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Pursuit, herding and evasion: A three-agent model of caribou predation

William Scott and Naomi Ehrich Leonard

Abstract— Motivated by problems of pursuit and evasion in
coordinated multi-agent systems, we present a model of pursuit,
herding and evasion for three agents: a single pursuer, e.g.
a bear, chooses a target point along the line connecting two
evaders, and the two evaders, e.g. a mother caribou and her calf,
each choose a strategy that trades off evasion and herding. The
model is based on feedback control of constant speed steered
particles on the plane. Dynamics over a reduced set of shape
variables are defined. Parallel-motion shape equilibria are
studied, with stability analysis and analytic solutions provided
for special cases in the parameter space. Simulation results are
also presented that suggest existence of optimal strategies for
the bear and the caribou in a game theoretic sense.

I. INTRODUCTION

The mathematical study of pursuit and evasion has a rich
history stretching back to the 18th century with Bouguer’s
famous pirate ship pursuit problem [1]. Although the basic
concept of pursuit and evasion is not new, it still remains
an active area of study due to the multitude of possible
applications and variations. The study of pursuit and evasion
for multi-agent systems is motivated by problems in wildlife
management, where sensitivity of animal group behavior
to environmental change needs to be addressed, and by
problems in distributed control of mobile robotic networks,
where coordination can be advantageous in maneuvers that
require approaching or avoiding a directed signal.

Feedback laws can be used to great effect in describing
the interactions among animals, both in herding and pursuit
behaviors. One-on-one pursuit and evasion has been studied
extensively for steered-particle systems with feedback con-
trol laws: recent studies look at “motion camouflage” strate-
gies employed by dragonflies and bats [2], cyclic pursuit [3],
and pursuit and evasion strategy selection as an evolutionary
game [4], [5]. Voronoi diagram approaches have been useful
for systems with multiple pursuers [6], and in strategies for
trapping an evader in a limited environment [7]. Systems
with two evaders have been studied under the framework of
differential game theory, in the “successive pursuit” of [8],
and more recently the “cooperative defense” of [9], [10].

As a step towards our goal of developing a framework
to examine the role of herding among evaders in pursuit-
evasion dynamics, we focus in the present paper on studying
how a heterogeneous system with three agents behaves under
a combination of feedback control laws inspired by the
cohesion/repulsion (herding) feedback rules of [11], and
pursuit and evasion feedback rules of [4] and [5].
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An example from nature of a herding pair of evaders and a
single pursuer is a mother caribou and her calf fleeing from a
predator. For the woodland caribou (Rangifer tarandus cari-
bou) of Northeastern Canada, population growth is heavily
influenced by calf mortality due to predation by bear, wolf,
coyote, and lynx. In the wild, female caribou usually produce
one calf per year, in the early summer. Calves typically stay
close to the mother and are most vulnerable to predation in
the first month of life as they struggle to keep pace with the
adults [12], [13].

The aim of the present work is to define a mathematical
model for predation in which (1) a predator (e.g. a bear)
pursues one of the two evaders (e.g., a mother or a calf
caribou) or a point along the line that connects the two,
and (2) each evader chooses a strategy that is a convex
combination of evasion and herding. In Section II of this
paper we discuss a steered-particle model for the bear and
caribou that features pursuit, evasion, and herding control
laws. In Section III we introduce a simplified first-order
model that captures much of the same behavior. Reduced-
order shape dynamics are presented, and classes of equilibria
are defined. In Section IV we study the case of the mother
using a pure evasion strategy and prove conditions such that
the bear cannot come between the mother and the calf. For
special parameter values, we provide a stability analysis and
analytic solutions. In Section V we present numerical results
that suggest existence of optimal strategies and a way in
which the system could be viewed as a differential game.

II. STEERED-PARTICLE MODEL

Our model is motivated by the interactions among a bear,
a mother caribou, and her calf. The bear is a pursuer in the
classical sense, choosing its target along the line between
the two caribou. Each caribou is an evader and a herder; its
strategy is a convex combination of classical evasion of the
bear and herding with the other caribou.

The equations of motion are based on a steered-particle
model: the input uj controls the angular velocity of agent
j. In the case of constant speeds considered here, this is
equivalent to choosing the instantaneous curvature of the
trajectory. The mother and calf are taken to have unit speed,
and the bear has a speed v ≥ 1. The agents are taken
to evolve on the complex plane, so system states are the
position vectors rj ∈ C and heading angles θj measured
counterclockwise from the real axis, as shown in Fig. 1. The
equations of motion are given by

ṙb = veiθb , θ̇b = ub

ṙm = eiθm , θ̇m = um (1)
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Fig. 1. System states for steered-particle model of bear (B), mother (M),
and calf (C).

ṙc = eiθc , θ̇c = uc.

The feedback control law for the bear is taken from the
“classical pursuit” law of [4]:

ub = −η
〈
rp
|rp|

, ieiθb

〉
, (2)

with rp = rb − [wtrc + (1− wt)rm] ,

where rp is the vector from the target point to the bear’s
position. The target point is a point along the line connecting
the calf and the mother parameterized by a target parameter,
wt ∈ [0, 1]; when wt = 1, the bear targets the calf, when
wt = 0 it targets the mother, and for intermediate values
of wt the bear targets a point between the two. η > 0 is a
gain which, when high enough, guarantees convergence to a
“pursuit manifold” in finite time as discussed in [4].

Feedback laws for the mother and calf are taken to be
a convex combination of evasion from the bear and herding
with the other caribou. The weights wm, wc ∈ [0, 1] represent
the mother’s and calf’s reliance on herding, respectively:

um = wmum,herd + (1− wm)um,evade
uc = wcuc,herd + (1− wc)uc,evade. (3)

The evading rule uj,evade is the “classical evasion” law from
[5]:

uj,evade = −η
〈
rb − rj
|rb − rj |

, ieiθj

〉
. (4)

The herding rule comes from the repulsion-orientation-
attraction (ROA) laws for group motion presented in [11],
with concentric non-overlapping zones (see also [14]). When
the distance between calf and mother is less than repulsion
radius rr, a repulsion rule is used. With only two agents
herding, the repulsion rule takes the form of the evasion rule
(4). For a distance greater than rr but less than orientation
radius ro, an orientation rule is used which steers the two
agents towards alignment. For a distance greater than ro
but less than attraction radius ra, an attracting rule is used,
which, for only two agents herding, takes the form of the
pursuit rule (2). For a distance greater than ra, no interaction
occurs and uj,herd = 0. For the calf, then, the herding

feedback rule is

uc,herd =

−η
〈
rm−rc

|rm−rc| , ie
iθc

〉
if |rc − rm| < rr,〈

ieiθc , eiθm
〉

if rr ≤ |rc − rm| < ro,

η
〈
rm−rc

|rm−rc| , ie
iθc

〉
if ro ≤ |rc − rm| < ra,

0 if |rc − rm| ≥ ra.

(5)

The herding rule for the mother um,herd is the same with
indices c and m switched.

For the remainder of this paper, the bear’s velocity is taken
to be the same as the caribou (v = 1), in order to study
steady-state behavior of the system.

III. SIMPLIFIED FIRST-ORDER MODEL

In [4] it is shown that under the classical pursuit steering
law (2) with high enough gain, the “pursuit manifold” of the
system is reachable within finite time, such that the pursuer
will be traveling in a direction directly towards the target.
Similarly the classical evasion control law will bring the
states towards a corresponding evasion manifold where the
evader travels directly away from the pursuer.

If we limit the caribou herding interaction to just the
attraction mode, the caribou control law becomes a linear
interpolation between classical evasion of the bear and
classical pursuit of the other caribou. With high gains on
the control inputs, the heading dynamics will quickly settle
on the desired directions. We may simplify the model by
eliminating the heading dynamics, instead taking the instan-
taneous desired direction of each agent as the control input.

In this way, the parameters wt, wc, and wm serve to
interpolate between two different direction vectors. For
convenience, the relative vector between agent positions is
written as rjk = rj−rk. The bear’s parameter wt defines its
direction of travel as a convex combination of the direction
towards the calf (rcb) and the direction towards the mother
(rmb). The calf’s parameter wc defines its direction of travel
as a convex combination of the direction towards the mother
(rmc) and the direction away from the bear (rcb). Similarly,
the mother’s parameter wm defines its direction of travel as
a convex combination of the direction towards the calf (rcm)
and the direction away from the bear (rmb). The equations
of motion for the three agents thus become

ṙm = ûm,

ṙb = ûb, (6)

ṙc = ûc,

with unit-length direction inputs

ûm = ei[wm∠rcm+(1−wm)∠rmb)],

ûb = ei[wt∠rcb+(1−wt)∠rmb)], (7)

ûc = ei[wc∠rmc+(1−wc)∠rcb)].



θ

wmθ

φ

wcφ

wtψ

ψ

M

B C

dmb dcm

dbc

Fig. 2. Shape variables ψ, φ, θ, dbc, dcm, dmb describing relative positions
of the bear (B), the mother caribou (M) and the caribou calf (C), along with
directions of motion as determined by parameters wt, wc, and wm.

It is important to note that the control laws become undefined
when any two agents are coincident, due to their dependence
on the heading angles of the relative vectors rjk.

Since the control laws rely solely on the relative vectors
between the three agents, the relative motion of the agents
is independent of the positions of the agents with respect to
a global coordinate frame. Thus it is possible to reduce the
order of the system further and directly study the dynamics
of “shape variables,” which describe the triangle formed by
the agents, as shown in Fig. 2.

By the geometry of the triangle, the three angles ψ, φ, θ
are related by

π + ψ = φ+ θ, (8)

and the side lengths dbc, dcm, dmb can be related to the angles
by the law of sines:

dbc
sin(θ)

=
dcm

sin(ψ)
=

dmb
sin(φ)

. (9)

A. Length dynamics

By projecting the motion of the agents along each of the
sides of the triangle, we can find how the side lengths change
over time:

ḋbc = cos(wc φ)− cos((1− wt)ψ),

ḋcm = − cos((1− wm)θ)− cos((1− wc)φ),

ḋmb = cos(wm θ)− cos(wt ψ). (10)

B. Angle dynamics

By a similar method, we can project the motion of each
agent along the axis normal to a side to find how that side
of the triangle rotates in time. Then the dynamics of the
individual angles are given by the difference between the
rotation of the sides constituting each angle:

ψ̇ = [sin(wt ψ)− sin(wm θ)] /dmb
− [sin(wc φ)− sin((1− wt)ψ)] /dbc,

φ̇ = [sin((1− wc)φ)− sin((1− wm)θ)] /dcm
− [sin(wc φ)− sin((1− wt)ψ)] /dbc,

θ̇ = [sin(wt ψ)− sin(wm θ)] /dmb
− [sin((1− wc)φ)− sin((1− wm)θ)] /dcm. (11)

One must note, however, that a triangle can be defined by
three side lengths, two angles and a side length, or two side
lengths and an angle, but not by three angles alone. So to
study the behavior of this system one should choose three
appropriate variables (e.g. dbc, ψ, and φ), and eliminate the
others using the constraint equations (10)-(11) to be left with
three first-order equations in three variables.

C. Parallel motion equilibria

Several classes of “shape equilibria” corresponding to
parallel motion of all agents can be found at fixed points
of the length dynamics (ḋbc = ḋcm = ḋmb = 0). These
occur when the following three equations are satisfied:

wc φ = (1− wt)ψ
wm θ = wt ψ (12)

(1− wc)φ+ (1− wm)θ = π.

Since the side lengths are not involved in these equations, any
shape configuration that is a similar triangle to an equilibrium
configuration will also be an equilibrium configuration.

Adding these three equations yields the angle constraint
(8): using that constraint to solve for one angle we are left
with two linear equations in two angles and three parameters.
For any pair of angles, (12) gives a one-parameter family
of equilibrium solutions for wm, wc, and wt. Special cases
where the three agents are collinear are discussed below:

1) B—C—M: When the calf is in between the bear and
mother, ψ = φ = 0 and θ = π. This configuration is only an
equilibrium when wm = 0, such that the mother caribou’s
strategy is pure evasion of the bear.

2) B—M—C: When the mother is in between the bear and
calf, ψ = θ = 0 and φ = π. In symmetry with the previous
case, this configuration is only an equilibrium when wc = 0,
such that the calf’s strategy is pure evasion.

3) M—B—C: When the bear is between the two caribou,
ψ = φ = θ = π. This is a parallel motion equilibrium when
wt = wm = 1 − wc. In this case, the direction of travel is
not necessarily along the line formed by the agents (as in the
previous two cases), but at an angle of wtπ from the line.

The next sections present analysis of the behavior of the
dynamics in the case wm = 0.

IV. MOTHER CARIBOU IN PURE EVASION

It has been observed that in the heat of a predation event,
a mother caribou may make her own safety her priority
and focus on evasion, only changing her course to go back
for her calf once the threat has passed [15]. The calf is
expected to follow, but it does not always do so and may
become separated from its mother, which makes the calf very
vulnerable. This situation can be modeled with (7) by setting
the mother’s parameter to be wm = 0 (pure evasion).



In this case, the length dynamics simplify to

ḋbc = cos(wc φ)− cos((1− wt)ψ),

ḋcm = cos(φ− ψ)− cos((1− wc)φ), (13)

ḋmb = 1− cos(wt ψ),

and we can note that ḋmb > 0 for all ψ,wt 6= 0.

A. Avoiding mother-calf separation

We prove conditions on wc and wt for the model (13)
where wm = 0 such that the bear can never come directly
between the calf and mother (M–B–C configuration) from
initial conditions satisfying dcm < dmb. For the same set of
initial conditions in the special case that the calf ‘ignores’
the bear completely and uses pure herding (wc = 1), the bear
can never come directly between the calf and mother.

Theorem 1: Consider the system (13) corresponding to
wm = 0, and suppose that 0 < dcm < dmb at time t = t0.
If wc, wt are such that the inequality

− cos(2ψ)− cos((1− wc)(π − ψ)) + cos(wt ψ) < 1 (14)

is satisfied for all ψ ∈ [0, π/2), then the system will never
reach an M–B–C configuration at any future time t > t0.
An M–B–C configuration is defined such that the distances
satisfy dcm = dmb + dbc with dmb > 0 and dbc > 0. In case
dbc = 0, dcm = 0, or dmb = 0, the dynamics are assumed
to terminate.

In the special case that wc = 1 (the calf ignores the bear)
for the same initial conditions, the system will never reach an
M–B–C configuration at any time t > t0 for any wt ∈ [0, 1].

Proof: By definition, at an M–B–C configuration,
dcm > dmb > 0. Hence, if we can show that dcm ≤ dmb
for all time, then we have shown that the system can never
reach an M–B–C configuration.

Consider system configurations in which dcm = dmb;
these form a surface δS that separates the space of length
configurations into S+ = {dcm > dmb} and S− = {dcm <
dmb}. Thus, we are done if we can show that solutions stay
in S− ∪ δS.

On δS, if dbc = 0, dcm = 0, or dmb = 0, then the
dynamics are terminated. Where dbc 6= 0, dcm 6= 0, and
dmb 6= 0 on this surface, the agents form an isosceles triangle
with φ = π − ψ and ψ ∈ (0, π/2) and a line (B-M-C
configuration) when φ = π − ψ and ψ = 0. Substituting
φ = π − ψ in (13) gives

ḋcm = − cos(2ψ)− cos((1− wc)(π − ψ)),

ḋmb = 1− cos(wt ψ). (15)

The inequality condition (14) is simply the condition that
ḋcm < ḋmb whenever dcm = dmb 6= 0 and dbc 6= 0.

If dcm < dmb at time t = t0, then the state is in S−, and by
continuity the system cannot reach S+ without first passing
through δS. If the system reaches δS and dcm = dmb = 0 or
dcb = 0, then the dynamics terminate. If the system reaches
δS and dcm = dmb 6= 0 and dbc 6= 0 and the inequality
condition (14) holds, then ḋcm < ḋmb and the dynamics
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Fig. 3. Range of parameters wc and wt such that the mother and calf
caribou cannot be separated by the bear when starting with dcm < dmb. The
shaded area is the safe range computed from (14). Dashed lines wc = 1−wt

and wc = 1− 3
4
wt are shown for reference

must remain in S− ∪ δS. Thus, the system can never reach
an M–B–C configuration when starting with dcm < dmb.

In the special case with wc = 1 where the calf uses a
pure herding strategy and ignores the bear, the inequality
condition (14) simplifies to

cos(wt ψ)− cos(2ψ) < 2, (16)

which always holds for ψ ∈ [0, π/2). Thus for wc = 1,
the system can never reach an M–B–C configuration when
starting with dcm < dmb, regardless of the value of the bear’s
parameter wt.

Fig. 3 shows numerical calculations of the range of
parameters wc and wt for which the inequality (14) holds.
Note that when wc ≤ 1/4 there is no guarantee, for any
wt ∈ [0, 1], that an M-B-C configuration will be avoided.

B. Disadvantage of pure evasion by the calf

In the case that both mother and calf use a pure evasion
strategy, it can be shown that the calf will always become
separated from the mother unless starting from a configura-
tion with ψ = 0. When wm = wc = 0, the dynamics of
the system simplify greatly, and can be described in terms
of lengths dbc, dmb, and angle ψ by

ḋbc = 1− cos((1− wt)ψ)

ḋmb = 1− cos(wt ψ)

ψ̇ =
sin(wt ψ)
dmb

+
sin((1− wt)ψ)

dbc
. (17)

When starting with ψ = 0, the system can be in either B–C–
M, or B–M–C collinear equilibria. Otherwise for all initial
conditions with dbc, dmb, ψ 6= 0, the three variables will
increase monotonically, with ψ eventually approaching π,
taking the system towards an M–B–C configuration with the
caribou separated from each other by the bear.



C. When the bear ignores the calf

Fig. 3 suggests an advantage for the bear to target the
mother rather than the calf in order to separate the calf from
its mother. Here, we study the dynamics in the case that
wm = wt = 0, i.e., the bear purely pursues the mother and
the mother purely evades the bear. The length dynamics for
dmb simplify to ḋmb = 0, so the distance between the mother
and the bear remains constant throughout the trajectory. This
reduces the shape dynamics to two dimensions, which can
be described in terms of φ, and ψ with

φ̇ =
sin(φ)
dmb

[
sin(ψ)− sin(wc φ)

sin(φ− ψ)

+
sin((1− wc)φ)− sin(φ− ψ))

sin(ψ)

]

ψ̇ =
sin(φ)
dmb

[
sin(ψ)− sin(wc φ)

sin(φ− ψ)

]
. (18)

A line of equilibria exists where ψ = wcφ, which
corresponds to parallel motion of all three agents, with the
bear directly following the mother and the calf off to the
side, or between them.

We compute the Jacobian for points along the equilibria
line ψ = wcφ by substituting for ψ. Because this is a line of
equilibria, one eigenvalue must be zero with its correspond-
ing eigenvector pointing along the line of equilibria. Since
the Jacobian is a 2× 2 matrix, the other eigenvalue must be
given by the trace of the Jacobian, which simplifies to

λ =
sin(φ)

[
(1− wc) sin(2wc φ)− wc sin(2(1− wc)φ)

]
2dmb sin(wc φ) sin((1− wc)φ)

.

(19)
The stability of the equilibria line is thus determined by the
sign of this eigenvalue. Since the leading term and each term
in the denominator of (19) are positive for wc ∈ (0, 1) and
φ ∈ (0, π), we need only consider the expression in brackets:

f(wc, φ) = (1−wc) sin(2wc φ)−wc sin(2(1−wc)φ). (20)

We show for all φ ∈ (0, π) that λ > 0 for wc ∈ (0, 1/2)
and λ < 0 for wc ∈ (1/2, 1). First note that f(wc, 0) = 0.
The partial derivative of f(wc, φ) with respect to φ is given
by

∂f

∂φ
= 4wc(1− wc) sin(φ) sin((1− 2wc)φ). (21)

This derivative is positive for wc ∈ (0, 1/2) and negative for
wc ∈ (1/2, 1) for all φ ∈ (0, π). f(wc, φ) is monotonically
increasing in φ for wc ∈ (0, 1/2), so f(wc, φ) > f(wc, 0) =
0, and we can conclude that the eigenvalue λ must be positive
in that range. Similarly f(wc, φ) is monotonically decreasing
in φ for wc ∈ (1/2, 1), so λ must be negative in that range.
Thus the line of parallel-motion equilibria is stable for wc ∈
(1/2, 1) and unstable for wc ∈ (0, 1/2) for all φ ∈ (0, π).
The change in stability of the parallel equilibria at wc = 1/2
suggests the presence of a local bifurcation.

In the special case of wm = wt = 0 and wc = 1, the
bear and the mother caribou travel in a straight line with

ym(t)

y(t)
y0

yb(t)

x(t) x0O

M
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C

d 0

Fig. 4. Coordinate diagram for trajectories with wm = wt = 0, wc = 1.
Open circles show initial positions, and closed circles show positions after
time t.

constant dmb, and the calf directly pursues the mother. This
configuration is equivalent to the classic Bouguer problem
of a pirate ship in classical pursuit of a merchant ship that
is traveling in a straight line. Analytic solutions for certain
initial conditions are presented in [1], [16], and the following
steady-state analysis for the caribou system is based closely
on the method of [1].

Consider an inertial frame with origin fixed at the initial
position of the calf, with the positive y-axis in the direction of
the vector from the bear’s initial position to the mother’s (see
Fig. 4). Let (x0,y0) be the initial coordinates of the mother
on this frame, and let d0 = dcm,0 be the initial distance from
mother to calf at time t = t0.

Mother and bear both travel along the line xm = x0, with
the mother’s position at time t given by

ym(t) = y0 + t, (22)

and the bear follows below at a constant distance.
The calf’s trajectory traces out a curve y = f(x) such

that at each point its tangent will pass through the current
position of the mother, since the calf is engaging in classical
pursuit. So at each point in time,

y′ =
dy
dx

=
ym − y
x0 − x

=
y0 − y + t

x0 − x
. (23)

The agents move at unit speed, so the arclength of the
calf’s curve is simply the elapsed time. By solving (23) for t
and setting it equal to the formula for arclength of the calf’s
curve we arrive at an integro-differential equation, which,
when solved at initial condition y′|x=0 = y0/x0, yields

y′ =
1
2

(
y0 + d0

x0 − x
+
x0 − x
y0 + d0

)
. (24)

At any given time, the distance from the calf to the mother
is

d 2
cm = (x0 − x)2 + (ym − y)2

= (x0 − x)2
[

1 +
(
ym − y
x0 − x

)2
]
. (25)



Recalling (23), the final term in the brackets in (25) is simply
(y′)2, and thus we arrive at an equation for dcm as a function
of x:

d 2
cm = x2

0

[
1
2

(
1− x

x0

)2

+
1
4

(
y0 + d0

x0

)2

+
1
4

(
x0

y0 + d0

)2(
1− x

x0

)4 ]
. (26)

By inspection of Fig. 4, it is clear that as t grows large,
x approaches x0, so the steady-state distance is simply

dcm,ss = lim
t→∞

d 2
cm = lim

x→x0
d 2
cm =

(
y0 + d0

2

)2

, (27)

or in terms of the initial distances,

dcm,ss =
(dcm,0 + dmb,0)2 − d 2

bc,0

4 dmb,0
. (28)

Then for dcm,ss < dmb,0, the system will end up in a B–
C–M configuration, and for dcm,ss > dmb,0, the system will
end up in an M–B–C configuration. Setting dcm,ss = dmb,0,
we can find the locus of initial conditions where the calf
ends up directly on the bear.

V. SIMULATIONS AND ESTIMATED SOLUTION TO A
DIFFERENTIAL GAME

Trajectories were computed in Matlab using the forward-
Euler method of integration on the first-order model (6)-(7).
Leaving the initial distance from bear to calf constant at
dbc = 10, the initial position of the mother was varied over an
equally-spaced grid on the circular area centered at the calf
with radius 10, (i.e. only initial conditions where dcm < dbc).

Trials were run with ∆t = 0.1 s for 2500 s, or until the
agents reached a collinear configuration. “Capture” of the
calf was taken to occur when dbc ≤ 1 or ψ ≥ π/2 at the final
time, with the assumption that in the wild a calf separated
from its mother would eventually tire and be captured.

Leaving wm = 0 constant (mother using pure evasion), the
parameters wc and wt were varied over the range [0,1] in
increments of 0.05. The percentage of trials ending in capture
for each particular wc, wt combination gives a measure of
the “fitness” of those strategies against one another, which
can be seen in Fig. 5.

If we consider a zero-sum game in which the bear aims to
choose a value of wt that maximizes the fraction of captures,
and the calf aims to choose a value of wc that minimizes the
fraction of captures, a saddle point in this wt-wc strategy
space represents a solution to the game: optimal strategies
for the two players. For these simulations, we estimate a
saddle point at wt = 0.3, wc = 0.8, with a capture fraction
of 0.137.

Although this saddle is only the optimum strategy on
average for certain initial conditions, its presence suggests
that a similar optimal strategy may exist for each particular
set of initial conditions. In future work we aim to devise a
suitable cost function so that the bear and caribou system
may be studied under the “differential game” framework
established by Isaacs in [17].
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Fig. 5. Fraction of capture events for different combinations of wt and wc,
with wm = 0 for initial conditions satisfying dcm < dbc. The estimated
location of the saddle point is denoted by the cross at wt = 0.3, wc = 0.8,
which has a capture fraction of 0.137.

REFERENCES

[1] P. Nahin, Chases and Escapes: The Mathematics of Pursuit and
Evasion. Princeton University Press, 2012.

[2] E. Justh and P. Krishnaprasad, “Steering laws for motion camouflage,”
Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Science, vol. 462, no. 2076, pp. 3629–3643, 2006.

[3] K. Galloway, E. Justh, and P. Krishnaprasad, “Geometry of cyclic
pursuit,” in Proc. IEEE Conf. Decision and Control, 2009, pp. 7485–
7490.

[4] E. Wei, E. Justh, and P. Krishnaprasad, “Pursuit and an evolutionary
game,” Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Science, vol. 465, no. 2105, pp. 1539–1559, 2009.

[5] D. Pais and N. Leonard, “Pursuit and evasion: Evolutionary dynamics
and collective motion,” Proc. 2010 AIAA GNC Conference, 2010.

[6] E. Bakolas and P. Tsiotras, “Optimal pursuit of moving targets
using dynamic voronoi diagrams,” in Proc. IEEE Conf. Decision and
Control, 2010, pp. 7431–7436.

[7] H. Huang, W. Zhang, J. Ding, D. Stipanovic, and C. Tomlin, “Guaran-
teed decentralized pursuit-evasion in the plane with multiple pursuers,”
in Proc. IEEE Conf. Decision and Control, 2011, pp. 4835–4840.

[8] J. Breakwell and P. Hagedorn, “Point capture of two evaders in
succession,” Journal of Optimization Theory and Applications, vol. 27,
no. 1, pp. 89–97, 1979.

[9] Z. Fuchs, P. Khargonekar, and J. Evers, “Cooperative defense within a
single-pursuer, two-evader pursuit evasion differential game,” in Proc.
IEEE Conf. Decision and Control, 2010, pp. 3091–3097.

[10] Z. E. Fuchs and P. P. Khargonekar, “Encouraging attacker retreat
through defender cooperation,” in Proc. IEEE Conf. Decision and
Control, 2011, pp. 235–242.

[11] D. Paley, N. Leonard, R. Sepulchre, and I. Couzin, “Spatial models
of bistability in biological collectives,” in Proc. IEEE Conf. Decision
and Control, 2007, pp. 4851–4856.

[12] A. T. Bergerud, “The population dynamics of Newfoundland caribou,”
Wildlife Monographs, no. 25, pp. pp. 3–55, 1971.

[13] S. Mahoney and J. Schaefer, “Long-term changes in demography and
migration of Newfoundland caribou,” Journal of Mammalogy, vol. 83,
no. 4, pp. 957–963, 2002.

[14] S. Gueron, S. Levin, and D. Rubenstein, “The dynamics of herds:
From individuals to aggregations,” J. Theor. Biology, vol. 182, pp.
85–98, 1996.

[15] L. Crisler, “Observations of wolves hunting caribou,” Journal of
Mammalogy, vol. 37, no. 3, pp. pp. 337–346, 1956.

[16] J. Barton and C. Eliezer, “On pursuit curves,” Journal of the Australian
Mathematical Society-Series B, vol. 41, no. 3, pp. 358–371, 2000.

[17] R. Isaacs, Differential Games: A Mathematical Theory with Appli-
cations to Warfare and Pursuit, Control and Optimization. Dover,
1999.


