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ABSTRACT
Through application of Pontryagin’s maximum principle we

derive minimum-time optimal trajectories for a “steered particle”
agent with constraints on speed and turning rate to reach a point
on the plane with free terminal heading. We also present a formu-
lation of the optimal trajectories in the form of a state-feedback
control law that is applicable to real time motion planning on a
robotic system with these motion constraints.

1 Introduction
Minimum time problems have long been a source of fascina-

tion for the mathematics community, reaching as far back as the
brachistochrone problem that arguably led to the creation of op-
timal control theory and the calculus of variations [1]. The ongo-
ing progress in the availability and capability of mobile robotic
systems have seen an increase in interest in robotic minimum
time motion planning problems.

Much work has been done to characterize time-optimal tra-
jectories for car-like systems with limited turning radius, notably
the “Dubins vehicle,” which has a constant forward speed, and
the Reeds-Shepp vehicle, which also allows for reverse motion.
See [2] for a review, and [3] for detailed derivation of optimal
paths with fixed terminal headings.

In this paper, we solve the problem of reaching a desired
point on the plane in minimum time for a “steered particle” agent
with independent constraints on angular turning rate and forward
speed. Our model differs from both the Dubins and Reeds-Shepp
models in that it allows for the agent to rotate in place with zero

forward speed. This type of motion can be achieved in a single-
wheeled vehicle with gyroscopic turning, as in the “Gyrover” [4]
and “Gyrobot” [5].

We are motivated by the desire to create a movement model
with meaningful parameters that is analytically tractable for a
single agent. We aim to apply our results for individual optimal
trajectories as building blocks for improving models of collec-
tive motion, such as the model of group evasion from a pursuer
presented in [6] that does not include limits on turning rate.

Our analysis is based closely on the geometric methods of
Balkcom and Mason that were applied to differential drive vehi-
cles with limited wheel speeds in [7], and to extremal trajecto-
ries for more general constraints in [8]. These methods have also
been applied to minimum time trajectories for omni-directional
robots [9], and minimum wheel-rotation for the differential drive
[10].

2 Steered particle system dynamics
Consider an agent on the plane at position (x,y) ∈ R2 and

heading angle θ ∈ S1 that moves under the following equations
of motion, often known as a “steered particle” model:

ẋ = vcosθ

ẏ = vsinθ

θ̇ = ω. (1)
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The control inputs are the forward speed v and the turning rate
ω . We impose the following constraints on the control inputs:

1. Forward motion: Speed must satisfy v≥ 0 for all time, such
that the agent never moves in reverse.

2. Limited speed: Let v > 0 be the maximum speed. The speed
control must satisfy v≤ v for all time.

3. Limited turning rate: Let ω be the maximum turning rate.
Then the turning control must satisfy |ω| ≤ ω for all time.

Let Ω be the set of all admissible inputs (v,ω)T satisfying the
above constraints.

We consider the problem of reaching a desired point
(x f ,y f )

T in minimum time T starting from the origin x = 0,y =
0,θ = 0, with final heading θ(T ) left unconstrained.

3 Extremal trajectories from Pontryagin’s maximum
principle
We follow closely the method of [7] to set up the problem

and derive the set of extremal controls. In the interest of space
we refer the reader to [2] for proofs on existence for optimal
trajectories under these dynamics with a convex space of feasible
inputs.

The single agent minimum time problem to reach a destina-
tion point (x f ,y f )

T with free terminal heading is described by

T = min
(v(t),ω(t))∈Ω

∫ T

0
1dt s.t. q̇(t) = f (q,v,ω),ψ(t f ) = 0, (2)

where q = (x,y,θ)T , f (q,v,ω) = (vcosθ ,vsinθ ,ω)T , and
ψ(t) = (x(t)− x f )

2 + (y(t)− y f )
2 for intial condition q(0) =

(0,0,0)T .
The control Hamiltonian for the system dynamics is given

by

H(λ ,q,u) = λ · f (q,u) = λxvcosθ +λyvsinθ +λθ ω. (3)

The adjoint equations of motion are λ̇ =− ∂H
∂q , with

λ̇x = 0

λ̇y = 0

λ̇θ = λxvsinθ −λyvcosθ . (4)

From this we see that λx and λy are constant over time. Also
λθ can be directly integrated:

λ̇θ = λxẏ−λyẋ

λθ = λxy−λyx−ρ, (5)

for some constant of integration ρ .
Since the terminal heading θ(T ) is free, we must impose the

terminal condition that λθ (T ) = 0, where

λθ (T ) = λxy f −λyx f −ρ. (6)

For a nontrivial optimal trajectory, the adjoint vector must be
nonzero at all times, implying that λx and λy cannot both be zero.
Without loss of generality, assume λ 2

x +λ 2
y = 1, and let λx = sinγ

and λy =−cosγ for some unknown angle γ , with ρ constrained
by Eqn. (6).

Following the derivation of [7], define the following func-
tions:

η(x,y) = xcosγ + ysinγ−ρ, (7)

which describes a line in the x-y plane, and

β = θ − (γ +π/2), (8)

which is the the agent’s heading relative to the direction tangent
to the η line.

Now we can write the Hamiltonian as a dot product between
the control vector u = (v,ω)T and a vector function of the state
g = (−cosβ (θ),η(x,y))T ,

H =−vcosβ +ωη = u ·g, (9)

making it straightforward to apply Pontryagin’s maximum prin-
ciple to find extremal controls as a function of the state.

3.1 Switching functions and generic controls
We define two switching functions that can be used to de-

termine which control input will minimize the Hamiltonian for a
given state while satisfying the input constraints:

φ1(q) = cosβ

φ2(q) =−η(q). (10)

Then the extremal controls take the form v = vsign(φ1) and ω =
ω sign(φ2).

The extremal controls for generic (nonsingular) intervals fall
into two categories based on the signs of the switching functions:

1. Rotation: When φ1 < 0, the agent rotates in place, with ex-
tremal control given by v = 0 and ω = ω for φ2 > 0 (left) or
ω =−ω for φ2 < 0 (right).
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2. Turn: When φ1 > 0, the agent moves forward with full speed
while turning at the maximum rate, with v = v and ω = ω

for φ2 > 0 (left) or ω = −ω for φ2 < 0 (right). The agent
moves on a circular arc with radius R = v/ω .

3.2 Singular controls
At the boundaries between generic intervals where some

φi = 0, there exist multiple inputs that minimize the Hamilto-
nian. When the state arrives at such a switching surface, the con-
trol may have an instantaneous switching if the state traverses
the switching surface, or an interval of singular control where
the state remains on the switching surface for some time interval.
We must examine each switching surface separately.

3.2.1 Forward motion When φ2 = 0 and φ1 > 0, at
some time t ′ the agent is on the switching surface between left
turn and right turn controls. Geometrically, this places the agent
on the η line with cosβ > 0, and the Hamiltonian is minimized
by v = v with ω taking any value in [−ω,ω]. For cosβ 6= 1, the
agent is not aligned with the η line, so the positive speed will
bring it off of the line at the next moment. This would manifest
as an instantaneous switching from left turn to right turn, or vice-
versa, without an extended singular control segment. In the case
that cosβ = 1, the agent is arriving on the η line at a tangent, and
forward motion with ω = 0 would keep it on the line for further
time t > t ′. This represents an interval of singular control, and
we show that it will be part of many time optimal trajectories.

Consider the case that the destination lies on the positive x-
axis. It is clear that the time optimal trajectory to reach that point
is forward motion at maximum speed. This illustrates that solu-
tions to the minimum time problem can contain singular intervals
of forward motion in this system.

3.2.2 Rotation and slow turn When φ1 = 0 at some
time t ′, the Hamiltonian is minimized by ω = ±ω (positive for
φ2 > 0, negative for φ2 < 0) with v taking any value in the range
[0,v]. Taking the derivative of φ1 with respect to time, we can see
that it is always nonzero for any of the maximizing controls on
the switching surface, so there can be no singular interval for the
switching from rotation to slow turn:

φ̇1|β=±π/2 = −sin(β )
∂β

∂θ
θ̇

∣∣∣∣
β=±π/2

= −sin(β )ω|
β=±π/2 =±ω 6= 0. (11)

3.3 Doubly singular controls
If both φ1 and φ2 are zero for a given state, then the Hamilto-

nian is zero. One of the conditions for the application of the max-
imum principle is that H is constant. Any nonzero control inputs

here would cause H to change value, so doubly singular interval
consists of the trivial trajectory of a agent sitting motionless—
only an optimal trajectory if the destination lies at the starting
configuration.

4 Families of optimal trajectories
Now that we have enumerated the types of extremal trajec-

tory segments, the task is to show which combination of extremal
segments make up the time-optimal trajectory to a given destina-
tion point. We examine the possible terminal conditions and in-
tegrate backwards to find switching conditions compatible with
the terminal constraints. In the following section we show that
any point in the plane can be reached by one of these “nominal
trajectories.”

Theorem 1. Time-optimal trajectories must end in either a turn
or forward motion segment.

Proof. The terminal condition states that φ2 = 0 at the final time,
and turning and forward motion are the only two controls that
can bring the trajectory to (or remain on) that surface.

Theorem 2. If the heading of the agent is aligned with the
baseline vector from the agent to its destination at time t1, the
time optimal trajectory for t > t1 consists of forward motion at
maximum speed.

Proof. The shortest distance between two points on the plane is
a straight line. The agent can move at its maximum speed v while
traveling in a straight line in the direction of its heading. Thus
the minimum time trajectory to a point on the heading tangent
line in front of the agent is forward motion at maximum speed.

4.1 Trajectories ending in forward motion
The family of trajectories ending in forward motion includes

all trajectories of the following types (for both left and right
turns):

1. F : Forward motion only.
2. T F : Turning motion followed by some forward motion.
3. RT F : Rotation, followed by a turn of maximum duration τ t

(defined below), followed by some forward motion.

The rest of this section derives conditions on the lengths of the
segments of these trajectories.

For a trajectory to end with a forward motion segment, it
must have η = β = 0 at the terminal time. That condition will
hold for the duration of the forward segment, no matter how long
it lasts. Suppose that at some time the control switches from
forward motion to a turn. We can integrate backwards from that
point to find the switching time for rotation. Let τ f ≥ 0 be the
time interval spent in forward motion for a given trajectory.
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Starting at β = 0, η = 0 and integrating backwards in time
under turning control v = v, ω = ±ω , the agent can turn up to
θt = π/2 before reaching the φ1 = cosβ = 0 switching surface.
Define τ t = π/(2ω) to be the maximum time interval for a turn
segment in trajectories ending with forward motion.

Continuing backward from that switching time, the agent
performs a rotation segment v = 0, ω = ±ω , in the same direc-
tion as the turn.

Theorem 3. A minimum-time optimal trajectory ending in a
forward motion segment of duration τ f preceded by a turning
segment of maximum duration τ t can include a rotation motion
segment of duration up to

τr = (π− atan2(R+ τ f /v,R)/ω. (12)

Proof. For an agent starting at the origin with its heading along
the positive x-axis at time t = 0, an RT F trajectory with rotation,
full-length turn, and forward segments of length τr,τ t , and τ f
respectively will reach its destination at the point

(
x f
y f

)
=

(
Rcos(±ωτr)∓ (R+ vτ f )sin(±ωτr)
Rsin(±ωτr)± (R+ vτ f )cos(±ωτr)

)
, (13)

with + for left turning trajectories, and − for right turning tra-
jectories.

If we substitute τr = τr from Eqn. (12) into Eqn. (13), we
find that y f = 0 and x f = −

√
R2 +(R+ vτ f )2 < 0 for both left

and right turning trajectories. Due to the symmetry of the control
limits for left and right turns, destinations lying directly behind
the agent’s initial position can be reached in equal time through
either a left or right turning trajectory. It can be verified with
Eqn. (13) that a left turning trajectory with τr = τr + ε reaches
the same destination point as a right turning trajectory with τr =
τr− ε , and vice-versa, for any ε ∈ [0,τr]. Thus any trajectory of
RT F type including a rotation segment of duration longer than
τr can be replaced by an RT F trajectory turning the opposite
direction to reach the same destination point in less time.

4.2 Trajectories ending in a turn
The family of trajectories ending in a turn includes all tra-

jectories of the following types (for both left and right turns):

1. T : Turn only.
2. RT : Rotation, followed by a turning segment.

For trajectories with η(T ) = 0 and β (T ) 6= 0, we can again
integrate backwards to find families of optimal trajectories, but
in this case the switching angle for the turning segment will be a
function of the terminal value of β .

Let β ′ be the value of β at the terminal time. Integrating
backwards with turning motion, we find that the maximum dura-
tion of a turn segment is τ t(β

′) = θt(β
′)/ωc with

θt(β
′) = π/2−β

′. (14)

As above with the forward-ending trajectories, we can cal-
culate the maximum amount of rotation for a given turning du-
ration τt such that the destination lies directly behind the agent’s
initial location. Here the maximum rotation duration is given by
τr(τt) = π/ω− τt/2.

5 The Optimal Trajectory
Here we present the explicit form of the time optimal trajec-

tories. There are five types of trajectory (in each direction) corre-
sponding to the different possible combinations of rotation, turn,
and forward trajectory segments. We will first describe the par-
tition of the plane into regions for the different trajectory types,
and then present the explicit form of the optimal trajectory for
each type individually.

5.1 Trajectory parameterized by switching times
Given the initial position P0 = (x0,y0)

T and heading θ0 at
time t0 and a set of time durations spent in each control mode,
we can write the trajectory explicitly as a sequence of translations
and rotations about different points. Let τr,τt , and τ f represent
the time spent in rotation, turn, and forward modes, respectively.
Switching times and the final time are then given simply by

tt = t0 + τr

t f = tt + τt

T = t f + τ f . (15)

The heading angle, for initial heading θ0, is given by the
following expression, with + for left turn, − for right:

θ(t) =
{

θ0±ω(t− t0), for t0 ≤ t < t f
θ0±ω(τr + τt), for t f ≤ t ≤ T. (16)

We can write the agent’s position at a given time as the sum
of vectors for each segment. Define the following “turning vec-
tor,” which represents the relative translation due to a left/right
turn with change in heading ∆θ , as

T (∆θ) = R
(

sin(|∆θ |)
sign(∆θ)(1− cos(∆θ))

)
=

(
0

sign(∆θ)R

)
−B(∆θ)

(
0

sign(∆θ)R

)
. (17)
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Also define the “forward vector” F(d) for a given distance d as

F(d) =
(

d
0

)
, (18)

and let B(θ) represent the standard rotation matrix,

B(θ) =
(

cosθ −sinθ

sinθ cosθ

)
. (19)

The position of the agent P = (x,y)T at time t is given by the
following expression (with +/− for left/right turns respectively):

P(t) =P0, for t0 ≤ t < tt
P0 +B(θ(tt))Ts(±ω(t− tt)), for tt ≤ t < t f
P0 +B(θ(tt))Ts(±ωτt)+B(θ(t f ))F(v(t− t f )), for t f ≤ t < T.

(20)

6 Trajectory-type partition
In this section, we describe the locus curves of destination

points that can be reached by multiple trajectory types, and show
that this collection of curves implies a partition of the space of
destinations into regions such that any point in a particular region
can be reached in minimum time by a trajectory of that region’s
type. See Fig. 1 for an illustration of the partition of the plane
into trajectory type regions.

6.1 Boundary curves
6.1.1 Left TF–Right TF boundary The boundary

curve separating left turn-forward and right turn-forward trajec-
tories is the set of points reachable by a forward-only trajectory,
which is the positive x-axis.

6.1.2 TF–RT boundary For this and the remaining
boundary types, we assume a left turning trajectory. The bound-
ary curve separating turn-forward from rotate-turn trajectories is
the set of points reachable by a turn-only trajectory:

(
x
y

)
=

(
Rsinθ

R(1− cosθ)

)
, θ ∈ [0,π/2]. (21)

6.1.3 TF–RTF boundary All RT F trajectories in-
clude a turning segment of full duration τt = π/(2ω), and all
T F trajectories have no rotation segment, τr = 0. So, the set of
points reachable by both RT F and T F trajectories are the end-
points of trajectories with no rotation, a full turn segment, and

FIGURE 1. Regions show the sequence of control modes for different
destination regions for time optimal of trajectories of an agent starting at
the origin with heading in the direction of the positive x-axis with v = 1,
ω = 1. Destinations with y > 0 use left turn controls, and those with
y < 0 use right turns. For those destinations along the positive x axis,
no turning is necessary. For those on the negative x axis, left and right
turning trajectories take the same amount of time.

some forward segment at the end. This takes the form of a verti-
cal line: (

x
y

)
=

(
R

R+d

)
, d ≥ 0. (22)

6.1.4 RT–RTF boundary All RT F trajectories in-
clude a turning segment of full duration τt = π/(2ω), and all
RT trajectories have no forward segment, τ f = 0. So, the bound-
ary between the two trajectory types is the set of point reach-
able by a trajectory with no forward segment, a full turning seg-
ment, and a rotation segment of up to the maximum duration
τr ∈ [0,(3π/4)/ω]:(

x
y

)
=

(
R(cosθr− sinθr)
R(sinθr + cosθr)

)
, θr ∈ [0,3π/4]. (23)

6.2 Optimal switching times for each compound tra-
jectory type

Here we derive the optimal switching times for trajectories
in each of the regions defined above. For all, we assume the
agent starts at the origin with θ0 = 0, and that the destination lies
in the upper half-plane so that left turns are used. See Fig. 2 for
examples of optimal trajectories, and Fig. 3 for a contour plot of
the minimum time to reach different destinations.
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6.2.1 TF trajectory This trajectory type is parameter-
ized by the turn angle θt = ωτt and the forward distance d = vτ f .
We start by writing the expression for the destination point in
terms of the parameters:

P(T ) = T (θt)+B(θt)F(d)

P(T ) =
(

0
R

)
+B(θt)

(
F(d)−

(
0
R

))
. (24)

Rearranging and taking the norm of both sides, we are able to
solve for the forward distance

d =
√

x2−R2 +(y−R)2, (25)

and using that we can find the turn angle

θt = atan2(y−R,x)− atan2(−R,d). (26)

6.2.2 RT trajectory This trajectory type is parameter-
ized by two angles, θr = ωτr for rotation and θt = ωτt for turn-
ing. We use the formula for the length of a circle chord to find
θt , since the distance to the destination does not depend on θr:

x2 + y2 = 2Rsin(θt/2), (27)

θt = 2sin−1

(√
x2 + y2

2R

)
. (28)

The rotation angle is then computed as the difference between
the actual heading to the destination and the heading of a turn of
θt with no rotation:

θr = atan2(y,x)−θt/2. (29)

6.2.3 RTF trajectory Since it includes both rotation
and forward segments, the turn segment takes on its full possi-
ble duration of τt = π/(2ω). Thus we only need to calculate the
rotation angle θr = τr/ω and the distance along the forward seg-
ment d = vτd . The location of the destination can be described
as a function of those two quantities:

P =

(
x
y

)
= B(θr)

(
R

R+d

)
. (30)

By taking the norm of both sides we can solve for d,

d =−R+
√

x2 +(y−R)2−R2. (31)

FIGURE 2. Minimum-time optimal trajectories for an agent starting
at the origin with heading in the direction of the positive x-axis with
v = 1 and ω = 1.

FIGURE 3. Minimum time to reach contours for an agent starting at
the origin with heading in the direction of the positive x-axis with v = 1
and ω = 1. Contours are drawn at 0.25 second intervals.

Then the rotation angle is given by the difference

θr = atan2(y,x)− atan2(R+d,R). (32)

7 State-feedback formulation of optimal control law
The optimal minimum-time trajectories can be described in

terms of a state-feedback law where we consider the state to be
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FIGURE 4. Control switching regions for the destination point in a
body-fixed frame that moves with the agent, and has its x-axis aligned
with the agent’s heading direction, for an agent with v = 1 and ω = 1.

the location of the destination point in a body-fixed frame that
moves with the agent, and has its x-axis aligned with the agent’s
heading direction. The optimal control consists of the following
rules:

1. If destination is on the positive x-axis, go forward.
2. Else if destination is in a trajectory-type region with turn as

the initial segment, use the turn control in the appropriate
direction.

3. Else, rotate in the appropriate direction.

See Fig. 4 for a diagram of the control regions.
This follows from Bellman’s principle of optimality that for

any point in time along an optimal trajectory, the remainder of
the optimal trajectory is the same as if it was computed starting
at that point.

8 Conclusions
We have presented explicit solutions to the problem of

reaching a destination point in minimum time for an agent with
limits on turning rate and forward speed. The solution to this
minimum time problem can serve as a useful building block to
motion planning in a multi-agent system. Since all trajectories
and the time-to-reach surface are explicit and analytic, trajec-
tories can be computed on a robot with limited computational
capacity that can sense the distance and relative heading to its
desired destination.

In future work, adding further refinements to the model in
the form of constraints on acceleration will allow us to apply it
to describe terrestrial animal motion. A strong understanding of

individual time-optimal trajectories gives insight into possibili-
ties for collective motion in heterogeneous groups.
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