity and without the amended part of the potential.
This follows because, for SMC systems, these latter terms do not contribute to the
dynamics of the reduced system. We also see that the xαi dynamics completely decou-
ple from the xαj dynamics on the LaSalle surface E for all i and j. The yai dynamics
given by (6.14) can be thought of as a reconstruction of dynamics in the symmetry
variables, obtained after solving the reduced dynamics in the xαi variables. We now
make the following assumption.

AS2. Consider two solutions (xα(t), ya(t)) and (x̃α(t), ỹa(t)) of the
Euler–Lagrange equations corresponding to the Lagrangian given by
(3.3). If ya(t) = ỹa(t) and gαa(xα(t))ẋα(t) = gαa(x̃α(t)) ˙̃xα(t), then
xα(t) = x̃α(t).

Note that checking this condition does not require extensive computation since we
already know the expression for the closed-loop Lagrangian. Consider two solutions
xα(t) and x̃α(t) such that gαa(xα(t))ẋα(t) = gαa(x̃α(t)) ˙̃xα(t). This is equivalent to
la(xα) = la(x̃α) + ca, where la is defined by (6.9) and ca is a constant; i.e., xα(t)
and x̃α(t) are two solutions in (xα, ẋα) space satisfying the Euler–Lagrange equation
corresponding to the Lagrangian Lµ given by (6.16) and differing by a constant. For
mechanical systems with symmetries, it may be possible to prove that ca is zero,
as is done for the pendulum/cart case in section 8. Then, AS2 is equivalent to
assuming that the function la is injective, i.e., gαa is one-to-one in a neighborhood
about the equilibrium. For the pendulum/cart example in section 8, this holds in the
neighborhood defined by pendulum angles which are above the horizontal plane. As
mentioned in [1], AS2 is equivalent to the (local) strong inertial coupling assumption
in [21] and internal/external convertible system in [7].

Using (6.13) and the fact that yai = yaj on the LaSalle surface, we get from AS2
that xαi = xαj and θai = θaj for all i, j ∈ {1, . . . , n}. So we get that the dissipation
control law given by (6.7) yields asymptotic convergence to synchronized motion on
a constant momentum surface.

Theorem 6.1 (ASSM). Consider a network of n identical SMC systems that
each satisfy AS1 and AS2. Suppose for each individual system that the origin is an
equilibrium and that the original potential energy is maximum at the origin. Consider
the kinetic energy shaping defined in section 4 and potential energy coupling Ṽε defined
in section 5, where the terms in Ṽε are quadratic in yai − yaj and the corresponding
interconnection graph is connected. The closed-loop dynamics (6.2) derive from the
Lagrangian L̃c given by (5.2), and the potential energy V ′

ε is maximized at the relative
equilibrium (5.11). The control input takes the form (6.1), where ucons

a,i is given by
(5.15) and ρi = ρ, κi = κ. The dissipative control term given by (6.7) asymptotically
stabilizes the solution in which all the vehicles have synchronized dynamics such that
θai = θaj and xαi = xαj for all i and j, and each has the same constant momentum in
the θai direction. The system stays on the constant momentum surface determined by
the initial conditions.
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Remark 6.2. Consider a Case II in which we choose ũdiss
a,n = −λ(Ja−µa) and ua,i

for i = 1, . . . , n − 1 as in Case I. Then Ja = (Ja(0) − µa) exp(−λt) + µa and we can
rewrite the reduced system in (xr, ẋr) coordinates as follows:

(6.17) Exr (R
µ) =

(
0

1

n
ũdiss

)
+ λM̄12M̄

22(J(0) − µ) exp(−λt).

Here, ũdiss = (ũdiss
a,1 , . . . , ũ

diss
a,n−1) is an rn-dimensional vector, and J and µ are r-

dimensional vectors with components Ja and µb, respectively. When λ = 0, we get
Case I. When λ "= 0, the momentum Ja is no longer a conserved quantity. This case
needs to be analyzed more carefully since we are pumping energy into the system now
to drive it to a particular momentum value. Equation (6.17) can be considered to
be a parameter dependent differential equation with the parameter being λ. When
λ = 0, we already know the solution from Case I. From the continuity of dependence of
solutions upon parameters, we get that when 0 < λ < δ, the solution stays within an
ε-tube of the solution in Case I for time t ∈ [0, t1] for some t1 if the initial conditions
are in a δ-neighborhood. Our simulations for pendulum/cart systems suggest that
this holds true for the infinite time interval. We plan to investigate this case further
in our future work.

Remark 6.3. The simplifying requirement for Theorem 6.1 that all systems be
identical is a weakness of the result and motivates the question of robustness to un-
certainty in system parameters. Simulations suggest that the stability of Theorem 6.1
is robust to model parameter uncertainty, but a formal robustness analysis is war-
ranted.

In section 8 we illustrate the result of Theorem 6.1 and the dynamics of (6.16) in
more detail in the case of a network of inverted pendulum/cart systems. Solutions for
this example correspond to synchronized balanced pendula on synchronized moving
carts, where the motion of the carts is the sum of a constant velocity plus an oscillation
and the motion of the pendula is oscillatory with the same frequency as the carts.

7. Asymptotic stabilization of relative equilibria. In the previous section,
we proved asymptotic stability of the coordinated network in the case when the net-
work asymptotically converges to the momentum surface Ja = µa. This can lead to
nontrivial and interesting synchronized group dynamics, as is discussed in section 8.
Stabilization was proved using Eµ as a Lyapunov function on the reduced space. The
dynamics after adding a dissipative control term are given by θai = θaj and xαi = xαj
for all i, j = 1, . . . , n. The dissipative terms are chosen such that the momentum is
preserved.

In this section, we demonstrate how to isolate and asymptotically stabilize the par-
ticular synchronized and constant momentum solutions corresponding to the relative
equilibria given by (5.11). The value of the momentum µa can be chosen arbitrarily.
We use a different Lyapunov function from that used in section 6. We note that in
the example of a network of inverted pendulum/cart systems, the relative equilibrium
corresponds to the synchronized motion of all carts moving in unison at a steady
speed with all pendula at rest in the upright position; i.e., it is the special case of the
motion proved in Theorem 6.1 without the oscillation.

Consider the following function:

(7.1) ERE =
1

2
(ẋc − vRE)T M̃c(ẋc − vRE) + V ′

ε ,
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where vRE is defined by (5.11). ERE is a Lyapunov function in directions transverse
to the group orbit of the relative equilibrium, i.e., ERE > 0 in a neighborhood of the
Euler–Lagrange solution given by (xr, zn, ẋr, żn), where xr = 0, ẋr = 0, zdn = ζdt,
żdn = ζd, and ζd corresponds to (n times) the constant velocity of the center of mass
of the network.

The time derivative of ERE along the flow given by (6.2) can be computed to be

d

dt
ERE =

1

n
(ẋc − vRE) ·

(
0

ũdiss

)
.

See [3] for the steps involved in proving this identity. Choose

(7.2) ũdiss
a,i =

{
nσiżai for i = 1, . . . , n− 1,

nσn(żan − ζa) for i = n,

where control parameters σi are positive constants. Then,

d

dt
ERE =

n−1∑

j=1

σi(ż
a
j )2 + σn(żbn − ζb)2 ≥ 0.

We note here that, unlike the case of asymptotic stabilization in the previous sec-
tion, where a complete interconnection was required to realize the dissipative control
term (6.7), the dissipative control term (7.2) requires only a connected interconnection
graph.

Let ΩRE
c = {(xr, ẋr, żan)|ERE ≥ c} for c > 0. ΩRE

c is a compact set, i.e., ERE is
a proper Lyapunov function. Assume that the Euler–Lagrange system (6.2) satisfies
the following controllability condition.

AS3. The system (6.2) is linearly controllable at each point in a
neighborhood of the relative equilibrium solution manifold.

Note that checking this condition does not require extensive computation since we
already know the expression for the closed-loop Lagrangian.

We now use a result from nonlinear control theory, which is stated in [3] as Lemma
2.1 and the remark following it, to conclude that the system (6.2) with dissipative
control terms given by (7.2) converges exponentially to the set

ERE = {(xr, ẋr, ż
a
n) |ERE = 0} .

On this set, the solution is given by (5.11). Thus, we have shown that the solutions
of the controlled system will exponentially converge to (xαi , θ

a
i , ẋ

β
i , θ̇

b
i ) = (0, 1

nζ
at +

γa, 0, 1
nζ

b), with γa constant.
Theorem 7.1 (ASSRE). Consider a network of n (not necessarily identical) in-

dividual SMC systems that each satisfy assumption AS1. Suppose for each individual
system that the origin is an equilibrium and that the original potential energy is max-
imum at the origin. Consider the kinetic energy shaping defined in section 4 and
potential energy coupling Ṽε defined in section 5, where the terms in Ṽε are quadratic
in yai − yaj and the corresponding interconnection graph is connected. The closed-loop

dynamics (6.2) derive from the Lagrangian L̃c given by (5.2) and the potential energy
V ′
ε is maximized at the relative equilibrium (5.11). The control input takes the form

(6.1), where ucons
a,i is given by (5.15) and ρi = ρ. If (6.2) satisfies AS3, then the dissi-

pative control term given by (7.2) exponentially stabilizes the relative equilibrium given
by (5.11) in which xαi = ẋαi = 0 for all i = 1, . . . , n and θai = θaj and θ̇ai = θ̇aj = 1

nζ
a

for all i and j.
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8. Coordination of multiple inverted pendulum/cart systems. As an
illustration, we now consider the coordination of n identical planar inverted pendu-
lum/cart systems. For the ith system, the pendulum angle relative to the vertical is
xi and the position of the cart is θi. Let the Lagrangian for each system shown in
Figure 8.1 be

Li =
1

2
αẋ2

i + β cos(xi)ẋiθ̇i +
1

2
γθ̇2

i + D cos(xi); i = 1, . . . , n,

where l,m,M are the pendulum length, pendulum bob mass, and cart mass, respec-
tively. g is the acceleration due to gravity. The quantities α, β, γ, and D are expressed
in terms of l,m,M, g as follows:

α = ml2, β = ml, γ = m + M, D = −mgl.

The equations of motion for the ith system are

Exi(Li) = 0,

Eθi(Li) = ui,

where ui is the control force applied to the ith cart.
One can see that θi is a symmetry variable. Further, it can be easily verified that

each pendulum/cart system satisfies the simplified matching conditions [1, 2]. The n
inverted planar pendulum/cart systems lie on n parallel tracks corresponding to the
θi directions. The coordination problem is to prescribe control forces ui, i = 1, . . . , n,
that asymptotically stabilize the solution where each pendulum is in the vertical
upright position (in the case of ASSRE) or moving synchronously (in the case of
ASSM) and the carts are moving at the same position along their respective tracks
with the same common velocity. The relative equilibrium vRE (5.11) corresponds to
xi = ẋi = 0 for all i, θi = θj for all i "= j, and θ̇i = 1

nζ for some constant scalar
velocity ζ.

Following (5.2), the closed-loop Lagrangian for the total system in the coordinates
xc = (x1, . . . , xn, z1, . . . , zn), where zi = y1−yi+1 for i = 1, . . . , n−1, zn = y1+· · ·+yn,
yi = θi + p sinxi, and p = β

γ (κ + 1 − 1
ρ ), is

(8.1) L̃c =
1

2
ẋT M̃cẋ− V ′

ε (x1, . . . , xn, z1, . . . , zn−1).

M̃c is as in (5.6) and Mc is as in (4.3),

g̃iαβ = α−
(
κ + 1 − 1

ρ

)
β2

γ
cos2(xi), g̃iαa = β cos(xi),

g̃iab = ργ, V ′
ε = −D

n−1∑

i=1

(
cos(xi) −

1

2
ε
γ2

β2
z2
i

)
−D cos(xn)(8.2)

with ε > 0. The control law (6.1) for the ith system is

(8.3) ui =
κβ

(
sinxi

(
αẋ2

i + cos(xi)D
)
−Bi

(
∂V ′

ε
∂θi

− udiss
i

))

α− β2

γ (1 + κ) cos2(xi)
,
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Fig. 8.1. The planar pendulum on a cart.

where

Bi =
1

ρ

(
α− β2 cos2(xi)

γ

)
.

Note that we have chosen ρi = ρ and κi = κ. In the case udiss
i = 0, by Theorem 5.2,

we get stability of the relative equilibrium vRE (SSRE) if we choose ρ < 0, ε > 0, and

κ such that mκ := α− (κ+ 1)β
2

γ < 0. The choice of udiss
i depends upon what kind of

asymptotic stability we want, i.e., convergence to a synchronized constant momentum
solution or to a relative equilibrium.

The dependence of V ′
ε on z2

i in (8.2) implies that coupling between the pendu-
lum/cart systems introduced by the control is a function of terms yi − yj rather than
θi − θj . That is, our approach to simultaneous stabilization and synchronization of a
network of planar pendulum/cart systems yields coupling not simply as a function of
relative cart positions but, rather more subtly, as a function of the horizontal compo-
nent of relative positions of pendulum bobs (where pendulum length is scaled by p).
Numerical simulations show that naively coupling the positions of the carts for the
purpose of synchronization in fact destabilizes the network. This particular example
illustrates the need to integrate synchronization and stabilization tasks.

8.1. Asymptotic stability on a constant momentum surface (ASSM).
Following (6.7), we let udiss

1 be

udiss
1 = d1

(
n−1∑

k=1

(żk)

)

and udiss
i for i = 2, . . . , n be

udiss
i = di



−(n− 1)żi−1 +
n−1∑

k=1,k &=i−1

żk



 ,

where coefficients di are constant positive scalars.
We now analyze the dynamics on the LaSalle surface. On this surface, we have

ẏi = ẏj for all i, j ∈ {1, . . . , n} and J = µ, where momentum µ is determined by the
initial conditions. From the calculations made in section 6, we also get yi = yj and
cos(xi)ẋi = cos(xj)ẋj . The xi dynamics are given by (6.15) with

(8.4) Lµ =
n∑

i=1

(
1

2

(
α− (κ + 1)

β2

γ
cos2(xi)

)
ẋ2
i + D cos(xi)

)
.
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Fig. 8.2. Simulation of a controlled network of pendulum/cart systems with dissipation designed
for ASSM. The pendulum angle, cart position, and cart velocity are plotted as a function of time
for each of the two pendulum/cart systems in the network.

To verify AS2 we need to check that if cos(xi)ẋi = cos(xj)ẋj about the origin for
a system corresponding to the Lagrangian Lµ, then xi = xj identically. This condition
can also be written as sin(xi) = sin(xj) + c, where c is a constant. Note that if xi(t)
is an Euler–Lagrange solution corresponding to Lµ for the ith vehicle, then −xi(t)
is also a solution. Since we have a stable pendulum oscillation about the upright
position, xi(t) and therefore | sin(xi(t))| oscillates with mean zero for all i. This can
also be concluded from the fact that the solution curves are closed level curves in
the (xi, ẋi) plane of Lµ given by (8.4) and Lµ is invariant under the sign change
(xi, ẋi) #→ −(xi, ẋi). Since | sin(xi)| oscillates with zero mean for all i, the constant c
must be zero. Hence, xi(t) = xj(t) for all i, j identically and AS2 is verified. Thus,
by Theorem 6.1 the pendulum network asymptotically goes to an ASSM.

From (8.4), it can be seen that on the LaSalle surface, the dynamics of xi are
decoupled from the dynamics of xj for all i "= j. For small xi, the dynamics of each
individual term in Lµ corresponds to the stable dynamics of a spring-mass system
with a κ-dependent mass −mκ > 0 and spring constant −D > 0. The mass −mκ,
which determines the oscillation frequency of the pendulum for each individual cart,
can be controlled by the choice of κ. For the nonlinear system also, constant energy
curves are closed curves in the (xi, ẋi) plane. Hence, we have a periodic orbit for the
angle made by each pendulum with the vertical line with a κ-dependent frequency.
On the LaSalle surface, J = ργθ̇i + (β + pργ) cos(xi)ẋi = constant. Therefore, the
velocity of the cart θ̇i oscillates about a constant velocity with the same frequency as
the pendulum oscillation.

Figure 8.2 shows the results of a MATLAB simulation for the controlled net-
work of pendulum/cart systems using the following values for the system parameters.
The pendulum/cart systems have identical pendulum bob masses, lengths, and cart
masses. The pendulum bob mass is chosen to be m = 0.14 kg, cart mass is M = 0.44
kg, and pendulum length is l = 0.215 m. The control gains are ρ = −0.27, κ = 40,
di = d = 0.2, and ε = 0.0005. We compute mκ = −0.058 kgm2 < 0 as required for
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Fig. 8.3. Simulation of a controlled network of pendulum/cart systems with dissipation designed
for ASSRE. The pendulum angle, cart position, and cart velocity are plotted as a function of time
for each of the two pendulum/cart systems in the network.

stability. The initial conditions for the two systems shown are

( x1(0) ẋ1(0) θ1(0) θ̇1(0) x2(0) ẋ2(0) θ2(0) θ̇2(0) )

= ( 0.48 0.99 0.37 0.53 0.18 0.50 0.42 0.66 ).

Figure 8.2 shows plots of the pendulum angle, cart position, and cart velocity as a
function of time for two of the coupled pendulum/cart systems. Convergence to an
ASSM is evident. The frequency of oscillation of the pendula can be observed to be the
same as the frequency of oscillation in the cart velocities. This frequency of oscillation
can be computed as ω =

√
D/mκ and the period of oscillation as T = 2π/ω = 2.8 s,

which is precisely the period of the oscillations observed in Figure 8.2.

8.2. Asymptotic stability of relative equilibria (ASSRE). In this case, we
want to asymptotically stabilize the relative equilibrium vRE , i.e., xi = ẋi = 0 for all
i, θi = θj for all i "= j, and θ̇i = 1

nζ for all i, and any constant scalar velocity ζ. Recall
that this corresponds to each pendulum angle at rest in the upright position and all
carts aligned and moving together with the same constant velocity 1

nζ. Following
(7.2), we let

udiss
i = ndiżi

for i = 1, . . . , n− 1 and

udiss
n = ndn(żn − ζ),

where the control parameters di are positive constants.
Figure 8.3 shows the results of a MATLAB simulation for the controlled network

of pendulum/cart systems with this dissipative control. We choose ζ = 2n m/s, and
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the remaining system and control parameters are as above in the ASSM case. The
initial conditions for the two systems shown are

( x1(0) ẋ1(0) θ1(0) θ̇1(0) x2(0) ẋ2(0) θ2(0) θ̇2(0) )

= ( 0.53 1.12 0.56 0.50 1.02 0.63 0.24 0.81 ).

Figure 8.3 shows convergence to the relative equilibrium; the pendula are stabilized in
the upright position, the cart positions become synchronized, and the cart velocities
converge to 2 m/s.

9. Final remarks. We have derived control laws to stabilize and stably syn-
chronize a network of mechanical systems with otherwise unstable dynamics. We
have proved stability of relative equilibria corresponding to synchronization in all
variables and common steady motion in the actuated directions. Using two different
choices of a dissipative term in the control law, we prove two different kinds of asymp-
totic stability. In the first case of dissipation, we show how to drive the network to
a synchronized motion on the constant momentum surface determined by the initial
conditions. Such a synchronized motion can be interesting when examined in physical
space. In our example of a network of planar pendulum/cart systems, we show that
the synchronized motion is periodic and the period of the oscillation can be controlled
with a control parameter. In the second case of dissipation, we show how to isolate
and asymptotically stabilize the relative equilibrium for any choice of constant mo-
mentum. We illustrate all of our results for a network of pendulum/cart systems.
For this example, our approach yields a subtle choice in the coupling variables: The
coupling that leads to stable synchronization is a function of relative positions of pen-
dulum bobs, not simply relative positions of carts. Indeed, coupling as a function of
relative cart positions destabilizes the network.

For asymptotic stabilization of the relative equilibrium, we assume that the inter-
connection graph for the network is connected. However, for asymptotic stabilization
of a synchronized motion on the constant momentum surface, we assume that the
interconnection graph for the dissipative control is completely connected. It is of
interest in future work to determine whether this latter condition can be relaxed.

In Theorem 6.1 we prove asymptotic stabilization of a synchronized motion on the
constant momentum surface; however, we cannot select the value of the momentum
because it is determined by the initial conditions. In Remark 6.2 we propose a control
law to simultaneously drive the momentum to a desired value. This control law
appears to work in simulation; however, the stability analysis is more subtle. It raises
a number of interesting questions. For example, suppose we have a dynamical system
depending upon a parameter λ, i.e., the Lagrangian is given by a function L(q, q̇, λ),
where q is the state variable. Assume that for each λ ∈ [0, ε], the (controlled) system
is Lyapunov stable. If we now let λ evolve in time such that it “slowly” goes to
a value ε̄ ∈ (0, ε), can we still conclude that the system is Lyapunov stable in the
infinite time domain? See [12] for results in the case when the unperturbed system
has a uniformly asymptotically stable equilibrium. We plan to build on these tools to
study our parameter dependency problem in future work.

Another future direction is the inclusion of collision avoidance in our framework.
For instance, in our example, the carts move on parallel tracks, and hence collision
avoidance is not an issue. However, it is interesting to consider the case in which all
of the carts are on the same track and the pendulum/cart systems can be controlled
without collisions for stable synchronization.
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