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Dynamics of Pursuit and Evasion in a Heterogeneous Herd

William Scott and Naomi Ehrich Leonard

Abstract— We propose and analyze a dynamic model of
pursuit and evasion on the plane with a single pursuer and
a heterogeneous group of evaders. Heterogeneity in the group
of evaders is expressed as heterogeneity in the individual
maximum speeds. The goal of the pursuer is to capture a single
evader in minimum time. The goal of each individual evader is
to avoid capture or else to delay capture for as long as possible.
Two cases of sensing among agents are considered: global (all-
to-all) sensing, and local (radius-limited) sensing. We present
pursuer strategies for optimal target selection that achieve
bounded capture time. We propose evasion strategies and prove
conditions under which they guarantee capture avoidance. In
the case of local sensing, our strategy of evader risk reduction
leads to aggregation of the evaders where the slowest evader in
a group is the only member with a risk of capture. Our results
provide insight into the dynamics of aggregation.

I. INTRODUCTION

We propose and analyze a dynamic model of pursuit
and evasion on the plane with a single pursuer and a
heterogeneous group of evaders. Our model is inspired by
predation in animal herds where individuals within the herd
may differ in size and age, and this may lead to inter-herd
competition for safety.

Predator avoidance has long been considered a key factor
in animal group formation, first studied mathematically for
identical evaders on the plane in the “selfish herd” model of
Hamilton [1]. Our present investigation into the dynamics
of a self-interested group of evaders draws on the spirit
of a selfish herd, but is differentiated through the use of
continuous-time dynamics for both pursuer and evaders, and
the inclusion of heterogeneity in the evaders. Our investiga-
tion is also motivated by the problem of designing dynamics
for group formation in engineered multi-agent systems.

Hamilton’s model has been extended to include evolution-
ary dynamics, which lead to formation of large groups [2],
[3]. Cooperative evader strategies have been studied as
differential games in systems where all evaders are cap-
tured [4], [5], and in systems where evaders have defensive
capabilities [6], [7]. Generalized Voronoi diagrams have been
used to analyze systems where evader strategies are known
by the pursuers [8]. Several numerical studies have examined
properties of group motion in multiple evader systems where
biologically inspired strategies are chosen a priori: on the
plane [9], [10], [11], in discrete space [12], in three dimen-
sions [13], with multiple pursuers [14], and with strategies
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based on observations of crabs and shorebirds [15]. Non-
spatially explicit game theoretic models of multiple evader
systems have been posed for both homogeneous evaders [16],
and heterogeneous evaders [17], [18].

Contrary to this literature, the continuous-time dynamic
model that we propose is spatially explicit with a heteroge-
neous group of evaders, and the results we prove focus on
capture avoidance for individual evaders when faced with an
intelligent pursuer. In our model the goal of the pursuer is to
capture (reach the position of) a single evader in minimum
time. The goal of each individual evader is to avoid capture
or else to delay capture for as long as possible. Every agent is
modeled as a particle with a strategy that defines its velocity
subject to its maximum speed. Heterogeneity in the group
of evaders is expressed as heterogeneity in the individual
maximum speeds. The pursuer’s maximum speed is assumed
to be higher than the maximum speed of every evader,
allowing for capture in finite time. Two cases of sensing
among agents are considered: global (all-to-all) sensing, and
local (radius-limited) sensing.

In both the global and local sensing cases, we propose
a pursuer strategy for optimal target selection among the
evaders that guarantees bounded capture time of a single
evader. In the global case, given a pursuer using this strategy,
we show there exists a family of evasion strategies that
guarantees that an evader will not become the pursuer’s target
in the future if it is not currently the target. Under local
sensing, we show that evaders that do not sense the location
of the pursuer can mitigate the risk of becoming the pursuer’s
target by approaching a neighboring evader with a lower
maximum speed; when such an evader comes sufficiently
close to its slower neighbor, it achieves the same guarantee
against becoming the target as in the global sensing case.
This strategy of evader risk reduction leads to aggregation
of the evaders where the slowest evader in a group is the only
member with a risk of capture. Our results provide possible
insight into the dynamics of herd formation in nature and the
initiation of aggregation in design of multi-agent systems.

In Section II we introduce the equations of motion for
the model. Section III discusses the optimal target selection
strategy for the pursuer in the case of global sensing. In
Section IV we present strategies for evasion in the global
sensing case and prove conditions for target avoidance.
Section V considers pursuit and evasion strategies in the local
sensing case. We conclude in Section VI.

II. MODEL FORMULATION

We consider a system with a single pursuer agent P and
a heterogeneous group of n evader agents Ei. Each evader



has an individual maximum speed vi, position on the plane
ri(t) ∈ R2 at time t, and velocity at time t given by control
input ui(t) ∈ R2 with ‖ui‖ ≤ vi. Similarly the pursuer P
has maximum speed vp > vi for i = 1, 2, ..., n, position
rp(t) ∈ R2, and velocity control input up(t) ∈ R2 with
‖up‖ < vp. The system evolves as

ṙi = ui, for i = 1, 2, ..., n,
ṙp = up. (1)

For convenience, we define the baseline vector from P to Ei

as rip = ri−rp, the length of that vector as dip = ‖rip‖, and
the unit vector in that direction as r̂ip = rip/‖rip‖. Similarly
for the baseline vector from Ej to Ei we define rij = ri−rj ,
dij = ‖rij‖, and r̂ij = rij/‖rij‖.

In this system, we take the pursuer’s goal to be the capture
of a single evader in minimum time. The goal of each evader
is to avoid capture altogether, or else delay capture as long as
possible. We consider two sensing regimes, global and local.
The global case assumes all-to-all sensing, such that each
agent has knowledge of the position and maximum speed
of all other agents. In the local case, agents can only sense
the locations and maximum speeds of other agents within a
radius limited neighborhood.

III. GLOBAL PURSUER STRATEGY: OPTIMAL TARGET
SELECTION

In a system of a single pursuer and a single evader
on the plane, it has been shown that the time optimal
strategy for the pursuer is to move at maximum speed in
the direction of the evader (classical pursuit), and for the
evader to move at maximum speed away from the pursuer
(classical evasion) [19]. Consider a pursuer and an evader
with maximum speeds vp > 0 and ve > 0 and positions
rp(t) ∈ R2 and re(t) ∈ R2, respectively. We define capture
to be the coincidence of the pursuer and evader positions.
Under the strategies of classical pursuit and classical evasion,
the trajectories of the two agents follow a straight line path;
the time to capture from time t is

Tcap(t) =
‖rp(t)− re(t)‖

vp − ve
, (2)

for vp > ve. For a pursuer using the classical pursuit strategy,
Tcap(0) is an upper bound on the total time to capture from
t = 0, since any deviation from the classical evasion strategy
on the part of the evader will allow capture in shorter time.

In the full multiple evader system with global (all-to-all)
sensing, a pursuer strategy of classical pursuit of evader Ei

will guarantee capture from time t within Tcap,i(t), defined
by (2) with i replacing e. Thus, the pursuer will have the
shortest guaranteed time to capture by using a strategy of
classical pursuit targeting evader Eg , with control input

up = vp r̂gp, where g = argmin
j

Tcap,j . (3)

We refer to Eg(t) as the optimal target at time t and Tcap,g(t)
as the time to capture the target from time t.

Fig. 1. Relative angles between pursuer P , targeted evader Eg , and
untargeted evader Ei. Arrows denote direction of travel, with P in classical
pursuit of Eg , and Eg in classical evasion.

IV. GLOBAL EVADER STRATEGIES: TARGET-AVOIDANCE

The aim of each evader is to avoid capture if possible.
Since only the targeted evader will be captured, it is in the
best interest of each evader to remain untargeted. For the case
of global sensing, we show that for any initially untargeted
evader, there exists a family of control inputs that guarantee
that the evader will remain untargeted against a pursuer using
classical evasion with optimal target selection (3).

Theorem 4.1: In the case of global sensing for pursuer
and evaders, where the pursuer uses strategy (3), there
exists a family of control inputs that guarantees an initially
untargeted evader will avoid becoming the target for all time.
When such a strategy is used by all evaders in the system,
the initially targeted evader will be captured by the pursuer
at the initial value of Tcap,g(0).

Proof: Consider a system under global sensing where
the pursuer uses the optimal target selection strategy (3).
Against that pursuer strategy, the condition for an untargeted
evader Ei to remain untargeted is that Tcap,i(t) > Tcap,g(t)
for all time t ≥ 0. If we can show that there always exists a
control input for Ei such that d

dtTcap,i >
d
dtTcap,g , then by

continuity Ei can use that input to remain untargeted.
During classical pursuit of P towards its targeted evader

Eg , the “relative dynamics” of the baseline vector from P
to a given evader Ei are described by

ḋip = ‖ui‖ cos θi − vp cosφi,

φ̇i =
1
di

(‖ui‖ sin θi + vp sinφi), (4)

where φi represents the angle from the target baseline vector
rgp to the baseline vector rip, and θi is the angle from rip

to the direction of motion of Ei as shown in Figure 1. The
rate of change of Tcap,i for each evader is thus

d

dt
Tcap,i =

ḋip

vp − vi
=
‖ui‖ cos θi − vp cosφi

vp − vi
. (5)

As in the one-on-one case, the optimal strategy for the
targeted evader to avoid capture for as long as possible is
classical evasion, ug = vg r̂gp. With P moving towards Eg

at a rate of vp and Eg moving away from P at a rate of vg ,

d

dt
Tcap,g =

vg cos(0)− vp cos(0)
vp − vg

= −1, (6)



i.e., the bound on capture time goes down by one second per
second.

By continuity, any other evader Ei with an initially higher
value of Tcap,i(0) can then avoid becoming the target if it is
always able to choose a control input that satisfies d

dtTcap,i >
−1. This condition is given by

‖ui‖ cos θi ≥ vi − vp(1− cosφi). (7)

The right hand side is less than or equal to vi for all values
of φi, so it is always possible to choose ui which satisfies the
inequality (7). In the limiting case that φi = 0 (P is targeting
Ei), the only admissible choice of evasive control is θi = 0,
‖ui‖ = vi, which is equivalent to classical evasion.

When all initially untargeted evaders successfully use such
a target-avoidance strategy, the initially targeted evader must
remain targeted, thus there is no possibility for the targeted
evader to “lure” the pursuer towards another target. Being
unable to avoid capture, the goal of the targeted evader is to
delay capture as long as possible, so optimally it must use
classical evasion. Thus d

dtTcap,g = −1 for the duration of
the pursuit, and the final capture time is equal to the original
value of Tcap,g(0).
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Fig. 2. Comparison of the “slowing” and “spiral” reactive evasion strategies
for pursuer with speed vp = 1 and evader with speed ve = 0.75. The
pursuer starts at the origin rp = (0, 0) and travels along the x-axis, and the
evader starts at re = (2, 0.1). Circles indicate initial positions and crosses
show positions at 0.5 second intervals, continuing until the slowing evader
leaves the cone of evasion. Top: trajectories of the agents in the inertial
frame. Bottom: the same trajectories in a frame relative to the pursuer.
Spiral evasion leaves the cone of evasion at t = 3.0 s, and slowing evasion
at t = 4.6 s. Note that the slowing evasion strategy leaves the cone of
evasion at a smaller distance from the pursuer.

An untargeted evader Ei does not need to take action until
Tcap,i is close to Tcap,g . We define reactive evasion to be the
class of strategies that satisfy

‖ui‖ cos θi = vi − vp(1− cosφi) (8)

for Tcap,i − Tcap,g ≤ ε, and ui = 0 for Tcap,i − Tcap,g > ε,
where ε > 0 is a constant. The evader Ei must begin evading
before Tcap,i is equal to Tcap,g , since in that situation the

predator could freely choose either evader for the same time
to capture. For a physical interpretation, ε can be thought of
as a buffer to account for the evader’s reaction time, how
long it will take to start moving, or a buffer to account for
inexact estimates on the values of Tcap.

Note that the left hand side of (7) represents the projection
of ui onto r̂ip, so (7) is a condition on the component of
the evader’s velocity in the direction away from the predator.
For cosφi = (vp−vi)/vp, the right hand side becomes zero,
and for greater magnitudes of φi it becomes negative. This
implies that the evader does not need to engage in evasive
action in those cases, as the relative motion of the pursuer
causes the inequality to be satisfied even for ui = 0. Thus a
reactive evasion strategy need only be defined for an evader
Ei inside the cone of evasion, φi ∈ (−φ̄i, φ̄i) where φ̄i =
cos−1((vp − vi)/vp).

At each instant during reactive evasion, the angle and
speed of Ei can be chosen arbitrarily so long as they satisfy
(8). Setting the maximum speed, ‖ui‖ = vi, we can solve
for the maximum angle,

θ̄i(φi) = ± cos−1

(
1− vp

vi
(1− cosφi)

)
. (9)

The sign ± is set so that the evader turns away from the
direction of the pursuer’s motion, towards the edge of the
cone of evasion. We can parameterize a one-dimensional
family of input vectors for reactive evasion with parameter
α ∈ [0, 1] by taking θi = α θ̄i, and

‖ui‖ =
vi − vp(1− cosφi)

cos(α θ̄i)
. (10)

The following sections analyze strategies for the two bound-
ary cases: slowing evasion for α = 0, and spiral evasion
for α = 1. Trajectories for the two strategies are shown in
Figure 2.

A. Slowing evasion

For the strategy (10), α = 0 = constant, so θi = 0 and
the velocity of the evader Ei is aligned with the baseline rip.
The speed of the evader is given by

‖ui‖ = vi + vp(cosφi − 1), (11)

which is maximum at vi when φi = 0, and smoothly
decreases to zero at the edge of the cone of evasion.

Integrating (4) for initial conditions dip(0) = d0, φi(0) =
φ0, we have the analytic trajectory

dip(t) = d0 − (vp − vi)t

φi(t) = 2 tan−1

tan(
φ0

2
)
(

1− vp − vi

d0
t

) −vp
vp−vi

 .

(12)

Of all possible reactive evasion strategies, an evader using
slowing evasion will take the longest time to leave the cone
of evasion. This is because with θi = 0, the evader’s velocity
has no component normal to the baseline rip, so φi increases
only due to the motion of the pursuer. The distance to
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Fig. 3. Simulation results for global pursuit and evasion strategies, with
n = 20 evaders using the “spiral evasion” strategy with ε = 2 sec. Pursuer
has maximum speed vp = 1 and evader speeds are chosen uniformly in the
range vi ∈ [0.5, 0.7]. Top: trajectories on the plane, with evaders shown
in blue, and pursuer in green. Circles denote final position at capture time
t = 16.9 sec. Bottom: Plot of Tcap,i over time for each evader during the
pursuit, with the targeted evader shown in red.

the pursuer dip decreases at a constant rate during reactive
evasion. By taking the longest to leave the cone of evasion,
the slowing evasion strategy will lead to the minimum value
of dip. However, in a physical system this reactive evasion
strategy may not be the least efficient in terms of energy
expenditure.

B. Spiral evasion

This strategy corresponds to α = 1 = constant. Here, the
speed is maximum (‖ui‖ = vi) and the angle is maximum
(θi = θ̄i(φi)) at all times during evasion, so the component
of velocity normal to the baseline is at its maximum. Conse-
quently an evader using the strategy of spiral evasion leaves
the cone of evasion in minimum time, and with maximum
final distance to the pursuer. Unfortunately it does not afford
an analytic solution for trajectories as with slowing evasion.
Though the spiral evasion strategy minimizes time spent
evading, it may not be the most efficient in terms of energy
use for an evader. Figure 3 shows simulation results for the
global pursuer strategy against evaders using spiral evasion.

Although slowing evasion and spiral evasion both use a
constant value of α, that need not be the case in general.
One example of a strategy with varying α would be to set
the angle to be θi = θ̄i(t0) = constant, and vary the speed
to satisfy (8). This type of “constant bearing” strategy has
been observed in fish [20], where evaders aim to keep the
pursuer at a constant position in the visual field.

V. LOCAL (SENSING-LIMITED) PURSUIT AND EVASION

Up to this point we have assumed all-to-all sensing, so
that each agent has full information about all other agent
positions and speeds. This is unrealistic for systems with
limited range on sensing or those that suffer from occlusion.

In this section, limits on sensing are defined and the pursuit
and evasion strategies introduced in the previous section
are adapted to local strategies that address the uncertainty
imposed by limited sensing.

In the local (sensing-limited) system, we define dsense as
the sensing radius for all agents. An agent’s local sensing
neighborhood consists of the set of agents within the sensing
radius. The local neighborhood of the pursuer is defined as

N (P ) = {Ei|dip ≤ dsense} , (13)

and the neighborhood of evader Ei is defined as

N (Ei) = {Ej |dij ≤ dsense} ∪ {P |dip ≤ dsense} . (14)

A. Local target selection

Under local sensing, the pursuer must choose a control
law based only on information about evaders within its
neighborhood, N (P ). The best possible strategy then is the
same as the global strategy, targeting the evader within the
sensing neighborhood that can be captured in the minimum
time,

up = vp r̂gp, where g = argmin
Ej∈N (P )

Tcap,j . (15)

During pursuit, if a new evader Ei comes into view with
Tcap,i less than Tcap,g , the pursuer will switch to targeting
the new evader, leading to a decrease in the remaining bound
on time to capture. In this way we can see that total time
spent pursuing will necessarily be less than or equal to the
minimum local Tcap calculated at the start of pursuit. This
local strategy will not lead to an under estimate of the total
time spent pursuing.

B. Local evasion strategy

To assess local evader strategies we partition the plane
into cells: a cell is associated with the evader that has the
minimum value of Tcap when the pursuer is in that cell. The
cell corresponding to evader Ei is its domain of danger: this
is the set of pursuer positions such that evader Ei is the
optimal target for a pursuer under global sensing. Formally
we define the domain of danger of evader Ei as

Di =
{
p ∈ R2

∣∣∣∣ i = argmin
j

‖rj − p‖
vp − vj

}
. (16)

This partitioning is equivalent to a multiplicatively-weighted
Voronoi diagram [21], where the weight on each evader’s
distance is given by (vp − vi). This notion generalizes the
standard Voronoi domain of danger partition of Hamilton’s
selfish herd model of identical evaders [1].

In a local sensing system, evaders might not have knowl-
edge of the position of the pursuer until late in the course
of a pursuit. To address this uncertainty, we propose a local
evasion strategy that consists of 1) a risk reduction phase
which is used when the pursuer is not in sensing range, and
2) a local reactive evasion phase which is used when the
pursuer comes into view.



Fig. 4. Weighted-Voronoi domain of danger partition, calculated for a pursuer with maximum speed vp = 1 and position not sensed by evaders. Each
black dot denotes the position of an evader and the color of the surrounding cell (domain of danger) indicates the evader’s maximum speed. Left: initially
with random initial positions. Right: after running the risk reduction strategy for locally sensing evaders with sensing radius rsense = 10.

1) Risk reduction phase: During the risk reduction phase,
each evader aims to reduce the size of its domain of danger.
Let Ef and Es be two evaders with vf > vs. Ef ’s domain
of danger is bounded by the Apollonius circle [21] formed
by the locus of points where Tcap,f = Tcap,s. The circle is
centered at

rApol,fs = rf +
(vp − vf )2

(vp − vs)2 − (vp − vf )2
rfs (17)

with radius

RApol,fs =
(vp − vs)(vp − vf )

(vp − vs)2 − (vp − vf )2
dfs. (18)

All points outside the circle have Tcap,s < Tcap,f , so Tcap,f

cannot be the minimum there. The maximum distance from
Ef to the boundary of the circle is

dApp,fs =
(
vp − vf

vf − vs

)
dfs, (19)

in the direction r̂fs. Since dApp,fs is linear in dfs, Ef may
reduce this bound on the size of its domain of danger by
approaching Es. Since vf > vs, Ef can always choose its
velocity such that ḋfs < 0.

We define Ef as risk minimized with respect to Es if the
following condition is satisfied:

dfs + dApp,fs < dsense (20)

which is equivalent to

dfs <

(
vf − vs

vp − vs

)
dsense. (21)

The phase of risk reduction consists of each evader moving
towards a chosen slower neighbor until either the inequality
is satisfied or the pursuer enters the evader’s sensing range
and local reactive evasion is triggered. Figure 4 shows how
the domains of danger decrease in size during risk reduction.

2) Local reactive evasion phase: When pursuer P enters
evader Ei’s sensing range, Ei only knows the Tcap of its
neighbors in N (Ei), and the pursuer P chooses its target
based only on the Tcap of its neighbors in N (P ). In this
context, an evader must use its best estimate of the pursuer’s
estimate of the minimum Tcap in order to decide when to
begin its reactive evasion strategy. Thus, Ei should begin
reactive evasion when Tcap,i − T̄cap ≤ ε, where T̄cap is the
minimum Tcap for the evaders in the set N (Ei)∩N (P ). As
in the global case, reactive evasion continues until reaching
the cone of evasion at φi = cos−1((vp − vi)/vp), and an
evader that begins reactive evasion while untargeted will
remain untargeted.

The following theorem states that a risk minimized evader
is guaranteed to avoid capture under local sensing.

Theorem 5.1: For system (1) under local sensing with
pursuer P using local pursuit strategy (15), let Ef and Es

be evaders with maximum speeds vf > vs. If Ef is risk
minimized with respect to Es at the time t0 when P first
enters the sensing radius of Ef , then there exists a control
input that guarantees that Ef will avoid capture.

Proof: We must consider two cases separately. In the
first case, P does not target Ef at time t0, instead targeting
another evader Eg . In that case, Tcap,f > Tcap,g , so a local
reactive evasion strategy may be used by Ef in order to avoid
becoming the target.

In the second case, P targets Ef at time t0. At that time,
dfp = dsense, since P enters the sensing range of Ef at that
moment. As long as P remains outside of the Apollonius
circle defined by Tcap,f = Tcap,s (which is the case at t0
by the risk minimization condition (20)), it must switch to
targeting Es at the moment that Es enters the sensing range
of P under optimal target selection. If we can guarantee that
P will sense Es before entering the circle, then P must
switch to a different target before capturing Ef , and Ef will
be able to use reactive evasion at that point to avoid capture.



Under the local pursuit strategy with Ef as the target, ḋfp <
0, so P monotonically approaches Ef .

We will show that P cannot enter the circle without first
sensing Es, so long as Ef remains risk minimized. At the
point when P senses Es, it will switch to targeting Es,
and Ef will be able to use local reactive evasion to avoid
becoming the target again.

Suppose dfp = dApp,fs. By the triangle inequality, dsp ≤
dfp + dfs. Substituting,

dsp ≤ dApp,fs + dfs (22)

≤
(
vp − vf

vf − vs
+ 1
)
dfs =

(
vp − vs

vf − vs

)
dfs.

By the risk minimization condition (21), we have dsp <
dsense. Thus by contradiction P cannot enter the Apollonius
circle without first sensing Es.

Consider a graph G where evaders act as nodes, and an
edge eij from evader Ei to evader Ej is present only if Ei

is risk minimized with respect to Ej . This forms a directed
graph with edges only going from a faster evader to a slower
evader. Due to that hierarchy, any connected component
must contain a spanning tree with the slowest evader in the
component as the root.

Theorem 5.2: Under the local evasion strategy, an evader
can only be captured if it is the slowest evader in a connected
component of G.

Proof: Let E1 be the initial target of pursuer P under
local sensing when P enters the sensing range of E1 at time
t0. If E1 is risk minimized with respect to another evader
E2 at t0, then by the definition of G it is not the slowest
evader in its connected component, and by Theorem 5.1 the
target of P will eventually switch to another evader. If E1

is not risk minimized it must be the slowest evader within
its connected component, and the other evaders will be able
to use reactive evasion to avoid becoming the target, leading
to the capture of E1.

VI. FINAL REMARKS

Our analysis of the local sensing system shows that it
is beneficial for evaders to approach and remain close to
slower neighbors. All evaders within a group benefit from
their membership, except for the slowest member, mirroring
the result of the non-spatially explicit model of Eshel [17].
A significant difference in our model is that the slowest
member will never be able to leave the group, as the faster
evaders will always be able to keep up with it. This does
not preclude the slowest evader from wandering around in
search of an even slower evader—if the slowest evader in
each group performs a random walk, we would expect that
eventually all evaders would connect into one group, with
all of the capture risk concentrated on the globally slowest
evader.

In both natural and engineered systems, the careful use
of limited energy resources is of paramount importance. We
plan to extend our analysis to consider pursuer and evader
strategies for energy minimization. One limitation of the
current model is that agents must know the maximum speeds

of the other agents in order to calculate their strategies.
Further work on this subject that addresses uncertainty in
the speed measurements is warranted. The risk reduction
strategy presented here provides a ready framework for
the development of aggregation algorithms in engineered
multi-agent systems with local sensing capabilities, and
the weighted-Voronoi analysis may be leveraged to study
coverage problems where a bounded time to reach a set of
points is desired.
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