Stabilization of Collective Motion in Three Dimensions: A Consensus
Approach

Luca Scardovi, Naomi Ehrich Leonard, and Rodolphe Sepelchr

Abstract— This paper proposes a methodology to stabilize based only on the relative positions and the relative orien-
relative equilibria in a model of identical, steered partides tations of the particles and therefore preserves §t#3)
E)oving in tt:reet-dimer;sitcr)]nal E”?tl.ideag space. IEpr(t)iting thhe symmetry of the formation. An important consequence is that

ie group structure of the resultin namical system, the . . )
stabigljizatipc))n problem is reduced to% cgnsensus groblem. we NO eXtema! reference '_S requ'r?d' The desired Comrc" laws
first derive the stabilizing control laws in the presence of -  can bestatic or dynamic A static control law requires to
to-all communication. Providing each agent with a consengi exchange only the relative positions and orientations gmon
estimator, we then extend the results to a general setting the particles at each time instant. Dynamic control laws
that allows for unidirectional and time-varying communication additionally include a consensus variable that is shareld wi
topologies. the communicating particles. The additional exchange of
I. INTRODUCTION information is rewarded by an increased robustness with
] ] respect to communication failures (see [6] and [7] for de-

The problem of controlling the formation of & groupyails) and therefore is applicable to limited and time-vagy

of autonomous systems has received a lot of attention {ymmunication scenarios.

recent years. This interest is principally due to the theo- rhe present paper generalizes, to three-dimensional space
retical aspects that couple graph theoretic and dynamicgl jier work in the plane [8], [9]. Preliminary results in
systems concepts, and to the vast number of appl|cat|or§E(3) have been presented in [10]. A similar approach

Applications range from sensor networks, where a groupnnlied to rigid body attitude synchronization has been
of autonomous agents has to collect information about Gresented in [11].

process by choosing maximally informative samples [1], [2]  he rest of the paper is organized as follows. In Section

to fqmatio_n control of autonomous vehicles. (g.g. unmanngg \va define the kinematic model for a group of steered
aerial vehicles) [3], [4]. In these contexts it is relevaat t particles moving in three-dimensional Euclidean spacé wit
consider the case where the ambient space is the threfiary velocity. In Section il we review some conceptsiiro
dimensional Euclidean space. _ the theory of screws and we present a general methodology
In the present paper we consider a model of identicg), gapilize relative equilibria o5 E(3). In Section IV we

particles moving at unit speed in three-dimensional Euclidyerive control laws that stabilize relative equilibria inet
ean space and we address the problem of designing contiplsence of all-to-all communication. Finally, in Section
laws to stabilizerelative equilibriain the presence of limited \, e designdynamic control laws that stabilize relative
communication among the agents. These equilibria are Ch%”qmlibria in the presence of limited communication.
acterized by formations where the relative orientationd an
positions among the particles are constant [3]. They give ||. A MODEL OF STEERED PARTICLES INSE(3)
rise to parallel, circular and helical formations. A moting . . . . . .
application for the present paper is the use of autonomo sWe can|der a kmemr_mc _model (W. |dent|_cal part|cl_es

. . with unitary mass) moving in three-dimensional Euclidean
underwater vehicles to collect oceanographic measurene

extending the results in [1] to a three-dimensional seiting']s'oace at unit speed:

Furthermore the collective motions studied in the present e = g 1
paper have been empirically observed in swarming of animal xy = uwixz, k=1,2,...,N @)
groups [5].

The particles are subject to a gyroscopic feedback contr$fhererx € R? denotes the position of particle, x), is a

which changes their orientation in space. The feedback {it-norm velocity vector andij; € R* is a control vector.
Model (1) characterizes particles dynamics with forcingyon
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where (xy,y,, zx) is a right handed orthonormal frame
associated to particlgé (in particularxz; € Ss is the (unit)
velocity vector). The scalarg;, h; represent the curvature
controls of thekth particle. The scalat, adds a further
degree of freedom allowing rotations about the axjs In
vector notation we define

Wy

up = |—hi| . (3 >

gk ‘e 5 o

The advantage of using model (2) instead of model (1) relies
on its group structure. Model (2) indeed defines a control

system on the Lie group'E(3) and the dynamics (2) can
be expressed in terms of the group variables SFE(3):

gk:gkéka kzla"'aNa (4)

where€,, € se(3) is an element of the Lie algebra 5%(3).
From (2) we obtain

[ N R ]
P I B O )

R
gk = [ g m] , Ry =[x, yp, 2] € SO(3),

0 1
and .
< u e
&= 4l ©
where
0 —q —hs
= g 0 —wy
hk Wi 0

is a skew-symmetric matrix that represents an element of
the tangent space t60(3). We denote by(e;, es, e3) the
standard orthonormal basis f&®.

When only the orientations of the particles are taken into
account, the reduced dynamics of (4) are

Ry =Ry ax, k=1,....N (6)

()

and the system evolves on the Lie gratiQ(3).
It is worth noting that the following relation exists betwee
the control vectorsf, in (1) and the vectow, in (3)

uf = Ryuy,. (@)

Fig. 1. The three types of relative equilibria: (a) parall®) circular and
(c) helical.

The present paper presents stabilizing feedback controls

Thereforeug can be interpreted as the control vecs in shape space for the three types of relative equilibria.
expressed in the “absolute” reference frame.

If the curvature controls in model (2) are feedback func- I11. STABILIZATION OF RELATIVE EQUILIBRIA AS A
tions of shapeguantities (i.e. relative frame orientations and CONSENSUS PROBLEM
relative positions), the closed-loop vector field is inaati _
under an action of the symmetry gro§iiZ(3). The resulting !N terms of screw theory [12], an elementse{3) is called

closed-loop dynamics evolve in a quotient manifold calle@ twist The motion produced by a constant twist is called
shape spacand the equilibria of the reduced dynamics aré Screw motion The operator denoted by extracts thes-
called relative equilibria Relative equilibria of the model dimensional vector which parameterizes a twist: (5) yields
(2) have been characterized in [3]. The equilibria, depicte

~ \
in Figure 1, are of three types: £, = [1:)1@ 601] _ { e } _
i) Parallel motion: all particles move in the same direction Uk
with arbitrary relative positions; The inverse operaton, expresses the twist in homogeneous

if) Circular motion: all particles draw circles with the sem ¢qordinates starting from a vector form: (5) yields
radius, in planes orthogonal to the same axis of rotation;

iii) Helical motion: all particles draw circular helices thi S | e A _|ur e
the same radius, pitch, axis and axial direction of motion. L T 10 O



A twist ¢ = [vT, wT]T € RS defines the screw motioek?  of the relative equilibria. Therefore the relative equikbare

on SE(3) [12]. Whenw # 0 this motion corresponds to a characterized by a screw motion whose geometric parameters
rotation by an amound = ||w|| about the axid, followed are a pitch, an axis and a magnitude uniquely determined by
by translation by an amount||w|| parallel to the axig. the consensus valg. We summarize the above discussion
Whenw = 0 the corresponding screw motion consists of @s follows.

pure translation along the axis of the screw by a distance

= ||v||. The relations among the scre,p, M) and Proposition 1: The following statements are equivalent:
twist are the following [12]: i) System (2) is at a relative equilibrium.
ii) The twists¢y, defined by (8) are equal fér=1,2,..., N,
p = { ﬁ";ﬁ’z, if w=#£0 i.e. the following algebraic condition is satisfied
oo, if w=0 ﬁ a _ 0
I = ﬁ +Aw, it w 7& 0 r 1 T € a a ea a
= 0+ Mo, ifw=0 wherell = (I — 5117) ® I and§® = col(&7, &5, ..., €x).
Mo {||w||, if w#0 O
o [lv]| ifw=0

Proposition 1 reduces the problem of stabilizing a relative
where € R. In the context of model (4), the twist (in body equilibrium onSE(3) to a consensus problem on twists.
coordinates) is given by, = [e],u]]7. To map¢, into a

spatial reference frame, one uses théjoint transformation Remark 1:The discussion above particularizest#(2).

associated withyy, The (planar) model
Ad,, = ﬁ)’“ r%R’“} Tho= T
k Tr = UpY (20)
which yields Yp = —upTy
u T + TE X Rpug In the Lie groupSE(2), we obtain
ék = Adgkék = Riuy N
u 8) _ | Be Tk ; _|ur e
. T + T X Uy 9k = 0 ik & = 0 0
= u )

. . . where
To give a geometric interpretation to (8) we compute the

. X . Ry = SO(2
relative screw coordinates (expressed in a global frame) an k= [meyd € @),

we obtain an (instantaneous) pitch iy, = 0 —up| _ Jug, J— 0 -1
T U O 1 O
- 61 U
Pk = || ande; = [1,0]T. In this case the twist i§, = [e],u;]T €
. . R3. By mapping the twist coordinates to a spatial frame we
an (instantaneous) axis .
obtain
o _ ) ufox A i g # 0 gg_[mk‘“k‘]rk]. (11)
k — . ) Uk
/\iL‘k, if ur =0
, , Whenuy is constant, only two types of motion are possible
and (instantaneous) magnitude for (10), straight motion«;, = 0) and circular motion;, =
M. — [lugl|, if ur #0 wo). When (11) are equal and constant for all the particles
T, if u, = 0. the resulting motion is characterized by a parallel fororati

(ux = 0) and a circular formation about the same point ¢

Therefore, each constant contro} defines a screw motion 0 and constant). The control laws are derived in [8], [9].

(corresponding to helical, circular or straight motion).
Consider two particles and their respective group vargble [V. STABILIZATION OF RELATIVE EQUILIBRIA IN THE
gr and g;. The dynamics forgy; = g, 'g; (the shape PRESENCE OF ALLETO-ALL COMMUNICATION

variable) are given (see [3]) by From (8), when a particlé applies the constant control

ki = ~9; gkgk 93+9k gjg ur = wy, the (constant) twist expressed in the spatial
= _gkg,w + gij€; 9) reference frame is
gri(&; — Ad *1€k) o _ | Te+TR X Rpwr | _ | sk
gk Rkwk Rkwk ) (12)

Equation (9) implies that a relative equilibrium of (4) is
reached when the twists (expressed in the same referedé@tivated by Prop. 1 a natural candidate Lyapunov function
frame) are equal for all the particles, i.e! = &% for 1S

k=1,...,N, & arbitrary. Moreover the screw coordinates %03 ‘
of the common valu&{ provide a geometrical description

S -e® @3
k=1



where the subscriptv is used to the note average quantities, Note that thes; dynamics equipped with the control law
Sk = _HiL‘k (Sk — Sav) N (19)
T

ie. (18) are
whereIlg, = I — zix; is the projection matrix on the

1 N
gav = N ; £k'
This is the approach pursued in [8] for collective motion inorthogonal complement of the subspace spannedby

SE(2).
Unfortunately from (12) it is evident that the first compo-

nentsy, is not linear in the Sdtattﬁ vanables.hA: ﬁl Condsgqugncaesymptotically stable equilibria are relative equiliboi&(2).
Sav # Tay + Tav X way and the approach followed in [8] very other equilibrium of (19) is unstable. O

does not yield shape control laws. To overcome this obstacle

we first stabilize the motion about an axis of rotation Whosgroof. From (16),S is non-increasing along the solutions of

direction is fixed. In Section IV-B we relax the design by(2) and, by the La Salle invariance principle all the solugio

replacing, in the control laws, the fixed direction of theconverge to the largest invariant etwhere

axis of rotation with (local) consensus variables, thereby
obtaining stabilizing shape control laws. (8K — Sav) X Tk = 0, (20)

Theorem 1:Consider model (2) with the control law (18).
All the solutions converge to an equilibrium of (19). Theynl

A. Stabilization about an axis of rotation with a fixed direc-that characten.zes the equilibria of (19). In th'? .a'ﬁ”t -~

tion w X x, and sy, is constant fork = 1,..., N. We divide the
) analysis in three parts to analy¥e

Letw € R? be a fixed constant vector. Observe that unde§ Suppose that in steady staie x z, £ 0 for every k.

the constant control law;, = R} w, a relative equilibrium Then (20) can hold only ifsy = so for every k and for

is reached when the vectoss in (12) are equal for all the gome fixeds, € R, this set defines a global minimum for

particles. - _ S and therefore is asymptotically stable. These equilibria
Up to an additive constant the Lyapunov function (13korrespond to circular or helical relative equilibria (waxis
becomes N of rotation parallel tow).
1 2 i) Suppose now that in steady statg = w x x; = 0 for
S == — Savl|”- 14 !
(3,w) 2 ; I3 = savl] (14) every k. From (20) we obtain
wheres; = x), + 7, x w ands = (s{,...,s%)7. The time (sk = Sav) xw =0
derivative is for every k, which implies(r; — ra,) X w = 0. Therefore
N N in steady state the Lyapunov function (14) reduces to
S:I;<Sk_5ava Sk, >:;<Sk_5avaibk+wk><w>. - 1i|| ||2 (21)
= = - 9 e LTk Lay .

By making the last term explicit we obtain
N The equilibria are characterized by the vectois & =
S:Z< 8 — 8w, Yy (@h— < @, 2 >)+zi(hat < @,y >) >. 1,.. :,N, a_lll pgrallel to the constant_vector. Note t_hat this
1 configuration involvesN — K velocity vectors aligned to
w and K velocity vectors anti-aligned tw (or vice-versa),

The control law where( < K < % When K = 0, potential (21) is zero

q, = < W, zp>— <S8~ Say, Y > (15) (global minimum), and therefore the configuration defines
hy = —<wyp,>— <8 — Sav, 2k > asymptotically stable equilibria. These equilibria cepend
results in a non-increasing to collinear formations (with the same direction of motion)
parallel tow.
. N When K = % potential (21) attains a global maximum,
S=- Z(Qk— <w,zi >)? + (et < w,y, >)? <0 and therefore the configuration defines unstable equilibria
k=1 (16) Every other value o corresponds to a saddle point and is

therefore unstable. To see this it is sufficient to expregs

By substituting the definition of; in the control law (15 . .
y g k (15) andw in polar coordinates and to show thgitcan decrease

we obtain ) . .
under an arbitrary small perturbation (see Theoteim [10]
q, = <w,zp > — < (Ph = Tay) X W — Tay, Yy, > for similar calculations).
hiy = —<w,y, >~ <(rk—Tay) XW —Tay, 2k > . i) It remains to analyze the situation whete x x;, # 0

A7) for & € Gy andw x x; =0 for j € G2, whereG; and G,

The parameterv; in (2) is set to< zx,w > t0 obtain @ genote two disjoint groups of particles such thatJ G =
constant twist in steady state. By using the definition (8) th{l ..., N} . In such a situation we obtain

control law (17) can be written in the compact form
Sk — Sav = O, kGGl

up = Rg (WH[(rk — Tay) X W — Tay] X Tf) (18) (sj — Sav) Xw = 0, j € Gy, (22)



wheres; # s.v, 7 € Ga. In this set the Lyapunov function wherew® is the stacking vector of the vectoss; ..., w§;,

(14) reduces to decreases along the gradient dynamics
S = 33 ke sk —sall® al
2 keGa av 23 a a __ , ,a
= e, 1< 8k — Sav, @r > x| (23) ) ij Wi (28)

j=1

Sinces; # say, andax; is parallel tow for everyj € G2, gypressing (28) in the body reference frame we obtain
we conclude from (23) that this set does not correspond to

global minima of (14). It can be shown that under suitable ) T N -
perturbations ofcy, k € Go (such thats,, is constant) (23) Wi = U Wi + ZRk Rjwj — wr, (29)
is decreasing and therefore conditions (22) define an ulestab i=1

set (the details are omitted due to space constraints)l and we observe that the dynamics (29) are invariant under
an action of the symmetry groufO(3). It turns out that the

In steady state, the particles motion is characterized bydynamic control law resulting from the coupling between the
constant (consensus) twig} = [sJ,w’]7. The correspond- consensus dynamics (29) with the control law (18) or (25)
ing screw parameters are a pitsh=< so,w > /||w||°, an leads to a stabilizing (shape) control law.
axis Iy = {so x w/||w||* + Aw, A € R} and a magnitude
My = ||w||. Therefore the control law (18) stabilizes all the Theorem 2:Consider model (2) equipped with the dy-
particles to a relative equilibrium whose pitch is arbrar namic control law

'Lo rﬁduce thefdime_nsi0240f tr_lerz] er(]]uilibrium slet we combine wp = wp+ [Rf (P — Pay) X W) — Rgmav] X er,
the Lyapunov function (14) with the potentia - '&fwk +Z§V:1 RIRjw; — wy.
N (30)
W(x,w) = Z (<w, x> —a)?, a€l0,1), (24) wherew(0), k=1,...,N are randomly selected.
k=1 The resulting closed-loop vector field is invariant under an
that is minimum when all the particles attain the same pitcAction ofSE(3). All the solutions converge to an equilibrium
po = o/ ||w||*. This leads to the control law of (19). The only asymptotically stable set is the set of
. relative equilibria of (2) and every other equilibrium is
up = Ry [w+[(rk —ray) X w —@ay (25) unstable. O

H<w, zp > —a)w] X zg] .

The control law (25) stabilizes all the particles to a refati PT00f:(Sketch) To show that the resulting closed-loop vector
equilibrium whose magnitude and pitch are fixed by thdield is invariant under an action ofE(3), it is sufficient to
design parameters and||w||. In particular, acting om itis ~ ©OPServe that the dynamic control law (30) depends only on
possible to separate circular equilibria £ 0) from helical thg relative orlentatlons_and relative positions of thenphns.
equilibria @ € (0,1)). The global convergence analysisWith the change of variablesj; = Rywy. (30) rewrites to
follows the lines of the proof of Theorem and is omitted
due to space constraints. N

It is worth noting that whenw is set to zero the control ;o _ Z“’? — Wi (32)
law (18) reduces to =

u, = Rz (wz + [(rk - Tav) X wz - mav] X mk)v (31)

up = RY (z), X x,y) . (26) We observe that (32) is independent from the particles
, - ) dynamics. Therefore the solutions of (32) will converge to a
This control law stabilizes parallel formations and hasrbeeConsensus value, i.e. w? — @ whent — oo, for everyk
. . - y I k 1
studied previously in [10]. for somew. Therefore (31) will asymptotically converge to
B. Stabilization about a consensus axis of rotation

Because the control laws (18) and (25) depend on the vec- . . .
tor w, the resulting closed-l(()op)vecto(r fi)eld Ps not invariantand system (2), equipped with the control law (31), will
under an action of the symmetry groSg(3). An important converge to an autonomqus Cl.OSEd'IOOP system Whose pos-
consequence is that additional information is requireddess itive limit set is characterlzeq in Theorem 1. Solu'uo_ns_ are
the relative configurations among the particles. To overo hown to converge to a chain recurrent set of the limiting

this obstacle we propose a consensus approach to reach %W‘?”‘_’T“O“S) system [13]'.Th? only chain re(;urrent _s_ets of
: Wg1e limiting system are equilibria of (19). Relative edoiila

agreement about the direction of the axis of rotation. _ R
9 of (2) are asymptotically stable and every other equilitoriu

provide each particle with a consensus variabje and we . table (the detail tted due t s)aint
denote byw{ = Rjw, the same quantity expressed in gs unsta € (the details are omitted due to space consfjain

(common) spatial reference frame. The potential |
N& Remark 2:The control law (30) is the “dynamic” version
Q(w) = ?anz w2, 27) of the control IaV\{ (18) :_;md_ therefore stgbm;es a!l the
1 particles to a relative equilibrium whose pitch is arbirar

up = RE (@ + [(Th — Tay) X @ — Tay] X T1)



To fix the pitch to a desired value it is sufficient to derive
the dynamic version of (25).

It is important to note that the control law (33) does
not require all-to-all communication among the particles.
In particular the convergence properties of Theorem 2 are
The control laws proposed in this section stabilize théere recovered in the presence of limited communicatian, fo
relative equilibria of (2) under the assumption of all-to-directed, time-varying (but uniformly connected) communi
all communication among the particles. In the next Sectioocation topologies. The same extension discussed in Remark
we relax this assumption by substituting the quantities i also applies to Theorem 3.
(30) that require global information with consensus vdgab

obeying consensus dynamics. VI. CoNncLUsION

We proposed a methodology to stabilize relative equilibria
in a model of identical, steered particles moving in three-
dimensional Euclidean space. Observing that the relative

V. STABILIZATION OF RELATIVE EQUILIBRIA IN THE
PRESENCE OF LIMITED COMMUNICATION

Consider the control law (30). By following the approacr}
presented in [6] we substitute the quantities that require a
to-all communication, i.er,, and x,,, by local consensus
variables. This leads to a generalization of the control Ia\gy
(30) to uniformly connected communication grahhs

Theorem 3:Let G(t) be a directed and uniformly con-
nected communication graph andt) the corresponding
bounded and piecewise continuous Laplacian nat@on-

sider model (2) equipped with the control law
U = wi+ (wk X Cp — bk) X ey o
Wi = fwy — > Ly R Rjw,
br =ty br — Y, Li;RLR;b; 2
er = djex—er— Yoy Ly RERje; =N | L RLr;

33)
where the initial conditions of the consensus variables aré!
randomly selected. The resulting closed-loop vector figld i
invariant under an action f E£(3). The only asymptotically
stable set in the shape space is the set of relative eqailibri4]
of model (2). Every other equilibrium is unstable. O

[5]
Proof:(Sketch) Observe that with the change of variables
wi = Rpwg, by = Riby, ¢f = Ricp + 11 (33) rewrites [6]
to

up, = RI(wp+[(rg —c}) x w — b}] x zy, [7]
wp = - Zjvzl Lyjw§
by = —Y . Lib! (8]
¢ = - Zivzl Lyjc§

. . 9
and the consensus dynamics are not influenced by th[e]

particles dynamics. Therefore, from Theorem 1 in [14], wél0]
conclude that the variables{, b and ¢ asymptotically
converge to the consensus valuesh and ¢ respectively. [11]
The rest of the proof follows the same lines of the proof
of Theorem (2) and therefore is omitted. | [12]

1A Graph G(t) is said to be uniformly connected if there exists a time[13]
horizonT > 0 and a nodek such that for allt there exists a (directed)
path from each node to the nodein G(t,t + T) = Usept e+ G@)-

2The graph Laplaciar, associated to the graphi is defined as
j=k

Ly; = { 21 0 j#k.

—0kj,
whereay; are the elements of the adjacency matrix.

[14]

equilibria can be characterized by suitable invariant gjuan
ies, we formulated the stabilization problem as a consensu
one. The formulation leads to a natural choice for the
Lyapunov functions. Dynamic control laws are derived to
tabilize relative equilibria in the presence of all-tb-aim-
munication and are generalized to deal with unidirectional
and time-varying communication topologies. It is of intdre
(in particular from the application point of view) to study i
the future how to reduce the dimension of the equilibrium
set by breaking the symmetry of the proposed control laws.
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