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1 Introduction

Minimum-time problems have long been a source of fascination
for the mathematics community, reaching as far back as the bra-
chistochrone problem that arguably led to the creation of optimal
control theory and the calculus of variations [1]. The ongoing pro-
gress in the availability and capability of mobile robotic systems
has seen an increase in interest in robotic minimum-time motion
planning problems. In biology, solutions to minimum-time motion
problems inform studies of predator-prey interactions. Optimal
trajectories for minimum-time problems are closely related to
optimal strategies in pursuit and evasion differential games, mak-
ing them useful both for design and analysis. Further, the time-
optimal solution for a single agent is an important building block
for the design and analysis of multi-agent systems, such as the
evasion of a group from a pursuer [2].

A popular model with which to study motion planning is the
“steered agent” with state consisting of a point on the plane r =
(x,y) € R? with an associated heading angle 0 € S. The motion
of the agent is constrained such that its velocity is aligned with its
heading at all times, with no side-slip. With this model, many dif-
ferent types of vehicles can be studied through the choice of con-
trol inputs and associated constraints on those inputs. The control
inputs are typically the instantaneous speed v and the angular turn-

ing rate @ = 0. For example, much work has been done to charac-
terize time-optimal trajectories for steered agents with limited
turning rates, notably the “Dubins vehicle,” which has a constant
forward speed (v =V =constant), and the Reeds-Shepp vehicle,
which also allows for reverse motion (v = *v). See Ref. [3] for a
review and Ref. [4] for detailed derivation of optimal paths with
fixed terminal headings. The steered agent model can also be used
to represent a two-wheeled differential-drive robot. A limit on the
angular rate of each wheel leads to a set of linear inequalities on
the speed and turning rate of the agent [5].

In this paper, we solve the problem of reaching a desired point
on the plane in minimum time for a steered agent with inputs and
constraints that make it applicable to the study of terrestrial (leg-
ged) animal motion as well as the design of robotic motion. The
model is analytically tractable for a single agent and thus extenda-
ble to evasion and coverage problems for multi-agent systems.
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The constraints on the control inputs, instantaneous speed and
angular turning rate, are as follows: (1) speed is positive and
bounded by a maximum value, (2) the magnitude of the turning
rate is bounded, and (3) the magnitude of the lateral acceleration
(the product of speed and turning rate) is bounded.

For our novel set of constraints, we can still leverage Pontrya-
gin’s minimum principle as in the studies of the Dubins and dif-
ferential drive agents. However, our model differs from both the
Dubins and Reeds-Shepp models in that it allows for the agent to
rotate in place with zero forward speed. In addition, the lateral
acceleration constraint creates coupling between the two inputs of
speed and turning rate, such that the agent must slow down to
achieve a higher turning rate and vice versa. The angular accelera-
tion constraint is chosen with regard to legged locomotion. A
study of the kinematics of horses during polo games and track rac-
ing [6] indicates that grip strength and limb force limits constrain
the maximum lateral acceleration during a turn, such that the
horses must decrease their speed in anticipation of tight turns. By
imposing a constraint on the lateral acceleration of our steered
agent, we capture the tradeoff between speed and turning rate that
is seen in nature.

Inherent in the choice of speed as a control input is the assump-
tion that forward acceleration (thrust) is unbounded. Although leg-
ged animals and some robots can achieve large accelerations
[7,8], there will be a limit in any physical system. Nonetheless,
the assumption helps with analytical tractability and allows for
real-time computation. It is of interest in future work to compare
performance determined here with that in the case of bounds on
forward acceleration.

Our analysis is based closely on the geometric methods of Balk-
com and Mason, which were applied to differential drive vehicles
with limited wheel speeds in Ref. [9] and to extremal trajectories for
more general constraints in Ref. [5]. These methods have also been
applied to minimum-time trajectories for omni-directional robots
[10] and minimum wheel-rotation for the differential drive [11].

The main contributions of this paper are as follows: First, we
solve the minimum-time problem for a single steered agent with a
novel set of constraints chosen to provide a tractable model for the
study of terrestrial animal motion as well as the design of robotic
motion. We solve for open-loop optimal trajectories analytically
and derive the optimal control input as a state-feedback control
law. Optimal trajectories have piecewise-constant control inputs,
such that the trajectories consist of up to four discrete phases:
rotate in place, slow moving turn at maximum turning rate but
reduced speed, fast moving turn at maximum speed but lower
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turning rate, and forward motion at maximum speed. Additionally,
we show that as the bound on lateral acceleration approaches zero,
the optimal trajectories approach those for a differential drive
agent. Second, we demonstrate how the results for a single agent
can be used to analyze the minimum-time-to-reach coverage prob-
lem for a system of N mobile agents with the same inputs and con-
straints as the single agent. We prove a lower bound on achievable
performance and introduce an iterative coverage algorithm.

In Sec. 2, we present the formal problem statement and system
equations of motion. Section 3 derives extremal control inputs
according to Pontryagin’s minimum principle. In Sec. 4, we prove
conditions on the possible families of optimal trajectories, and in
Sec. 5, we solve for open-loop control switching times for all
cases. Section 6 presents a state-feedback formulation of the opti-
mal control based on the relative position of the destination in a
body-fixed frame. We examine special limiting cases of the lateral
acceleration parameter in Sec. 7. Multi-agent coverage is pre-
sented in Sec. 8. We conclude in Sec. 9.

2 Problem Statement and System Dynamics

We consider the problem of the minimum-time trajectory for a
steered agent on the plane to reach a desired destination r; =
(x1,y1)" € R? with no fixed final heading. The state of the agent
consists of its position r = (x,y)" € R? and heading angle 0 € S,
evolving under the equations of motion

X =vcost
y =vsin0
0=w

The control inputs u(r) = (v(z), w(z))" at time ¢ consist of the for-
ward speed v € IR and the turning rate w € R. We impose the fol-
lowing constraints on the control input:

(1) Limited speed: Let v >0 be the maximum speed. The
speed control must satisfy v(¢) < v for all time t.

(2) No reverse motion: Speed must satisfy v(z) > 0 for all time
t, such that the agent never moves in reverse.

(3) Limited turning rate: Let @ > 0 be the maximum turning
rate. Then, the turning control must satisfy |w(¢)| < @ for
all time t.

(4) Limited lateral acceleration: Let u > 0 represent the maxi-
mum lateral acceleration (turning traction limit). The inputs
v(f) and w(r) must satisfy |v(¢) o(7)| < p for all time t. We
assume that u < v @ so that the lateral acceleration con-
straint is active on part of the boundary of the control
domain.

W= —w

Fig. 1 Admissible control inputs for steered agent with limits
on speed, turning rate, and lateral acceleration as described in
Sec. 2
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We define the admissible control region Q= {u= (v,w) €
R2[0<v <7, |o <@, |vo| < u < v@} as illustrated in Fig. 1.
Admissible controls U/ for the agent are bounded Lebesgue meas-
urable functions from R to Q.

3 Extremal Trajectories From Pontryagin’s Minimum
Principle

To solve for the optimal trajectories, we begin by using
Pontryagin’s minimum principle to find families of extremal tra-
jectories that satisfy necessary conditions on optimality. We fol-
low the method used in Ref. [9], which solved for optimal
trajectories for differential drive robots with the same equations of
motion as the current system, but with different constraints on the
inputs. This leads to different switching functions and extremal
controls. In the subsequent section, we use boundary constraints
to characterize which of the extremal trajectories are optimal
under different conditions.

The single agent minimum-time problem is described by

t = miLI} JT ldr s.t. q(t) = f(q,u), ¥(11) =0

ue 0

where q = (x,y,0)", f(q,u) = (vcos0,vsinf, )", and (1) =
(x(t) — x1)* + (y(f) — y1)*, with initial conditions q(0) = (xo,

T
o, 0o)
The control Hamiltonian for the system dynamics is

H(}quu) = }“f(qvu) +1
= Jyvecos 0+ Ayvsin0 + Ago + 1

where the adjoint vector 4 = (A, 4y, 49) € R? represents the par-
tial derivative of the value of the cost function (in this case, the
minimum time remaining to reach the destination) with respect to
the system state.

Pontryagin’s minimum principle states that extremal control
u*(¢) satisfies the following necessary condition at almost every
time 7:

H(4(1),q(1), w" (1)) = ur(%ienQH(l(f% q(1),u(r) =0

The dynamics of the adjoint vector are governed by J=
—(0H/9q), with ix =0, Z_v =0, and iy = Jxvsin 0 — Ayv cos 0.
From this, we see that 4, and Z, are constant over time. Thus, as
noted in Ref. [9], since /'1() = /xy — AyX, Ag can be directly inte-
grated as Ag = A,y — A,x — p, for some constant of integration p.
Since the terminal heading 0 is free, we must impose that
29(f;) =0. This allows us to solve for p: Zo(t;) = Aoy
—/Jyxi — p = 0. Thus

Ap(1) = Ae(y(1) = 1) = Ay (x(t) = x1) M
For a nontrivial optimal trajectory, the adjoint vector must be non-
zero at all times, implying that A, and /, cannot both be zero.
Without loss of generality, let 4, = 4 siny and 4, = — /g cos y for

some unknown angle y, with the constant 1y # 0 computed from
the terminal condition

H(A(t1),q(t1),u*(r)) =0

We next derive the extremal controls. Following Ref. [9], define
the following two functions of the state:

n(x,y) = (x = xi)cosy + (y — y1)siny
and B(0)=0—(y+n/2)
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The level set =0 describes a line in the x-y plane passing
through the destination point (xi, yl)T. f describes the agent’s
heading relative to the direction along the 17 =0 line.

Now, we can write the Hamiltonian in terms of the inputs and
these functions of the state

H = Jo(—vcos f+ wn) + 1

This makes it straightforward to apply Pontryagin’s minimum prin-
ciple to find extremal controls as a function of the state. Since this
is a minimum-time problem with the dynamics linear in the control
inputs, the optimal control will be of a bang—bang type, always tak-
ing values along the control constraint surfaces shown in Fig. 1.

3.1 Switching Functions and Generic Control Inputs.
Given our constraints on the control inputs, we need to determine
which value of u will minimize the Hamiltonian for each point in
the state space. We follow the same procedure as in Ref. [12],
except that the additional constraint on lateral acceleration
prompts a third switching function.

We define three switching functions that can be used to deter-
mine the control input u* = (v*, »*) that will minimize the Ham-
iltonian for a given state

¢1(q) = cos f(q) )
$>(q) = —n(q) 3)
$3(q) = @[n| — v cos f(q) )

Let sgn(z) be the standard sign function for z € R

-1, z<0
sgn(z) =¢ 0, z=0
1, z>0

On time intervals for which the switching functions are nonzero,
the corresponding extremal controls are called generic controls.
These fall into three categories based on the signs of the switching
functions. The generic control inputs along with their correspond-
ing extremal trajectories are as follows, for initial state

q(0) = (x0, yo, HO)T. In each case, 0(r) = 6y + w*t.
(1) Rotation: When ¢, < 0, the agent rotates in place at maxi-
mum turning rate: v* =0 and * = @sgn(¢,). Here,

q(t) = (x0, 30,00 + »*1)".

(2) Slow turn: When ¢, > 0 and ¢; > 0, the agent moves for-
ward with low speed while turning at the maximum rate:
v =p/® and o* = dsgn(¢,). The agent moves on a
circular arc with radius Ry = u/@®?, with

x()\ _ (% Rsin(mt)
(ym) - (y) +B(0) (sgnwz)zesm —cos(an))) ®
where B(0) is the standard rotation matrix
cosf) —sinf
B(0) = ( cos 0 )

sin
(3) Fast turn: When ¢; > 0 and ¢5 < 0, the agent moves for-
ward at maximum speed while turning at a lower rate: v* =
v and »* = sgn(¢,)p/v. The agent moves on a circular arc
with radius Ry = v2/p, with

() = (o) 500 (st eousen) ©
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3.2 Singular Control Inputs. At times where some ¢; = 0,
there exist multiple inputs that minimize the Hamiltonian. When
the state arrives at such a switching surface, the control may have
an instantaneous switching if the state instantaneously traverses
the switching surface, or an interval of singular control where the
state remains on the switching surface for some time interval. We
must examine each switching surface separately.

3.2.1 Forward Motion. When ¢, =0 with ¢, > 0 at some
time 7, the agent is on the switching surface between fast turn left
and fast turn right. Geometrically, this places the agent on the
n=01line with cos § > 0, and the Hamiltonian is minimized by
v = ¥ with o taking any value in [—u/¥, 1t/v]. For cos f # 1, the
agent is not aligned with the # =0 line. So, the positive speed will
bring it off of the line at the next moment, which would manifest
as an instantaneous switching from fast turn left to fast turn right
or vice versa without an extended singular control. In the case that
cos i = 1, the agent is arriving on the 7 =0 line and tangent to it.
Forward motion with @ =0 would keep it on the line for further
time r > 7.

This represents an interval of singular control, which as we
show is part of many time-optimal trajectories. It is straightfor-
ward to show that if the agent starts with its heading in the direc-
tion of the destination point, then the minimum-time trajectory to
reach that point is forward motion at maximum speed.

3.2.2  Slow Turn and Fast Turn. When ¢; = 0 and ¢, > 0 at
some time 7, the agent is on the switching surface between fast
turn and slow turn with direction determined by the sign of ¢,.
On this switching surface, the Hamiltonian is minimized by two
possible values of the control input: a fast turn u = (v, +u/¥)" or
aslow turn u = (u/®, +@)" (positive for left turn).

If we can show that the derivative of ¢; is nonzero on the
switching surface, that will imply that no singular trajectory seg-
ments can exist along that surface. Taking the derivative of ¢;
with respect to time, we find

(iﬁ3 = sin f(vosgn(n) + ov)

Noting that sgn(w*) = —sgn(n) in all cases, we substitute to get a
necessary condition for slow-fast singular control

$s = sgn(n)sin f(v'® — [0 [v) =0

Control values for neither slow turn nor fast turn can make the
term in parentheses zero, so the only possibility for a singular con-
trol interval is the case where sin # = 0. Taking an additional time
derivative, we find

bs = wsgn(n)cos (v — |w|v)

which is nonzero for both fast and slow turn inputs. Thus, <2>3 can
only vanish for a single instant, and no extended singular interval
is possible on the ¢; = 0 switching surface.

3.2.3  Rotation and Slow Turn. For states on the switching sur-
face ¢, =0, the Hamiltonian is minimized by o* = @sgn(¢,)
with v freely chosen as any value in the range [0, u/®]. Taking the
derivative of ¢, with respect to time

(ibl = —wsinf

= *w, for cosff =0

Thus, on the switching surface, the derivative is always nonzero
for the minimizing control u = u*, so there can be no singular
interval for the ¢, = 0 switching surface.

3.3 Multiply Singular Control and Trivial Trajectories.
We consider the situation that the state lies on multiple switching

JULY 2018, Vol. 140 / 071017-3



surfaces simultaneously. If both ¢, and ¢, (and subsequently ¢5)
are zero for a given state, then H =1. One of the conditions for
the application of the minimum principle in a minimum-time
problem is that the Hamiltonian is constant with H=0. So, we
can conclude that a minimum-time trajectory can never reach a
state that lies on multiple switching surface in this system. The
trivial case corresponds to the agent starting at the destination
point.

Similarly, consider the case that ¢, = 0 with ¢; < 0. Here, the
w term does not appear in H, and the minimizing control has
v =0, leading to the situation that H = 1. The surface ¢, = 0 and
¢, < 0is invariant, since the only minimizing control when ¢; <
0 is rotation in place. This is another example of a trivial trajec-
tory in which the agent starts at the destination.

4 Families of Optimal Trajectories

Now that we have enumerated the types of extremal trajectory
segments, the task is to show which combination of extremal seg-
ments make up the minimum-time trajectory to a given destina-
tion point. We examine the possible terminal conditions and
integrate backward in time to find switching conditions compati-
ble with the terminal constraints. In Sec. 5, we show how to reach
any point in the plane by one of these “nominal trajectories.”

THEOREM 1. Nontrivial minimum-time trajectories must end in
either a fast turn or forward motion segment.

Proof. The terminal condition states that ¢,(¢;) = 0 at the final
time #;. If we disregard the trivial trajectories discussed in Sec. 3.3
for ¢; < 0, this implies ¢ (¢;) > 0 as an additional terminal con-
dition. Noting that ¢3 = @|¢p,| — V¢, we see that ¢;(¢;) <O.
There are two control types consistent with ¢, > 0 and ¢; < 0:
fast turn (in either direction) and forward motion. Under forward
motion, ¢, =0 = constant, thus satisfying the terminal condi-
tions. So, a minimum-time trajectory may end in a forward motion
segment.

Under fast turning motion, ¢, # 0, but the state can reach the ter-
minal conditions from a fast turn segment as follows. Taking the
derivative of ¢, with respect to time and substituting for fast turn
control inputs, we find ¢, (r) = —v cos(60(¢) — 7), which can be pos-
itive or negative depending on the value of the parameter ). Thus,
with an appropriate value of ), a fast turn trajectory can reach the
switching surface ¢,(7;) = 0 at the final time #;, implying that a
minimum-time trajectory may end in a fast turn segment. U

4.1 Trajectories Ending in Forward Motion. For a trajec-
tory to end with a forward motion segment, it must have #(¢;) = 0
and cos fi(t;) = 1 at the terminal time #,. These conditions will
hold for the duration of the forward motion segment, no matter
how long it lasts. From Sec. 3.2.1, we know that a forward motion

n=0
|
I 18
|

6,20, ¢ #1

fh
60 |
1

1

Fig. 2 Illlustration of system state relative to the n=0Iine
(shown dashed) at points where a switching function ¢;
reaches zero. Left: trajectory ending in forward segment
(B, =0). Right: trajectory ending in fast turn segment.
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segment can only be preceded by a fast turn. Suppose that at some
time, the control switches from fast turn to forward motion. To
compute the maximum duration of a fast turn leading to forward
motion, we integrate backward in time to find the switching times
corresponding to ¢; = 0 (see Fig. 2, left).

Using Eqgs. (2) and (6) to solve for the value of the switching
functions over a fast turn trajectory ending with #=0 and
cosf =1, we find that ¢; =0 for a fast turn of duration
Tr = 05V /1, where

- R
0 =cos™! i
: Rf +b

), withh = v /@ @)

Continuing backward in time with a slow turn segment using
Egs. (2) and (5), we find that ¢; = 0 for a slow turn of duration
T, = 0y/@ with

_ _ Ry
0, =n/2— 0 =sin™" (R,«Jfrb)

Continuing further back in time, we have a rotation segment.
Figure 2 on the left shows the state of the agent relative to the
n=01Iine at the times of control switching for the backward-in-
time trajectory described earlier.

From Bellman’s principle of optimality, we know that subsets
of a trajectory at different starting points (but sharing an endpoint)
will also be optimal trajectories themselves. So, these switching
intervals 7; and T, allow us to define the family of all trajectories
that end with a forward motion segment of nonzero length.

This family of trajectories consists of all trajectories of the fol-
lowing types (for both left and right turns):

F: Forward motion only;

T¢F: Fast turn of up to 7y duration followed by some forward
motion;

T,T;F: Slow turn of up to T, duration, followed by fast turn of
7 duration, followed by some forward motion;

RT,TyF: Rotation, followed by slow and fast turns of duration
7, and Ty, respectively, followed by some forward motion.

THEOREM 2. The maximum rotation duration for a minimum-
time RTT¢F trajectory with forward motion duration of t, is
givenby T, = 0,/®, where

b 2
VT4 +RS+(R/‘*RS) 1-— (R +b)
f

b

(9,. =7 — tan’l

Proof. Consider a left-turning trajectory of type RT,T;F with a
rotation duration of 7, = 0 and forward motion duration t,;. Start-
ing from the origin q(0) = (0,0,0)", we use Egs. (5) and (6) to
calculate the endpoint of the trajectory at time | = T, + 75 + T4

() -

Increasing the duration of the initial rotation segment will cause
the endpoint to rotate about the origin, and a duration of 7, as
defined earlier brings the destination to the negative x-axis. By
symmetry, a right-turning trajectory with the same segment dura-
tions would bring the agent to that same point in the same amount
of time. From this, we can determine that a left-turning trajectory
with rotation longer than 7, would put the destination at a point
that can be reached in less time with a right-turning trajectory.
Thus, a minimum-time trajectory of type RT,T;F cannot include a
rotation segment of duration greater than 7,. Trajectories with

b 2
Vig + Ry + (Rf —Rs)4[1— (Rf +b)
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rotation segments of duration exactly 7, correspond to destina-
tions lying directly behind the initial position of the agent. O

4.2 Trajectories Ending in Fast Turn. Trajectories with
7(t;) = 0 and cos f(#;) # 1 end in a fast turn. We can again inte-
grate backward in time to find families of optimal trajectories, but
in this case the switching angles will be a function of the terminal
value of f3(#). The state of the agent relative to the n =0line at
the times of control switching for this backward-in-time trajectory
is illustrated in Fig. 2, right.

Let f;; = B(t1). Using Egs. (2) and (6) to solve for the value of
the switching functions over a fast turn trajectory ending with
n=0and cos f§; # 1, we find that the maximum duration of a fast
turn segment (corresponding to ¢; = 0 at the start) is 7,(f,) =

07 (By)v/pe with

= R
() =~ -+eos”! (g cosy) ®

Preceding a fast turn segment of maximum length, we can have a
slow turn segment lasting up to 7,(f;) = 05(f,)/® with

éx(ﬁl) = 7-5/2 - éf(ﬁl) - ﬁl - SiH71 <RfR‘j;'b

cos ﬁl) ©)
And again, there can be a rotation segment prior to full-length
slow turn and fast turn segments for a given value of ;.

This family of trajectories comprises all trajectories of the fol-
lowing types (for both left and right turns):

T Fast turn of up to 7y duration only;

T,Ty: Slow turn of up to T,(f3;) duration, followed by fast turn
of 7¢(f3) duration, for some f3; € [0, 7/2];

RTTy: Rotation, followed by slow and fast turns of duration
T4(p) and T,(f,), respectively, for some f3; € [0, n/2].

TueoreM 3. The maximum rotation duration for a time-optimal

RT,Ty trajectory with p(t,) = f; is given by T, = 0, /®, where

0. — 7 — tan—" Ry —Rycos(0s + 0;) + (Ry — Ry)cos 0
. Ry sin(0, +0r) — (R — Ry )sin 0,

with 9f = @»(ﬁl) and 05 = éx(ﬂl) as defined in Egs. (8) and (9).
Proof. Follows similar to the proof of Theorem 2. O
By Theorems 2 and 3, we have determined seven minimum-

time trajectory types: F, TyF, T, I F, RTT¢F, Ty, T,T;, and RTTy,

which we illustrate in Table 1. Next, we show that these seven tra-
jectory types cover the space of destinations. We show how to

determine the optimal trajectory type and switching times given a

destination point.

5 The Optimal Trajectory

Here, we present the explicit form of the minimum-time trajec-
tories. The seven types of trajectory (in each turning direction)
from Theorems 2 and 3 correspond to different possible

Table 1 Range of possible segment durations for each trajec-
tory type

Type T, Ty T Ty
F 0 0 0 [0, 0]
s 0 [0,7f] [0, o0]
T,T;F 0 [0,7,] T [0, 0]
RTSTfF [0 f,-(‘l.'d)} fs ?f [0, OO]
Ty 0 0 [0,7¢] 0
TiTy 0 [0, 7(B))] (1) 0
RTTy 0,7, (B1)] %5(B1) 7 (B1) 0

combinations of rotation, slow turn, fast turn, and forward trajec-
tory segments (Table 1). We first describe the partition of the
plane into regions for the different trajectory types. We then pres-
ent the explicit form of the optimal trajectory for each type
individually.

5.1 Trajectory Parameterized by Switching Times. Given
the initial position ro = (xo, yO)T and heading 0, at time ¢y and a
set of time durations spent in each control segment, we can write
the trajectory explicitly as a sequence of translations and rotations
about different points. Let 7,, 74, 77, and 7, represent the time spent
in rotation, slow turn, fast turn, and forward segments, respec-
tively. The switching times and the final time are denoted

tyy =1ty + 7,
tsf =l + T
la =1ty +7
h =1 + 14
Note that the time to reach the destination is given by the sum of
the four segment durations: t; — tp = 7, + 7, + 77 + 4.
The heading angle 0(¢) at time ¢, for initial heading 0(0) = 0y,

is given by the following expression, with 4 for left turn, — for
right turn:

Ooxa(t —to), for to <t <ty
0(r) = eot(a)(r,. + 1) + (u/v)(t - txf)), for 1y <t <ty
(= ((Z)(r, +15) + (,u/ﬁ)rf) for ty <t <1ty

For convenience, we define the headings at switching times as
0,5 = 0(t) and so on.

We can write the agent’s position at a given time as the sum of
vectors for each segment. Define the “turning vectors” T (f) and
Tft (¢) as the translation due to slow turn and fast turn segments of
duration # that start from the origin q(0) = (0,0,0)", as defined in
Egs. (5) and (6). Superscripts + and — denote left and right turns,
respectively. Also, define the “forward motion vector” F(f) as
F(1) = (v,0)".

The position of the agent r = (x, y)T at time ¢ is given by the
following expression (with +/— on 0 and T omitted):

r(t)
r(%0), fo <t <ty
r(to) + B(0:)Ts(t — t5), ty <t <ty
_ ) r(n) + B(0,5)Ts(ts) (10)
+ B(0y) Ty (1 — ty), ty <t <ty
r(to) +B(0:)T;(1s)

+B(0y) Ty (%) +B(0u)F(t 1), tu<t<ty

Table 2 Parametric description of trajectory type partition
boundaries

Boundary T, Ty T Ta
RT Ty F—RTTy [0,7,(0)] Ty Ty 0
T F-TTy 0 [0, 7] Ty 0
T, T-TsF 0 0 [0,7f] 0
RTA\TfFfTSTfF 0 T ff [0, OO]
T\ T F-TpF 0 0 Ty [0, 0]
RTsTf*T:Tf 0 f:(ﬁl) Tf(:b)l) 0
Left T;F—right T;F 0 0 0 [0, o0]
Left RTTy—right RT T 7(f)) T5(By) Tr(B) 0
Left RT,T¢F—right RT,T;F 7.(t4) Ty Tr [0, 0]

Note: For the entries containing f3, the range is 5, € [0,7/2].
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Note: For the entries containing f3, the range is 5, € [0,7/2].
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5.2 Trajectory-Type Partition. To calculate switching times
for an open-loop optimal trajectory, we must first determine which
trajectory type can be used to reach the destination. For a given
set of initial conditions q(ty) = (xo, yo, 00)", the plane can be par-
titioned into regions according to which trajectory type can be
used to reach destination points in a given region. The set of tra-
jectory types in Table 1 together covers the plane for all possible
destinations.

The boundaries between different trajectory types are described
in Table 2 parameterized by segment durations. These boundary
curves are either formed by a circular arc, a straight line, or in the
case of the RTTy—TTy boundary a polynomial curve described by
y = g(x) forx € [0, b] with

2(x) =R+ (R — R,) 1—(Rsx+b)2—1ef,/1—(%)2 (1)

An example of the trajectory type partition is shown in Fig. 3 for
initial condition q(t) = (0,0,0)". Here, the x-axis separates left
turning from right turning trajectories. The positive x-axis is itself
a trajectory-type region corresponding to the forward-only trajec-
tory type. The negative x-axis also separates left turning from
right turning trajectories, but in this case destinations lying there
can be reached in equal time from either left or right turning tra-
jectories with the same segment durations.

5.3 Optimal Switching Times for Each Compound Trajec-
tory Type. Here, we derive the open-loop optimal control seg-
ment durations t,, 75, 75 and 7, for trajectories in each of the
regions defined earlier. For all, we assume that the agent starts at
the origin q(#o) = (0,0, O)T, and the destination lies in the upper
half-plane so that left turning controls (w > 0) are used.

“Compound” trajectories are those that feature more than one
control segment. For each compound trajectory type, there are
two unknown values to solve for, as indicated in Table 1. Com-
pound trajectories ending in a forward motion segment have
unknown durations for the initial and final segments. Compound
trajectories ending in a fast turn segment have the initial segment
duration and the parameter f3; as unknowns.

The general strategy to solve for the control segment durations
is to first write the equation for the destination in terms of the seg-
ment durations as in Eq. (10). The equation is rearranged such
that the initial segment duration appears only in a rotation matrix
premultiplying one of the sides. Taking the two-norm thus
removes the initial unknown angle, allowing us to solve for the
duration of the final segment. We then use substitution to solve
for the other unknown.

For convenience, we parameterize segment durations according
to the change in heading or distance traveled, letting 0, = @1,
Os = 015, O = (u/v)7, and d = v1,.

5.3.1 TTy Trajectory. At the destination r(t;) = (x1,y1)", we

have

r(tl) = TS(TS) + B((‘)Y)Tf('[f)
Ry sin(0; + 0r) + (Rs — Ry)sin 0
~ \ Ry — Rycos(0; + 0f) + (Rf — Ry)cos 0,

Note that the left turning vector 7 can be decomposed into

Ty(t) = (12) +B(9s)(_(1)gs)

so that our destination equation can be rewritten with 6, only
appearing within a rotation matrix

071017-6 / Vol. 140, JULY 2018

mn—(ﬁ)zB@ﬂﬁﬂw—(ﬁ))

Taking the two-norm of both sides removes the dependence on 0,
and we can solve for

1 (R} + (Ry

0p = cos™

—R)> =i — (1 — R,
2Ry (Ry — Ry)

Then, 0, is the clockwise angle about point (0,R;)" from Ty (05)
to our destination

0, = atan2(y; — Ry, x1) — atan2 (R (1 — cos 0y) — Ry, Ry sin 0y),

where atan2(y, x) is the standard two-input inverse tangent func-
tion with range [—7, 7].

5.3.2 TyF Trajectory. Following the same method, we have

r(n) =T (0r) + B(0;)F(d)

r(n) - (Ri) ) (F(d) i (’gf )>

Again taking the norm, we solve for the forward distance

d=\/xi =R+ (v — Ry)?
with

0f = atan2(y; — Ry, x1) — atan2(—Ry, d)

5.3.3 TIyF Trajectory. For the T,T/F trajectory type, we
have

Fig. 3 Partition of the plane based on the optimal trajectory
type to reach each point in minimum time for an agent starting
at the origin with heading in the direction of the positive x-axis
and v=1 ®=1, and u=0.. Destinations with y>0 use left
turn controls and those with y<0 use right turn controls. For
those destinations along the positive x-axis, no turning is nec-
essary. For those on the negative x-axis, left and right turning
trajectories take the same amount of time.
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r(h) = T5(05) +B(6s) (Tf (9f) + B(éf)F(d))

We can rewrite the above equation to isolate 0; into a single rota-
tion matrix

(ylx—le) :B(es)<(1ef21es) +B(9f)(jef>) (12)

Taking the norm of both sides results in 0 = d? 4+ c¢;d + ¢z, a
quadratic equation in d with

c1 =2(Ry — Ry)sin 0y
3 =R} + (Rf — Ry)” = 2R¢(Ry — Ry)cos O — x7 — (y1 — R,)’?
We take the positive root as our solution for d. Then to calculate
the angle 0,, we can simply subtract the angle of the vector on the
right-hand side of Eq. (12) from the angle of the vector on the
left-hand side of Eq. (12)

05 = atan2(y; — Ry, x1)
—atan2(R; — Ry + dsin 0y — Ry sin 0y, d cos 0 + Ry sin 0y)

534 RTJT¢F Trajectory. This trajectory type includes slow
turn and fast turn segments of full possible durations of 7, and 7,
respectively. Let ry = (Xv‘,ysf)T represent the vector traversed
during a T Ty trajectory with those durations. Then

ry = To(1) + B(0)Ty(3) = (gfb))

with g from Eq. (11). Then

pw=0.1 w=0.5
2 ] 2
>0 0
-2 -2
-2 0 2 -2 0 2
x x
w=0.9
2
0
-2
-2 0 2
x

Fig. 4 Minimum-time trajectories for an agent starting at the
origin with heading in the direction of the positive x-axis with
v=1 and o =1. Trajectories’ segments are colored by type:
blue is slow turn, green is fast turn, and red is forward motion.
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By taking the norm of both sides, we can solve for d

d:,/x%—l—y%—x_%f—ysf

Then, the rotation angle is given by

0, = atan2(y;, x1) — atan2(yy + d, Xyr)

53.5 RTTy Trajectory. This is the single trajectory type
which eludes an explicit analytical solution, although the equa-
tions involved are well behaved and simple to solve numerically.

We must find the value x. € [0, 5] which satisfies the relation
2yt = xg +yf, where y. = g(x.) with g from Eq. (11). Geo-
metrically, (% yC)T is the point on the RTTy—TT; boundary sur-
face which is the same distance from the origin as the destination
point. The distance is smoothly and monotonically increasing
with x,, so it should not pose any difficulties to calculate numeri-
cally. Once found, the rotation angle is given by

0, = atan2(yy,x1) — atan2(y., xc)

and 0y, 0, are found according to the solution for a 7Ty trajectory
presented in Sec. 5.3.3, using (xc,yc)T as the destination.

Figure 4 shows minimum-time trajectories to various destina-
tion points under different values of the lateral acceleration limit
1, including examples for different trajectory types.

By calculating the optimal switching times at every destination
point on the plane, we can build a map of the time-to-reach under
minimum-time control as a function of the destination. In Fig. 5,
we illustrate how the minimum time-to-reach is affected by vary-
ing the p parameter of the acceleration constraint. As the value of
1 decreases, the time-to-reach increases for all destinations except
those reachable by a forward-motion-only trajectory.

w=0.5

0 2 4 6 8

Minimum Time-to-reach (s)

Fig. 5 Minimum time to reach surfaces for an agent starting at
the origin with heading in the direction of the positive x-axis
with v =1 and @ = 1, for different values of the lateral accelera-
tion constraint u. Isochron (equal time-to-reach) lines are drawn
at 1 s interval.
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Fig. 6 Control switching regions for destination relative to
agent at the origin with heading in the direction of the positive
x-axis with v =1 and @ = 1. The lateral acceleration parameter p
is varied, from left, x=0.1, 0.5, and 0.9. Destinations in the
upper half plane (y>0) are optimally reached by left turn
maneuvers and in the lower half plane by right turn maneuvers.

6 State-Feedback Formulation of Optimal Control
Law

The optimal minimum-time trajectories can be described in
terms of a state-feedback law where we consider the dynamics of
the location of the destination point in a body-fixed frame with the
agent at the origin, heading in the direction of the positive x-axis.
The coordinate transformation from world to body-fixed is given

by
e (X} _( cos 0 sin6 X — X
T Wy )\ =sin@ cosf )\ y; —y

The optimal control consists of the following rules:

p=0

N RTF
S RT
2 2
= 0 > 0
-2 -2
-2 0 2 -2 0 2
x x

Fig. 7 Trajectory-type partition (top) and optimal trajectories
(bottom) for extreme values of u for an agent starting at the ori-
gin with heading in the direction of the positive x-axis with
v=1and @ = 1. Left: u > v, so fast and slow turns are equiva-
lent, both having radius of b. Right: u = 0, with only rotation and
forward motion possible. Trajectories’ segments are colored by
type: magenta is turn and red is forward.
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(1) If destination is on the positive x-axis, go forward.

(2) Else if destination is in a trajectory-type region with fast
turn as the initial segment, go in a fast turn in the appropri-
ate direction.

(3) Else if destination is in a trajectory-type region with slow
turn as the initial segment, go in a slow turn in the appropri-
ate direction.

(4) Else, rotate in the appropriate direction.

Figure 6 illustrates the state-feedback control-type regions
under different values of the lateral acceleration constraint u. As u
decreases, the edges separating the fast turn and slow turn control
regions approach the positive x.-axis.

7 Special Cases for Large and Small Values of u

Here, we examine two limiting cases in the minimum-time
problem. We first consider relaxing the constraint on lateral accel-
eration. We then look at the limiting case for very low p, which
has parallels to the problem of a forward-only differential drive
vehicle. Control-type regions and optimal trajectories for both
cases are shown in Fig. 7.

7.1 Relaxed Acceleration Constraint. For u > v, the lat-
eral acceleration constraint does not affect the boundary of the
permissible control space. Here, the controls are limited to the rec-
tangle v € [O7 l;], ® € [—@,®]. In this case, the extremal control
is determined through only two switching functions, namely, ¢,
and ¢,, from the general system. In effect, the slow turn and fast
turn extremals merge into a single turn trajectory with
V=7, w=*®,and radius R = v/®.

Following the analysis of Sec. 4, we find that there are five tra-
jectory types: forward (F), turn and forward (TF), rotate, turn, and
forward (RTF), turn (T), and rotate and turn (RT). Destinations on
the positive x,,;-axis can be reached by F trajectories. Destinations
on the quarter circle

(;c::) - <R<1R_Si'§fsa>) 0€0,7/2)

can be reached by a turn-only trajectory. The arc given by Eq.
(13) serves as the boundary between TF and RT trajectory types.
The boundary between TF and RTF trajectory types is a vertical
line x;e; = R, Y1 > R. Finally, the boundary between RT and RTF
trajectory types is the circular arc

()yci) - (ﬁX(Z_IR_SiSfS 0) > 0 € [n/4, 7]

For a more detailed discussion of this system without the accelera-
tion constraint, see Ref. [12].

(13)

7.2 Highly Constrained Lateral Acceleration. For u=0,
the acceleration constraint is equivalent to constraining either v or
 to be zero at any given time. We can interpret this as the slow
turn merging with rotation and the fast turn merging with forward
motion. The admissible control space becomes a “T” shape, such
that the agent can either rotate or move forward but not both at the
same time. Under those constraints, the extremal controls are
specified by the signs of two switching functions, ¢, and ¢5, from
the general system. We find that time optimal trajectories consist
of rotating in place until facing the destination, then moving for-
ward at full speed.

Interestingly, this control scheme is also optimal for a
differential-drive robot constrained to only go forward, with input
constraints v >0 and v/v + |o|/@ < 1. For that system, the
switching functions and extremal trajectories are the same. The
only difference is that the extreme corners of the control space are
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connected by a straight line in the differential drive case, rather
than a concave curve for the limited acceleration system.

8 Multi-Agent Coverage

In this section, we apply our solution of the minimum-time
problem for a single agent, with constraints on speed, lateral
acceleration, and turning rate, to the analysis of a coverage prob-
lem in a multi-agent system. Suppose there is a domain on the
plane where events can occur at any point, uniformly randomly
distributed within the domain. The problem of coverage as
applied to multi-agent robotic systems asks how to distribute a
collection of N agents within the domain so that some perform-
ance metric that describes the ability of the group to respond to
events, such as average or worst-case time-to-reach, is optimal.

Coverage problems have been studied extensively for various
agent dynamics and performance metrics. Notably, Ref. [13]
shows that optimal arrangements for omni-directional agents
under a weighted-average performance metric will take on the
form of a centroidal-Voronoi configuration, which can be reached
under decentralized control using Lloyd’s algorithm. Ref. [14]
considers the worst-case time-to-reach problem for a system of
Dubins vehicles. Because Dubins vehicles have constant forward
speed, no static configuration can be achieved. So, performance is
considered on a time-averaged basis. The authors develop heuris-
tic strategies for the cases of high and low vehicle density and
show that performance is within a constant factor of optimal. In
Ref. [15], coverage is studied using a metric that mixes time-to-
reach with a measure of the energy needed to reach a point.

We address the minimum time-to-reach coverage problem for
agents with constraints on speed, lateral acceleration, and turning
rate. Consider a rectangular domain on the plane with length
L>0 and width W>0, D= {(x,y) € R —W/2<x<W/2,
—L/2 <y <L/2}. Given a set of N identical agents as defined
earlier with states ¢; = (x;,y;,0;), for i =1,...,N and identical
speed and turning constraints v, @, u, we would like to find the
configuration of all agents Q = (q1,...,qy) that minimizes the
time necessary for an agent to reach any point in D. Let V(Q) be
the worst-case time-to-reach for agents with configuration Q

V(Q) = max (miin Imin (qi,p))

peD

10

-5

-10
-10 -5

where fyin(g:, p) is the time to reach p € D for an agent at g, using
the minimum-time trajectory defined in Sec. 5.

We seek to characterize bounds on V(Q) for a given domain
and number of agents. To aid in the analysis, we define the domi-
nance region D; for agent i as the set of points within the domain
that can be reached by agent i before any other agent:
Di = {p € Dltwin(¢i,P) < tmin(¢)>P)Vj # i}. The set of domi-
nance regions comprises a generalized Voronoi partition under the
time-to-reach metric. Additionally, we define the t-reachable
region R(z,q) as the set of points reachable within time ¢ for an
agent with state g: R(t,q) = {p € R2|tmin(q,p) < t}. Let | B| refer
to the area enclosed in a plane region B, such that |B| = [;dA.
Note that R (7, ¢) translates and rotates with the agent’s state ¢, so
that the area of the #-reachable region for an agent is not a function
of its state. Let A(r) = |R(t, q)| for any q.

8.1 Lower Bound on Worst-Case Time-to-Reach. We
observe that A(?) increases monotonically with #: any point reach-
able up to time ¢ is also reachable up to time ¢ + € for any € > 0.
So, R(1,q) € R(t + €, q). Also note that A(0) = 0, since the only
point reachable in zero time is the agent’s current position. From
the definitions of dominance region D; and worst-case time-to-
reach V(Q), for a set of agents with configuration Q in domain D,
for any point p € Dj, twin(qi;p) < V(Q). This implies that
D; CR(V(Q).4i),Vi = 1...N.

In the following, we prove a lower bound on V(Q):

THEOREM 4. V(Q) > *, where t° is the unique solution to
A(t*) = |D|/N for a system with N steered agents with maximum
speed v, maximum turning rate o, and maximum lateral accelera-
tion p operating in a domain of interest D.

Proof. We prove the theorem by contradiction. Note that
Z?’Zl |D;| = |D| from the definition of the dominance region par-
tition. By monotonicity of A(f) and A(0) = 0, * > 0 exists and is
unique. Suppose V(Q)=1¢ <. Then, D; CR( q), Vi
=1,.,N. So [D|<A(), Vi, and YV, |Di|<NA({)
< NA(#*), since A is monotonic in ¢ and ¢ >¢. From the
definition of 7, NA(¢*) = [D|. Thus, 3_¥ , |D;| < |D|, which is a
contradiction, proving that #* is a lower bound for V(Q) in
domain D. O

Fig. 8 Simulation of coverage algorithm for N=9 agents in a 20 by 20 square domain. All
agents have motion constraints v =1, ® =1, and p =0.5. Agents are depicted as black circles
with a line in the direction of their heading. Colored regions denote the dominance region for
each agent. White lines are time-to-reach isochrons in 1s interval. Left: at initial time t=0,
agents are randomly placed near the center of the domain with random headings. Initial worst-
case time-to-reach is V(Q(0)) ~ 13.37 s. Right: configuration at the completion of the coverage
algorithm after eight timesteps with At =1 s. At the final time t=8s, the worst-case time-to-
reach has been reduced to V(Q(8)) ~ 6.79 s. The lower bound on attainable V for this system

from Theorem 4 is V > 4.52.
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8.2 Coverage Algorithm. We now propose an algorithm for
coverage in the multi-agent system such that each agent aims to
decrease the maximum time-to-reach within its own dominance
region at each time-step, and we compare numerical results with
the theoretical lower bound found in Theorem 4. We consider a
system with NV agents moving within rectangular domain D.

Algorithm: Let the initial configuration be Q(f) and At >0
the timestep. At time #; = fy + kAt, the time-to-reach partition is
computed based on the configuration Q(#). Each agent chooses
a point in its dominance region with the maximum time-to-
reach, pf = arg maxpep, fmin(qi(t),p), and sets that point as its
next destination. A new configuration Q' is calculated corre-
sponding to the state of each agent after traveling along the
minimum-time trajectory toward its destination for one timestep.
If V(Q') < V(Q), the agents move to the new state Q(11) = Q'
and begin a new step. Otherwise, the algorithm stops at configu-
ration Q(t;).

The performance index of the worst-case time-to-reach
improves with each step, with V(Q(41)) < V(Q(t)). Since
V(Q) has a lower bound from Theorem 4 and is monotonically
decreasing at each step, the algorithm is guaranteed to converge,
although there is no guarantee that the final configuration is a
global minimum.

In practice, the algorithm performs quite well, converging
quickly to a solution that is close to the lower bound. Figure 8
illustrates a typical solution, which converges to a V(Q) that is
only about 50% higher than the lower bound. As can be seen in
the right panel of Fig. 8, the speed, turning rate, and lateral accel-
eration constraints have a strong influence on the domains of dom-
inance and therefore the coverage dynamics.

We note that the coverage algorithm and lower bound on cover-
age performance presented earlier can be easily generalized for
application to systems with different types of agent dynamics and
input constraints, as long as the time-to-reach metric is well
defined. Comparisons in coverage performance for different
dynamics and constraints may yield new insights.

9 Final Remarks

We have derived optimal control laws for an agent with con-
straints on speed, lateral acceleration, and turning rate in the prob-
lem of reaching a destination point in minimum time with free
terminal heading. The optimal control laws were presented in
both open-loop and feedback control formulations, with analytic
expressions for the optimal trajectories.

These control laws and the related time-to-reach surfaces can
be used as a building block for problems involving multiple
agents. We apply our results to a coverage problem where the
goal is to distribute a group of agents over a rectangular region
such that the worst-case time-to-reach for a point in the domain is
minimized. Each agent is assumed to have constraints on speed,
lateral acceleration, and turning rate. We prove a theoretical lower
bound on performance and develop an iterative algorithm based
on a generalized Voronoi partition with time-to-reach as a metric.

071017-10 / Vol. 140, JULY 2018

The minimum time problem with free terminal heading is also
closely related to the two-player differential game of pursuit and
evasion. The evader aims to avoid capture for as long as possible,
which is achieved in some cases by using a minimum-time trajec-
tory to reach a point in the space with a lower time-to-reach for
the evader than the pursuer. We explore the problem of a single
pursuer facing multiple evasive agents without turning constraints
in Ref. [2].
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