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Abstract— This paper proposes a methodology to stabilize
relative equilibria in a model of identical, steered particles
moving in three-dimensional Euclidean space. Exploiting the
Lie group structure of the resulting dynamical system, the
stabilization problem is reduced to a consensus problem. We
first derive the stabilizing control laws in the presence of all-
to-all communication. Providing each agent with a consensus
estimator, we then extend the results to a general setting
that allows for unidirectional and time-varying communication
topologies.

I. I NTRODUCTION

The problem of controlling the formation of a group
of autonomous systems has received a lot of attention in
recent years. This interest is principally due to the theo-
retical aspects that couple graph theoretic and dynamical
systems concepts, and to the vast number of applications.
Applications range from sensor networks, where a group
of autonomous agents has to collect information about a
process by choosing maximally informative samples [1], [2],
to formation control of autonomous vehicles (e.g. unmanned
aerial vehicles) [3], [4]. In these contexts it is relevant to
consider the case where the ambient space is the three-
dimensional Euclidean space.

In the present paper we consider a model of identical
particles moving at unit speed in three-dimensional Euclid-
ean space and we address the problem of designing control
laws to stabilizerelative equilibriain the presence of limited
communication among the agents. These equilibria are char-
acterized by formations where the relative orientations and
positions among the particles are constant [3]. They give
rise to parallel, circular and helical formations. A motivating
application for the present paper is the use of autonomous
underwater vehicles to collect oceanographic measurements,
extending the results in [1] to a three-dimensional setting.
Furthermore the collective motions studied in the present
paper have been empirically observed in swarming of animal
groups [5].

The particles are subject to a gyroscopic feedback control
which changes their orientation in space. The feedback is
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based only on the relative positions and the relative orien-
tations of the particles and therefore preserves theSE(3)
symmetry of the formation. An important consequence is that
no external reference is required. The desired control laws
can bestatic or dynamic. A static control law requires to
exchange only the relative positions and orientations among
the particles at each time instant. Dynamic control laws
additionally include a consensus variable that is shared with
the communicating particles. The additional exchange of
information is rewarded by an increased robustness with
respect to communication failures (see [6] and [7] for de-
tails) and therefore is applicable to limited and time-varying
communication scenarios.

The present paper generalizes, to three-dimensional space,
earlier work in the plane [8], [9]. Preliminary results in
SE(3) have been presented in [10]. A similar approach
applied to rigid body attitude synchronization has been
presented in [11].

The rest of the paper is organized as follows. In Section
II we define the kinematic model for a group of steered
particles moving in three-dimensional Euclidean space with
unitary velocity. In Section III we review some concepts from
the theory of screws and we present a general methodology
to stabilize relative equilibria onSE(3). In Section IV we
derive control laws that stabilize relative equilibria in the
presence of all-to-all communication. Finally, in Section
V, we designdynamiccontrol laws that stabilize relative
equilibria in the presence of limited communication.

II. A MODEL OF STEERED PARTICLES INSE(3)

We consider a kinematic model ofN identical particles
(with unitary mass) moving in three-dimensional Euclidean
space at unit speed:

ṙk = xk

ẋk = ua
k × xk k = 1, 2, . . . , N

(1)

whererk ∈ R
3 denotes the position of particlek, xk is a

unit-norm velocity vector andua
k ∈ R

3 is a control vector.
Model (1) characterizes particles dynamics with forcing only
in the directions normal to velocity, i.e.̈rk = ua

k × ṙk.
An alternative to (1) is to provide each particle with an
orthonormal frame and to write the system dynamics in a
curve framingsetting [3]:

ṙk = xk

ẋk = ykqk + zkhk

ẏk = −xkqk + zkwk

żk = −xkhk − ykwk k = 1, . . . , N,

(2)



where (xk, yk, zk) is a right handed orthonormal frame
associated to particlek (in particularxk ∈ S2 is the (unit)
velocity vector). The scalarsqk, hk represent the curvature
controls of thekth particle. The scalarwk adds a further
degree of freedom allowing rotations about the axisxk. In
vector notation we define

uk =





wk

−hk

qk



 . (3)

The advantage of using model (2) instead of model (1) relies
on its group structure. Model (2) indeed defines a control
system on the Lie groupSE(3) and the dynamics (2) can
be expressed in terms of the group variablesgk ∈ SE(3):

ġk = gkξ̂k, k = 1, . . . , N, (4)

whereξ̂k ∈ se(3) is an element of the Lie algebra ofSE(3).
From (2) we obtain

gk =

[

Rk rk

0 1

]

, Rk = [xk, yk, zk] ∈ SO(3),

and

ξ̂k =

[

ûk e1

0 0

]

(5)

where

ûk =





0 −qk −hk

qk 0 −wk

hk wk 0





is a skew-symmetric matrix that represents an element of
the tangent space toSO(3). We denote by(e1, e2, e3) the
standard orthonormal basis forR

3.
When only the orientations of the particles are taken into

account, the reduced dynamics of (4) are

Ṙk = Rk ûk, k = 1, . . . , N (6)

and the system evolves on the Lie groupSO(3).
It is worth noting that the following relation exists between

the control vectorua
k in (1) and the vectoruk in (3)

ua
k = Rkuk. (7)

Thereforeua
k can be interpreted as the control vectoruk

expressed in the “absolute” reference frame.
If the curvature controls in model (2) are feedback func-

tions of shapequantities (i.e. relative frame orientations and
relative positions), the closed-loop vector field is invariant
under an action of the symmetry groupSE(3). The resulting
closed-loop dynamics evolve in a quotient manifold called
shape spaceand the equilibria of the reduced dynamics are
called relative equilibria. Relative equilibria of the model
(2) have been characterized in [3]. The equilibria, depicted
in Figure 1, are of three types:
i) Parallel motion: all particles move in the same direction
with arbitrary relative positions;
ii) Circular motion: all particles draw circles with the same
radius, in planes orthogonal to the same axis of rotation;
iii) Helical motion: all particles draw circular helices with
the same radius, pitch, axis and axial direction of motion.
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Fig. 1. The three types of relative equilibria: (a) parallel, (b) circular and
(c) helical.

The present paper presents stabilizing feedback controls
in shape space for the three types of relative equilibria.

III. STABILIZATION OF RELATIVE EQUILIBRIA AS A

CONSENSUS PROBLEM

In terms of screw theory [12], an element ofse(3) is called
a twist. The motion produced by a constant twist is called
a screw motion. The operator denoted by∨ extracts the6-
dimensional vector which parameterizes a twist: (5) yields

ξk =

[

ûk e1

0 0

]∨

=

[

e1

uk

]

.

The inverse operator,∧, expresses the twist in homogeneous
coordinates starting from a vector form: (5) yields

ξ̂k =

[

e1

uk

]∧

=

[

ûk e1

0 0

]

.



A twist ξ = [vT , ωT ]T ∈ R
6 defines the screw motione

ˆξt

on SE(3) [12]. Whenω 6= 0 this motion corresponds to a
rotation by an amountθ = ||ω|| about the axisl, followed
by translation by an amountp ||ω|| parallel to the axisl.
Whenω = 0 the corresponding screw motion consists of a
pure translation along the axis of the screw by a distance
M = ||v||. The relations among the screw(l, p, M) and
twist are the following [12]:

p =

{

ωT v
||ω||2

, if ω 6= 0

∞, if ω = 0

l =

{ ω×v
||ω||2

+ λω, if ω 6= 0

0 + λv, if ω = 0

M =

{

||ω|| , if ω 6= 0
||v|| , if ω = 0

whereλ ∈ R. In the context of model (4), the twist (in body
coordinates) is given byξk = [eT

1 , uT
k ]T . To mapξk into a

spatial reference frame, one uses theadjoint transformation
associated withgk

Adgk
=

[

Rk r̂kRk

0 Rk

]

,

which yields

ξa
k = Adgk

ξk =

[

xk + rk × Rkuk

Rkuk

]

=

[

xk + rk × ua
k

ua
k

]

.
(8)

To give a geometric interpretation to (8) we compute the
relative screw coordinates (expressed in a global frame) and
we obtain an (instantaneous) pitch

pk =
eT

1 uk

||uk||
2
,

an (instantaneous) axis

l
a
k =

{

ua
k ×

xk+rk×ua
k

||uk||
2 + λua

k, if uk 6= 0

0 + λxk, if uk = 0
,

and (instantaneous) magnitude

Mk =

{

||uk|| , if uk 6= 0
1, if uk = 0.

Therefore, each constant controluk defines a screw motion
(corresponding to helical, circular or straight motion).

Consider two particles and their respective group variables
gk and gj . The dynamics forgkj = g−1

k gj (the shape
variable) are given (see [3]) by

ġkj = −g−1

k ġkg−1

k gj + g−1

k gj ξ̂j

= −ξ̂kgkj + gkj ξ̂j

= gkj(ξ̂j − Adg
−1

kj
ξ̂k).

(9)

Equation (9) implies that a relative equilibrium of (4) is
reached when the twists (expressed in the same reference
frame) are equal for all the particles, i.e.ξa

k = ξa
0 for

k = 1, . . . , N , ξa
0 arbitrary. Moreover the screw coordinates

of the common valueξa
0 provide a geometrical description

of the relative equilibria. Therefore the relative equilibria are
characterized by a screw motion whose geometric parameters
are a pitch, an axis and a magnitude uniquely determined by
the consensus valueξa

0 . We summarize the above discussion
as follows.

Proposition 1: The following statements are equivalent:
i) System (2) is at a relative equilibrium.
ii) The twistsξa

k defined by (8) are equal fork = 1, 2, . . . , N ,
i.e. the following algebraic condition is satisfied

Π̃ξa = 0

whereΠ̃ = (I − 1

N
11

T )⊗ I6 andξa = col(ξa
1, ξ

a
2, . . . , ξ

a
N).
�

Proposition 1 reduces the problem of stabilizing a relative
equilibrium onSE(3) to a consensus problem on twists.

Remark 1:The discussion above particularizes toSE(2).
The (planar) model

ṙk = xk

ẋk = ukyk

ẏk = −ukxk

(10)

In the Lie groupSE(2), we obtain

gk =

[

Rk rk

0 1

]

, ξ̂k =

[

ûk e1

0 0

]

where
Rk = [xk, yk] ∈ SO(2),

ûk =

[

0 −uk

uk 0

]

= Juk, J =

[

0 −1
1 0

]

ande1 = [1, 0]T . In this case the twist isξk = [eT
1 , uk]T ∈

R
3. By mapping the twist coordinates to a spatial frame we

obtain

ξa
k =

[

xk − ukJrk

uk

]

. (11)

Whenuk is constant, only two types of motion are possible
for (10), straight motion (uk = 0) and circular motion (uk =
ω0). When (11) are equal and constant for all the particles
the resulting motion is characterized by a parallel formation
(uk = 0) and a circular formation about the same point (uk 6=
0 and constant). The control laws are derived in [8], [9].

IV. STABILIZATION OF RELATIVE EQUILIBRIA IN THE

PRESENCE OF ALL-TO-ALL COMMUNICATION

From (8), when a particlek applies the constant control
uk = ωk, the (constant) twist expressed in the spatial
reference frame is

ξa
k =

[

xk + rk × Rkωk

Rkωk

]

=

[

sk

Rkωk

]

. (12)

Motivated by Prop. 1 a natural candidate Lyapunov function
is

V (ξa) =
1

2

∣

∣

∣

∣

∣

∣
Π̃ξa

∣

∣

∣

∣

∣

∣

2

=
1

2

N
∑

k=1

||ξa
k − ξa

av||
2 (13)



where the subscriptav is used to the note average quantities,
i.e.

ξa
av =

1

N

N
∑

k=1

ξa
k.

This is the approach pursued in [8] for collective motion in
SE(2).

Unfortunately from (12) it is evident that the first compo-
nentsk is not linear in the state variables. As a consequence
sav 6= xav + rav × ωav and the approach followed in [8]
does not yield shape control laws. To overcome this obstacle
we first stabilize the motion about an axis of rotation whose
direction is fixed. In Section IV-B we relax the design by
replacing, in the control laws, the fixed direction of the
axis of rotation with (local) consensus variables, thereby
obtaining stabilizing shape control laws.

A. Stabilization about an axis of rotation with a fixed direc-
tion

Let ω ∈ R
3 be a fixed constant vector. Observe that under

the constant control lawωk = RT
k ω, a relative equilibrium

is reached when the vectorssk in (12) are equal for all the
particles.

Up to an additive constant the Lyapunov function (13)
becomes

S(s, ω) =
1

2

N
∑

k=1

||sk − sav||
2 . (14)

wheresk = xk + rk ×ω ands = (sT
1 , . . . , sT

N )T . The time
derivative is

Ṡ =

N
∑

k=1

< sk−sav, ṡk >=

N
∑

k=1

< sk−sav, ẋk+xk×ω > .

By making the last term explicit we obtain

Ṡ=
N

∑

k=1

< sk−sav, yk(qk− < ω, zk >)+zk(hk+ < ω, yk >) >.

The control law

qk = < ω, zk > − < sk − sav, yk >
hk = − < ω, yk > − < sk − sav, zk >

(15)

results in a non-increasingS

Ṡ = −

N
∑

k=1

(qk− < ω, zk >)2 + (hk+ < ω, yk >)2 ≤ 0.

(16)
By substituting the definition ofsk in the control law (15)
we obtain

qk = < ω, zk > − < (rk − rav) × ω − xav, yk >
hk = − < ω, yk > − < (rk − rav) × ω − xav, zk > .

(17)
The parameterwk in (2) is set to< xk, ω > to obtain a
constant twist in steady state. By using the definition (3) the
control law (17) can be written in the compact form

uk = RT
k (ω + [(rk − rav) × ω − xav] × xk) (18)

Note that thesk dynamics equipped with the control law
(18) are

ṡk = −Πxk
(sk − sav) , (19)

where Πxk
= I − xkxT

k is the projection matrix on the
orthogonal complement of the subspace spanned byxk.

Theorem 1:Consider model (2) with the control law (18).
All the solutions converge to an equilibrium of (19). The only
asymptotically stable equilibria are relative equilibriaof (2).
Every other equilibrium of (19) is unstable. �

Proof: From (16),S is non-increasing along the solutions of
(2) and, by the La Salle invariance principle all the solutions
converge to the largest invariant setΓ where

(sk − sav) × xk = 0, (20)

that characterizes the equilibria of (19). In this setẋk =
ω ×xk andsk is constant fork = 1, . . . , N . We divide the
analysis in three parts to analyzeΓ.
i) Suppose that in steady stateω × xk 6= 0 for every k.
Then (20) can hold only ifsk = s0 for every k and for
some fixeds0 ∈ R

3, this set defines a global minimum for
S and therefore is asymptotically stable. These equilibria
correspond to circular or helical relative equilibria (with axis
of rotation parallel toω).
ii) Suppose now that in steady stateẋk = ω × xk = 0 for
everyk. From (20) we obtain

(sk − sav) × ω = 0

for everyk, which implies(rk − rav) × ω = 0. Therefore
in steady state the Lyapunov function (14) reduces to

S =
1

2

N
∑

k=1

||xk − xav||
2
. (21)

The equilibria are characterized by the vectorsxk, k =
1, . . . , N, all parallel to the constant vectorω. Note that this
configuration involvesN − K velocity vectors aligned to
ω andK velocity vectors anti-aligned toω (or vice-versa),
where0 ≤ K ≤ N

2
. When K = 0, potential (21) is zero

(global minimum), and therefore the configuration defines
asymptotically stable equilibria. These equilibria correspond
to collinear formations (with the same direction of motion)
parallel toω.

WhenK = N
2

, potential (21) attains a global maximum,
and therefore the configuration defines unstable equilibria.
Every other value ofK corresponds to a saddle point and is
therefore unstable. To see this it is sufficient to expressxk

andω in polar coordinates and to show thatS can decrease
under an arbitrary small perturbation (see Theorem1 in [10]
for similar calculations).
iii) It remains to analyze the situation whereω × xk 6= 0
for k ∈ G1 andω × xj = 0 for j ∈ G2, whereG1 andG2

denote two disjoint groups of particles such thatG1

⋃

G2 =
{1, . . . , N} . In such a situation we obtain

sk − sav = 0, k ∈ G1

(sj − sav) × ω = 0, j ∈ G2,
(22)



wheresj 6= sav, j ∈ G2. In this set the Lyapunov function
(14) reduces to

S = 1

2

∑

k∈G2
||sk − sav||

2

= 1

2

∑

k∈G2
||< sk − sav, xk > xk||

2 .
(23)

Sincesj 6= sav, andxj is parallel toω for every j ∈ G2,
we conclude from (23) that this set does not correspond to
global minima of (14). It can be shown that under suitable
perturbations ofxk, k ∈ G2 (such thatsav is constant) (23)
is decreasing and therefore conditions (22) define an unstable
set (the details are omitted due to space constraints).�

In steady state, the particles motion is characterized by a
constant (consensus) twistξ0 = [sT

0 , ωT ]T . The correspond-
ing screw parameters are a pitchp0 =< s0, ω > / ||ω||

2, an
axis l0 = {s0 × ω/ ||ω||

2
+ λω, λ ∈ R} and a magnitude

M0 = ||ω||. Therefore the control law (18) stabilizes all the
particles to a relative equilibrium whose pitch is arbitrary.
To reduce the dimension of the equilibrium set we combine
the Lyapunov function (14) with the potential

W (x, ω) =

N
∑

k=1

(< ω, xk > −α)
2
, α ∈ [0, 1), (24)

that is minimum when all the particles attain the same pitch
p0 = α/ ||ω||

2. This leads to the control law

uk = RT
k [ω + [(rk − rav) × ω − xav

+(< ω, xk > −α)ω] × xk] .
(25)

The control law (25) stabilizes all the particles to a relative
equilibrium whose magnitude and pitch are fixed by the
design parametersα and||ω||. In particular, acting onα it is
possible to separate circular equilibria (α = 0) from helical
equilibria (α ∈ (0, 1)). The global convergence analysis
follows the lines of the proof of Theorem1 and is omitted
due to space constraints.

It is worth noting that whenω is set to zero the control
law (18) reduces to

uk = RT
k (xk × xav) . (26)

This control law stabilizes parallel formations and has been
studied previously in [10].

B. Stabilization about a consensus axis of rotation

Because the control laws (18) and (25) depend on the vec-
tor ω, the resulting closed-loop vector field is not invariant
under an action of the symmetry groupSE(3). An important
consequence is that additional information is required besides
the relative configurations among the particles. To overcome
this obstacle we propose a consensus approach to reach an
agreement about the direction of the axis of rotation. We
provide each particle with a consensus variableωk, and we
denote byωa

k = Rkωk the same quantity expressed in a
(common) spatial reference frame. The potential

Ω(ωa) =
N

2

N
∑

k=1

||ωa
k − ωa

av||
2
, (27)

whereωa is the stacking vector of the vectorsωa
1 . . . , ωa

N ,
decreases along the gradient dynamics

ω̇a
k =

N
∑

j=1

ωa
j − ωa

k. (28)

Expressing (28) in the body reference frame we obtain

ω̇k = û
T
k ωk +

N
∑

j=1

RT
k Rjωj − ωk, (29)

and we observe that the dynamics (29) are invariant under
an action of the symmetry groupSO(3). It turns out that the
dynamic control law resulting from the coupling between the
consensus dynamics (29) with the control law (18) or (25)
leads to a stabilizing (shape) control law.

Theorem 2:Consider model (2) equipped with the dy-
namic control law

uk = ωk +
[

RT
k (rk − rav) × ωk − RT

k xav

]

× e1,

ω̇k = û
T
k ωk +

∑N

j=1
RT

k Rjωj − ωk.
(30)

whereωk(0), k = 1, . . . , N are randomly selected.
The resulting closed-loop vector field is invariant under an

action ofSE(3). All the solutions converge to an equilibrium
of (19). The only asymptotically stable set is the set of
relative equilibria of (2) and every other equilibrium is
unstable. �

Proof:(Sketch) To show that the resulting closed-loop vector
field is invariant under an action ofSE(3), it is sufficient to
observe that the dynamic control law (30) depends only on
the relative orientations and relative positions of the particles.
With the change of variablesωa

k = Rkωk (30) rewrites to

uk = RT
k (ωa

k + [(rk − rav) × ωa
k − xav] × xk), (31)

ω̇a
k =

N
∑

j=1

ωa
j − ωa

k. (32)

We observe that (32) is independent from the particles
dynamics. Therefore the solutions of (32) will converge to a
consensus valuēω, i.e. ωa

k → ω̄ when t → ∞, for everyk
for someω̄. Therefore (31) will asymptotically converge to

uk = RT
k (ω̄ + [(rk − rav) × ω̄ − xav] × xk)

and system (2), equipped with the control law (31), will
converge to an autonomous closed-loop system whose pos-
itive limit set is characterized in Theorem 1. Solutions are
known to converge to a chain recurrent set of the limiting
(autonomous) system [13]. The only chain recurrent sets of
the limiting system are equilibria of (19). Relative equilibria
of (2) are asymptotically stable and every other equilibrium
is unstable (the details are omitted due to space constraints).

�

Remark 2:The control law (30) is the “dynamic” version
of the control law (18) and therefore stabilizes all the
particles to a relative equilibrium whose pitch is arbitrary.



To fix the pitch to a desired value it is sufficient to derive
the dynamic version of (25).

The control laws proposed in this section stabilize the
relative equilibria of (2) under the assumption of all-to-
all communication among the particles. In the next Section
we relax this assumption by substituting the quantities in
(30) that require global information with consensus variables
obeying consensus dynamics.

V. STABILIZATION OF RELATIVE EQUILIBRIA IN THE

PRESENCE OF LIMITED COMMUNICATION

Consider the control law (30). By following the approach
presented in [6] we substitute the quantities that require all-
to-all communication, i.e.rav and xav, by local consensus
variables. This leads to a generalization of the control law
(30) to uniformly connected communication graphs1.

Theorem 3:Let G(t) be a directed and uniformly con-
nected communication graph andL(t) the corresponding
bounded and piecewise continuous Laplacian matrix2. Con-
sider model (2) equipped with the control law

uk = ωk + (ωk × ck − bk) × e1

ω̇k = û
T
k ωk −

∑N

j=1
LkjR

T
k Rjωj

ḃk = û
T
k bk −

∑N

j=1
LkjR

T
k Rjbj

ċk = û
T
k ck − e1−

∑N

j=1
LkjR

T
k Rjcj −

∑N

j=1
LkjR

T
k rj

(33)
where the initial conditions of the consensus variables are
randomly selected. The resulting closed-loop vector field is
invariant under an action ofSE(3). The only asymptotically
stable set in the shape space is the set of relative equilibria
of model (2). Every other equilibrium is unstable. �

Proof:(Sketch) Observe that with the change of variables
ωa

k = Rkωk, b
a
k = Rkbk, ca

k = Rkck + rk (33) rewrites
to

uk = RT
k (ωk + [(rk − ca

k) × ωa
k − ba

k] × xk

ω̇a
k = −

∑N

j=1
Lkjω

a
j

ḃ
a

k = −
∑N

j=1
Lkjb

a
j

ċa
k = −

∑N

j=1
Lkjc

a
j

and the consensus dynamics are not influenced by the
particles dynamics. Therefore, from Theorem 1 in [14], we
conclude that the variablesωa

k, ba
k and ca

k asymptotically
converge to the consensus valuesω̄, b̄ and c̄ respectively.

The rest of the proof follows the same lines of the proof
of Theorem (2) and therefore is omitted. �

1A Graph G(t) is said to be uniformly connected if there exists a time
horizon T > 0 and a nodek such that for allt there exists a (directed)
path from each node to the nodek in G̃(t, t + T ) ,

⋃

t∈[t,t+T ] G(t).
2The graph LaplacianL associated to the graphG is defined as

Lkj =

{
∑

i aki, j = k
−akj , j 6= k.

whereakj are the elements of the adjacency matrix.

It is important to note that the control law (33) does
not require all-to-all communication among the particles.
In particular the convergence properties of Theorem 2 are
here recovered in the presence of limited communication, for
directed, time-varying (but uniformly connected) communi-
cation topologies. The same extension discussed in Remark
2 also applies to Theorem 3.

VI. CONCLUSION

We proposed a methodology to stabilize relative equilibria
in a model of identical, steered particles moving in three-
dimensional Euclidean space. Observing that the relative
equilibria can be characterized by suitable invariant quanti-
ties, we formulated the stabilization problem as a consensus
one. The formulation leads to a natural choice for the
Lyapunov functions. Dynamic control laws are derived to
stabilize relative equilibria in the presence of all-to-all com-
munication and are generalized to deal with unidirectional
and time-varying communication topologies. It is of interest
(in particular from the application point of view) to study in
the future how to reduce the dimension of the equilibrium
set by breaking the symmetry of the proposed control laws.
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