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a b s t r a c t

Control laws to synchronize attitudes in a swarmof fully actuated rigid bodies, in the absence of a common
reference attitude or hierarchy in the swarm, are proposed in [Smith, T. R., Hanssmann, H., & Leonard, N.E.
(2001). Orientation control of multiple underwater vehicles with symmetry-breaking potentials. In Proc.
40th IEEE conf. decision and control (pp. 4598–4603); Nair, S., Leonard, N. E. (2007). Stable synchronization
of rigid body networks.Networks and Heterogeneous Media, 2(4), 595–624]. The present paper studies two
separate extensions with the same energy shaping approach: (i) locally synchronizing the rigid bodies’
attitudes, but without restricting their final motion and (ii) relaxing the communication topology from
undirected, fixed and connected to directed, varying and uniformly connected. The specific strategies
that must be developed for these extensions illustrate the limitations of attitude control with reduced
information.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Coordination is a common requirement in applications involv-
ing robotic swarms or formations (Cortes, Martinez, & Bullo, 2004;
Fax & Murray, 2004; Justh & Krishnaprasad, 2004; Leonard et al.,
2007; Scardovi,Sepulchre, & Leonard, 2007; Sepulchre. Paley, &
Leonard, 2008); understanding basic coordination mechanisms is
the subject of ongoing research (Fax & Murray, 2004; Reynolds,
1987; Strogatz, 2003). Controlling a swarm of three-dimensional
rigid bodies such that their orientations become asymptotically
equal is called attitude synchronization. Its main use is in satel-
lite formations (Bondhus, Pettersen, & Gravdahl, 2005; Izzo & Pet-
tazzi, 2005; Krogstad & Gravdahl, 2006; Lawton & Beard, 2002;
McInnes, 1996; Ren, 2006; VanDyke & Hall, 2006), e.g. for the Dar-
win mission, a space interferometer project under study by NASA
and ESA, or for on-orbit assembly (Izzo & Pettazzi, 2005; McInnes,
1996). Operational requirements focus on accuracy near equilib-
rium (Beugnon, Buvat, Kersten, & Boulade, 2005). The present pa-
per focuses on convergence from arbitrary initial orientations with

I The material in this paper was partially presented at the 17th IFAC Automatic
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publication in revised formbyAssociate Editor Andrey V. Savkin under the direction
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limited information. This is probably most relevant for deployment
or recovery. Each rigid body is assumed fully actuated and called
an agent.
A first main constraint limits communication links among

agents. Under this constraint, (Lawton & Beard, 2002; VanDyke
& Hall, 2006) consider attitude synchronization coupled to the
tracking of a common external reference. Alternatively, (Bondhus
et al., 2005; Krogstad & Gravdahl, 2006) synchronize attitudes in a
leader–follower approach.
The qualifier ‘‘autonomous’’ refers to a second main constraint

in the present paper: there is no hierarchy in the swarm and
no external reference tracking. Autonomous operation in multi-
agent systems is well motivated. It can increase robustness, since
synchronization does not rely on permanent communication of a
common reference, nor on the health of a potential leader. Also,
it can stabilize the formation without interfering with its absolute
motion. When orientation in inertial frame is not relevant (e.g. in
assembly), this additional freedommay lower costs; in other cases,
it builds a swarm that behaves more like a single body than a
set of individual agents. The autonomous setting relies on the
global Lie group structure of orientationmanifold SO(3). Therefore
the popular unitary quaternion representation, containing two
elements for each point of SO(3), cannot be used.
Control laws for autonomous attitude synchronization are

designed in Nair and Leonard (2007); Smith,Hanssmann, and
Leonard (2001) with energy shaping. The present paper extends
them in two separate ways.

1. In Nair and Leonard (2007); Smith et al. (2001), the dissipative
control term, based on angular velocities, imposes the final
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motion of the swarm. By only using relative angular velocities
between agents, the present paper obtains a swarm behaving
like a single rigid body: any synchronized free rigid bodymotion
is a solution for the controlled swarm.

2. The results in Nair and Leonard (2007); Smith et al. (2001) are
valid for fixed, undirected communication topologies. Inspired
by consensus strategies on compact Lie groups (Sarlette &
Sepulchre, in press; Scardovi, Sarlette, & Sepulchre, 2007), the
present paper uses auxiliary variables to allow directed and
time-varying communication topologies.

Both extensions illustrate difficulties encountered when re-
ducing available information. The limitations of ‘‘relative dissipa-
tion’’ show the difficulty to control a system whose dynamics just
have configuration symmetry with a controller that has config-
uration and velocity symmetry; this illustrates the relevance of
formal reduction techniques (Hanssmann, Leonard, & Smith, 2006).
With limited communication, it is well known that for more than
local synchronization, the non-convexity of compact Lie groups
requires new strategies as compared to simple vector space algo-
rithms (Moreau, 2004).
The paper is organized as follows. Section 2 formalizes the

problem and reviews the main result of Nair and Leonard (2007);
Smith et al. (2001). Section 3 presents extension 1 and Section 4
presents extension 2.

2. Problem setting and previous results

Orientations of N rigid bodies with respect to an inertial frame
are represented by rotationmatricesQk ∈ SO(3), k = 1 . . .N . Their
motion follows Euler’s equations

Q Tk
d
dt
Qk = [ωk]∧ (1)

Jk
d
dt
ωk = [Jkωk]∧ωk + τk (2)

where Jk = diag(Jk1, Jk2, Jk3) is the moment of inertia matrix of
agent k,ωk ∈ R3 its angular velocity and τk ∈ R3 its control torque;
these are all expressed in body frame and Jk1 ≥ Jk2 ≥ Jk3 without
loss of generality. Torque and velocity in inertial frame areQkτk and
Qkωk. Matrix transpose is denoted ·T, and [·]∧ is defined by

a =

(a1
a2
a3

)
∈ R3 ↔ [a]∧ =

( 0 −a3 a2
a3 0 −a1
−a2 a1 0

)
∈ so(3)

such that a × b = [a]∧b, ∀a, b ∈ R3 with × the vector product.
The inverse of [·]∧ is denoted [·]∨ : so(3) → R3. The objective is
to design τk, k = 1 . . .N such that Q1 = · · · = QN asymptotically,
under two main constraints.

1. (communication) Communication links among agents are
restricted to the edges of a communication graph G; ‘‘j sends
information to k’’ is denoted j  k.

2. (autonomy) Agents use no external reference; available infor-
mation is expressed relative to body frame.

References (Nair & Leonard, 2007; Smith et al., 2001) solve
this problem with energy shaping: ‘‘shape’’ the potential and ki-
netic energy of a system to make the desired state a stable equi-
librium; control torques implement the ‘‘shaped’’ energy. Early
work uses artificial potentials for robotic navigation and obsta-
cle avoidance (Khatib, 1986; Rimon & Koditschek, 1992). Space-
craft control uses potential (McInnes, 1995) and kinetic (Bloch,
Krishnaprasad, & Marsden, 1992) energy shaping. Potential shap-
ing is used in Leonard (1997) for stabilization of rigid bodies in
SE(3). Energy shaping is used for synchronization of mechanical
system networks in Nair and Leonard (2008) and applied to net-
works on SO(3) and SE(3) in Hanssmann et al. (2006); Nair and
Leonard (2007); Smith et al. (2001). Kinetic energy shaping can
transform any principal axis into the short axis (Nair & Leonard,
2007; Smith et al., 2001); this part is ignored here for simplifica-

tion. Scalar djk :=
√
3− trace(Q Tk Qj) characterizes the distance be-

tween Qk and Qj, and (djk)2 is smooth. Therefore (Nair & Leonard,
2007; Smith et al., 2001) use artificial potential

V =
σ

2

∑
k

∑
j k

trace(Q Tk Qj), σ < 0 (3)

whose global minimum is attitude synchronization. V can have
local minima when G is not a tree or complete graph (Sarlette
& Sepulchre, in press). For G undirected (i.e. j  k ⇔ k  
j), the conservative control torques only depend on the relative
orientations Q Tk Qj of agents j  kwith respect to k:

τ
(P)
k = −[gradQk(V )]

∨
= −σ

∑
j k

[Q Tk Qj − Q
T
j Qk]

∨. (4)

Write τk = τ
(P)
k + τ

(D)
k , energy H = T + V with kinetic energy T =∑

k Tk =
∑
k
1
2ω
T
k Jkωk, and angular momentum M =

∑
k QkJkωk.

Then d
dtH =

∑
k ω
T
k τ

(D)
k and d

dtM =
∑
k Qkτk. When τ

(D)
k = 0,

attitude synchronization with rotation around the short axis is
(Lyapunov) stable. Asymptotic stability requires τ (D)k to decrease
H . Nair and Leonard (2007) exponentially stabilize this rotation
when V contains an additional term aligning the short axis with a
specific direction in inertial space; this does not satisfy autonomy.
An alternative torque satisfying autonomy is

with τ (P)k from (4), τ
(D)
k = −γωk, γ > 0 (5)

as in Ren (2006), for which H decreases till ωk = 0 ∀k.
This asymptotically stabilizes attitude synchronization with zero
velocity.

3. Extension 1: Relative angular velocities

Dissipation (5), although it preserves symmetry with respect
to orientation of the agents (autonomy constraint), imposes their
motion. A dissipative term preserving motion symmetry should
drive agent velocities towards each other instead of towards 0,
comparing Qkωk to the Qjωj (inertial frame), or equivalently ωk to
the Q Tk Qjωj (body frame). The corresponding torque is

τ
(D)
k = γ

∑
j k

(Q Tk Qjωj − ωk), γ > 0. (6)

Attitude synchronization ismore difficultwith (6) thanwith (5) be-
cause the τk only influence relative velocities, while the rigid body
dynamics still depend on ωk; indeed, the nonlinearity of (2) with
respect to ωk cannot be reduced. The study of mechanical systems
that are invariant with respect to configuration symmetries, but
still depend on the associated velocities, is the subject of reduc-
tion techniques—see (Hanssmann et al., 2006) for a discussion about
SO(3) and SE(3). The following result illustrates typical difficulties
caused by the remaining velocity in the dynamics. The proof also il-
lustrates the difficulty to obtain results without resorting to formal
reduction techniques.

Theorem 1. Consider G fixed, undirected and connected and control
τk = τ

(P)
k + τ

(D)
k with τ (D)k defined by (6) and τ (P)k = −[gradQk(V )]

∨,
where V is a bounded potential.

(a) Regardless of V , for any initial conditions, velocities in inertial
frame Qkωk asymptotically synchronize.
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(b) For identical rigid bodies (Jk = J∀k) and V defined by (3), angular
momentum M is conserved. Given Mmax, there exists σ ∗ < 0
(depending on N, J , G and Mmax) such that for |σ | > |σ ∗|, the set
of free rigid body motions with synchronized attitudes Qk(t) =
Qj(t)∀j, k and ‖M‖ ∈ (0,Mmax) is locally asymptotically stable.

Proof. (a)
d
dt
H =

∑
k

ω Tk τ
(D)
k

= γ
∑
k

∑
j k

ωTk (Q
T
k Qjωj − ωk)

= γ
∑
k

∑
j k

(Qkωk)T (Qjωj − Qkωk)

= −γ (Ωa)T(L⊗ I3)Ωa

where Ωa is the 3N-vector containing all Qkωk and L ⊗ I3 is
the Kronecker product of the Laplacian1 L of G with the 3 × 3
identity matrix. For undirected graphs, L is positive semidefinite;
its kernel reduces to x = (c c c · · · c)T, c ∈ R, if and only
if G is connected. Thus H decreases unless all Qkωk are equal.
Orientations evolve in a compact set where V is bounded, and H is
radially unbounded in the non-compact dimension corresponding
to velocities. Therefore a LaSalle argument proves that the swarm
converges to an invariant set where Qkωk = Qjωj ∀j, k, under the
dynamics (1) and (2) with τk = τ

(P)
k .

(b) Conservation of M is equivalent to
∑
k Qkτk = 0 which

is easy to verify. For synchronization of the Qk, the proof is
in two steps. First, show that given a neighborhood W 3

(Q1 · · ·QN , ω1 · · ·ωN) of the set SM∗ of free rigid body motions
with synchronized attitudes Qk(t) = Qj(t)∀j, k and total angular
momentum ‖M∗‖ < Mmax, there exist |σ1| and a neighborhood
U of SM∗ such that starting in U implies staying inW if |σ | > |σ1|.
Then show that there exist |σ2| and a neighborhoodW1 of SM∗ such
that for |σ | > |σ2|, solutions of (1) and (2) with identical Qkωk and
τk = τ

(P)
k as in (4) that stay inW1 are necessarily in SM0 , whereM0 is

the initial angular momentum of the system. Then takingW = W1
and |σ ∗| > max(|σ1|, |σ2|) concludes the proof.
For the first part, recalling (djk)2 = 3 − trace(Q Tk Qj), let W =

{(Q1 · · ·QN , ω1 · · ·ωN) : (djk)2 < ε∀k, j and ‖M − M∗‖ < δ}. If E
is the number of edges in G,

1
2

∑
k

∑
j k

(3− trace(Q Tk Qj)) = 3E − V (t)/σ < ε

(the factor 12 comes from counting each distance twice) is sufficient
for a solution starting with ‖M − M∗‖ < δ to be in W at time
t . Since H decreases, for t ≥ 0, T (t) + V (t) ≤ T (0) + V (0) so
V (t) − V (0) ≤ T (0) − T (t) ≤ T (0). Hence if |σ | > |σ1|, then
(V (0)− V (t))/σ ≤ T (0)/|σ1| and so

3E − V (t)/σ ≤ (3E − V (0)/σ )+ T (0)/|σ1|.

Choose a neighborhood U1 ⊆ W of SM∗ such that maxk‖QkJωk −
M∗
N ‖ <

β

N ‖M
∗
‖, for some β > 0. Initial conditions in U1 imply

T (0) < ‖M∗‖2

2J3N
(1+β)2. Then taking (assuming actualM∗ unknown)

|σ1| >
M2max
εJ3N

(1 + β)2 ensures T (0)/|σ1| < ε
2 . Also define U2

such that 3E − V (0)/σ < ε/2. Then with initial conditions in
U = U1 ∩ U2, the system stays inW for t ≥ 0.
The second part involves more calculations, which will not all

be detailed. Denote the final common velocity by Qkωk = Ω(t)∀k;

1 The Laplacian of a graph has entries lkj = −1 if j  k and lkj = 0 otherwise for
j 6= k; lkk = −

∑
j6=k lkj .
note that ‖Ω‖ ≤ ‖M‖
N J3
. The time derivative of Ω = Qkωk along

solutions of the closed-loop system is (note that ddt (Q
T
k Qj) = 0

when Qkωk = Qjωj)

d
dt
Ω = −σQk J−1

∑
l k

[Q Tk Ql − Q
T
l Qk]

∨

+Qk J−1Q Tk [Qk JQ
T
kΩ]

∧Ω (7)

which must hold ∀k. Denoting the first and second terms on the
right side of (7) by (7a)k and (7b)k respectively,

‖(7a)k − (7a)j‖2 = ‖(7b)k − (7b)j‖2 (8)

∀k, j. The right side of (8) is bounded by (calculations)

‖(7b)k − (7b)j‖2 ≤
16J21
J23
‖Ω‖4(djk)2.

Thus the same bound must hold for the left side of (8),

‖(7a)k − (7a)j‖2 ≤
16J21
J23
‖Ω‖4(djk)2.

Summing the last condition over all k, j, using conservation of M
and linearizing leads to (calculations)

2σ 2λ32
J21

(d2max + O(d4max)) ≤
16J21E‖M

∗
‖
4

J63N2
d2max + O(d3max) (9)

where λ2 > 0 is the second-smallest eigenvalue of the Laplacian L
of G and d2max denotes the maximal value of (djk)

2 among all pairs
of connected agents. ChoosingW1 such that the higher-order terms
represent less than γ1 < 1 and γ2 < 1 respectively on the left and
right side of (9), the condition becomes

d2max ≤
8J41E

(1− γ1)(1− γ2)J63λ
3
2

‖M∗‖4

σ 2
d2max. (10)

Taking σ 2 > (σ2)
2
:=

8J41 E M
4
max

(1−γ1)(1−γ2)J63λ
3
2
, (10) can only be satisfied if

d2max = 0⇔ Qk = Qj∀k, j. �

Several comments are in order about Theorem 1.

• Theorem1(a) still holds for time-varying (uniformly connected)
and directed, but balanced graphs2 because xTLx is still non-
negative in this case.
• When the swarm is synchronized, all control torques τk vanish.
Hence, the (unimposed)motion of the synchronized swarm can
be any free rigid body motion.
• Theorem 1(b) is a local result. However, simulations indicate a
large basin of attraction U . The proof contains three conditions
for U . Conditions with δ and β basically impose ‖M‖ lower and
upper bounded and ‖ωk‖ upper bounded; for ‘‘infinite σ ’’, this
still allows almost any initial condition. The critical constraint is
with ε chosen to bound high-order terms in (9). For ‘‘infinite σ ’’
relevant high-order terms are on the left; they are like sin2(θ)−
θ2 around θ = 0. Then it is sufficient that all Qk are inside
a geodesic ball of radius π/2, also the maximal convex set of
SO(3). This is consistent with synchronization being the only
minimum of V for all Qk in a convex set.

2 A directed graph is balancedwhen at each node, the number of incoming edges
equals the number of outgoing edges.
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Fig. 1. Two rigid bodies in a situation from which (4) and (6) do not synchronize
attitudes for small σ . All vectors lie in the same plane, except e2A = e2B
perpendicular to the page.

• The bound on |σ | reflects that the controller must overcome
unknown ‘‘perturbations’’ [Jωk]∧ωk. Sliding mode control
like gradk(V )/‖gradk(V )‖ is similar to ‘‘infinite σ ’’ near
synchronization. However, the resulting chattering depends on
controller parameters, and ωk-dependent bounds will still be
required to stay in a neighborhood of synchronization where
the ‘‘perturbations’’ do not desynchronize the system. This even
gets more difficult since ddtM 6= 0 and

d
dtH 6≤ 0.

• With no condition on σ , there are situations arbitrarily close
to synchronization but from which it is never reached. Take
two agents A and B synchronized and rotating around e3 with
velocity Ω , where e1, e2, e3 denote principal axes of J1 > J2 >
J3. Now (see Fig. 1), with respect to this synchronized state,
A and B are tilted by φ and −φ respectively around e2, with
φ arbitrarily small; they still rotate with QAωA = QBωB =
Ω around the axis aligned with the initial synchronized e3,
which now makes an angle φ with actual axes e3A and e3B.
Then [Jωk]∧ωk pulls A and B further apart, while τ

(P)
k pulls them

together. For a particular ratio ‖Ω‖2/σ , both effects exactly
cancel.
• In Jalnapurkar and Marsden (1998), general forms for relative
dissipation are proposed based on reduction techniques; they
require that consecutive Poisson brackets of allowed torques
restore full rank, which is not the case here.

4. Extension 2: Directed and varying graphs

The previous algorithms require fixed, undirected graphs.
‘‘Consensus algorithms’’, see (Moreau, 2004; Olfati-Saber, Fax, &
Murray, 2007; Tsitsiklis & Athans, 1984), globally synchronize
variables in vector spaces with directed and time-varying graphs.
Therefore, (Sarlette & Sepulchre, in press) embeds SO(3) in R3×3
and builds a consensus algorithm for auxiliary variables Yk ∈ R3×3;
Qk tracks the projection of Yk on SO(3) such that synchronizing Yk
implies synchronizing Qk. Here (Sarlette & Sepulchre, in press) is
extended to mechanical system (1) and (2).
The consensus algorithm is, in inertial frame,

d
dt
Yk = β

∑
j k

(Yj − Yk), β > 0 (11)

or equivalently in body frames with Xk = Q Tk Yk

d
dt
Xk = β

∑
j k

(Q Tk QjXj − Xk)− [ωk]
∧Xk (12)

for k = 1 . . .N . Projection and tracking are implemented with
artificial potential

V = σ
∑
k

trace(Q Tk Yk), σ < 0. (13)
Indeed, the distance from Yk to Q ∈ SO(3) in R3×3 is

‖Yk − Q‖2 = trace((Yk − Q )T(Yk − Q ))
= 3+ trace(Y Tk Yk)− 2trace(Q

T
k Yk).

The resulting torque is

τk = −σ [Xk − XTk ]
∨
+ τ

(D)
k , k = 1 . . .N. (14)

Controller (12) and (14) only involves variables in body frame
(autonomy) but, unlike extension 1, contains ωk. Cost is added to
store, update and exchange the Xk.

Theorem 2. For G uniformly connected3, attitude synchronization
with ωk = 0∀k is almost globally asymptotically stable for (1) and
(2) with controller (12), (14) and (5).

Proof. The Yk evolve under (11) independently of the agents’ mo-
tions. Hence classical consensus results (e.g. (Moreau, 2004)) en-
sure their exponential convergence to a common constant Y∞ for
G uniformly connected. The Y∞ such that v(Q ) := σ trace(Q TY∞)
has severalminimizers on SO(3), are non-generic (Sarlette & Sepul-
chre, in press); the following assumes that v(Q ) has a unique min-
imizer Q ∗ = ProjSO(3)(Y∞).
From the previous paragraph, (1), (2), (14) and (5) form an

asymptotically autonomous system where agents are decoupled;
the limiting (autonomous) system is obtained by replacing Xk with
Q Tk Y∞. Solutions of an asymptotically autonomous system con-
verge to a chain recurrent set of the limiting system (Mischaikow,
Smith, & Thieme, 1995). A point x in state space is chain recurrent if
and only if it belongs to the intersection of all locally asymptotically
stable sets containing the positive limit set L+(x) of x (Oprocha,
2005). The limiting system for k is of the ‘‘shaped energy’’ form
with H bounded below and d

dtH = −γ ‖ωk‖
2. A LaSalle argument

on H as for Theorem 1(a) shows that the positive limit set L+(x)
for the autonomous system of any point x := (Qk, ωk) only con-
tains equilibria xe, where ωk = 0 and Qk is at a critical point of
v(Qk); the set of equilibria is denoted by E . Any x ∈ E is chain
recurrent. For x 6∈ E , define µ := maxy∈L+(x)(H(y)) < H(x) and
S := {y : H(y) ≤ µ}. S contains L+(x) but not x, since H(y) < H(x)
for any y ∈ L+(x)when x 6∈ E . For any Y∞, v(Qk) takes a finite num-
ber of values at critical points (Sarlette & Sepulchre, in press). Then
there exists ν > µ such that H(y) ∈ (µ, ν)⇒ y 6∈ E . Choose an ε-
neighborhood Sε of S and defineρ = miny∈(SO(3)×R3)\Sε (H(y)) > µ.
Select a δ-neighborhood Sδ of S where H(y) < min({ν, ρ}). Start-
ing in Sδ ensures staying in Sε so S is locally stable; every point of Sδ
must converge to a point of E∩Sδ ⊆ E∩S so S is locally asymptoti-
cally stable. Thus S is an asymptotically stable set containing L+(x)
but not x. Then from (Oprocha, 2005), non-equilibrium points are
not chain recurrent: the autonomous system’s chain recurrent set
reduces to the critical points of v(Qk). For a generic Y∞, the latter
contain the unique minimum Q ∗ and three unstable points (Sar-
lette & Sepulchre, in press). All solutions starting outside these
three points and their stable manifolds converge to Qk = Q ∗. �

Theorem 2 deserves the following comments.

• Unstable solutions that do not converge to synchronization
are (i) situations where ProjSO(3)(Y∞) is not unique; (ii) a few
unstable critical points of V in (13).
• The choice Xk(0) = αkI3 with αk ∈ R+∀k avoids unnecessary
transients when the Qk(0) are close.

3 Moreau (2004): G is uniformly connected if there exist an agent k, and time
periods T ,∆ > 0 such that, ∀t , there is a directed path from k to all other agents in
the union of all edges appearing at least during∆ time units in the interval [t, t+T ].
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• Embedding SO(3) in R3×3 uses nine-dimensional Xk. In fact,
the three-dimensional SO(3) can be embedded in R3×2 by only
retaining the first two columns of Qk. It is even possible to
embed SO(3) in R5 (Stuelpnagel, 1964).
• The proof of Theorem 2 uses vector space consensus in cascade
with projection and tracking for the actual system. Sarlette and
Sepulchre (in press) applies this to first-order integrators. Sar-
lette, Sepulchre, and Leonard (2007) consider (1) and (2) with
‘‘consensus tracking’’; ‘‘energy shaping’’ control is expected to
be more robust.
• Dissipation (5) forces zero final velocities. It is tempting to
combine extensions 1 and 2 to obtain global convergence
without restricting final motion. Unfortunately this is not easy,
independently of τ (D)k , because the final motion is dictated
by Q ∗ = Proj(Y∞) and (11) leads to a constant Y∞.
Different adaptations have been explored in simulation, with
no conclusive result.

5. Conclusion

This paper presents two extensions of results in Nair and
Leonard (2007); Smith et al. (2001) for rigid body attitude
synchronizationwith limited communication links andno external
reference.
A first controller avoids imposing the finalmotion of the swarm.

For fixed, undirected, connected communication graphs, angular
velocities globally synchronize. Asymptotic attitude synchroniza-
tion is local and requires adapting the strength of the interaction
potential to the initial total angular momentum. These limitations
illustrate difficulties, in accordance with insights of formal reduc-
tion techniques (Hanssmann et al., 2006), encounteredwhen using
controllers with configuration and velocity symmetry for mechan-
ical systems that just have configuration symmetry.
A second controller achieves almost-global attitude synchro-

nization for time-varying and directed graphs, at the cost of intro-
ducing auxiliary variables that communicating agents exchange;
connectedness can be relaxed to the union of all links appearing in
a fixed time span.
Combining both extensions remains speculative. Future work

could add actuator constraints to the communication constraints.
Also, similar proofs can likely be repeated for mechanical systems
on other Lie groups.
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