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a b s t r a c t

We derive and analyze optimal control strategies for a system of pursuit and evasion with a single speed-
limited pursuer, and multiple heterogeneous evaders with limits on speed, angular turning rate, and
lateral acceleration. The goal of the pursuer is to capture a single evader in the minimum time possible,
and the goal of each evader is to avoid capture if possible, or else delay capture for as long as possible.
Optimal strategies are derived for the one-on-one differential game, and these form the basis of strategies
for the multiple-evader system. We propose a pursuer strategy of optimal target selection which leads to
capture in bounded time. For evaders, we prove how any evader not initially targeted can avoid capture.
We also consider optimal strategies for agentswith radius-limited sensing capabilities, proving conditions
for evader capture avoidance through a local strategy of risk reduction. We show how evaders aggregate
in response to a pursuer, much like animals behave in the wild.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

We consider a system with a single pursuer and multiple het-
erogeneous evader agents moving on the plane. The goal of the
pursuer is to capture any single evader in the minimum time
possible. The goal of each evader is to first of all avoid capture, and
if that is not achievable to delay capture for as long as possible.
The pursuer has limited speed, and the evaders have limits on
speed, angular turning rate, and lateral acceleration. To analyze this
system we apply the framework of differential games introduced
by Isaacs (1965) and used to study pursuit and evasion, e.g., Başar
and Oldser (1999), Elliott and Kalton (1972) and Pachter (1987).
We examine optimal strategies for the one-on-one pursuit-evasion
differential game under these motion constraints, and use those as
building blocks for strategies in the system of multiple evaders.

In the multiple-evader system, we propose a strategy for the
pursuer of optimal target selection, where the target is the evader
that could be captured in minimum time in a one-on-one setting.
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For evaders, in the case of all-to-all sensing, we prove that any
evader not currently the target can always choose from a set
of reactive evasion control inputs in order to avoid capture. The
currently targeted evader must use the optimal evasive strategy
from the one-on-one game to delay its capture for as long as possi-
ble. We also consider the case in which the pursuer and evaders
have radius-limited sensing and propose a local strategy of risk
reduction. We prove that any evader that is not the target can avoid
capture using the risk reduction strategy. The case with no con-
straint on turning rate is addressed in Scott and Leonard (2014).

Predator avoidance has long been considered a key factor in
animal aggregation. The ‘‘selfish herd’’ of Hamilton (1971) is a
seminal model of identical evaders on the plane. Hamilton showed
that a group benefit is not necessary to explain aggregation; rather,
a self-interested individual in a population stays close to others to
reduce its own chance of being caught. We also consider a group of
self-interested evaders, but we use continuous-time dynamics and
heterogeneous evaders. We are also motivated by the problem of
designing dynamics for group formation in engineeredmulti-agent
systems. Our decentralized control law for a collective response
to a moving threat accounts for practical motion constraints and
provides a control mechanism for spontaneous aggregation.

Hamilton’s model has been extended to include evolutionary
dynamics and formation of large groups (Wood & Ackland, 2007).
Numerical studies have examined properties of group motion in
multiple-evader systemswhere biologically inspired strategies are
chosen a priori: on the plane (Lee, Pak, & Chon, 2006), in discrete
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space (Vabø & Nøttestad, 1997), in three dimensions (Vabø &
Skaret, 2008), with multiple pursuers (Angelani, 2012), and based
on observations of crabs and shorebirds (Viscido,Miller, &Wethey,
2001). Non-spatially explicit game theoretic models of multiple-
evader systems have been posed for both homogeneous evaders
(Cressman & Garay, 2011), and heterogeneous evaders (Eshel,
Sansone, & Shaked, 2006).

Cooperative evader strategies have been studied as differen-
tial games in systems where all evaders are captured in succes-
sion (Liu, Zhou, Tomlin, & Hedrick, 2013a, b), and in systems
where evaders have defensive capabilities (Fuchs & Khargonekar,
2011). The problem of choosing the order in which to capture
multiple evaders requires numerical optimization or approximate
solutions for efficient computation. Because every evader will be
captured and strategies are cooperative, evaders are driven apart
rather than into aggregations, fundamentally different from the
problem posed by Hamilton and studied in the present paper.
Multiple pursuers against a single evader have been studied in
many contexts (Bakolas, 2013; Bakolas & Tsiotras, 2010; Chen, Zha,
Peng, & Gu, 2016; Selvakumar & Bakolas, 2016; Zhou et al., 2016),
using tools such as generalized Voronoi diagrams. Oyler, Kabamba,
and Girard (2016) analyzed a pursuit-evasion game on the plane
in the presence of obstacles, using a time-to-reach partition to
determine if two evaders can rendezvous with each other before
capture by a single pursuer. Bakolas and Tsiotras (2012) considered
a multi-pursuer system where the active pursuer is whoever can
capture the single evader in minimum time. This is dual to the
optimal target selection problem for the multiple-evader system.

We use a time-to-capture metric based on the solution to a
one-on-one differential game to partition the plane into evader
domains of danger in a multiple-evader system. The partition is
useful both in the analysis of the pursuer strategy of optimal target
selection, where the pursuer chooses its target based on which
domain of danger it is in, and in each evader’s strategy of reactive
evasion to keep the pursuer from entering its own domain of
danger.

Our analysis considers an ‘‘omnidirectional’’ pursuer with lim-
ited speed seeking to capture any single evader from a group of
heterogeneous and non-cooperating evaders with limits on speed,
angular turning rate, and lateral acceleration, motivated from
legged locomotion. A study of the kinematics of horses during polo
games (Tan & Wilson, 2011) indicates that grip strength and limb
force limits constrain the maximum lateral acceleration during a
turn. In the evader motion model, the limit on lateral acceleration
serves to create a tradeoff between speed and maneuverability, as
the agent cannot make a sharp turn while maintaining maximum
speed.

Several recent papers examine differential games featuring
steered agents with turning constraints, such as a differential-
drive agent vs. an omnidirectional agent, each acting as pursuer
and evader (Ruiz & Murrieta-Cid, 2016), and an omnidirectional
pursuer vs. a car-like evader (Exarchos, Tsiotras, & Pachter, 2015).
These types of dynamics have also been studied in minimum-time
problems for a single agent, for the fixed-speed Reeds-Shepp vehi-
cle (Sussmann & Tang, 1991), for a differential-drive vehicle with
limited wheel speed (Balkcom & Mason, 2002), and in our own
work on an agent with limited speed, turning rate, and lateral ac-
celeration (Scott & Leonard, 2018). A biologically inspired analysis
of pursuit and evasion with acceleration constraints by Howland
(1974) suggests that a more agile but slower evader can escape
from a fast pursuer with limited lateral acceleration by veering to
the side at the lastmoment. Studies of evasive behavior in different
animal species are reviewed in Domenici and Ruxton (2015).

Our major contributions are threefold. First, we prove an op-
timal strategy for a pursuer that seeks to capture, in minimum
time, any single evader among multiple heterogeneous evaders

moving in the plane with limits on speed, angular turning rate,
and lateral acceleration. The strategy relies on the optimal solution
to the corresponding one-on-one differential game, which is new
relative to the literature due to the constraints imposed on the
evader’s motion. For the multiple-evader system, the pursuer will
target one evader at a time butwill switch to target another evader
if and when the pursuer estimates that the other evader can be
caught in the shortest time remaining. Second, we prove a reactive
evasive strategy for each non-targeted evader that keeps it from
becoming the target. The evasion strategies do not require cooper-
ation and each non-targeted evader can stay close to the group and
conserve energy while still avoiding capture. Third, we generalize
our results to the system in which the pursuer and each evader
has a limited sensing region. In this case, before using reactive
evasion, each non-targeted evader responds with a risk reduction
phase to decrease its chances of becoming the target. We show
how each non-targeted evader will move closer to another with a
lower speed limit, thus providing a distributed control mechanism
for aggregation.

We define the problem and system equations in Section 2. In
Section 3 we derive optimal trajectories and an evader feedback-
control law for the one-on-one differential game with motion
constraints. In Section 4 we prove the optimal strategies for the
multiple-evader system. We introduce limits on sensing radius
in Section 5 and examine evader risk reduction. We conclude in
Section 6.

2. Problem statement and equations of motion

We consider a system on the plane with a single pursuer agent
P and a heterogeneous group of n evader agents Ei. The pursuer P
is modeled as an agent that can freely move in any direction with
maximum speed v̄p, position rp(t) ∈ R2 at time t , and velocity
control input up(t) = (vxp (t), vyp (t))

T
∈ R2 with ∥up(t)∥2 ≤ v̄p

for all t . Evaders are modeled as steered agents with inputs of
speed vi(t) ∈ R and turning rate ωi(t) ∈ R, written as ui(t) =

(vi(t), ωi(t))T . An evader’s state at time t is its position ri(t) ∈ R2

and its heading angle θi(t) ∈ S1.
For each evader agent Ei, we impose the following motion

constraints:

• Forward motion: Speed must satisfy vi(t) ≥ 0 for all time t ,
such that the agent never moves in reverse.

• Limited speed: Let v̄i > 0 be the maximum speed. The speed
control must satisfy vi(t) ≤ v̄i for all time t .

• Limited turning rate: Let ω̄i > 0 be the maximum turning
rate. The turning control must satisfy |ωi(t)| ≤ ω̄i for all
time t .

• Limited lateral acceleration: Let µi represent the maximum
lateral acceleration (turning traction limit). The inputs vi(t)
and ωi(t) must satisfy |vi(t)ωi(t)| ≤ µi for all time t .
We further impose the condition that µi < v̄i ω̄i so that
the lateral acceleration constraint is active on part of the
boundary of the control domain.

We define the evader admissible control region Ωei = {u =

(v, ω) ∈ R2
| 0 ≤ v ≤ v̄i, |ω| ≤ ω̄i, |vω| ≤ µi < v̄iω̄i} and

the pursuer admissible control region Ωp = {up ∈ R2
| ∥up∥2 ≤

v̄p}. Admissible controls Ui for evader Ei are bounded Lebesgue
measurable functions from R+ toΩei and Up for the pursuer from
R+ toΩp.

The system equations of motion are

ṙp = up, up ∈ Up

ṙi =

(
vi cos θi
vi sin θi

)
, (vi, ωi) ∈ Uei

θ̇i = ωi, for i = 1, 2, . . . , n. (1)



28 W.L. Scott, N.E. Leonard / Automatica 94 (2018) 26–34

We define the pursuer’s goal to be the capture of a single evader in
minimum time.We define the goal of each evader to avoid capture
altogether, or if that is not achievable then to delay capture for as
long as possible.

3. Pursuit and evasion with two agents

Consider the system above with a single evader denoted by the
subscript e, where the pursuer has a higher maximum speed v̄p >
v̄e. In this case the pursuer can always guarantee eventual capture.
To determine optimal strategies for each agent, we formulate the
problem as a differential game with the time to capture, Tcap, as
the payoff. The two agents’ goals are directly opposed: the pursuer
aims to minimize the time-to-capture while the evader aims to
maximize time-to-capture. We define capture as the condition
that the distance between the agents is equal to a capture radius,
l ≥ 0. The standard form of the pursuit-evasion differential
game is described by the payoff functional with unity integral cost
L = 1: Tcap[q(0),up(·),ue(·)] =

∫ T
0 1dt , subject to the dynamics

q̇(t) = f(q,up,ue), where q = (xp, yp, xe, ye, θe)T ∈ R4
× S

and f(q,up,ue) = (vxp , vyp , ve cos θe, ve sin θe, ωe)T , and terminal
conditionψ(T ) = 0 forψ(t) = (xp(t)−xe(t))2+(yp(t)−ye(t))2−l2.
We seek a pair of optimal controls u∗

p , u∗
e such that any deviation

from either playerwill result in aworse payoff: Tcap[q(0),u∗
p,ue] ≤

Tcap[q(0),u∗
p,u∗

e ] ≤ Tcap[q(0),up,u∗
e ], ∀up ∈ Up,ue ∈ Ue.

The solution procedure is as follows. Candidate open-loop op-
timal trajectories are constructed in reverse time starting at the
terminal surface, and singular surfaces where the trajectories are
not uniquely defined are analyzed. From these trajectories we de-
rive optimal control in state-feedback form. In the present system
we find that for appropriate values of capture radius l, discussed
in Section 3.5, unique optimal strategies exist everywhere except
for a single dispersal surface corresponding to states where the
evader faces directly towards the pursuer, and can decide whether
to rotate left or right.

Define the adjoint vector as a row vector,

λ =
∂

∂q
Tcap = (λxp , λyp , λxe , λye , λθe ). (2)

The control Hamiltonian for the game has the form

H(λ, q,up,ue) = λ · f(q,up,ue) + 1
= λxpvxp + λypvyp + λxeve cos θe

+ λyeve sin θe + λθeωe + 1. (3)

Then optimal control inputs u∗
p , u∗

e are specified by the ‘‘Main
Equation’’ of Isaacs (1965):

H(λ, q,u∗

p,u
∗

e ) = min
up∈Ωp

max
ue∈Ωe

H(λ, q,up,ue) = 0. (4)

Note that the min and max operators commute, since the terms
involving up and ue are separate. The adjoint equations of motion
are λ̇ = −

∂H
∂q , and so λ̇xp = λ̇yp = λ̇xe = λ̇ye = 0 and λ̇θe =

λxeve sin θe − λxeve cos θe. As in Balkcom and Mason (2002), since
λ̇θe = λxe ẏe − λye ẋe, λθe can be directly integrated (with constant
of integration ρ):

λθe = λxeye − λyexe − ρ. (5)

3.1. Terminal conditions

We start by defining a parameterization h(s) of the capture
surface in terms of parameter vector s ∈ R4: q(T ) = h(s) = (s1 +

l cos s4, s2+l sin s4, s1, s2, s3)T . The value of the game, Tcap, does not
depend directly on the terminal state, so all its partial derivatives

with respect to the terminal surface are zero: 0 =
∂Tcap
∂sj

= λ(T )· ∂h
∂sj
,

for j = 1, 2, 3, 4, providing four terminal conditions,

0 = λxp (T ) + λxe (T )
0 = λyp (T ) + λye (T )
0 = λθe (T )
0 = l(λyp (T ) cos s4 − λxp (T ) sin s4). (6)

We define the normalized adjoint values at t = T as

λ̂xp = λxp/λ0 = cos(s4)

λ̂yp = λyp/λ0 = sin(s4)

λ̂xe = λxe/λ0 = − cos(s4)

λ̂ye = λye/λ0 = − sin(s4), (7)

where λ0 =

√
λ2xp (T ) + λ2yp (T ) + λ2xe (T ) + λ2ye (T ) = ∥λ(T )∥2. Nor-

malizing by −λ0 gives trajectories that reach the terminal surface
from within the capture region.

To determine λ0, we use Eq. (3) for H at the terminal time and
the optimal control inputs for each agent:

H(λ(T ),h(s),u∗

p,u
∗

e ) = 0

= λ0(λ̂xpv
∗

x + λ̂ypv
∗

y + λ̂xev
∗

e cos s3 + λ̂yev
∗

e sin s3) + 1.

The pursuer’s optimal control to minimize H is given by v∗
x (T ) =

−v̄pλ̂xp and v
∗
y (T ) = −v̄pλ̂yp . The evader’s optimal control depends

on the location of the terminal state on the terminal surface:

v∗

e (T ) =

{
v̄e, cos(s4 − s3) < 0,
0, cos(s4 − s3) ≥ 0.

Thus we can solve for λ0 through substitution:

λ0 =

{
(v̄e cos(s4 − s3) + v̄p)−1, cos(s4 − s3) < 0,
v̄−1
p , cos(s4 − s3) ≥ 0. (8)

The ‘‘usable part’’ of the capture surface is the set of points s
where the pursuer can force the state to penetrate the surface:
minup∈Ωpmaxue∈Ωeλ(s) · f(h(s),up,ue) < 0, with λ(s) defined at
t = T by (7), (8), and λθe = 0 from (6). Since we assume a faster
pursuer with v̄p > v̄e, the entire capture surface comprises the
usable part.

3.2. Optimal trajectories for pursuit and evasion

Given the state at the time of capture, the trajectories for each
agent can be integrated backwards in time based on the optimal
controls corresponding to the adjoint vectors as computed above.
From (3) the terms in H corresponding to evader and pursuer
control inputs are independent. Thus we can apply Pontryagin’s
minimum principle for each agent independently and derive opti-
mal trajectories given the proper boundary conditions. Since λ̇xp =

λ̇yp = 0, the adjoint entries for the pursuer remain constant
throughout, and the pursuer will use a constant control input. To
minimize H , the optimal path of the pursuer is to follow a straight
line at full speed v̄p in the direction opposite its associated adjoint
vector (λxp , λyp )

T .
Suppose, without loss of generality, that the evader is captured

while at the origin, with its heading along the positive x-axis.
The state at capture is given by q(T ) = (l cos s, l sin s, 0, 0, 0)T ,
for some capture angle s ∈ [−π, π]. The value of λ at capture
can be computed from (6) and (8) through substitution with s =

s4 − s3. For trajectories ending at this capture point, the pursuer’s
optimal control is a constant vector u∗

p = (−v̄p cos s,−v̄p sin s)T .
Integrating backwards in time with τ = T − t , the pursuer’s
trajectory is a straight line going away from the capture point at
the origin: rp = ((l+ v̄pτ ) cos s, (l+ v̄pτ ) sin s)T . The evader control
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input u∗
e = (v∗

e , ω
∗
e ) that maximizes H depends not only on the

terminal conditions but also on the current state of the system.
To determine the extremal evader control, we define three state-
dependent switching functions:

φ1(q) = − cos(θe − s)
φ2(q) = xe sin s − ye cos s
φ3(q) = ω̄e|φ2| − v̄eφ1. (9)

Let sgn(z) be the standard sign function for z ∈ R. On time intervals
for which the switching functions are nonzero, the corresponding
extremal controls are called generic. These fall into three cate-
gories:

• Rotation: When φ1 < 0, the agent rotates in place: v∗
e = 0

and ω∗
e = ω̄e sgn(φ2).

• Slow turn: When φ1 > 0 and φ3 > 0, the agent moves
forwardwith low speedwhile turning at themaximum rate:
v∗
e = µe/ω̄e and ω∗

e = ω̄e sgn(φ2). The agent moves on a
circular arc with radius Rs = µe/ω̄

2
e .

• Fast turn: When φ1 > 0 and φ3 < 0, the agent moves
forward at maximum speed while turning at a lower rate:
v∗
e = v̄e and ω∗

e = sgn(φ2)µe/v̄e. The agent moves on a
circular arc with radius Rf = v̄2e /µe.

In the case that s = ±π , we have that φ1 = 1 and φ2 = 0 at
capture. The evader control input that maximizes H is not unique:
any input with ve = v̄e and ωe ∈ [−µe/v̄e, µe/v̄e] is maximizing.
Integrating backwards in time, any control with ωe ̸= 0 will
immediately cause the evader to leave the φ2 = 0 switching
surface, bringing it into a generic fast turn segment. However,
should the evader use a control of ve = v̄e and ωe = 0 for an
extended interval, it will remain on the switching surface. This
forward motion evader control is optimal only when the pursuer
is directly behind the evader, such that both agents are moving in
the direction of the baseline vector from the pursuer to the evader.
Once started, forward motion continues until capture.

3.3. Evader control switching times

To calculate switching times for the evader optimal control, we
integrate the equations of motion backwards in time from capture
at time t = T . Let Tcap(t) = T − t be the time remaining until
capture along a specific retro-time trajectory with pursuer and
evader agent each using its optimal control. So Tcap = Tcap(0).
The evader’s optimal trajectory will have some combination of
rotation, slow turn, fast turn, and forward segments based upon
the value of s at capture. For sin s > 0 at capture, the evader
will use right turning controls (ωe ≤ 0), and for sin s < 0 at
capture, left turning controls. For cos s ≥ 0 at capture, the evader’s
trajectory consists only of rotation. The pursuermoves in a straight
line directly towards the evader. For −1 < cos s < 0 at capture,
the evader’s trajectory ends in a fast turn. Proceeding backwards
in time from capture by integrating the equations of motion (1)
using fast turn input for the evader, the state crosses the φ3 = 0
switching surface at the time given by Tcap = τf (s) = θf (s)µe/v̄e,

where θf (s) = |s| − cos−1
(

v̄eω̄e
v̄eω̄e+µe

cos s
)
. At that time, the evader

control switches to a slow turn in the same direction, for duration
of τs(s) = θs(s)/ω̄e, where θs(s) = |s|−π/2−θf (s). It is at that point
that the evader crosses the φ1 = 0 switching surface, and switches
to rotation control in the same direction.

When cos s = −1 at capture, the evader’s trajectory can end in a
forward segment or a fast turn in either direction. This corresponds
to a family of optimal trajectories with varying time spent in the
forward segment, τd, and either right or left turns. Going backwards
in time from capture, at time Tcap = τd the evader switches to a fast
turn, up to the maximum duration τ̄f = τf (π ), at which point it
switches to a slow turn of up to the maximum duration τ̄s = τs(π ),
then it switches to rotation.

Fig. 1. Optimal trajectories in reduced coordinates (10). Color denotes optimal
evader control input. Trajectories in the lower half plane (yrel < 0, not shown)
are mirrored about the xrel axis, with evader using left turns. Here v̄ = 1, ω̄ = 1,
µ = 0.5, and vp = 1.5. The capture radius is set to the minimum value of l = lc
from (12). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

3.4. Evader state-feedback control law

We define a set of reduced coordinates (xrel, yrel)T ∈ R2 describ-
ing the position of the pursuer relative to a frame fixed on the
evader, with the positive x-axis in the direction of the evader’s
heading:(
xrel
yrel

)
=

(
cos θe sin θe

− sin θe cos θe

)(
xp − xe
yp − ye

)
. (10)

Consider the set of all optimal trajectories q(t) described above in
Sections 3.2 and 3.3, along with their associated optimal controls
u∗
p(t) and u∗

e (t) for all s ∈ [−π, π] and τd ≥ 0. Any ordered pair
of capture angle and time-to-capture (s, Tcap) (along with forward
duration τd for s = ±π ) corresponds to a point in the reduced
space, (xrel, yrel), along with an associated optimal evader input
and optimal pursuer input (transformed to the reduced coordinate
frame). From these optimal trajectories together in reduced space,
we can derive the optimal controls in state-feedback form: this is
the inverse mapping from a point in the reduced space, pursuer
position relative to the evader, to the associated optimal control.

Since the evader has a discrete set of possible optimal controls,
its state-feedback control law maps a region of the reduced space
to each input. Fig. 1 shows optimal trajectories in the reduced
coordinates, with color denoting the optimal evader control input
at each point. The locus of points in trajectories where evader con-
trol switching occurs form the switching surfaces for the evader,
shown as black lines in the figure. The negative x-axis in the
reduced coordinates corresponds to evader forward motion with
the pursuer directly behind it. This line constitutes what is known
as a ‘‘universal surface’’ in differential game theory—it is an optimal
trajectory that behaves such that other optimal trajectories run
into it and flow along it. Conversely the positive x-axis is a ‘‘disper-
sal surface’’ in that games starting with the evader facing directly
towards the pursuer can proceed either with left or right turning
evader trajectories, leading to capture in an equal amount of time
under optimal play by both agents. The set of optimal trajectories in
reduced coordinates also provides mappings from relative pursuer
position to the optimal pursuer heading, and to the optimal time-
to-capture Tcap, shown in Fig. 2. This mapping of the state to the
value of the game plays a large role in the development of optimal
strategies in the multiple-evader system presented in Section 4.

Remark 1. The evader optimal trajectories are equivalent to the
optimal trajectories for the problem of reaching a desired point on
the plane inminimum timewith the samemotion constraints. This
also holds for the pursuer, since the fastestway to reach a point is to
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Fig. 2. Time-to-capture surface in reduced coordinates (10) with same parame-
ters as Fig. 1. The Tcap surface is mirrored about the xrel-axis: Tcap(xrel,−yrel) =

Tcap(xrel, yrel).

go directly towards it at full speed. The one-on-one game of pursuit
and evasion is in a sense equivalent to the problem of choosing
the point on the plane resulting in capture which maximizes the
evader’s time-to-reach and using the optimal trajectory to reach
that point. In Scott and Leonard (2018) we derivedminimum-time
trajectories to reach a point on the plane for a steered agent with
the speed, turning rate, and lateral acceleration constraints of the
evader considered here.

3.5. Condition on capture radius

The inverse mapping described in Section 3.4 is well defined if
every state in the reduced coordinates maps to a unique time-to-
capture and optimal control input for each agent. This will hold if
the capture radius l is positive and sufficiently large. For small l, we
find that reverse-time trajectories in the reduced space intersect
not only at the dispersal surface on the positive x-axis, but also near
thepointwhere the evader switching surfacesmeet, suggesting the
presence of additional singular surfaces and possible discontinuity
in the Tcap surface. This is avoided by choosing l large enough such
that the s = π/2 evader rotate-only trajectory does not intersect
the slow turn–rotation switching surface, except where they meet
at the capture surface.

We can solve for the condition on l by requiring that the slope
of the slow turn–rotation switching surface is greater than that
of the s = π/2 rotate-only trajectory in the upper half plane of
reduced coordinates where they extend from the capture surface
at (xrel, yrel)T = (0, l)T :

dy
dx

⏐⏐⏐⏐switching surface

xrel=0,yrel=l
≥

dy
dx

⏐⏐⏐⏐rotate-only traj.

xrel=0,yrel=l

⇔
2v̄pω̄e

µ+ v̄eω̄e
≥
v̄p

lω̄e
. (11)

The minimum capture radius lc satisfying (11) is

lc =
µ+ v̄eω̄e

2ω̄2
e

=
1
2

(
Rs +

v̄e

ω̄e

)
. (12)

4. Pursuit and evasion with multiple evaders

Wenow consider a systemwith a single fast pursuer andmulti-
ple evaders with heterogeneous control constraints. The pursuer’s
goal is to capture any single evader in the minimum time possible.
The goal of each evader is to avoid capture by the pursuer, or
else delay capture for as long as possible. Define Tcap,i(t) as the
time-to-capture evader Ei for the pursuer with evader Ei using
their optimal control strategies from the one-on-one differential
game: Tcap,i(t) = Tcap[q(t),u∗

p(·),u∗

i (·)] =
∫ T
t 1dt, under dynamics

q̇(t) = f(q,up,ui) and terminal condition ψ(T ) = 0 for pursuer

and evader Ei. Let Tcap,i = Tcap,i(0). We show that to minimize time
the pursuer should choose a target evaderwith the lowest bounded
time-to-capture (mini Tcap,i) and use the optimal control strategy
from the one-on-one differential game. The targeted evader must
use its optimal strategy from the one-on-one game, but the others
can use what we call a ‘‘reactive evasion’’ strategy that will guar-
antee that they do not become the target of the pursuer. If one of
these other evaders fails to use a reactive evasion strategy such that
its time to capture drops below the time to capture for the current
targeted evader, the pursuer should target this other evader and
use the optimal control strategy from the one-on-one differential
game against it. We define the optimal pursuer strategy to avoid
high frequency switching of targets, which would be impractical.

4.1. Multiple-evader optimal pursuit

Let ϵ > 0 be a small time period. We define the multiple-
evader optimal pursuit strategy for dynamics (1) as up(t), t ∈ [0, T ],
that minimizes T , the time to capture a single evader, under the
constraint that switches between targeted evaders are not more
frequent than 1/ϵ.

We define E∗(t) = {Ei | Tcap,i(t) = minj Tcap,j(t)} to be the set of
evaders with the minimum time-to-capture based on the agents’
states at time t .

Theorem 1. Consider the multiple-evader system with dynamics (1)
and v̄p > v̄i, ∀i. Assume E∗(t) is nonempty for all 0 ≤ t ≤ T . Let
ϵ > 0 be a small time period. Define recursive pursuer strategy Sp(ts)
for 0 ≤ ts < T :

(1) Choose at random an evader Et ∈ E∗(ts) and utilize the opti-
mal strategy for the one-on-one game against evader Et until
whichever of the following comes first: (a) Et is captured or (b)
the first time tf > ts + ϵ such that Et ̸∈ E∗(tf );

(2) If outcome (a), the time is T and the game is over; if outcome (b),
let ts = tf and return to (1), thereby switching to a new target.

The multiple-evader optimal pursuit strategy is Sp(ts) at ts = 0.
This strategy guarantees capture in time T ≤ mini Tcap,i and a finite
number of target switches. In case of at least one target switch, T <
mini Tcap,i.

Proof. Under optimal pursuer play in a one-on-one game against
an evader Ei, the pursuer is guaranteed to capture the evader in
time T ≤ Tcap,i. Conversely any evader using optimal evasive con-
trol is guaranteed to avoid capture up to time Tcap,i. Thus, the best
possible strategy for the pursuer to catch an evader in minimum
time is to use the optimal strategy for the one-on-one system
against the evader with the minimum value of Tcap,i. In the case
that multiple evaders share the same minimum time-to-capture,
the target can be chosen at random from E∗ to achieve capture
in the minimum time. If some evader does not use its optimal
strategy and allows its time-to-capture to become the minimum,
the pursuer will switch to targeting that evader at that time and
further reduce the time it takes to capture a single evader. By
pursing a target for at least ϵ units of time before switching targets,
a bound on the number of switches of target is guaranteed. □

4.2. Evader domain of danger and reactive evasion

For any given pursuer location, the optimal target is the evader
Ei that has the lowest value of Tcap,i. We can thus partition the
plane into ‘‘domains of danger,’’ denoted Di, corresponding to the
points on the plane where a given evader Ei has the minimum
value of Tcap,i: Di =

{
rp ∈ R2

⏐⏐ i = argminj Tcap,j
}
. Fig. 3 shows

an example of the domains of danger before and after a pursuit
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Fig. 3. Simulation of reactive evasion with 10 evaders. Evaders and their domains
of danger are colored by evader speed; see colorbar at bottom right. vp = 1. For
all evaders, l = 1, ωi = 1, and µi = 0.5, with vi evenly spaced in the range
[0.5, 0.8]. Top left: evader domains of danger at initial time. Top right: evader
domains of danger at capture. Pursuer is denoted by filled black circle. Bottom left:
agent trajectories. Snapshots show evader headings every 2 s. Bottom right: evader
Tcap over the course of the chase. Note that the evader with the lowest Tcap has its
value decreasing at a constant rate of −1 second per second until capture.

for a group of evaders of different maximum speeds and common
turning rate and lateral acceleration constraints. From Theorem 1,
at any given time during pursuit, the optimal target of the pursuer
is the evader in whose domain of danger the pursuer currently
resides. If an evader can keep the pursuer from entering its domain
of danger, then it will not become a target and can avoid capture.
We show this is possible for any evader not initially targeted, under
the assumption that each agent senses the relative position and
orientation and knows the motion constraints of the others.

Remark 2. For evader agents with no constraints on turning
rate, the domain of danger partition takes on the form of a
‘‘multiplicatively-weighted Voronoi diagram,’’ which is described
in Section 5. In the present more general system, the Tcap surface is
not radially symmetric, so the domain of danger depends not only
on distance to other evaders, but on their relative headings as well.

Theorem 2. Consider the multiple-evader system with a pursuer
using the multiple-evader optimal pursuit strategy of Theorem 1. For
each evader Ei not targeted by the pursuer at time t0 ∈ [0, T ], there
exists a set of controls (vi, ωi) ∈ Ui that guarantee the evader will not
become the target at any future time t > t0. If all non-targeted evaders
employ such a strategy for the duration of a chase, the pursuer and
targeted evader strategies are equivalent to those from the one-on-
one game, with capture occurring at T = mini Tcap,i for the initially
targeted evader.

Proof. Let Eg be the initially targeted evader so that Tcap,g =

mini Tcap,i. For every other evader Ei, Tcap,i ≥ Tcap,g . Ei will remain
untargeted until t if Tcap,i(τ ) ≥ Tcap,g (τ ), τ ∈ [0, t]. If there exists
(vi, ωi) ∈ Ui for Ei such that d

dt Tcap,i ≥
d
dt Tcap,g for all time t ≥ 0,

then by continuity Tcap,i(t) ≥ Tcap,g (t) for all t ≥ 0.
Recall for the one-on-one game that λ =

∂
∂qTcap. So

Ṫcap =
d
dt

Tcap =
∂

∂q
Tcap · q̇ = λ · f(q,up,ue). (13)

In the one-on-one game under optimal control by both agents,
Ṫcap = −1 at all times, by (4). Thus Ṫcap,g = −1. Any deviation

from the optimal input by the pursuer (e.g., targeting some other
evader)will necessarily lead to a slower decrease of Tcap,g , so a non-
targeted evader Ei can simply use its one-on-one optimal control to
guarantee Ṫcap,i ≥ −1, thus avoiding becoming a target. However,
this is usually not strictly necessary: a range of different evader
inputs can be used to keep Ṫcap,i ≥ −1. We define reactive evasion
as any evader input that satisfies Ṫcap,i ≥ −1. In particular, non-
targeted evaders can apply a reactive evasion strategy that is input
energy efficient.We show next how evader Ei can compute a state-
feedback control for reactive evasion.

Under optimal pursuit (of targeted evader Eg ) the pursuer’s
trajectory is a straight line at maximum speed v̄p. So we suppose
that evader Ei has some estimate of the pursuer’s current direction
of travel θp based on its recent behavior. Let vp be the pursuer’s
speed, such that up = (vp cos θp, vp sin θp)T = (vxp , vyp )

T .
Given the pursuer’s relative position, the evader Ei can compute

its trajectory under optimal play, including the values of the adjoint
variables that parameterize the switching functions. Let u∗

p,i be
the pursuer’s optimal control with respect to pursuit of Ei, with
associated heading θ∗

p,i. The evader must choose its input ui to
satisfy Ṫcap,i(q,up,ui) ≥ Ṫcap,i(q,u∗

p,i,u
∗

i ), i.e., to satisfy

λ · f(q,up,ui) ≥ λ · f(q,u∗

p,i,u
∗

i ). (14)

To remove the explicit dependence on λ from (14), we now solve
forλ in terms of the state and optimal controls. From the derivation
of thepursuer optimal control in Section3.2,wehaveλxp = −λxi =

−λ0 cos θ∗

p,i and λyp = −λyi = −λ0 sin θ∗

p,i. Let (xi(T ), yi(T ))
T be

the location of the evader at capture at time t = T under optimal
one-on-one controls for each agent. The pursuer’s position at time
t ≤ T under optimal control u∗

p,i is

xp(t) = xi(T ) − (l + v̄p(T − t)) cos θ∗

p,i,

yp(t) = yi(T ) − (l + v̄p(T − t)) sin θ∗

p,i. (15)

From (5) and (6),

λθi (t) = λ0[(yi(t) − yi(T )) cos θ∗

p,i − (xi(t) − xi(T )) sin θ∗

p,i]. (16)

By adding and subtracting (l + v̄p(T − t)) cos θ∗

p,i sin θ
∗

p,i from (16)
and substituting with (15), we have

λθi (t) = λ0[(yi(t) − yp(t)) cos θ∗

p,i − (xi(t) − xp(t)) sin θ∗

p,i].

Finally substituting these expressions for the adjoint back into (14)
and rearranging gives us

v̄p − vp cos(θp − θ∗

p,i) + (vi − v∗

i ) cos(θi − θ∗

p,i) +

(ωi − ω∗

i )
[
(yi − yp) cos θ∗

p,i − (xi − xp) sin θ∗

p,i

]
≥ 0. (17)

Thus, to keep Ṫcap,i ≥ −1, the evader must choose its input (vi, ωi)
to satisfy the linear inequality (17). □

Remark 3. An evader Ei is not in danger of becoming targeted until
its Tcap,i is close to that of the target evader, at which point it must
begin to use a reactive evasion strategy. For instance evader Ei can
wait to initiate reactive evasion until Tcap,i ≤ minjTcap,j+ϵ for some
chosen buffer value ϵ > 0. Until that point, the evader is free to
use any control input, for instance a ‘‘herding’’ strategy of aligning
heading and matching speed with neighbors, such as one adapted
from the attraction–orientation–repulsion zonal model of Couzin,
Krause, James, Ruxton, and Franks (2002).

5. Risk minimization under limited sensing

We now suppose that the pursuer and evaders have a limited
sensing range. Each agent can only make use of measurements
of agents located inside its sensing range. The limited sensing
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range may be important for modeling large groups that are widely
dispersed or that are tightly packed and suffer from occlusion.
We define limits on sensing and adapt the pursuit and evasion
strategies introduced in Section 4 to local strategies that address
the uncertainty imposed by limited sensing.

In the local (sensing-limited) system, we define dsense as the
sensing radius for all agents. An agent’s local sensing neighbor-
hood consists of the set of agents within the sensing radius. Let
dij(t) be the distance between agents i and j at time t . The local
neighborhood of the pursuer at time t is defined as Nt (P) ={
Ei | dip(t) ≤ dsense

}
. The neighborhood of evader Ei at time t is

defined as Nt (Ei) =
{
Ej

⏐⏐ dij(t) ≤ dsense
}

∪
{
P | dip(t) ≤ dsense

}
.

5.1. Local target selection

Under local sensing, the pursuer must choose a control law
based only on measurements of evaders in Nt (P). We assume that
Nt (P) contains at least one evader at the start of pursuit, t = 0.
Let E∗

local(t) = {Ei ∈ Nt (P)| Tcap,i(t) = minEj∈Nt (P) Tcap,j(t)} be the
set of evaders within the pursuer’s sensing neighborhood at t with
minimum time-to-capture. Define local recursive pursuer strategy
Sp,local(t) as the local equivalent to the recursive pursuer strategy
Sp(t) defined in Theorem 1, with E∗(t) replaced with E∗

local(t). The
results of Theorem 1 hold in the local sensing system, so that
capture is guaranteed by time T ≤ minEi∈Nt (P) Tcap,i with a finite
number of target switches, and in the case of at least one switch
T < minEi∈Nt (P) Tcap,i.

Under local recursive pursuer strategy Sp,local(t), switching can
occur not only when an evader uses a suboptimal strategy and
allows its Tcap to become theminimum, but alsowhen anewevader
enters the pursuer’s sensing neighborhoodNt (P). Any such switch
to a new target with lower Tcap(t) will decrease the remaining
bound on time-to-capture. Thus the total time spent in pursuit will
necessarily be less than or equal to the minimum local time-to-
capture calculated at the start of pursuit.

5.2. Local evasion strategy

In general, not every evader will be in sensing range of the
pursuer at time t = 0. The evader’s strategy thereforemust consist
of two distinct phases: First, a phase of ‘‘risk reduction’’ prior
to sensing the pursuer where the evader attempts to maneuver
itself in such a way as to decrease its chance of becoming the
pursuer’s target, and second, a phase of reactive evasion based on
the evader’s strategy in the global sensing system.

Under local sensing, an evadermust estimate its own domain of
danger based only on the other evaders within its sensing neigh-
borhood. Let Di,local(t) =

{
rp ∈ R2

⏐⏐ i = argminEj∈Nt (Ei) Tcap,j(t)
}

be evader Ei’s local estimate of its domain of danger.

Theorem 3. An evader’s local estimate of its domain of danger
includes all points in its global domain of danger Di(t) ⊂ Di,local(t)
at any given time.

Proof. Consider an evader Ej ̸∈ Nt (Ei). If there is a point rp ∈

Di,local(t) such that Tcap,j(t) < Tcap,i(t), then rp ̸∈ Di(t). Thus adding
additional neighbors can only decrease the local estimate of the
domain of danger. □

In the case that P ̸∈ Nt (Ei) initially, the evader has a chance to
guarantee that it will not become a target if it is able to satisfy the
following two conditions:

• C1: Evader Ei’s local domain of danger lies entirely within its
own sensing domain: ∀rp ∈ Di,local(t), ∥rp − ri(t)∥2 < dsense.

• C2: At all points on the boundary of Ei’s local domain of
danger, the evader Ej ∈ Nt (Ei) with whom the boundary
is formed is within sensing range from that point: ∀rp ∈

Di,local(t), such that Tcap,i(t) = Tcap,j(t), ∥rp − rj(t)∥2 < dsense.

We denote an evader as risk-minimized with respect to its
neighborhood at time t if conditions C1 and C2 are both satisfied
at time t .

Theorem 4. For system (1) under local sensing with pursuer P
using the local recursive pursuer strategy Sp,local(t), if an evader Ei
satisfies conditions C1 and C2 at the moment that P enters the sensing
neighborhood of Ei, then there exists a control input that guarantees
that Ei will avoid capture.

Proof. If the evader’s domain of danger extends outside its sensing
neighborhood, the pursuermay come from that direction, and pos-
sibly target the evader at the moment that they enter each other’s
sensing neighborhoods. C1 guarantees the evader will be able to
sense the pursuer and start a reactive evasion strategy before the
pursuer enters the evader’s domain of danger. C2 guarantees the
pursuer will choose a better target before it enters Ei’s domain of
danger. If Ej ̸∈ Nt (P), the pursuer will not choose Ej as its target
even if Tcap,j(t) < Tcap,i(t). It may be the case that P chooses Ei as its
targetwhen it enters its sensing neighborhood, but if C2 is satisfied,
a better target, i.e. Ej, will come into the pursuer’s view before the
pursuer can enter Di,local(t). □

Through simulations, we observe that an evader turns towards
and moves closer to a neighboring evader with a lower maximum
speed to reduce the size of its own domain of danger. Analytical
expressions for C1 and C2 as a function of the evader’s constraint
parameters have not been found. The problem is tractable in the
case without turning constraints. In the following, we relax the
evader turning constraints in order to derive conditions for risk
minimization and the resulting aggregation.

5.3. Risk minimization for omni-directional evaders

Consider the case in which the evader turning rates are not
constrained, i.e., |ωi(t)| and |viωi(t)| are unbounded for all t . We
will consider the terminal condition to be ‘‘point capture,’’ so that
the game ends when the distance between pursuer and evader
reaches zero. Assume v̄p > v̄i for all i = 1, 2, . . . , n. The system
equations of motion (1) can be written compactly as

ṙp = up, ṙi = ui, for i = 1, 2, . . . , n. (18)

Let rip = ri−rp be the baseline vector from the pursuer to evader Ei,
with associated distance dip = ∥rip∥2, and normalized unit vector
r̂ip = rip/dip defined for dip > 0. For the one-on-one pursuit-
evasion game with these dynamics, as shown in Isaacs (1965), the
adjoint vector and optimal controls for both pursuer and evader
are constant, with λ = (v̄p − v̄i)−1(−r̂Tip, r̂

T
ip), pursuer control

u∗
p = v̄pr̂ip, and evader control u∗

i = v̄ir̂ip. The time to capture
is Tcap,i(t) = dip(t)/(v̄p − v̄i). These strategies are known as classical
pursuit and classical evasion, respectively.

Under global sensing, Theorems 1 and 2 apply to this system.
The equivalent to the reactive evasion constraint (17) of Theorem2
for this system is derived as follows. Let θ̃p,i be the angle of the
pursuer’s motion measured counterclockwise relative to the base-
line vector rip for evader Ei, and let θ̃i be the angle of the evader’s
motion relative to the same vector. The reactive evasion condition
for this system is the following, from substitution of the adjoint λ
and optimal controls u∗

p and u∗

i into (14):

λ0r̂ip · (ui − up) ≥ λ0(v̄i − v̄p)

⇔ vi cos θ̃i − vp cos θ̃p,i ≥ v̄i − v̄p. (19)
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In the case of limited sensing, with sensing radius dsense for all
agents, the local version of Theorem 1 from Section 5.1 and Theo-
rems 3 and 4 apply to the non-turning-limited evader system (18).

Without evader turning constraints, the evader domain of
danger partition {Di}i=1,...,n is equivalent to a multiplicatively-
weighted Voronoi diagram (Aurenhammer & Edelsbrunner, 1984),
where the weight on each evader’s distance is given by (v̄p − v̄i).
Boundaries between domains of danger take the form of circular
arcs for neighbor evaders with differing maximum speeds v̄i ̸=

v̄j, and straight lines for neighbors with equal maximum speed
v̄i = v̄j. In the special case that all evaders have the same maxi-
mum speed, the domain of danger partition is a standard Voronoi
diagram, as in Hamilton’s original selfish herd model (Hamilton,
1971).

We now use the properties of the multiplicatively weighted
Voronoi diagram to derive a mathematical expression for the risk
minimization condition of Theorem4. Thiswe use to define a strat-
egy for evader Ei to decrease the size of its domain of danger and
achieve risk minimization in the time period before the pursuer
enters its sensing range.

Theorem5. For system (18) under local sensing with pursuer P using
local pursuit strategy Sp,local, let Ef and Es be evaders with maximum
speeds v̄f > v̄s. If

∥rf (t) − rs(t)∥2 <

(
v̄f − v̄s

v̄p − v̄s

)
dsense (20)

at the time t when P first enters Nt (Ef ), then there exists a control
input that guarantees that Ef will avoid capture.

Proof. Let rfs = rf − rs be the baseline vector from Es to Ef
with associated distance dfs = ∥rfs∥2. Ef ’s domain of danger is the
interior of the Apollonius circle (Aurenhammer & Edelsbrunner,
1984) formed by the locus of points where Tcap,f = Tcap,s. The

circle has its center at rApol,fs = rf +
(v̄p−v̄f )2

(v̄p−v̄s)2−(v̄p−v̄f )2
rfs and radius

RApol,fs =
(v̄p−v̄s)(v̄p−v̄f )

(v̄p−v̄s)2−(v̄p−v̄f )2
dfs. The maximum distance from Ef to the

circle is dApp,fs =

(
v̄p−v̄f
v̄f −v̄s

)
dfs, in the direction of rfs. Since dApp,fs

is proportional to dfs, Ef may reduce this bound on the size of its
domain of danger by approaching Es. Since v̄f > v̄s, Ef can always
choose its velocity such that ḋfs < 0.

We now consider the conditions C1 and C2 necessary for Ef to
achieve risk minimization with respect to Es under Theorem 4. For
C2, the distance from rs to the edge of Ef ’s domain of danger must
be less than dsense. This is satisfied when dfs +dApp,fs < dsense,which
is equivalent to (20). For C1, Ef ’s domain of danger must lie within
its own sensing range, so dApp,fs < dsense is the necessary condition.
Since dfs ≥ 0, this is satisfied whenever C2 is satisfied, by (20).
We have shown that any evader Ef that satisfies (20) with a slower
neighbor Es is risk minimized and will be able to avoid capture by
Theorem 4. □

For an evader Ei with P ̸∈ Nt (Ei) at t = 0, we call the time
interval before P enters its sensing range the risk reduction phase.
During this phase, the best strategy for the evader is to choose a
slower neighbor and move towards it at maximum speed until the
risk minimization condition (20) is satisfied. Fig. 4 illustrates how
the domains of danger decrease in size during the risk reduction
phasewhen all evaderswith a slower neighbor use this aggregating
strategy.

When pursuer P enters evader Ei’s sensing range, Ei only knows
Tcap,j(t) of its neighbors Ej ∈ Nt (Ei), and P chooses its target based
only on Tcap,j(t) of its neighbors Ej ∈ Nt (P). In this context, an
evader must use its best estimate of the pursuer’s estimate of the
minimum Tcap in order to decide when to begin its reactive evasion

Fig. 4. Weighted-Voronoi domain of danger partition, calculated for a pursuer with
maximum speed v̄p = 1 and position not sensed by evaders. Each black dot denotes
the position of an evader and the color of the surrounding cell (domain of danger)
indicates the evader’s maximum speed. Left: initially with random initial positions.
Right: after running the risk reduction strategy for locally sensing evaders with
sensing radius dsense = 10.

strategy. Ei should begin reactive evasionwhen Tcap,i(t)−T ∗
cap(t) ≤

δ, for some δ > 0 where T ∗
cap(t) is the minimum Tcap,j(t) for the

evaders Ej ∈ Nt (Ei). When Tcap,i(t) − T ∗
cap(t) > δ, Ei can remain in

place.
Consider a graph G where evaders act as nodes, and an edge eij

from evader Ei to evader Ej is present only if Ei is risk minimized
with respect to Ej. This forms a directed graph with edges only
going froma faster evader to a slower evader. Due to that hierarchy,
any connected component must contain a spanning tree with the
slowest evader in the component as the root.

Theorem 6. Under the local evasion strategy, an evader can only be
captured if it is the slowest evader in a connected component of G.

Proof. Let E1 be the target of pursuer P under local sensing when
P enters Nt0 (E1) at time t0. If E1 is risk minimized with respect to
another evader E2 at t0, then by the definition of G it is not the
slowest evader in its connected component, and by Theorem 5 the
target of P will eventually switch to another evader. If E1 is not
risk minimized it must be the slowest evader within its connected
component, and the other evaders will be able to use reactive
evasion to avoid becoming the target, leading to the capture of
E1. □

6. Discussion

We have presented solutions for a pursuit-evasion differen-
tial game with practical motion constraints for the evader not
considered before in this setting. The optimal strategies for the
one-on-one game were used to analyze strategies in a system
with a pursuer that seeks to capture in minimum time any single
evader among multiple, heterogeneous, non-cooperating evaders.
We showed that the optimal strategy for the pursuer is to focus
on a single evader that can be captured in the minimum time,
and that non-targeted evaders are always able to avoid capture by
using a strategy of reactive evasion. We showed how to compute
decentralized state feedback reactive control laws. These reactive
strategies allow an agent to remain still until necessary. The strate-
gies also include herding behaviors. Because of the constraint on
turning rate, the partition of the plane into domains of danger for
the evaders depends not only on relative positions but also on
relative headings.

In the case that agents have limited sensing range we have
shown that a strategy for risk reduction provides a mechanism for
group aggregation. This behavior could be leveraged in engineered
multi-agent systems with limited sensing. For instance, if every
agent (except for the slowest) stays close to at least one slower
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neighbor at all times, the sensing networkwill remain connected at
all times based on the proof of Theorem 6. Here we have assumed
a fast pursuer with sensing range equal to that of the evaders;
inclusion of faster evaders with larger sensing range may open the
door to additional evader strategies, such as avoidance of detection
by the predator, requiring further analysis.

A weakness of the current approach is the assumption that all
agents have accurate knowledge of the motion constraints and
states of other agents. To address this, the strategies will need to
be adapted to uncertainties in the agent estimates of these system
parameters. For example, the approach of Oyler, Kabamba, and
Girard (2015), provides strategies for each agent in a three-player
pursuit-evasion game, which are derived based on ‘‘worst case’’
values for uncertain parameters. Extensions to three-dimensional
spaces (Ardema & Rajan, 1987) are also of interest for air and
undersea applications.
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