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Abstract

In this thesis we examine systems of pursuit and evasion with multiple evaders from several

perspectives. Through the analysis of mathematical models and the study of field exper-

iments we seek to understand how constraints on individual motion and sensing abilities

affect outcomes on the level of the group and the individual.

We present a nonlinear model of pursuit and evasion on the plane for a single pursuer

and two evaders. Control laws are defined so that each evader trades off between evasion and

herding. We analyze the system dynamics in terms of relative shape variables and derive

conditions on the control parameters and initial conditions that determine whether capture

occurs.

We consider a system where evaders have heterogeneous limits on speed, turning rate, and

lateral acceleration, versus a single pursuer with limited speed but no turning constraints.

Optimal strategies are derived for the one-on-one differential game, and these form the

basis of strategies for the multiple-evader system. Explicit analytic expressions for open-

loop and state-feedback forms of optimal controls are derived in a related minimum-time

problem for a single agent with the evader’s motion constraints. For the multiple evader

system, we propose a pursuer strategy of optimal target selection which leads to capture in

bounded time and we prove how any evader not initially targeted can avoid capture with

a reactive evasion strategy. We consider optimal strategies for agents with radius-limited

sensing capabilities. In the case that evader turning rate is unbounded, we prove conditions

for evader capture avoidance through a local strategy of risk reduction, which we show leads

to group aggregation.

We present some preliminary results from a field experiment conducted at the Ol Pejeta

Conservancy in Laikipia, Kenya in July 2014 to study evasive behaviors in herds of plains

zebra under pursuit by an artificial predator, the “robo-lion.” Through manual tracking of

video from an overhead camera we extract quantitative trajectory data for each zebra in
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the herd and for the robo-lion. The observed zebra behaviors of efficient evasion and group

alignment serve to motivate our modeling efforts.
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Chapter 1

Introduction

In this thesis we examine systems of pursuit and evasion with multiple evaders from several

perspectives. Through the analysis of mathematical models and the study of field experi-

ments we seek to understand how constraints on individual motion and sensing abilities affect

outcomes on the level of the group and the individual. This chapter presents background

on the different approaches we consider in Section 1.1, and includes a detailed outline of the

thesis in Section 1.2.

1.1 Overview of topics

1.1.1 Pursuit and evasion

The mathematical study of pursuit and evasion has a rich history stretching back to the

18th century with Bouguer’s famous pirate ship pursuit problem [56]. It still remains an

active area of study today due to the multitude of possible applications and variations, both

in understanding biological systems and in the design of control algorithms for engineered

robotic systems.

In the most general form, a mathematical model of pursuit and evasion features two

agents, a pursuer and an evader, and is defined by equations of motion for each agent along

1



with control laws specifying their control inputs, and some terminal condition on the state

that defines when capture has occurred. The goal of the researcher is to characterize how

different system parameters and initial conditions affect the outcome of the chase: whether

it will end in capture or escape.

Given the equations of motion and a capture condition, the study of mathematical models

of pursuit and evasion can be categorized into two broad approaches. The first is to propose

the control laws for the pursuer and evader a priori, and then to analyze the dynamics in

the sense of a nonlinear system. The control laws used in this approach are often inspired by

observations of a biological system. The second approach is to define an objective function

to be minimized by the pursuer and maximized by the evader, and then to apply techniques

from optimal control theory to generate optimal control laws for the pursuer and evader. This

approach is known as a “differential game” and was first formalized by Isaacs in 1965 [44].

Hybrid approaches that look for an optimal strategy against an opponent with a known

control law have also been considered.

In this thesis we use both approaches to study different pursuit and evasion systems:

In Chapter 2 we define control laws in a two-evader system that trade off between classical

evasion and herding strategies, and in Chapter 4 we consider a differential game for an evader

with motion constraints inspired by terrestrial animal locomotion.

Many of the classical pursuit and evasion problems of the first type that can be solved in

closed form are collected in Nahin’s book [56]. These involve the well known pursuer control

laws of “classical pursuit” and “classical evasion” where the pursuer aligns its velocity in the

direction of the evader at all times and the evader aligns its velocity away from the purser,

respectively. The other traditional strategy is called “constant bearing,” where an agent

aligns itself such that its opponent is kept at a constant relative angle. The constant bearing

strategy is the optimal strategy for a pursuer to intercept an evader moving in a straight

line at constant speed.

2



Pursuit and evasion control laws have been studied extensively for steered-particle sys-

tems, in which agents are modeled with unicycle dynamics on the plane with control inputs

of speed and turning rate. Recent studies have analyzed “motion camouflage” strategies

employed by dragonflies and bats that take advantage of the limited visual capabilities of

their insect prey [45]. The selection of pursuit and evasion control laws for steered-particle

agents has been studied as an evolutionary game [78, 59].

A biologically inspired analysis of pursuit and evasion with acceleration constraints in [41]

suggests that a more agile but slower evader can escape from a fast pursuer with limited

lateral acceleration by veering to the side at the last moment. These dynamics are adapted

to apply to schooling fish in [79], where they draw the distinction between “avoidance”

strategies that aim to avoid detection by the pursuer, and “evasion” strategies to avoid

capture when detected.

The differential game approach has traditionally been applied to systems with engineer-

ing applications, such as those with car-like or airplane-like dynamics. Perhaps the most

famous differential game is the so-called “homicidal chauffeur” system featuring a fast car-

like pursuer with constant speed and limited turning radius against a slower but agile evader

with no limits on turning, where the evader can escape capture indefinitely by moving to

the side when the pursuer nears [44]. This was extended to the “game of two cars” where

both agents have limited turning radii [55, 34].

Several recent papers examine differential games featuring steered agents with turning

constraints, such as a differential-drive pursuer with omnidirectional evader [65], the same

but with the roles switched [64], and an omnidirectional pursuer with a car-like evader [27].

1.1.2 Minimum-time optimal control1

Minimum-time problems have long been a source of fascination for the mathematics commu-

nity, reaching as far back as the brachistochrone problem that arguably led to the creation of

1The discussion in this section is adapted from [68].
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optimal control theory and the calculus of variations [72]. The ongoing progress in the avail-

ability and capability of mobile robotic systems has seen an increase in interest in robotic

minimum-time motion planning problems.

Much work has been done to characterize time-optimal trajectories for car-like systems

with limited turning radius, notably the “Dubins vehicle,” which has a constant forward

speed, and the Reeds-Shepp vehicle, which also allows for reverse motion. See [69] for

a review, and [71] for detailed derivation of optimal paths with fixed terminal headings.

Recently geometric methods were applied to minimum-time problems for differential drive

vehicles with limited wheel speeds in [7], and to extremal trajectories for more general

constraints in [6]. These methods have also been applied to minimum-time trajectories

for omni-directional wheeled robots [5], and minimum-wheel-rotation trajectories for the

differential drive [14].

The solutions for a minimum-time problem in a given system are closely related to so-

lutions for differential games featuring agents with those dynamics. In the case that the

evader remains motionless, the optimal pursuer strategy is exactly equivalent to the problem

of reaching the location of the evader in minimum time. We utilize this relationship in our

analysis of a minimum-time problem and differential game both featuring an agent with

constraints on speed, turning rate, and lateral acceleration in Chapters 3 and 4.

1.1.3 Pursuit and evasion with multiple evaders2

Many of the approaches used to study one-on-one pursuit and evasion systems can be adapted

to include multiple evaders.

The original definition of a differential game assumes two players with opposite aims: the

pursuer minimizes the objective function and the evader maximizes it. One approach that

has been used to accommodate a system with multiple evaders is to consider the multiple

evaders as a single team working together with all of their controls dictated by a single leader.

2The discussion in this section is adapted from [67].
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Systems with multiple evaders have been studied for various objective functions, including

the time to capture all evaders [12, 51]. In the differential game of “cooperative defense”

of [32, 31], an objective function is defined such that the evader team aims to surround the

pursuer before capture.

The system of “cyclic pursuit” is one in which multiple agents each act as both pursuer

and evader, each individual targets the next one, forming a loop. With the appropriate

choice of control law, such as constant bearing [33], limit cycles and relative shape equilibria

can be achieved.

The study of pursuit and evasion for multi-agent systems is often motivated by problems

in wildlife management, where sensitivity of animal group behavior to environmental change

needs to be addressed, and by problems in distributed control of mobile robotic networks,

where coordination can be advantageous in maneuvers that require approaching or avoiding

a directed signal.

Predator avoidance has long been considered a key factor in animal group formation,

first studied mathematically for identical evaders on the plane in the “selfish herd” model

of Hamilton [39]. In the selfish herd model, a predator randomly chooses a point on the

plane and targets the individual nearest that point. Hamilton shows that individuals can

reduce their risk of capture by moving closer to their neighbors. The selfish herd model has

been extended to include evolutionary dynamics, which lead to formation of large groups [62,

83]. Several numerical studies have examined properties of group motion in multiple evader

systems where biologically inspired strategies are chosen a priori: on the plane [43, 48, 86], in

discrete space [75], in three dimensions [76], with multiple pursuers [1], and with strategies

based on observations of crabs and shorebirds [77]. Non-spatially explicit game theoretic

models of multiple evader systems have been posed for both homogeneous evaders [19], and

heterogeneous evaders [25, 26]. Recent studies of evasive behavior in different animal species

are reviewed in [23].
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1.1.4 Field studies of pursuit in nature

There has been much interest in recent years in understanding the hunting strategies used

by large mammalian predators. The development of low cost and high resolution Global

Positioning System (GPS) technology allows for unprecedented accuracy in the measurement

of animal trajectories; however, limited battery capacity and the difficulty of deploying collars

on multiple animals necessitate trade offs in the design of experiments. One main approach

has been to place a single collar on a predator and record with high temporal resolution to

understand individual pursuit instances. A second main approach has been to place multiple

collars with low measurement frequency (but longer battery life) to study trends in habitat

use.

Cheetah hunting behavior has been studied with combination GPS and accelerometer

sensors [81, 82, 40, 35]. Puma energetics during attacks were characterized by accelerometer

measurements [80]. A GPS study on lions and plains zebras showed that zebras use lower

quality grazing areas to avoid lions [9].

A hybrid approach can provide rich data as well, as in [52] where aerial LiDAR (Light

Detection And Ranging) scans of foliage were combined with GPS collars on lions to study

the effect of prey visibility on hunting strategies in different habitats.

Collecting direct video footage of an event allows the researcher to track all the members

of an animal group at once. However, processing the raw video data to extract quantitative

trajectories can be significantly more complex than with GPS sensors. In certain controlled

environments, automated tracking software can be used to automatically detect positions and

poses of animals within each video frame. For an extensive review of automated tracking

in biology, see [21]. Outdoor video tracking studies have focused on aerial species, in part

because of the high contrast between individuals and the sky facilitates automatic tracking.

However the use of multi-view video systems necessary to reconstruct three dimensional

trajectories poses additional issues. Examples include studies of collective flight trajectories

in large groups of starlings [8] and bats [46]. The evasive actions of schools of zebrafish in
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response to an artificial predator have also been studied, for a predator moving on a straight

line path [70], and a predator controlled through a real-time feedback control system based

on visual tracking of the fish [73].

1.2 Outline

In Chapter 2 we present a nonlinear three agent model for a single pursuer and two evaders

inspired by predation by bears of calves in caribou herds. We identify the pursuer as a bear

and the two evaders as a caribou mother and her calf. The three agents are given equal

speeds, and we consider the pursuer to be successful if it is able to reach a point on the

line connecting the two evaders, in effect separating the calf from its mother. Strategies are

defined such that a single parameter for each agent represents a trade off between two goals.

The pursuer trades off between targeting each of the two evaders for classical pursuit. The

evaders each trade off between a herding strategy of approaching each other, and an evasion

strategy of moving away from the pursuer. We analyze the system dynamics in terms of

relative shape variables and derive conditions for stability of relative equilibria. In the case

of the mother using a pure evasion strategy we prove conditions such that the bear cannot

come between the mother and the calf.

In Chapter 3 we present a more complicated motion model of a steered agent with

constraints on speed, angular turning rate, and lateral acceleration. As a first step towards

understanding pursuit and evasion under these motion constraints, we analyze the problem

of reaching a point on the plane in minimum time with free terminal heading angle. We

use Pontryagin’s minimum principle to derive extremal controls and characterize families

of optimal trajectories. We solve for open-loop control switching times for any destination

point on the plane. In addition, we present a state-feedback formulation of the optimal

control based on the relative position of the destination in a body-fixed frame. Special cases
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for relaxed and extreme values of the lateral acceleration constraint are also considered, with

minimum-time trajectories derived in both open-loop and state-feedback form in each case.

Chapter 4 presents the turning-constrained motion model of Chapter 3 in the context

of pursuit and evasion. We use the theory of differential games to derive optimal strategies

in a one-on-one game for an omnidirectional pursuer with limited speed against an evader

with the motion model of Chapter 3. The strategies of the one-on-one game are used as

building blocks to derive strategies in a system with a single pursuer and a group of evaders

with heterogeneous motion constraints. In the multiple-evader system we propose for the

pursuer a strategy of optimal target selection such that the evader that could be captured in

minimum time in a one-on-one setting is chosen as the target. For evaders, we prove that in

the case of all-to-all sensing any evader that is not the current target can always choose from

a set of reactive evasion control inputs in order to avoid capture. The currently targeted

evader must use the optimal evasive strategy from the one-on-one game to delay its capture

for as long as possible. We also consider the case in which the pursuer and evaders have

radius-limited sensing. We relax the constraint on evader turning rate, and we propose a

local strategy of risk reduction. We prove that any evader that is not the target can avoid

capture using the risk reduction strategy.

Chapter 5 discusses a field experiment conducted in 2014 to study the evasive behaviors

of plains zebra in response to an artificial predator.

We conclude with a discussion of future directions in Chapter 6.
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Chapter 2

Three agent model of pursuit,

evasion, and herding∗

2.1 Introduction

The mathematical study of pursuit and evasion has a rich history stretching back to the

18th century with Bouguer’s famous pirate ship pursuit problem [56]. Although the basic

concept of pursuit and evasion is not new, it still remains an active area of study due to

the multitude of possible applications and variations. The study of pursuit and evasion for

multi-agent systems is motivated by problems in wildlife management, where sensitivity of

animal group behavior to environmental change needs to be addressed, and by problems in

distributed control of mobile robotic networks, where coordination can be advantageous in

maneuvers that require approaching or avoiding a directed signal.

Feedback laws can be used to great effect in describing the interactions among animals,

both in herding and pursuit behaviors. One-on-one pursuit and evasion has been studied

extensively for steered-particle systems with feedback control laws: recent studies look at

“motion camouflage” strategies employed by dragonflies and bats [45], cyclic pursuit [33], and

∗The content of this chapter appears verbatim in [66].
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pursuit and evasion strategy selection as an evolutionary game [78, 59]. Voronoi diagram

approaches have been useful for systems with multiple pursuers [4], and in strategies for

trapping an evader in a limited environment [42]. Systems with two evaders have been

studied under the framework of differential game theory, in the “successive pursuit” of [12],

and more recently the “cooperative defense” of [32, 31].

As a step towards our goal of developing a framework to examine the role of herding

among evaders in pursuit-evasion dynamics, we focus in the present chapter on studying

how a heterogeneous system with three agents behaves under a combination of feedback

control laws inspired by the cohesion/repulsion (herding) feedback rules of [60], and pursuit

and evasion feedback rules of [78] and [59].

An example from nature of a herding pair of evaders and a single pursuer is a mother

caribou and her calf fleeing from a predator. For the woodland caribou (Rangifer tarandus

caribou) of Northeastern Canada, population growth is heavily influenced by calf mortality

due to predation by bear, wolf, coyote, and lynx. In the wild, female caribou usually produce

one calf per year, in the early summer. Calves typically stay close to the mother and are

most vulnerable to predation in the first month of life as they struggle to keep pace with the

adults [11, 54].

The aim of the present work is to define a mathematical model for predation in which

(1) a predator (e.g. a bear) pursues one of the two evaders (e.g., a mother or a calf caribou)

or a point along the line that connects the two, and (2) each evader chooses a strategy that

is a convex combination of evasion and herding. In Section 2.2 of this chapter we discuss a

steered-particle model for the bear and caribou that features pursuit, evasion, and herding

control laws. In Section 2.3 we introduce a simplified first-order model that captures much

of the same behavior. Reduced-order shape dynamics are presented, and classes of equilibria

are defined. In Section 2.4 we study the case of the mother using a pure evasion strategy

and prove conditions such that the bear cannot come between the mother and the calf. For

special parameter values, we provide a stability analysis and analytic solutions. In Section
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2.5 we present numerical results that suggest existence of optimal strategies and a way in

which the system could be viewed as a differential game.

2.2 Steered-particle model

Our model is motivated by the interactions among a bear, a mother caribou, and her calf.

The bear is a pursuer in the classical sense, choosing its target along the line between the

two caribou. Each caribou is an evader and a herder; its strategy is a convex combination

of classical evasion of the bear and herding with the other caribou.

The equations of motion are based on a steered-particle model: the input uj controls the

angular velocity of agent j. In the case of constant speeds considered here, this is equivalent

to choosing the instantaneous curvature of the trajectory. The mother and calf are taken

to have unit speed, and the bear has a speed v ≥ 1. The agents are taken to evolve on

the complex plane, so system states are the position vectors rj ∈ C and heading angles θj

measured counterclockwise from the real axis, as shown in Fig. 2.1. The equations of motion

B

C
M

Re

Im

O

θm

θc

θb

rm
rc

rb

Figure 2.1: System states for steered-particle model of bear (B), mother (M), and calf (C).
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are given by

ṙb = veiθb , θ̇b = ub,

ṙm = eiθm , θ̇m = um, (2.1)

ṙc = eiθc , θ̇c = uc.

The feedback control law for the bear is taken from the “classical pursuit” law of [78]:

ub = −η
〈

rp
|rp|

, ieiθb
〉
, (2.2)

with rp = rb − [wtrc + (1− wt)rm] ,

where rp is the vector from the target point to the bear’s position. The target point is a

point along the line connecting the calf and the mother parameterized by a target parameter,

wt ∈ [0, 1]; when wt = 1, the bear targets the calf, when wt = 0 it targets the mother, and

for intermediate values of wt the bear targets a point between the two. η > 0 is a gain

which, when high enough, guarantees convergence to a “pursuit manifold” in finite time as

discussed in [78].

Feedback laws for the mother and calf are taken to be a convex combination of evasion

from the bear and herding with the other caribou. The weights wm, wc ∈ [0, 1] represent the

mother’s and calf’s reliance on herding, respectively:

um = wmum,herd + (1− wm)um,evade

uc = wcuc,herd + (1− wc)uc,evade. (2.3)

The evading rule uj,evade is the “classical evasion” law from [59]:

uj,evade = −η
〈

rb − rj
|rb − rj|

, ieiθj
〉
. (2.4)
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The herding rule comes from the repulsion-orientation-attraction (ROA) laws for group

motion presented in [60], with concentric non-overlapping zones (see also [36]). When the

distance between calf and mother is less than repulsion radius rr, a repulsion rule is used.

With only two agents herding, the repulsion rule takes the form of the evasion rule (2.4).

For a distance greater than rr but less than orientation radius ro, an orientation rule is used

which steers the two agents towards alignment. For a distance greater than ro but less than

attraction radius ra, an attracting rule is used, which, for only two agents herding, takes

the form of the pursuit rule (2.2). For a distance greater than ra, no interaction occurs and

uj,herd = 0. For the calf, then, the herding feedback rule is

uc,herd =



−η
〈

rm−rc
|rm−rc| , ie

iθc
〉
, if |rc − rm| < rr,〈

ieiθc , eiθm
〉
, if rr ≤ |rc − rm| < ro,

η
〈

rm−rc
|rm−rc| , ie

iθc
〉
, if ro ≤ |rc − rm| < ra,

0, if |rc − rm| ≥ ra.

(2.5)

The herding rule for the mother um,herd is the same with indices c and m switched.

For the remainder of this chapter, the bear’s velocity is taken to be the same as the

caribou (v = 1), in order to study steady-state behavior of the system.

2.3 Simplified first-order model

In [78] it is shown that under the classical pursuit steering law (2.2) with high enough gain,

the “pursuit manifold” of the system is reachable within finite time, such that the pursuer

will be traveling in a direction directly towards the target. Similarly the classical evasion

control law will bring the states towards a corresponding evasion manifold where the evader

travels directly away from the pursuer.
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If we limit the caribou herding interaction to just the attraction mode, the caribou control

law becomes a linear interpolation between classical evasion of the bear and classical pursuit

of the other caribou. With high gains on the control inputs, the heading dynamics will

quickly settle on the desired directions. We may simplify the model by eliminating the

heading dynamics, instead taking the instantaneous desired direction of each agent as the

control input.

In this way, the parameters wt, wc, and wm serve to interpolate between two different

direction vectors. For convenience, the relative vector between agent positions is written as

rjk = rj−rk. The bear’s parameter wt defines its direction of travel as a convex combination

of the direction towards the calf (rcb) and the direction towards the mother (rmb). The

calf’s parameter wc defines its direction of travel as a convex combination of the direction

towards the mother (rmc) and the direction away from the bear (rcb). Similarly, the mother’s

parameter wm defines its direction of travel as a convex combination of the direction towards

the calf (rcm) and the direction away from the bear (rmb). The equations of motion for the

three agents thus become

ṙm = ûm,

ṙb = ûb, (2.6)

ṙc = ûc,

with unit-length direction inputs

ûm = ei[wm∠rcm+(1−wm)∠rmb)],

ûb = ei[wt∠rcb+(1−wt)∠rmb)], (2.7)

ûc = ei[wc∠rmc+(1−wc)∠rcb)].
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Figure 2.2: Simulated trajectories in the simplified first-order model for various parameter
values illustrating different end conditions. Initial conditions (shown as filled circles) are
identical for all cases, with the three agents equidistant from each other. All agents have
unit speed, and open circles denote locations at 0.5 s intervals. Top left: reaches B–C–M
“safe calf” configuration. Top right: M–B–C “splitting” configuration. Bottom left: “parallel
motion” configuration. Bottom right: M–B–C “splitting” configuration following a looping
path.

It is important to note that the control laws become undefined when any two agents are

coincident, due to their dependence on the heading angles of the relative vectors rjk.

Figure 2.3 illustrates the effect of the control weighting parameters on the agent trajec-

tories. Under identical initial conditions different weights can lead to positive and negative

outcomes for the calf.
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Figure 2.3: Shape variables ψ, φ, θ, dbc, dcm, dmb describing relative positions of the bear (B),
the mother caribou (M) and the caribou calf (C), along with directions of motion as deter-
mined by parameters wt, wc, and wm.

Since the control laws rely solely on the relative vectors between the three agents, the

relative motion of the agents is independent of the positions of the agents with respect to a

global coordinate frame. Thus it is possible to reduce the order of the system further and

directly study the dynamics of “shape variables,” which describe the triangle formed by the

agents, as shown in Fig. 2.3.

By the geometry of the triangle, the three angles ψ, φ, θ are related by

π + ψ = φ+ θ, (2.8)

and the side lengths dbc, dcm, dmb can be related to the angles by the law of sines:

dbc
sin(θ)

=
dcm

sin(ψ)
=

dmb
sin(φ)

. (2.9)
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2.3.1 Length dynamics

By projecting the motion of the agents along each of the sides of the triangle, we can find

how the side lengths change over time:

ḋbc = cos(wc φ)− cos((1− wt)ψ),

ḋcm =− cos((1− wm)θ)− cos((1− wc)φ),

ḋmb = cos(wm θ)− cos(wt ψ). (2.10)

2.3.2 Angle dynamics

By a similar method, we can project the motion of each agent along the axis normal to a side

to find how that side of the triangle rotates in time. Then the dynamics of the individual

angles are given by the difference between the rotation of the sides constituting each angle:

ψ̇ = [sin(wt ψ)− sin(wm θ)] /dmb − [sin(wc φ)− sin((1− wt)ψ)] /dbc,

φ̇ = [sin((1− wc)φ)− sin((1− wm)θ)] /dcm − [sin(wc φ)− sin((1− wt)ψ)] /dbc,

θ̇ = [sin(wt ψ)− sin(wm θ)] /dmb − [sin((1− wc)φ)− sin((1− wm)θ)] /dcm.

(2.11)

One must note, however, that a triangle can be defined by three side lengths, two angles

and a side length, or two side lengths and an angle, but not by three angles alone. So to

study the behavior of this system one should choose three appropriate variables (e.g. dbc, ψ,

and φ), and eliminate the others using the constraint equations (2.10)-(2.11) to be left with

three first-order equations in three variables.
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2.3.3 Parallel motion equilibria

Several classes of “shape equilibria” corresponding to parallel motion of all agents can be

found at fixed points of the length dynamics (ḋbc = ḋcm = ḋmb = 0). These occur when the

following three equations are satisfied:

wc φ = (1− wt)ψ

wm θ = wt ψ (2.12)

(1− wc)φ+ (1− wm)θ = π.

Since the side lengths are not involved in these equations, any shape configuration that is a

similar triangle to an equilibrium configuration will also be an equilibrium configuration.

Adding these three equations yields the angle constraint (2.8): using that constraint to

solve for one angle we are left with two linear equations in two angles and three parameters.

For any pair of angles, (2.12) gives a one-parameter family of equilibrium solutions for wm,

wc, and wt. Special cases where the three agents are collinear are discussed below:

B–C–M : When the calf is in between the bear and mother, ψ = φ = 0 and θ = π. This

configuration is only an equilibrium when wm = 0, such that the mother caribou’s strategy

is pure evasion of the bear.

B–M–C : When the mother is in between the bear and calf, ψ = θ = 0 and φ = π. In

symmetry with the previous case, this configuration is only an equilibrium when wc = 0,

such that the calf’s strategy is pure evasion.

M–B–C : When the bear is between the two caribou, ψ = φ = θ = π. This is a parallel

motion equilibrium when wt = wm = 1 − wc. In this case, the direction of travel is not

necessarily along the line formed by the agents (as in the previous two cases), but at an

angle of wtπ from the line.

The next sections present analysis of the behavior of the dynamics in the case wm = 0.
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2.4 Mother caribou in pure evasion

It has been observed that in the heat of a predation event, a mother caribou may make her

own safety her priority and focus on evasion, only changing her course to go back for her

calf once the threat has passed [20]. The calf is expected to follow, but it does not always do

so and may become separated from its mother, which makes the calf very vulnerable. This

situation can be modeled with (2.7) by setting the mother’s parameter to be wm = 0 (pure

evasion).

In this case, the length dynamics simplify to

ḋbc = cos(wc φ)− cos((1− wt)ψ),

ḋcm = cos(φ− ψ)− cos((1− wc)φ), (2.13)

ḋmb = 1− cos(wt ψ),

and we can note that ḋmb > 0 for all ψ,wt 6= 0.

2.4.1 Avoiding mother-calf separation

We prove conditions on wc and wt for the model (2.13) where wm = 0 such that the bear

can never come directly between the calf and mother (M–B–C configuration) from initial

conditions satisfying dcm < dmb. For the same set of initial conditions in the special case

that the calf ‘ignores’ the bear completely and uses pure herding (wc = 1), the bear can

never come directly between the calf and mother.

Theorem 2.4.1. Consider the system (2.13) corresponding to wm = 0, and suppose that

0 < dcm < dmb at time t = t0. If wc, wt are such that the inequality

− cos(2ψ)− cos((1− wc)(π − ψ)) + cos(wt ψ) < 1 (2.14)
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is satisfied for all ψ ∈ [0, π/2), then the system will never reach an M–B–C configuration at

any future time t > t0. An M–B–C configuration is defined such that the distances satisfy

dcm = dmb + dbc with dmb > 0 and dbc > 0. In case dbc = 0, dcm = 0, or dmb = 0, the

dynamics are assumed to terminate.

In the special case that wc = 1 (the calf ignores the bear) for the same initial conditions,

the system will never reach an M–B–C configuration at any time t > t0 for any wt ∈ [0, 1].

Proof. By definition, at an M–B–C configuration, dcm > dmb > 0. Hence, if we can show

that dcm ≤ dmb for all time, then we have shown that the system can never reach an M–B–C

configuration.

Consider system configurations in which dcm = dmb; these form a surface δS that separates

the space of length configurations into S+ = {dcm > dmb} and S− = {dcm < dmb}. Thus, we

are done if we can show that solutions stay in S− ∪ δS.

On δS, if dbc = 0, dcm = 0, or dmb = 0, then the dynamics are terminated. Where dbc 6= 0,

dcm 6= 0, and dmb 6= 0 on this surface, the agents form an isosceles triangle with φ = π − ψ

and ψ ∈ (0, π/2) and a line (B-M-C configuration) when φ = π−ψ and ψ = 0. Substituting

φ = π − ψ in (2.13) gives

ḋcm = − cos(2ψ)− cos((1− wc)(π − ψ)),

ḋmb = 1− cos(wt ψ). (2.15)

The inequality condition (2.14) is simply the condition that ḋcm < ḋmb whenever dcm =

dmb 6= 0 and dbc 6= 0.

If dcm < dmb at time t = t0, then the state is in S−, and by continuity the system cannot

reach S+ without first passing through δS. If the system reaches δS and dcm = dmb = 0 or

dcb = 0, then the dynamics terminate. If the system reaches δS and dcm = dmb 6= 0 and

dbc 6= 0 and the inequality condition (2.14) holds, then ḋcm < ḋmb and the dynamics must
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remain in S−∪δS. Thus, the system can never reach an M–B–C configuration when starting

with dcm < dmb.

In the special case with wc = 1 where the calf uses a pure herding strategy and ignores

the bear, the inequality condition (2.14) simplifies to

cos(wt ψ)− cos(2ψ) < 2, (2.16)

which always holds for ψ ∈ [0, π/2). Thus for wc = 1, the system can never reach an M–B–C

configuration when starting with dcm < dmb, regardless of the value of the bear’s parameter

wt.

Fig. 2.4 shows numerical calculations of the range of parameters wc and wt for which the

inequality (2.14) holds. Note that when wc ≤ 1/4 there is no guarantee, for any wt ∈ [0, 1],

that an M-B-C configuration will be avoided.

2.4.2 Disadvantage of pure evasion by the calf

In the case that both mother and calf use a pure evasion strategy, it can be shown that

the calf will always become separated from the mother unless starting from a configuration

with ψ = 0. When wm = wc = 0, the dynamics of the system simplify greatly, and can be

described in terms of lengths dbc, dmb, and angle ψ by

ḋbc = 1− cos((1− wt)ψ)

ḋmb = 1− cos(wt ψ)

ψ̇ =
sin(wt ψ)

dmb
+

sin((1− wt)ψ)

dbc
. (2.17)

When starting with ψ = 0, the system can be in either B–C–M, or B–M–C collinear equilib-

ria. Otherwise for all initial conditions with dbc, dmb, ψ 6= 0, the three variables will increase
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Figure 2.4: Range of parameters wc and wt such that the mother and calf caribou cannot
be separated by the bear when starting with dcm < dmb. The shaded area is the safe range
computed from (2.14). Dashed lines wc = 1− wt and wc = 1− 3

4
wt are shown for reference

monotonically, with ψ eventually approaching π, taking the system towards an M–B–C con-

figuration with the caribou separated from each other by the bear.

2.4.3 When the bear ignores the calf

Fig. 2.4 suggests an advantage for the bear to target the mother rather than the calf in

order to separate the calf from its mother. Here, we study the dynamics in the case that

wm = wt = 0, i.e., the bear purely pursues the mother and the mother purely evades the

bear. The length dynamics for dmb simplify to ḋmb = 0, so the distance between the mother

and the bear remains constant throughout the trajectory. This reduces the shape dynamics
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to two dimensions, which can be described in terms of φ, and ψ with

φ̇ =
sin(φ)

dmb

[
sin(ψ)− sin(wc φ)

sin(φ− ψ)
+

sin((1− wc)φ)− sin(φ− ψ))

sin(ψ)

]

ψ̇ =
sin(φ)

dmb

[
sin(ψ)− sin(wc φ)

sin(φ− ψ)

]
. (2.18)

A line of equilibria exists where ψ = wcφ, which corresponds to parallel motion of all

three agents, with the bear directly following the mother and the calf off to the side, or

between them.

We compute the Jacobian for points along the equilibria line ψ = wcφ by substituting

for ψ. Because this is a line of equilibria, one eigenvalue must be zero with its corresponding

eigenvector pointing along the line of equilibria. Since the Jacobian is a 2 × 2 matrix, the

other eigenvalue must be given by the trace of the Jacobian, which simplifies to

λ =
sin(φ)

[
(1− wc) sin(2wc φ)− wc sin(2(1− wc)φ)

]
2dmb sin(wc φ) sin((1− wc)φ)

. (2.19)

The stability of the equilibria line is thus determined by the sign of this eigenvalue. Since

the leading term and each term in the denominator of (2.19) are positive for wc ∈ (0, 1) and

φ ∈ (0, π), we need only consider the expression in brackets:

f(wc, φ) = (1− wc) sin(2wc φ)− wc sin(2(1− wc)φ). (2.20)

We show for all φ ∈ (0, π) that λ > 0 for wc ∈ (0, 1/2) and λ < 0 for wc ∈ (1/2, 1). First

note that f(wc, 0) = 0. The partial derivative of f(wc, φ) with respect to φ is given by

∂f

∂φ
= 4wc(1− wc) sin(φ) sin((1− 2wc)φ). (2.21)

This derivative is positive for wc ∈ (0, 1/2) and negative for wc ∈ (1/2, 1) for all φ ∈ (0, π).

f(wc, φ) is monotonically increasing in φ for wc ∈ (0, 1/2), so f(wc, φ) > f(wc, 0) = 0, and
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Figure 2.5: Coordinate diagram for trajectories with wm = wt = 0, wc = 1. Open circles
show initial positions, and closed circles show positions after time t.

we can conclude that the eigenvalue λ must be positive in that range. Similarly f(wc, φ) is

monotonically decreasing in φ for wc ∈ (1/2, 1), so λ must be negative in that range. Thus

the line of parallel-motion equilibria is stable for wc ∈ (1/2, 1) and unstable for wc ∈ (0, 1/2)

for all φ ∈ (0, π). The change in stability of the parallel equilibria at wc = 1/2 suggests the

presence of a local bifurcation.

In the special case of wm = wt = 0 and wc = 1, the bear and the mother caribou

travel in a straight line with constant dmb, and the calf directly pursues the mother. This

configuration is equivalent to the classic Bouguer problem of a pirate ship in classical pursuit

of a merchant ship that is traveling in a straight line. Analytic solutions for certain initial

conditions are presented in [56, 10], and the following steady-state analysis for the caribou

system is based closely on the method of [56].

Consider an inertial frame with origin fixed at the initial position of the calf, with the

positive y-axis in the direction of the vector from the bear’s initial position to the mother’s

(see Fig. 2.5). Let (x0,y0) be the initial coordinates of the mother on this frame, and let

d0 = dcm,0 be the initial distance from mother to calf at time t = t0.
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Mother and bear both travel along the line xm = x0, with the mother’s position at time

t given by

ym(t) = y0 + t, (2.22)

and the bear follows below at a constant distance.

The calf’s trajectory traces out a curve y = f(x) such that at each point its tangent

will pass through the current position of the mother, since the calf is engaging in classical

pursuit. So at each point in time,

y′ =
dy

dx
=
ym − y
x0 − x

=
y0 − y + t

x0 − x
. (2.23)

The agents move at unit speed, so the arclength of the calf’s curve is simply the elapsed

time. By solving (2.23) for t and setting it equal to the formula for arclength of the calf’s

curve we arrive at an integro-differential equation, which, when solved at initial condition

y′|x=0 = y0/x0, yields

y′ =
1

2

(
y0 + d0

x0 − x
+
x0 − x
y0 + d0

)
. (2.24)

At any given time, the distance from the calf to the mother is

d 2
cm = (x0 − x)2 + (ym − y)2 = (x0 − x)2

[
1 +

(
ym − y
x0 − x

)2
]
. (2.25)

Recalling (2.23), the final term in the brackets in (2.25) is simply (y′)2, and thus we arrive

at an equation for dcm as a function of x:

d 2
cm = x2

0

[
1

2

(
1− x

x0

)2

+
1

4

(
y0 + d0

x0

)2

+
1

4

(
x0

y0 + d0

)2(
1− x

x0

)4 ]
. (2.26)
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By inspection of Fig. 2.5, it is clear that as t grows large, x approaches x0, so the steady-

state distance is simply

dcm,ss = lim
t→∞

d 2
cm = lim

x→x0

d 2
cm =

(
y0 + d0

2

)2

, (2.27)

or in terms of the initial distances,

dcm,ss =
(dcm,0 + dmb,0)2 − d 2

bc,0

4 dmb,0
. (2.28)

Then for dcm,ss < dmb,0, the system will end up in a B–C–M configuration, and for

dcm,ss > dmb,0, the system will end up in an M–B–C configuration. Setting dcm,ss = dmb,0, we

can find the locus of initial conditions where the calf ends up directly on the bear.

2.5 Simulations and estimated solution to a two-player

game

Trajectories were computed in Matlab using the forward-Euler method of integration on

the first-order model (2.6)-(2.7). Leaving the initial distance from bear to calf constant at

dbc = 10, the initial position of the mother was varied over an equally-spaced grid on the

circular area centered at the calf with radius 10, (i.e. only initial conditions where dcm ≤ dbc).

Trials were run with ∆t = 0.1 s for 2500 s, or until the agents reached a collinear

configuration. “Capture” of the calf was taken to occur when dbc ≤ 1 or ψ ≥ π/2 at the final

time, with the assumption that in the wild a calf separated from its mother would eventually

tire and be captured.

Leaving wm = 0 constant (mother using pure evasion), the parameters wc and wt were

varied over the range [0,1] in increments of 0.05. The percentage of trials ending in capture

for each particular wc, wt combination gives a measure of the “fitness” of those strategies

against one another, which can be seen in Fig. 2.6.
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Figure 2.6: Fraction of capture events for different combinations of wt and wc, with wm = 0
for initial conditions satisfying dcm < dbc. The estimated location of the saddle point is
denoted by the cross at wt = 0.3, wc = 0.8, which has a capture fraction of 0.137.

Consider a zero-sum game in which the bear and calf each choose a value for their control

parameter before the system is run with wm = 0 for an unknown random initial condition

from the set described above, with dbc = 10 and the location of the mother chosen randomly

from the circle about the calf of radius 10. Here the bear aims to choose a value of wt that

maximizes the chance of capture, and the calf aims to choose a value of wc that minimizes the

chance of capture. A saddle point in this wt-wc strategy space shown in Fig. 2.6 represents

a solution to the game: equilibrium strategies for the two players such that each individual

would decrease its fitness by choosing a different strategy. From the simulations, we estimate

a saddle point at wt = 0.3, wc = 0.8, with a capture fraction of 0.137.

In the present chapter we presented and analyzed a system of pursuit and evasion where

agent strategies were chosen a priori based on inspiration from biological systems, with
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explicit parameters representing the tradeoff between evasion and herding behavior. In

Chapter 4, we take a different approach, considering a system of pursuit and evasion with

multiple evaders from an optimal control perspective. Using the framework of the differential

game, we derive optimal strategies in the form of state-feedback control laws dependent on

agent relative positions and constraints on individuals’ speed and turning rate. In the case

of agents with limited sensing, we show that self-interested evaders can use a strategy of

approaching a slower neighboring agent to reduce the risk of capture, which parallels our

result here from Theorem 2.4.1 that showed how the calf agent can benefit from using a pure

herding strategy.
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Chapter 3

Minimum-time trajectories for steered

agent with constraints on speed,

lateral acceleration, and turning rate∗

3.1 Introduction

Minimum-time problems have long been a source of fascination for the mathematics commu-

nity, reaching as far back as the brachistochrone problem that arguably led to the creation of

optimal control theory and the calculus of variations[72]. The ongoing progress in the avail-

ability and capability of mobile robotic systems has seen an increase in interest in robotic

minimum-time motion planning problems.

Much work has been done to characterize time-optimal trajectories for car-like systems

with limited turning radius, notably the “Dubins vehicle,” which has a constant forward

speed, and the Reeds-Shepp vehicle, which also allows for reverse motion. See [69] for a

review, and [71] for detailed derivation of optimal paths with fixed terminal headings.

∗This chapter is adapted from a paper by W.L. Scott and N.H. Leonard that has been submitted to
the ASME Journal of Dynamic Systems, Measurement and Control for review, with additional content in
Section 3.7 adapted from [68].
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In this chapter, we solve the problem of reaching a desired point on the plane in minimum

time for a “steered agent” agent with constraints on forward speed, angular turning rate,

and lateral acceleration. Our model differs from both the Dubins and Reeds-Shepp models

in that it allows for the agent to rotate in place with zero forward speed.

Here the lateral acceleration constraint creates coupling between the two inputs of speed

and turning rate, such that the agent must slow down to achieve a higher turning rate and

vice versa. This constraint is chosen with regards to legged locomotion. A study of the

kinematics of horses during polo games and track racing[74] indicates that grip strength and

limb force limits constrain the maximum lateral acceleration during a turn, such that the

horses must decrease their speed in anticipation of tight turns.

We are motivated by the desire to create a movement model with meaningful parameters

that is analytically tractable for a single agent and applicable in the study of terrestrial

animal motion as well as robotic motion. We aim to apply our results for individual optimal

trajectories as building blocks for improving models of collective motion, such as the model

of group evasion from a pursuer presented in [67], which does not include limits on turning

rate.

Our analysis is based closely on the geometric methods of Balkcom and Mason, which

were applied to differential drive vehicles with limited wheel speeds in [7], and to extremal

trajectories for more general constraints in [6]. These methods have also been applied to

minimum-time trajectories for omni-directional robots[5], and minimum wheel-rotation for

the differential drive[14].

In Section 3.2 we present the formal problem statement and system equations of motion.

Section 3.3 derives extremal control inputs according to Pontryagin’s minimum principle.

In Section 3.4 we prove conditions on the possible families of optimal trajectories, and in

Section 3.5 we solve for open-loop control switching times for all cases. Section 3.6 presents

a state-feedback formulation of the optimal control based on the relative position of the
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destination in a body-fixed frame. Finally we examine special limiting cases of the lateral

acceleration parameter in Section 3.7 and conclude in Section 3.8.

3.2 Problem statement and system dynamics

We consider the problem of the minimum-time trajectory for a steered agent on the plane

to reach a desired destination point (x1, y1)T ∈ R2 with no fixed final heading. The state of

the agent consists of its position (x, y)T ∈ R2 and heading angle θ ∈ S, evolving under the

equations of motion,

ẋ = v cos θ,

ẏ = v sin θ,

θ̇ = ω.

Figure 3.1: Admissible control inputs for steered agent with limits on speed, turning rate
and lateral acceleration as described in Sec. 3.2.
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The control inputs u = (v, ω)T consist of the forward speed v ∈ R and the turning rate

ω ∈ R. We impose the following constraints on the control input:

1. Limited speed: Let v̄ > 0 be the maximum speed. The speed control must satisfy v ≤ v̄

for all time.

2. No reverse motion: Speed must satisfy v ≥ 0 for all time, such that the agent never

moves in reverse.

3. Limited turning rate: Let ω̄ be the maximum turning rate. Then the turning control

must satisfy |ω| ≤ ω̄ for all time.

4. Limited lateral acceleration: Let µ represent the maximum lateral acceleration (turning

traction limit). The inputs v and ω must satisfy |v ω| ≤ µ for all time. We assume that

µ < v̄ ω̄ so that the lateral acceleration constraint is active on part of the boundary of

the control domain.

Let Ω be the set of all admissible inputs u satisfying the above constraints, as shown in

Fig. 3.1.

3.3 Extremal trajectories from Pontryagin’s minimum

principle

To solve for the optimal trajectories we begin by using Pontryagin’s minimum principle

to find families of extremal trajectories that satisfy necessary conditions on optimality. We

follow the method used in [7], which solved for optimal trajectories for differential drive robots

with the same equations of motion as the current system, but with different constraints on the

inputs. This leads to different switching functions and extremal controls. In the subsequent

section we use boundary constraints to characterize which of the extremal trajectories are

optimal under different conditions.

32



The single agent minimum-time problem is described by

t1 = min
u(t)∈Ω

∫ T

0

1dt s.t. q̇(t) = f(q,u), ψ(t1) = 0,

where q = (x, y, θ)T , f(q,u) = (v cos θ, v sin θ, ω)T , and ψ(t) = (x(t) − x1)2 + (y(t) − y1)2,

with initial conditions q(0) = (x0, y0, θ0)T .

The control Hamiltonian for the system dynamics is

H(λ,q,u) = λ · f(q,u) + 1

= λxv cos θ + λyv sin θ + λθω + 1,

where the adjoint vector λ = (λx, λy, λθ) ∈ R3 represents the partial derivative of the value

of the cost function (in this case the minimum time remaining to reach the destination) with

respect to the system state.

Pontryagin’s minimum principle states that extremal control u∗(t) satisfies the following

necessary condition:

H(λ(t),q(t),u∗(t)) = min
u(t)∈Ω

H(λ(t),q(t),u(t)) = 0.

The dynamics of the adjoint vector are governed by λ̇ = −∂H
∂q

, which can be written as

λ̇x = 0,

λ̇y = 0,

λ̇θ = λxv sin θ − λyv cos θ.
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From this we see that λx and λy are constant over time. Thus, as noted in [7], since

λ̇θ = λxẏ − λyẋ, λθ can be directly integrated as

λθ = λxy − λyx− ρ,

for some constant of integration ρ.

Since the terminal heading θf is free, we must impose that λθ(t1) = 0. This allows us to

solve for ρ: λθ(t1) = λxy1 − λyx1 − ρ = 0. Thus,

λθ(t) = λx(y(t)− y1)− λy(x(t)− x1). (3.1)

For a nontrivial optimal trajectory, the adjoint vector must be nonzero at all times, implying

that λx and λy cannot both be zero. Without loss of generality, let λx = λ0 sin γ and

λy = −λ0 cos γ for some unknown angle γ, with the constant λ0 6= 0 computed from the

terminal condition

H(λ(t1),q(t1),u∗(t1)) = 0.

We next derive the extremal controls. Following the derivation in [7], define the following

two functions of the state:

η(x, y) = (x− x1) cos γ + (y − y1) sin γ,

and β(θ) = θ − (γ + π/2).

The level set η = 0 describes a line in the x-y plane passing through the destination point

(x1, y1)T . β describes the agent’s heading relative to the direction along the η = 0 line.

Now we can write the Hamiltonian in terms of the inputs and these functions of the state:

H = λ0(−v cos β + ωη) + 1.
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This makes it straightforward to apply Pontryagin’s minimum principle to find extremal

controls as a function of the state. Since this is a minimum-time problem with the dynamics

linear in the control inputs, the optimal control will be of a bang-bang type, always taking

values along the control constraint surfaces shown in Fig. 3.1.

3.3.1 Switching functions and generic control inputs

Given our constraints on the control inputs, we need to determine which value of u will

minimize the Hamiltonian for each point in the state space. We follow the same procedure

as in [68], except that the additional constraint on lateral acceleration prompts a third

switching function.

We define three switching functions that can be used to determine the control input

u∗ = (v∗, ω∗) that will minimize the Hamiltonian for a given state:

φ1(q) = cos β(q), (3.2)

φ2(q) = −η(q), (3.3)

φ3(q) = ω̄|η| − v̄ cos β(q). (3.4)

Let sgn(z) be defined as the standard sign function for z ∈ R :

sgn z =



−1, z < 0,

0, z = 0,

1, z > 0.

On time intervals for which the switching functions are nonzero, the corresponding extremal

controls are called generic controls. These fall into three categories based on the signs of

the switching functions. The generic control inputs along with their corresponding extremal

trajectories are as follows, for initial state q(0) = (x0, y0, θ0)T . In each case θ(t) = θ0 + ω∗t.
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1. Rotation: When φ1 < 0, the agent rotates in place at maximum turning rate: v∗ = 0

and ω∗ = ω̄ sgn(φ2). Here q(t) = (x0, y0, θ0 + ω∗t)T .

2. Slow turn: When φ1 > 0 and φ3 > 0, the agent moves forward with low speed while

turning at the maximum rate: v∗ = µ/ω̄ and ω∗ = ω̄ sgn(φ2). The agent moves on a

circular arc with radius Rs = µ/ω̄2, with

x(t)

y(t)

 =

x0

y0

+B(θ0)

 Rs sin(ω̄t)

sgn(φ2)Rs(1− cos(ω̄t))

 , (3.5)

where B(θ) is the standard rotation matrix

B(θ) =

cos θ − sin θ

sin θ cos θ

 .

3. Fast turn: When φ1 > 0 and φ3 < 0, the agent moves forward at maximum speed

while turning at a lower rate: v∗ = v̄ and ω∗ = sgn(φ2)µ/v̄. The agent moves on a

circular arc with radius Rf = v̄2/µ, with

x(t)

y(t)

 =

x0

y0

+B(θ0)

 Rf sin(µt/v̄)

sgn(φ2)Rf (1− cos(µt/v̄))

 , (3.6)

3.3.2 Singular control inputs

At times where some φi = 0, there exist multiple inputs that minimize the Hamiltonian.

When the state arrives at such a switching surface, the control may have an instantaneous

switching if the state instantaneously traverses the switching surface, or an interval of singular

control where the state remains on the switching surface for some time interval. We must

examine each switching surface separately.
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Forward motion

When φ2 = 0 with φ1 > 0, at some time t′ the agent is on the switching surface between

fast turn left and fast turn right. Geometrically, this places the agent on the η = 0 line with

cos β > 0, and the Hamiltonian is minimized by v = v̄ with ω taking any value in [−µ/v̄, µ/v̄].

For cos β 6= 1, the agent is not aligned with the η = 0 line. So the positive speed will bring

it off of the line at the next moment, which would manifest as an instantaneous switching

from fast turn left to fast turn right, or vice-versa, without an extended singular control. In

the case that cos β = 1, the agent is arriving on the η = 0 line and tangent to it. Forward

motion with ω = 0 would keep it on the line for further time t > t′. This represents an

interval of singular control, which as we show is part of many time optimal trajectories.

Consider the case that the agent starts with its heading in the direction of the destination

point. It is clear that the minimum-time trajectory to reach that point is forward motion at

maximum speed. This illustrates that solutions to the minimum-time problem can contain

singular intervals of forward motion in this system.

Slow turn and fast turn

When φ3 = 0 and φ1 > 0 at some time t′, the agent is on the switching surface between

fast turn and slow turn with direction determined by the sign of φ2. On this switching

surface, the Hamiltonian is minimized by two possible values of the control input: a fast

turn u = (v̄,±µ/v̄)T or a slow turn u = (µ/ω̄,±ω̄)T (positive for left turn).

If we can show that the derivative of φ3 is nonzero on the switching surface, that will

imply that no singular trajectory segments can exist along that surface. Taking the derivative

of φ3 with respect to time, we find

φ̇3 = sin β(vω̄ sgn(η) + ωv̄).
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Noting that sgn(ω∗) = − sgn(η) in all cases, we can substitute to get a necessary condition

for slow-fast singular control:

φ̇3 = sgn(η) sin β(v∗ω̄ − |ω∗|v̄) = 0.

Control values for neither slow turn nor fast turn can make the term in parentheses zero,

so the only possibility for a singular control interval is the case where sin β = 0. Taking an

additional time derivative, we find

φ̈3 = ω sgn(η) cos β(vω̄ − |ω|v̄),

which is nonzero for both fast and slow turn inputs. Thus φ̇3 can only vanish for a single

instant, and no extended singular interval is possible on the φ3 = 0 switching surface.

Rotation and slow turn

For states on the switching surface φ1 = 0, the Hamiltonian is minimized by ω∗ = ω̄ sgn(φ2)

with v freely chosen as any value in the range [0, µ/ω̄]. Taking the derivative of φ1 with

respect to time,

φ̇1 = −ω sin β

= ±ω, for cos β = 0.

Thus on the switching surface the derivative is always nonzero for the minimizing control

u = u∗, so there can be no singular interval for the φ1 = 0 switching surface.

3.3.3 Multiply-singular control

We consider the situation that the state lies on multiple switching surfaces simultaneously.

If both φ1 and φ2 (and subsequently φ3) are zero for a given state, then H = 1. One of
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the conditions for the application of the minimum principle in a minimum-time problem is

that the Hamiltonian is constant with H = 0. So we can conclude that a minimum-time

trajectory can never reach a state that lies on multiple switching surface in this system. The

trivial case corresponds to the agent starting at the destination point.

3.4 Families of optimal trajectories

Now that we have enumerated the types of extremal trajectory segments, the task is to show

which combination of extremal segments make up the minimum-time trajectory to a given

destination point. We examine the possible terminal conditions and integrate backwards in

time to find switching conditions compatible with the terminal constraints. In Section 3.5

we show how to reach any point in the plane by one of these “nominal trajectories.”

Theorem 3.4.1. Minimum-time trajectories must end in either a fast turn or forward mo-

tion segment.

Proof. The terminal condition states that φ2 = 0 at the final time, and fast turning and

forward motion are the only two controls that can bring the trajectory to (or remain on)

that surface.

Theorem 3.4.2. (Theorem 2 from [68]) If the heading of the agent is aligned with the

baseline vector from the agent to its destination at time t′, the minimum-time trajectory for

t > t′ consists of forward motion at maximum speed.

Proof. The shortest distance between two points on the plane is a straight line. The agent

can move at its maximum speed v̄ while traveling in a straight line in the direction of its

heading. Thus the minimum-time trajectory to a point on the heading tangent line in front

of the agent is forward motion at maximum speed.
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3.4.1 Trajectories ending in forward motion

For a trajectory to end with a forward motion segment, it must have η(t1) = 0 and cos β(t1) =

1 at the terminal time t1. These conditions will hold for the duration of the forward motion

segment, no matter how long it lasts. From Section 3.3.2, we know that a forward motion

segment can only be preceded by a fast turn. Suppose that at some time the control switches

from fast turn to forward motion. To compute the maximum duration of a fast turn leading

to forward motion, we integrate backwards in time to find the switching times corresponding

to φ3 = 0, (see Fig. 3.2 on the left).

Using (3.2) and (3.6) to solve for the value of the switching functions over a fast turn

trajectory ending with η = 0 and cos β = 1, we find that φ3 = 0 for a fast turn of duration

τ̄f = θ̄f v̄/µ, where

θ̄f = cos−1

(
Rf

Rf + b

)
, with b = v̄/ω̄. (3.7)

Continuing backwards in time with a slow turn segment using (3.2) and (3.5), we find

that φ1 = 0 for a slow turn of duration τ̄s = θ̄s/ω̄ with

θ̄s = π/2− θ̄f = sin−1

(
Rf

Rf + b

)
.

Continuing further back in time we have a rotation segment. Fig. 3.2 on the left shows

the state of the agent relative to the η = 0 line at the times of control switching for the

backwards-in-time trajectory described above.

From Bellman’s principle of optimality, we know that subsets of a trajectory at different

starting points (but sharing an endpoint) will also be optimal trajectories themselves. So

these switching intervals τ̄f and τ̄s allow us to define the family of all trajectories that end

with a forward motion segment of nonzero length.

This family of trajectories consists of all trajectories of the following types (for both left

and right turns)

• F : Forward motion only
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Figure 3.2: Illustration of system state relative to the η = 0 line (shown dashed) at points
where a switching function φi reaches zero. Left: trajectory ending in forward segment
(β1 = 0). Right: trajectory ending in fast turn segment.

• TfF : Fast turn of up to τ̄f duration followed by some forward motion

• TsTfF : Slow turn of up to τ̄s duration, followed by fast turn of τ̄f duration, followed

by some forward motion

• RTsTfF : Rotation, followed by slow and fast turns of duration τ̄s and τ̄f respectively,

followed by some forward motion

Theorem 3.4.3. The maximum rotation duration for a minimum-time RTsTfF trajectory

with forward motion duration of τd is given by τ̄r = θ̄r/ω̄, where

θ̄r = π − tan−1

 v̄τd +Rs + (Rf −Rs)

√
1−

(
b

Rf+b

)2

b

 .
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Proof. Consider a left-turning trajectory of type RTsTfF with a rotation duration of τr = 0

and forward motion duration τd. Starting from the origin q(0) = (0, 0, 0)T , we use (3.5) and

(3.6) to calculate the endpoint of the trajectory at time t1 = τ̄s + τ̄f + τd as

x(t1)

y(t1)

 =

 b

v̄τd +Rs + (Rf −Rs)

√
1−

(
b

Rf+b

)2

 .

Increasing the duration of the initial rotation segment will cause the endpoint to rotate

about the origin, and a duration of τ̄r as defined above brings the destination to the negative

x-axis. By symmetry, a right-turning trajectory with the same segment durations would

bring the agent to that same point in the same amount of time. From this we can determine

that a left-turning trajectory with rotation longer than τ̄r would put the destination at a

point that can be reached in less time with a right-turning trajectory. Thus a minimum-time

trajectory of type RTsTfF cannot include a rotation segment of duration greater than τ̄r.

Trajectories with rotation segments of duration exactly τ̄r correspond to destinations lying

directly behind the initial position of the agent.

3.4.2 Trajectories ending in fast turn

Trajectories with η(t1) = 0 and β(t1) 6= 0 end in a fast turn. We can again integrate

backwards in time to find families of optimal trajectories, but in this case the switching

angles will be a function of the terminal value of β(t1). The state of the agent relative to

the η = 0 line at the times of control switching for this backwards-in-time trajectory is

illustrated in Fig. 3.2 on the right.

Let β1 = β(t1). Using (3.2) and (3.6) to solve for the value of the switching functions

over a fast turn trajectory ending with η = 0 and cos β1 6= 1, we find that the maximum

duration of a fast turn segment (corresponding to φ3 = 0 at the start) is τ̄f (β1) = θ̄f (β1)v̄/µ
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with

θ̄f (β1) = −β1 + cos−1

(
Rf

Rf + b
cos β1

)
. (3.8)

Preceding a fast turn segment of maximum length, we can have a slow turn segment

lasting up to τ̄s(β1) = θ̄s(β1)/ω̄ with

θ̄s(β1) = π/2− θ̄f (β1)− β1 = sin−1

(
Rf

Rf + b
cos β1

)
. (3.9)

And again there can be a rotation segment prior to full-length slow turn and fast turn

segments for a given value of β1.

This family of trajectories comprises all trajectories of the following types (for both left

and right turns)

• Tf : Fast turn of up to τ̄f duration only

• TsTf : Slow turn of up to τ̄s(β1) duration, followed by fast turn of τ̄f (β1) duration, for

some β1 ∈ [0, π/2].

• RTsTf : Rotation, followed by slow and fast turns of duration τ̄s(β1) and τ̄f (β1) respec-

tively, for some β1 ∈ [0, π/2].

Theorem 3.4.4. The maximum rotation duration for a time-optimal RTsTf trajectory with

β(t1) = β1 is given by τ̄r = θ̄r/ω̄, where

θ̄r = π − tan−1

(
Rs −Rf cos(θ̄s + θ̄f ) + (Rf −Rs) cos θ̄s
Rf sin(θ̄s + θ̄f )− (Rf −Rs) sin θ̄s

)
,

with θ̄f = θ̄f (β1) and θ̄s = θ̄s(β1) as defined in (3.8) and (3.9).

Proof. Follows similarly to the proof of Theorem 3.4.3.

By Theorems 3.4.3 and 3.4.4 we have determined seven minimum-time trajectory types:

F , TfF , TsTfF , RTsTfF , Tf , TsTf , and RTsTf , which we illustrate in Table 3.1. In the next
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section we show that these seven trajectory types cover the space of destinations. We show

how to determine the optimal trajectory type and switching times given a destination point.

3.5 The Optimal Trajectory

Here we present the explicit form of the minimum-time trajectories. The seven types of

trajectory (in each turning direction) from Theorems 3.4.3 and 3.4.4 correspond to the

different possible combinations of rotation, slow turn, fast turn, and forward trajectory

segments (Table 3.1). We first describe the partition of the plane into regions for the different

trajectory types. We then present the explicit form of the optimal trajectory for each type

individually.

3.5.1 Trajectory parameterized by switching times

Given the initial position P0 = (x0, y0)T and heading θ0 at time t0 and a set of time du-

rations spent in each control segment, we can write the trajectory explicitly as a sequence

of translations and rotations about different points. Let τr, τs, τf , and τd represent the time

spent in rotation, slow turn, fast turn, and forward segments, respectively. The switching

times and the final time are denoted

trs = t0 + τr

tsf = trs + τs

tfd = tsf + τf

t1 = tfd + τd.

Note that the time to reach the destination is given by the sum of the four segment durations:

t1 − t0 = τr + τs + τf + τd.
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The heading angle θ(t) at time t, for initial heading θ(0) = θ0, is given by the following

expression, with + for left turn, − for right turn:

θ(t) =


θ0 ± ω̄(t− t0), for t0 ≤ t < tsf

θ0 ± (ω̄(τr + τs) + (µ/v̄)(t− tsf )), for tsf ≤ t < tfd

θ0 ± (ω̄(τr + τs) + (µ/v̄)τf ) for tfd ≤ t ≤ t1.

For convenience, we define the headings at switching times as θrs = θ(trs) and so on.

We can write the agent’s position at a given time as the sum of vectors for each segment.

Define the “turning vectors” T±s (t) and T±f (t) as the translation due to fast turn and slow

turn segments of duration t that start from the origin q(0) = (0, 0, 0)T , as defined in (3.5)

and (3.6). Superscripts + and − denote left and right turns, respectively. Also define the

“forward motion vector” F (t) as F (t) = (v̄t, 0)T .

The position of the agent P = (x, y)T at time t is given by the following expression (with

+/− on θ and T omitted for clarity):

P (t) =



P (t0), t0 ≤ t < trs,

P (t0) +B(θrs)Ts(t− trs), trs ≤ t < tsf ,

P (t0) +B(θrs)Ts(τs) +B(θsf )Tf (t− tsf ), tsf ≤ t < tfd,

P (t0) +B(θrs)Ts(τs) +B(θsf )Tf (τf ) +B(θfd)F (t− tfd), tfd ≤ t ≤ t1.

(3.10)

3.5.2 Trajectory-type partition

To calculate switching times for an open-loop optimal trajectory, we must first determine

which trajectory type can be used to reach the destination. For a given set of initial conditions

q(t0) = (x0, y0, θ0)T , the plane can be partitioned into regions according to which trajectory
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Table 3.1: Range of possible segment durations for each trajectory type. For the entries
containing β1, the range is β1 ∈ [0, π/2].

Type τr τs τf τd
F 0 0 0 [0,∞]
TfF 0 0 [0, τ̄f ] [0,∞]
TsTfF 0 [0, τ̄s] τ̄f [0,∞]
RTsTfF [0, τ̄r(τd)] τ̄s τ̄f [0,∞]
Tf 0 0 [0, τ̄f ] 0
TsTf 0 [0, τ̄s(β1)] τ̄f (β1) 0
RTsTf [0, τ̄r(β1)] τ̄s(β1) τ̄f (β1) 0

type can be used to reach destination points in a given region. The set of trajectory types

in Table 3.1 together cover the plane for all possible destinations.

The boundaries between different trajectory types are described in Table 3.2 parameter-

ized by segment durations. These boundary curves are either formed by a circular arc, a

straight line, or in the case of the RTsTf–TsTf boundary a polynomial curve described by

y = g(x) for x ∈ [0, b] with

g(x) = Rs + (Rf −Rs)

√
1−

(
x

Rs + b

)2

−Rf

√
1−

(x
b

)2

. (3.11)

An example of the trajectory type partition is shown in Fig. 3.3 for initial condition

q(t0) = (0, 0, 0)T . Here the x-axis separates left turning from right turning trajectories. The

positive x-axis is itself a trajectory-type region corresponding to the forward-only trajectory

type. The negative x-axis also separates left turning from right turning trajectories, but

in this case destinations lying there can be reached in equal time from either left or right

turning trajectories with the same segment durations.

3.5.3 Optimal switching times for each compound trajectory type

Here we derive the open-loop optimal control segment durations τr, τs, τf , and τd for trajec-

tories in each of the regions defined above. For all, we assume the agent starts at the origin
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Figure 3.3: Partition of the plane shows the sequence of control segments for different desti-
nation regions for minimum-time trajectories of an agent starting at the origin with heading
in the direction of the positive x-axis and v̄ = 1, ω̄ = 1, and µ = 0.5. Destinations with y > 0
use left turn controls, and those with y < 0 use right turn controls. For those destinations
along the positive x axis, no turning is necessary. For those on the negative x axis, left and
right turning trajectories take the same amount of time.
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Table 3.2: Parametric description of trajectory type partition boundaries. For the entries
containing β1, the range is β1 ∈ [0, π/2].

Boundary τr τs τf τd
RTsTfF–RTsTf [0, τ̄r(0)] τ̄s τ̄f 0
TsTfF–TsTf 0 [0, τ̄s] τ̄f 0
TsTf–TfF 0 0 [0, τ̄f ] 0

RTsTfF–TsTfF 0 τ̄s τ̄f [0,∞]
TsTfF–TfF 0 0 τ̄f [0,∞]
RTsTf–TsTf 0 τ̄s(βf ) τ̄f (βf ) 0

left TfF–right TfF 0 0 0 [0,∞]
left RTsTf–right RTsTf τ̄r(βf ) τ̄s(βf ) τ̄f (βf ) 0

left RTsTfF–right RTsTfF τ̄r(τd) τ̄s τ̄f [0,∞]

q(t0) = (0, 0, 0)T , and that the destination lies in the upper half-plane so that left turning

controls (ω ≥ 0) are used.

“Compound” trajectories are those that feature more than one control segment. For each

compound trajectory type, there are two unknown values to solve for, as indicated in Table

3.1. Compound trajectories ending in a forward motion segment have unknown durations

for the initial and final segments. Compound trajectories ending in a fast turn segment have

the initial segment duration and the parameter β1 as unknowns.

The general strategy to solve for the control segment durations is to first write the equa-

tion for the destination in terms of the segment durations as in (3.10). The equation is

rearranged such that the initial segment duration appears only in a rotation matrix pre-

multiplying one of the sides. Taking the 2-norm thus removes the initial unknown angle,

allowing us to solve for the duration of the final segment. We then use substition to solve

for the other unknown.

For convenience we parameterize segment durations according to the change in heading

or distance travelled, letting θr = ω̄τr, θs = ω̄τs, θf = (µ/v̄)τf , and d = v̄τd.
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Figure 3.4: Minimum-time trajectories for an agent starting at the origin with heading in
the direction of the positive x-axis with v̄ = 1 and ω̄ = 1. Trajectories segments are colored
by type: blue is slow turn, green is fast turn, and red is forward motion.
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Figure 3.5: Minimum time-to-reach surfaces for an agent starting at the origin with heading
in the direction of the positive x-axis with v̄ = 1 and ω̄ = 1, for different values of the
lateral acceleration constraint µ. Isochron (equal time-to-reach) lines are drawn at 1 second
intervals.
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TsTf trajectory

At the destination P (t1) = (x1, y1)T we have

P (t1) =Ts(τs) +B(θs)Tf (τf )

=

 Rf sin(θs + θf ) + (Rs −Rf ) sin θs

Rs −Rf cos(θs + θf ) + (Rf −Rs) cos θs

 .

Note that the left turning vector Ts can be decomposed into

Ts(τs) =

 0

Rs

+B(θs)

 0

−Rs


so that our destination equation can be rewritten with θs only appearing within a rotation

matrix:

P (t1)−

 0

Rs

 = B(θs)

Tf (τf )−
 0

Rs


 .

Taking the 2-norm of both sides removes the dependence on θs, and we can solve for

θf = cos−1

(
R2
f + (Rf −Rs)

2 − x2
1 − (y1 −Rs)

2

2Rf (Rf −Rs)

)
.

Then θs is the clockwise angle about point (0, Rs)
T from Tf (θf ) to our destination:

θs = atan2(y1 −Rs, x1)− atan2(Rf (1− cos θf )−Rs, Rf sin θf ),

where atan2(y, x) is the standard two-input inverse tangent function with range [−π, π].
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TfF trajectory

Following the same method, we have

P (t1) = Tf (θf ) +B(θf )F (d)

P (t1)−

 0

Rf

 = B(θf )

F (d)−

 0

Rf


 .

Again taking the norm, we solve for the forward distance

d =
√
x2

1 −R2
f + (y1 −Rf )2,

with

θf = atan2(y1 −Rf , x1)− atan2(−Rf , d).

TsTfF trajectory

For the TsTfF trajectory type, we have

P (t1) = Ts(θs) +B(θs)(Tf (θ̄f ) +B(θ̄f )F (d)).

We can rewrite the above equation to isolate θs into a single rotation matrix:

 x1

y1 −Rs

 = B(θs)


 0

Rf −Rs

+B(θ̄f )

 d

−Rf


 . (3.12)

Taking the norm of both sides results in 0 = d2 + c1d+ c2, a quadratic equation in d with

c1 = 2(Rf −Rs) sin θ̄f

c2 = R2
f + (Rf −Rs)

2 − 2Rf (Rf −Rs) cos θ̄f − x2
1 − (y1 −Rs)

2.
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We take the positive root as our solution for d. Then to calculate the angle θs we can simply

subtract the angle of the vector on the right hand side of (3.12) from the angle of the vector

on the left hand side of (3.12):

θs = atan2(y1 −Rs, x1)− atan2(Rf −Rs + d sin θ̄f −Rf sin θ̄f , d cos θ̄f +Rf sin θ̄f ).

RTsTfF trajectory

This trajectory type includes slow turn and fast turn segments of full possible durations of

τ̄s and τ̄f respectively. Let Psf = (xsf , ysf )
T represent the vector traversed during a TsTf

trajectory with those durations. Then

Psf = Ts(τ̄s) +B(θ̄s)Tf (τ̄f ) =

 b

g(b)

 ,

with g from (3.11). Then

P (t1) =

x1

y1

 = B(θr)

Psf +

0

d


 .

By taking the norm of both sides we can solve for d:

d =
√
x2

1 + y2
1 − x2

sf − ysf .

Then the rotation angle is given by

θr = atan2(y1, x1)− atan2(ysf + d, xsf ).
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RTsTf trajectory

This is the single trajectory type which eludes an explicit analytical solution, although the

equations involved are well behaved and simple to solve numerically.

We must find the value xc ∈ [0, b] which satisfies the following relation

x2
1 + y2

1 = x2
c + y2

c :

where yc = g(xc) with g from (3.11). Geometrically (xc, yc)
T is the point on the RTsTf–

TsTf boundary surface which is the same distance from the origin as the destination point.

The distance is smoothly and monotonically increasing with xc, so it should not pose any

difficulties to calculate numerically. Once found, the rotation angle is given by

θr = atan2(y1, x1)− atan2(yc, xc),

and θs, θf are found according to the solution for a TsTf trajectory presented in Section

3.5.3, using (xc, yc)
T as the destination.

Fig. 3.4 shows minimum-time trajectories to various destination points under different

values of the lateral acceleration limit µ, including examples for different trajectory types.

By calculating the optimal switching times at every destination point on the plane, we

can build a map of the time-to-reach under minimum-time control as a function of the

destination. In Fig. 3.5 we illustrate how the minimum time-to-reach is affected by varying

the µ parameter of the acceleration constraint. As the value of µ decreases, the time-to-reach

increases for all destinations except those reachable by a forward motion-only trajectory.
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Figure 3.6: Control switching regions for destination relative to agent at the origin with
heading in the direction of the positive x-axis with v̄ = 1 and ω̄ = 1. The lateral acceleration
parameter µ is varied, from left, µ = 0.1, 0.5, and 0.9. Destinations in the upper half plane
(y > 0) are optimally reached by left turn maneuvers, and in the lower half plane by right
turn maneuvers.

3.6 State-feedback formulation of optimal control law

The optimal minimum-time trajectories can be described in terms of a state-feedback law

where we consider the dynamics of the location of the destination point in a body-fixed frame

with the agent at the origin, heading in the direction of the positive x-axis. The coordinate

transformation from world to body-fixed is given by

xrel
yrel

 =

 cos θ sin θ

− sin θ cos θ


x1 − x

y1 − y

 .

The optimal control consists of the following rules:
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1. If destination is on the positive x-axis, go forward.

2. Else if destination is in a trajectory-type region with fast turn as the initial segment,

go in a fast turn in the appropriate direction.

3. Else if destination is in a trajectory-type region with slow turn as the initial segment,

go in a slow turn in the appropriate direction.

4. Else, rotate in the appropriate direction.

Fig. 3.6 illustrates the state-feedback control-type regions under different values of the

lateral acceleration constraint µ. As µ decreases, the edges separating the fast turn and slow

turn control regions approach the positive x-axis.

3.7 Special cases for large and small values of µ

Here we examine two limiting cases in the minimum-time problem. We first consider relaxing

the constraint on lateral acceleration. We then look at the limiting case for very low µ, which

has parallels to the problem of a forward-only differential drive vehicle. Control-type regions

and optimal trajectories for both cases are shown in Fig. 3.7.

3.7.1 Relaxed acceleration constraint

For µ ≥ v̄ω̄, the lateral acceleration constraint does not affect the boundary of the permissible

control space. Here the controls are limited to the rectangle v ∈ [0, b̄], ω ∈ [−ω̄, ω̄]. In this

case, the extremal control is determined through only two switching functions, namely φ1

and φ2 from the general system. In effect, the slow turn and fast turn extremals merge into

a single turn trajectory with v = v̄, ω = ±ω̄, and radius R = v̄/ω̄.

Following the analysis of Section 3.4, we find that there are five trajectory types: forward

(F ), turn and forward (TF ), rotate, turn, and forward (RTF ), turn (T ), and rotate and turn
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Figure 3.7: Trajectory-type partition (top) and optimal trajectories (bottom) for extreme
values of µ for an agent starting at the origin with heading in the direction of the positive x-
axis with v̄ = 1 and ω̄ = 1. Left: µ ≥ v̄ω̄, so fast and slow turns are equivalent, both having
radius of b. Right: µ = 0, with only rotation and forward motion possible. Trajectories
segments are colored by type: magenta is turn, and red is forward.
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(RT ). Destinations on the positive x-axis can be reached by F trajectories. Destinations on

the quarter circle x
y

 =

 R sin θ

R(1− cos θ)

 , θ ∈ [0, π/2] (3.13)

can be reached by a turn-only trajectory. The arc given by (3.13) serves as the boundary

between TF and RT trajectory types. The boundary between TF and RTF trajectory

types is a vertical line x = R, y ≥ R. Lastly the boundary between RT and RTF trajectory

types is the circular arc

x
y

 =


√

2R sin θ

√
2R(1− cos θ)

 , θ ∈ [π/4, π].

For a more detailed discussion of this system without the acceleration constraint see [68].

The optimal open-loop segment durations for an agent starting at the origin q(0) = (0, 0, 0)T

with destination (x1, y1)T are summarized below for each trajectory type. τrot, τturn, and

τfor are the durations of the rotate, turn, and forward segments, respectively.

• RTF : τrot = θrot/ω̄, τturn = π
2ω̄

, and τfor = dfor/v̄, with

θrot = atan2(y1, x1)− atan2(R′ + dfor, R
′),

dfor = −R +
√
x2

1 + y2
1 −R′2.

• TF : τrot = 0, τturn = θturn/ω̄, and τfor = dfor/v̄, with

dfor = −R +
√
x2

1 + y2
1 −R′2,

θturn = atan2(y1 −R′, x1)− atan2(−R′, dfor).

• F : τrot = τturn = 0 and τfor = x1/v̄.
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• RT : τrot = θrot/ω̄, τturn = θturn/ω̄, and τfor = 0, with

θturn = 2 sin−1

(√
x2

1 + y2
1/(2R

′)

)
,

θrot = atan2(y1, x1)− θturn/2.

• T : τrot = τfor = 0 and τturn = sin−1(x1/R
′)/ω̄.

3.7.2 Highly constrained lateral acceleration

For µ = 0, the acceleration constraint is equivalent to constraining either v or ω to be zero

at any given time. We can interpret this as the slow turn merging with rotation, and the fast

turn merging with forward motion. The admissible control space becomes a “T” shape, such

that the agent can either rotate, or move forward, but not both at the same time. Under

those constraints, the extremal controls are specified by the signs of two switching functions,

φ2 and φ3 from the general system. We find that time optimal trajectories consist of rotating

in place until facing the destination, then moving forward at full speed. The time to reach

a destination point (x1, y1)T = (df cosα, df sinα)T starting from the origin is simply

tf = τrot + τfor = |α|/ω̄ + df/v̄.

Interestingly, this control scheme is also optimal for a differential-drive robot constrained

to only go forward, with input constraints v ≥ 0 and v/v̄ + |ω|/ω̄ ≤ 1. For that system, the

switching functions and extremal trajectories are the same. The only difference is that the

extreme corners of the control space are connected by a straight line in the differential drive

case, rather than a concave curve for the limited acceleration system.
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3.8 Final Remarks

We have derived optimal control laws for an agent with constraints on speed, angular turning

rate, and lateral acceleration in the problem of reaching a destination point in minimum time

with free terminal heading. The optimal control laws were presented in both open-loop and

feedback control formulations, with analytic expressions for the optimal trajectories.

These control laws and the related time-to-reach surfaces can be used as a building block

for problems involving multiple agents. The minimum time problem with free terminal

heading is also closely related to the two-player differential game of pursuit and evasion.

The evader aims to avoid capture for as long as possible, which is achieved in some cases by

using a minimum-time trajectory to reach a point in the space with a lower time-to-reach

for the evader than the pursuer. We explore the problem of a single pursuer facing multiple

evasive agents without turning constraints in [67].

In Chapter 4 we analyze a differential game of pursuit and evasion between an “omnidi-

rectional” pursuer with limited speed and an evader with the motion constraints described

in the current chapter. We show that the optimal evader trajectories trajectories in that

system are equivalent to the minimum time trajectories presented here, for an appropriately

chosen destination point where capture occurs.
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Chapter 4

Optimal evasive strategies for

multiple interacting agents with

motion constraints∗

4.1 Introduction

We consider a system with a single pursuer and multiple heterogeneous evader agents moving

on the plane. The goal of the pursuer is to capture an evader in the minimum time possible.

The goal of each individual evader is to first of all avoid capture, and if that is not achievable

to delay capture for as long as possible. The pursuer has limited speed, and the evaders have

limits on speed, angular turning rate, and lateral acceleration. To analyze this system we

make use of the framework of differential games introduced by Isaacs [44]. We examine

optimal strategies for the one-on-one pursuit-evasion differential game under these motion

constraints, and use those as the building blocks for strategies in the system of multiple

evaders.

∗This chapter is adapted from a paper by W.L. Scott and N.H. Leonard that has been submitted to
Automatica for review, with additional content in Section 4.5.1 from [67].
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In the multiple-evader system we propose for the pursuer a strategy of optimal target

selection such that the evader that could be captured in minimum time in a one-on-one

setting is chosen as the target. For evaders, we prove that in the case of all-to-all sensing

any evader that is not the current target can always choose from a set of reactive evasion

control inputs in order to avoid capture. The currently targeted evader must use the optimal

evasive strategy from the one-on-one game to delay its capture for as long as possible. We

also consider the case in which the pursuer and evaders have radius-limited sensing. We relax

the constraint on evader turning rate, and we propose a local strategy of risk reduction. We

prove that any evader that is not the target can avoid capture using the risk reduction

strategy. An early version of this relaxed case appeared in [67].

Predator avoidance has long been considered a key factor in animal group formation,

first studied mathematically for identical evaders on the plane in the “selfish herd” model

of Hamilton [39]. Our present investigation into the dynamics of a group of self-interested

evaders draws on the spirit of a selfish herd. However, it is differentiated through the use of

continuous-time dynamics for both pursuer and evaders, and the inclusion of heterogeneity

among the evaders. Our investigation is also motivated by the problem of designing dynamics

for group formation in engineered multi-agent systems. We prove a decentralized control law

for a collective response to a moving threat that accounts for practical motion constraints of

individual agents. Our results also provide a control mechanism for spontaneous aggregation.

Hamilton’s model has been extended to include evolutionary dynamics, which lead to

formation of large groups [62, 83]. Cooperative evader strategies have been studied as differ-

ential games in systems where all evaders are captured [12, 51], and in systems where evaders

have defensive capabilities [32, 31]. Several numerical studies have examined properties of

group motion in multiple-evader systems where biologically inspired strategies are chosen a

priori: on the plane [43, 48, 86], in discrete space [75], in three dimensions [76], with multiple

pursuers [1], and with strategies based on observations of crabs and shorebirds [77]. Non-

spatially explicit game theoretic models of multiple-evader systems have been posed for both
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homogeneous evaders [19], and heterogeneous evaders [25, 26]. Generalized Voronoi diagrams

have been used to analyze systems where evader strategies are known by the pursuers [4]. In

the present work, we show that standard Voronoi diagrams fall short when turning rate is

constrained because in this case optimal risk reduction depends on relative headings as well

as relative positions.

We first analyze the system for an “omnidirectional” pursuer agent with limited speed

against a group of evader agents with limits on speed, angular turning rate, and lateral

acceleration. These evader constraints are chosen with regards to legged locomotion. A

study of the kinematics of horses during polo games [74] indicates that grip strength and

limb force limits constrain the maximum lateral acceleration during a turn.

Several recent papers examine differential games featuring steered agents with turning

constraints, such as a differential-drive pursuer with omnidirectional evader [65], the same

but with the roles switched [64], and an omnidirectional pursuer with a car-like evader [27].

These types of dynamics have also been studied in the context of minimum-time problems

for a single agent, for the fixed-speed Reeds-Shepp vehicle [71], and for a differential-drive

vehicle with limited wheel speed [7], and our own work on an agent with limited turning rate

that can rotate in place [68]. A biologically inspired analysis of pursuit and evasion with

acceleration constraints in [41] suggests that a more agile but slower evader can escape from

a fast pursuer with limited lateral acceleration by veering to the side at the last moment.

Recent studies of evasive behavior in different animal species are reviewed in [23].

We start with the problem statement and system equations of motion in Section 4.2. In

Section 4.3 we derive optimal trajectories and an evader feedback-control law for the one-on-

one differential game with evader turning constraints. In Section 4.4 we describe the optimal

strategies for the multiple-evader system and illustrate with simulations. We introduce limits

on sensing radius in Section 4.5 and examine the problem of evader risk minimization in the

absence of the pursuer. We address the case where the constraints on evader turning rate

and angular acceleratation are relaxed. Finally we conclude with discussion in Section 4.6.
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4.2 Problem statement and equations of motion

We consider a system with a single pursuer agent P and a heterogeneous group of n evader

agents Ei. The pursuer agent P is modeled as an agent that can freely move in any direction

with maximum speed v̄p, position rp(t) ∈ R2 at time t, and velocity control input up(t) =

(vxp(t), vyp(t))T ∈ R2 with ‖up(t)‖2 ≤ v̄p for all t. Evaders are modeled as steered agents

with inputs of speed vi(t) ∈ R and turning rate ωi(t) ∈ R, written in combination as

ui(t) = (vi(t), ωi(t))
T . An evader’s state at time t is composed of its position on the plane

ri(t) ∈ R2 along with its heading angle θi(t) ∈ S1.

For each evader agent Ei, we impose the following motion constraints:

• Forward motion: Speed must satisfy vi(t) ≥ 0 for all time t, such that the agent never

moves in reverse.

• Limited speed: Let v̄i > 0 be the maximum speed. The speed control must satisfy

vi(t) ≤ v̄i for all time t.

• Limited turning rate: Let ω̄i > 0 be the maximum turning rate. The turning control

must satisfy |ωi(t)| ≤ ω̄i for all time t.

• Limited lateral acceleration: Let µi represent the maximum lateral acceleration (turn-

ing traction limit). The inputs vi(t) and ωi(t) must satisfy |vi(t)ωi(t)| ≤ µi for all

time t. We further impose the condition that µi < v̄i ω̄i so that the lateral acceleration

constraint is active on part of the boundary of the control domain.

Let Ωi be the set of all admissible vector-valued input functions ui satisfying the above

constraints. Refer to Fig. 3.1 for an illustration of the constraints.
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The system equations of motion are

ṙp = up,

ṙi =

vi cos θi

vi sin θi

 ,

θ̇i = ωi, for i = 1, 2, ..., n. (4.1)

In this system, we define the pursuer’s goal to be the capture of a single evader in minimum

time. We define the goal of each evader to avoid capture altogether, or if that is not achievable

then to delay capture for as long as possible.

4.3 Pursuit and evasion with two agents

Consider the system above with a single evader denoted by the subscript e, where the

pursuer has a higher maximum speed v̄p > v̄e. In this case the pursuer can always guarantee

eventual capture. To determine optimal strategies for each agent, we formulate the problem

as a differential game with the time to capture as the payoff. The two agents’ goals are

directly opposed: the pursuer aims to minimize the time-to-capture while the evader aims

to maximize time-to-capture. We define capture as the condition that the distance between

the agents is equal to a capture radius, l ≥ 0. The standard form of the pursuit-evasion

differential game is described by the value function with unity integral cost L = 1:

Tcap = min
up∈Ωp

max
ue∈Ωe

∫ T

0

1 dt,
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under dynamics q̇(t) = f(q,up,ue), where

q =



xp

yp

xe

ye

θe


, f(q,up,ue) =



vxp

vyp

ve cos θe

ve sin θe

ωe


,

and terminal condition ψ(T ) = 0 for

ψ(t) = (xp(t)− xe(t))2 + (yp(t)− ye(t))2 − l2.

Define the adjoint vector as a row vector,

λ =
∂

∂q
Tcap = (λxp , λyp , λxe , λye , λθe). (4.2)

The control Hamiltonian for the game has the form

H(λ,q,up,ue) = λ · f(q,up,ue) + 1

= λxpvxp + λypvyp + λxeve cos θe + λyeve sin θe + λθeωe + 1. (4.3)

Then optimal control inputs u∗p, u∗e are specified by the “Main equation” of Isaacs [44]:

H(λ,q,u∗p,u
∗
e) = min

up∈Ωp

max
ue∈Ωe

H(λ,q,up,ue) = 0.

The adjoint equations of motion are λ̇ = −∂H
∂q

, and so λ̇xp = λ̇yp = λ̇xe = λ̇ye = 0 and

λ̇θe = λxeve sin θe − λxeve cos θe. We note (as in [7]) that since λ̇θe = λxe ẏe − λyeẋe, λθe can
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be directly integrated:

λθe = λxeye − λyexe − ρ, (4.4)

for some constant of integration ρ.

4.3.1 Terminal conditions

We start by defining a parameterization of the capture surface:

q(T ) = h(s) = (s1 + l cos s4, s2 + l sin s4, s1, s2, s3)T .

The value of the game, Tcap, does not depend directly on the terminal state, so all its partial

derivatives with respect to the terminal surface are zero:

0 =
∂Tcap
∂si

= λ(T ) · ∂h

∂si
, for i = 1, 2, 3, 4.

This gives us four conditions on the adjoint at the terminal time t = T :

0 = λxp + λxe ,

0 = λyp + λye ,

0 = λθe ,

0 = l(λyp cos s4 − λxp sin s4). (4.5)

Note that these constraints give us information about the relative magnitudes of the adjoint

values, but not the absolute magnitudes. For convenience, we define the following normalized

adjoint values:

λ̂xp = λxp/λ0 = cos(s4),
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λ̂yp = λyp/λ0 = sin(s4),

λ̂xe = λxe/λ0 = − cos(s4),

λ̂ye = λye/λ0 = − sin(s4),

where λ0 =
√
λ2
xp(T ) + λ2

yp(T ) + λ2
xe(T ) + λ2

ye(T ).

To determine the magnitude λ0 of the terminal adjoint vector, we use the equation for

the Hamiltonian (4.3) at the terminal time, under the optimal control inputs for each agent:

H(λ(T ),h(s),u∗p,u
∗
e) = 0 = λ0(λ̂xpv

∗
x + λ̂ypv

∗
y + λ̂xev

∗
e cos s3 + λ̂yev

∗
e sin s3) + 1.

The pursuer’s optimal control to minimize H is given by v∗x(T ) = −v̄pλ̂xp and v∗y(T ) =

−v̄pλ̂yp . The evader’s optimal control depends on the location of the terminal state on the

terminal surface:

v∗e(T ) =


v̄e, cos(s4 − s3) < 0,

0, cos(s4 − s3) ≥ 0.

Thus we can solve for λ0 through substitution:

λ0 =


(v̄e cos(s4 − s3) + v̄p)

−1, cos(s4 − s3) < 0,

v̄−1
p , cos(s4 − s3) ≥ 0.

(4.6)

The “useable part” of the capture surface is defined as the set of points s where the

pursuer can force the state to penetrate the surface:

min
up

max
ue

λ(s) · f(h(s),up,ue) < 0. (4.7)

Since we assume a faster pursuer with v̄p > v̄e, the entire capture surface comprises the

useable part. In Section 4.3.6 we briefly consider the case of a slower pursuer.
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4.3.2 Optimal trajectories for pursuit and evasion

Given the state at the time of capture, the trajectories for each agent can be integrated

backwards in time based on the optimal controls corresponding to the adjoint vectors as

computed above. These trajectories can be used to determine the evader control switch-

ing surfaces as a function of the relative position of the pursuer by examining the relative

configuration of the agents at the evader switching times.

It is clear from (4.3) that the terms in H corresponding to evader and pursuer control

inputs are independent. Thus we can apply Pontryagin’s minimum principle for each agent

independently and derive optimal trajectories given the proper boundary conditions. Since

λ̇xp = λ̇yp = 0, the adjoint entries for the pursuer remain constant throughout, and the

pursuer will use a constant control input. To minimize H, the optimal path of the pursuer

is to follow a straight line at full speed v̄p in the direction opposite its associated adjoint

vector (λxp , λyp)T .

Suppose, without loss of generality, that the evader is captured while at the origin,

with its heading along the positive x-axis. The state at capture is given by q(T ) =

(l cos s, l sin s, 0, 0, 0)T , for some capture angle s ∈ [−π, π]. The value of the adjoint vec-

tor at capture can be computed from (4.5) and (4.6) through substitution with s = s4 − s3.

For trajectories ending at this capture point, the pursuer’s optimal control is a constant

vector u∗p = (−v̄p cos s,−v̄p sin s)T . Integrating backwards in time with τ = T − t, the

pursuer’s trajectory is a straight line going away from the capture point at the origin:

xp
yp

 =

(l + v̄pτ) cos s

(l + v̄pτ) sin s

 .

The evader control input u∗e = (v∗e , ω
∗
e) that maximizes H depends not only on the

terminal conditions but also on the current state of the system. To determine the extremal
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evader control, we define three state-dependent switching functions:

φ1(q) = − cos(θe − s),

φ2(q) = xe sin s− ye cos s,

φ3(q) = ω̄e|φ2| − v̄eφ1. (4.8)

Let sgn(z) be the standard sign function for z ∈ R:

sgn z =



−1, z < 0,

0, z = 0,

1, z > 0.

On time intervals for which the switching functions are nonzero, the corresponding extremal

controls are called generic. These fall into three categories based on the signs of the switching

functions:

• Rotation: When φ1 < 0, the agent rotates in place: v∗e = 0 and ω∗e = ω̄e sgn(φ2).

• Slow turn: When φ1 > 0 and φ3 > 0, the agent moves forward with low speed while

turning at the maximum rate: v∗e = µe/ω̄e and ω∗e = ω̄e sgn(φ2). The agent moves on

a circular arc with radius Rs = µe/ω̄
2
e .

• Fast turn: When φ1 > 0 and φ3 < 0, the agent moves forward at maximum speed

while turning at a lower rate: v∗e = v̄e and ω∗e = sgn(φ2)µe/v̄e. The agent moves on a

circular arc with radius Rf = v̄2
e/µe.

In the case that s = ±π, we have that φ1 = 1 and φ2 = 0 at capture. The evader control

input that maximizes H is not unique: any input with ve = v̄e and ωe ∈ [−µe/v̄e, µe/v̄e] is

maximizing. Integrating backwards in time, any control with ωe 6= 0 will immediately cause

the evader to leave the φ2 = 0 switching surface, bringing it into a generic fast turn segment.
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However, should the evader use a control of ve = v̄e and ωe = 0 for an extended interval,

it will remain on the switching surface. This forward motion evader control is optimal

only when the pursuer is directly behind the evader, such that both agents are moving in

the direction of the baseline vector from the pursuer to the evader. Once started, forward

motion continues until capture.

4.3.3 Evader control switching times

To calculate switching times for the evader optimal control, we integrate the equations of

motion backwards in time from capture at time t = T . Let Tcap = T − t be the time

remaining until capture along a specific retro-time trajectory with pursuer and evader agent

each using its optimal control. The evader’s optimal trajectory will have some combination

of rotation, slow turn, fast turn, and forward segments based upon the value of s at capture.

For sin s > 0 at capture, the evader will use right turning controls (ωe ≤ 0), and for sin s < 0

at capture, left turning controls.

For cos s ≥ 0 at capture, the evader’s trajectory consists only of rotation. The pursuer

moves in a straight line directly towards the evader.

For −1 < cos s < 0 at capture, the evader’s trajectory ends in a fast turn. Proceeding

backwards in time from capture by integrating the equations of motion (4.1) using fast turn

input for the evader, the state crosses the φ3 = 0 switching surface at the time given by

Tcap = τf (s) = θf (s)µe/v̄e, where

θf (s) = |s| − cos−1

(
v̄eω̄e

v̄eω̄e + µe
cos s

)
.

At that time, the evader control switches to a slow turn in the same direction, for duration

of τs(s) = θs(s)/ω̄e, where θs(s) = |s| − π/2 − θf (s). It is at that point that the evader

crosses the φ1 = 0 switching surface, and switches to rotation control in the same direction.
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When cos s = −1 at capture, the evader’s trajectory can end in a forward segment, or

a fast turn in either direction. This single end condition corresponds to a whole family of

optimal trajectories with varying time spent in the forward segment, τd, and either right or

left turns. Going backwards in time from capture, at time Tcap = τd the evader switches to

a fast turn, up to the maximum duration τ̄f = τf (π), at which point it switches to a slow

turn of up to the maximum duration τ̄s = τs(π), then it switches to rotation.

4.3.4 Evader state-feedback control law

We define a set of reduced coordinates (xrel, yrel)
T ∈ R2 describing the position of the pursuer

relative to a frame fixed on the evader, with the positive x-axis in the direction of the evader’s

heading: xrel
yrel

 =

 cos θe sin θe

− sin θe cos θe


xp − xe
yp − ye

 . (4.9)

Consider the set of all optimal trajectories q(t) described above in Sections 4.3.2 and

4.3.3, along with their associated optimal controls u∗p(t) and u∗e(t) for all s ∈ [−π, π] and

τd ≥ 0. Any ordered pair of capture angle and time-to-capture (s, Tcap) (along with forward

duration τd for s = ±π) corresponds to a point in the reduced space, (xrel, yrel), along with

an associated optimal evader input and optimal pursuer input (transformed to the reduced

coordinate frame). By collecting the set of all of these optimal trajectories together in

reduced space, we can derive the optimal controls in state-feedback form: this is the inverse

mapping that takes us from a point in the reduced space, pursuer position relative to the

evader, to the associated optimal control.

Since the evader has a discrete set of possible optimal controls, its state-feedback control

law maps a region of the reduced space to each input. Fig. 4.1 shows optimal trajectories

in the reduced coordinates, with color denoting the optimal evader control input at each

point. The locus of points in trajectories where evader control switching occurs together

form the switching surfaces for the evader, shown as black lines in the figure. The negative
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Figure 4.1: Optimal trajectories in reduced coordinates (4.9). Color denotes optimal evader
control input, with left turns for yrel < 0 and right turns for yrel > 0. Here v̄ = 1, ω̄ = 1,
µ = 0.5, and vp = 1.5. The capture radius is set to the minimum value of l = lc from (4.11).
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Figure 4.2: Optimal pursuer heading θ∗p in reduced coordinates (4.9). Lines are drawn at
π/24 radian intervals. Here v̄ = 1, ω̄ = 1, µ = 0.5, and vp = 1.5 for capture radius l = lc
from (4.11). Note that the pursuer headings take the opposite value on the lower half plane,
such that θ∗p(xrel,−yrel) = −θ∗p(xrel, yrel).

x-axis in the reduced coordinates corresponds to evader forward motion with the pursuer

directly behind it. This line constitutes what is known as a “universal surface” in differential

game theory—it is an optimal trajectory that behaves such that other optimal trajectories

run into it and flow along it like tributaries meeting a river. Conversely the positive x-axis

is a “dispersal surface” in that games starting with the evader facing directly towards the

pursuer can proceed either with left or right turning evader trajectories, leading to capture

in an equal amount of time under optimal play by both agents.

Similarly the set of optimal trajectories in reduced coordinates also provides mappings

from relative pursuer position to the optimal pursuer heading, shown in Fig. 4.2, and to the

optimal time-to-capture Tcap, shown in Fig. 4.3. This mapping of the state to the value of

the game plays a large role in the development of optimal strategies in the multiple-evader

system presented in Section 4.4.
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Figure 4.3: Time-to-capture Tcap surface in reduced coordinates (4.9) with v̄ = 1, ω̄ = 1,
µ = 0.5, and vp = 1.5 for capture radius l = lc from (4.11). The Tcap surface is mirrored about
the xrel-axis, such that Tcap(xrel,−yrel) = Tcap(xrel, yrel). Contours are drawn at one-second
increments.

Remark 4.3.1. The evader optimal trajectories are equivalent to the optimal trajectories for

the problem of reaching a desired point on the plane in minimum time under these motion

constraints. This holds similarly for the pursuer, since the fastest way to reach a point is

to go directly towards it at full speed. The one-on-one game of pursuit and evasion is in a

sense equivalent to the problem of choosing the point on the plane resulting in capture which

maximizes the evader’s time-to-reach and using the optimal trajectory to reach that point. In

[68] we derived minimum-time trajectories to reach a point on the plane for a steered agent

with speed and turning rate constraints but with no limit on lateral acceleration.

4.3.5 Condition on capture radius

The inverse mapping described in Section 4.3.4 is well defined if every state in the reduced

coordinates maps to a unique time-to-capture and optimal control input for each agent. This

will hold if the capture radius l is positive and sufficiently large. We find that this is satisfied
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as long as the s = π/2 evader rotate-only trajectory does not intersect the slow turn–rotation

switching surface, except where they meet at the capture surface.

We can solve for the condition on l by requiring that the slope of the slow turn–rotation

switching surface is greater than that of the s = π/2 rotate-only trajectory in the upper half

plane of reduced coordinates where they extend from the capture surface at (xrel, yrel)
T =

(0, l)T :

dy

dx

∣∣∣∣switching surface

xrel=0,yrel=l

≥ dy

dx

∣∣∣∣rotate-only traj.

xrel=0,yrel=l

⇔ 2vpωe
µ+ veωe

≥ vp

lωe
. (4.10)

The minimum capture radius lc, such that (4.10) is satisfied for l ≥ lc, is

lc =
µ+ veωe

2ω2
e

=
1

2

(
Rs +

v̄e
ω̄e

)
. (4.11)

4.3.6 The case of the slower pursuer

Consider a system where the top speed of the pursuer is less than that of the evader, v̄p < v̄e.

In this case there exists a set of initial conditions that allow the evader to avoid capture under

optimal play. We construct what is known as a “barrier” surface in the reduced state space

that separates the xrel-yrel plane into distinct capture and non-capture regions. The barrier

is formed by the optimal trajectory which reaches the capture surface at the boundary of

the “useable part,” (UP) defined in (4.7).

For this system, the useable part corresponds to the points on the capture surface where

−v̄p+ v̄e cos s ≤ 0. In the case of a faster pursuer, the entire capture surface is useable. For a

slower pursuer, however, the useable part is the range |s| ≤ cos−1(−v̄p/v̄e). To construct the

barrier, we simply integrate the optimal trajectory backwards in time from the two edges of

the useable part, until they meet at the dispersal surface on the positive xrel-axis.

76



Figure 4.4: Optimal trajectories in reduced coordinates in the case of a slower pursuer
v̄p < v̄e. Color denotes optimal evader control input, with left turns for yrel < 0, right turns
for yrel > 0. Here v̄e = 1, ω̄e = 1, µ = 0.5, and vp = 0.75, with capture radius l = lc. Optimal
strategies are not defined outside of the capture region.

Within the capture region, optimal trajectories are constructed by integrating backwards

in time from points on the useable part of the capture surface, as derived in Sections 4.3.2

and 4.3.3. Optimal trajectories are not defined outside of the capture region, as there can

be no value (time-to-capture) for a game that does not end in capture. Figure 4.4 illustrates

the capture boundary surface along with optimal trajectories inside the capture region for a

system with a slower pursuer. Capture is only achievable for the pursuer if it starts in the

small capture region situated close to and in front of the evader.
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4.4 Reactive evasion with multiple evaders

We now consider a system with a single fast pursuer and multiple evaders with heterogeneity

in their control constraints. Here the pursuer’s goal is to capture any single evader in the

minimum time possible. The goal of each evader is to avoid capture by the pursuer, or else

delay capture for as long as possible. We show that the optimal strategy for the pursuer

is to choose a target evader with the lowest bounded time-to-capture (Tcap) and using the

optimal control strategy from the one-on-one differential game. The targeted evader must

use its optimal strategy from the one-on-one game, but the others can use what we call a

“reactive evasion” strategy that will guarantee that they do not become the target of the

pursuer.

Theorem 4.4.1. The optimal strategy for the pursuer in a multiple-evader system is to

choose as its target the evader with the lowest time-to-capture and utilize the optimal strategy

for the one-on-one game against that evader. This strategy will guarantee capture in time

T ≤ mini Tcap,i.

Proof. Under optimal pursuer play in a one-on-one game against an evader Ei, the pursuer

is guaranteed to capture the evader in time T ≤ Tcap,i. Conversely any evader using optimal

evasive control is guaranteed to avoid capture up to time Tcap,i. Thus, the best possible

strategy for the pursuer to catch an evader in minimum time is to use the optimal strategy

for the one-on-one system against the evader with the minimum value of Tcap,i.

4.4.1 Evader domain of danger and target avoidance

For any given pursuer location, the optimal target is the evader Ei that has the lowest value of

Tcap,i. We can thus partition the plane into “domains of danger,” denoted Di, corresponding

to the points on the plane where a given evader Ei has the minimum value of Tcap,i:

Di =

{
p ∈ R2

∣∣∣∣ i = argmin
j

Tcap,j

}
. (4.12)
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Fig. 4.5 shows an example of the domains of danger before and after a pursuit for a group

of evaders of different maximum speeds and common turning rate and lateral acceleration

constraints. From Theorem 4.4.1, at any given time during pursuit, the optimal target of the

pursuer is the evader in whose domain of danger the pursuer currently resides. If an evader

can keep the pursuer from entering its domain of danger, then it will not become a target

and can avoid capture. We show that this is indeed possible for any evader not initially

targeted, under the assumption that all agents can sense one another’s relative position and

orientation, and have knowledge of each other’s motion constraints.

Remark 4.4.1. For evader agents with no constraints on turning rate, the domain of dan-

ger partition takes on the form of a “multiplicatively-weighted Voronoi diagram,” which is

described in Section 4.5. In the present more general system, the Tcap surface is not radially

symmetric, so the domain of danger depends not only on distance to other evaders, but on

their relative headings as well.

Theorem 4.4.2. Consider the multiple-evader system with dynamics (4.1) and a pursuer

using optimal target selection and pursuit as in Theorem 4.4.1. For each evader not currently

targeted by the pursuer there exists a set of control inputs that will guarantee that the evader

will not become the target at any future time. If all non-targeted evaders employ such a

strategy for the duration of a chase, the pursuer and targeted evader strategies are equivalent

to those from the one-on-one game, with capture occuring at the initial value of Tcap for the

targeted evader.

Proof. Let Eg be the evader with the unique minimum value of Tcap at the start of the chase

t = t0, so Tcap,g(t0) = mini Tcap,i for i ∈ {1, 2, ..., n}. Any other evader Ei has Tcap,i(t0) >

Tcap,g(t0), and it will remain untargeted as long as that inequality holds. If we can show that

there exists a control input for Ei such that d
dt
Tcap,i ≥ d

dt
Tcap,g for all time t ≥ t0, then by

continuity Tcap,i(t) > Tcap,g(t) for all t ≥ t0 as well.
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Recall that the adjoint vector represents the partial derivative of the game’s value with

respect to the state, λ = ∂
∂q
Tcap. So

Ṫcap =
d

dt
Tcap =

∂

∂q
Tcap · q̇ = λ · f(q,up,ue). (4.13)

In the one-on-one game under optimal control by both agents, Ṫcap = −1 at all times, based

on the definition of the optimal controls in (4.3). Thus Ṫcap,g = −1.

Any deviation from the optimal input by the pursuer (for instance targeting some other

evader) will necessarily lead to a slower decrease of Tcap, so a non-targeted evader Ei can

simply use its one-on-one optimal control to guarantee Ṫcap,i ≥ −1, thus avoiding becoming a

target. However, this is usually not strictly necessary: a range of different evader inputs can

be used to keep Ṫcap,i ≥ −1. We define reactive evasion as any evader input that satisfies

this inequality. In particular, non-targeted evaders can apply a reactive evasion strategy

that makes efficient use of their input energy. We show next how evader Ei can compute a

state-feedback control for reactive evasion.

Under optimal pursuit (of some target evader Eg) the pursuer’s trajectory is a straight

line at maximum speed v̄p. So we can suppose that an evader Ei has some estimate of the

pursuer’s current direction of travel based on its recent behavior. Let θp be the current

direction of travel of the pursuer, and vp its speed, such that up = (vp cos θp, vp sin θp)
T =

(vxp , vyp)T .

Given the current relative position of the pursuer, the evader Ei can compute its trajec-

tory under optimal play, including the values of the adjoint variables that parameterize the

switching functions. Let u∗p,i be the pursuer’s optimal control with respect to pursuit of Ei,

with associated heading θ∗p,i. The evader must choose its input ui to satisfy

Ṫcap,i(q,up,ui) ≥ Ṫcap,i(q,u
∗
p,i,u

∗
i ),
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equivalently, to satisfy

λ · f(q,up,ui) ≥ λ · f(q,u∗p,i,u
∗
i ). (4.14)

In order to remove the explicit dependence on the adjoint λ from (4.14), we now solve

for λ in terms of the state and optimal controls. From the derivation of the pursuer optimal

control in Section 4.3.2, we have λxp = −λxi = −λ0 cos θ∗p,i and λyp = −λyi = −λ0 sin θ∗p,i.

Let (xi(T ), yi(T ))T be the location of the evader at capture at time t = T under optimal

one-on-one controls for each agent. The pursuer’s position at time t ≤ T under optimal

control u∗p,i is

xp(t) = xi(T )− (l + v̄p(T − t)) cos θ∗p,i,

yp(t) = yi(T )− (l + v̄p(T − t)) sin θ∗p,i. (4.15)

From (4.4) and (4.5),

λθi(t) = λ0[(yi(t)− yi(T )) cos θ∗p,i − (xi(t)− xi(T )) sin θ∗p,i]. (4.16)

By adding and subtracting (l + v̄p(T − t)) cos θ∗p,i sin θ
∗
p,i from (4.16) and substituting with

(4.15), we have

λθi(t) = λ0[(yi(t)− yp(t)) cos θ∗p,i − (xi(t)− xp(t)) sin θ∗p,i].

Finally substituting these expressions for the adjoint back into (4.14) and rearranging gives

us

v̄p − vp cos(θp − θ∗p,i)+(vi − v∗i ) cos(θi − θ∗p,i)

+ (ωi − ω∗i )
[
(yi − yp) cos θ∗p,i − (xi − xp) sin θ∗p,i

]
≥ 0. (4.17)
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Thus in order to keep Ṫcap,i ≥ −1, the evader must choose its inputs vi and ωi such that

they satisfy the linear inequality (4.17).

Remark 4.4.2. An evader Ei is not in danger of becoming targeted until its Tcap,i is close to

that of the target evader, at which point it must begin to use a reactive evasion strategy. For

instance evader Ei can wait to initiate reactive evasion until Tcap,i ≤ minj Tcap,j + ε for some

chosen buffer value ε > 0. Until that point, the evader is free to use any control input, for

instance a “herding” strategy of aligning heading and matching speed with local neighbors,

such as one adapted from the attraction-orientation-repulsion zonal model of [18].
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Figure 4.5: Simulation of reactive evasion with ten evaders. The evaders and their respective
domains of danger are colored by evader speed, shown in colorbar at bottom right. Here
vp = 1, and for all evaders, l = 1, ωi = 1, and µi = 0.5, with vi evenly spaced in the range
[0.5, 0.8]. Top left: evader domains of danger at initial time. Top right: evader domains
of danger at capture. Pursuer is represented by filled black circle. Bottom left: agent
trajectories, with snapshots showing evader headings every 2 seconds. Bottom right: evader
Tcap over the course of the chase. Note that the evader with the lowest Tcap has its value
decreasing at a constant rate of −1 second per second until capture.
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4.5 Risk minimization under limited sensing

In this section we consider the multiple-evader system in which the pursuer and evaders have

a limited sensing range. Each agent can only make use of measurements of agents located

inside its sensing range. The limited sensing range may be important for modeling large

groups that are widely dispersed or that are tightly packed and suffer from occlusion. We

define limits on sensing and adapt the pursuit and evasion strategies introduced in Section

4.4 to local strategies that address the uncertainty imposed by limited sensing.

In the local (sensing-limited) system, we define dsense as the sensing radius for all agents.

An agent’s local sensing neighborhood consists of the set of agents within the sensing radius.

Let dij be the distance between agents i and j. The local neighborhood of the pursuer is

defined as

N (P ) = {Ei|dip ≤ dsense} . (4.18)

The neighborhood of evader Ei is defined as

N (Ei) = {Ej|dij ≤ dsense} ∪ {P |dip ≤ dsense} . (4.19)

For analytical tractability we relax the constraint on evader turning rate.

4.5.1 Relaxing constraints on evader turning rate

Consider the case in which the evader turning rates are not constrained. Without a limit on

turning rate, an evader can reach any desired heading arbitrarily quickly, so it is equivalent to

having the same dynamics as the “omnidirectional” pursuer. We will consider the terminal

condition to be “point capture,” so that the game ends when the distance between pursuer

and evader reaches zero.

Let rp(t) = (xp(t), yp(t))
T ∈ R2 be the pursuer position at time t, with velocity input

up(t) ∈ R2 and speed limit ||up(t)||2 ≤ v̄p for all time t. Let ri(t) = (xi(t), yi(t))
T ∈ R2 be the
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position of evader Ei at time t, with velocity input ue(t) ∈ R2 and speed limit ||ui(t)||2 ≤ v̄i

for all time t. Assume a faster pursuer, i.e. v̄p > v̄i for all i = 1, 2, ..., n. The system

dynamics are

ṙp = up, ṙi = ui, for i = 1, 2, ..., n. (4.20)

Let rip = ri − rp be the baseline vector from the pursuer to evader Ei, with associated

distance dip = ||rip||2, and normalized unit vector r̂ip = rip/dip defined for dip > 0. For the

one-on-one pursuit-evasion game with these dynamics, as shown in [44], the adjoint vector

and optimal controls for both pursuer and evader are constant, with λ = (v̄p−v̄i)−1(−r̂Tip, r̂
T
ip),

pursuer control u∗p = v̄pr̂ip, and evader control u∗i = v̄ir̂ip. The time to capture is simply

Tcap,i = dip/(v̄p − v̄i). These strategies are known as classical pursuit and classical evasion,

respectively.

Theorem 4.4.1 and Theorem 4.4.2 apply to this system. Again the pursuer’s optimal

strategy is to target the evader with the minimum Tcap with the one-on-one pursuit strategy.

The reactive evasion constraint for this system is derived as follows.

Let θ̃p,i be the angle of the pursuer’s motion measured counterclockwise relative to the

baseline vector rip for evader Ei, and let θ̃i be the angle of the evader’s motion relative

to the same vector. The reactive evasion condition for this system is the following, from

substitution of the adjoint λ and optimal controls u∗p and u∗i into (4.14):

λ0r̂ip · (ui − up) ≥ λ0(v̄i − v̄p)

⇔ vi cos θ̃i − vp cos θ̃p,i ≥ v̄i − v̄p. (4.21)

Setting the two sides of (4.21) equal specifies a family of possible evader reactive control

inputs that trade off between the necessary speed and relative angle. We examine two

possible control laws in more detail: “slowing evasion” where the evader heads directly away

from the pursuer with θ̃i = 0, and “spiral evasion” where maximum speed vi = v̄i is used.
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We note also that if vp cos θ̃p,i ≤ v̄p− v̄i, then no evader control is necessary since vi = 0 will

satisfy the constraint.

Slowing evasion

For the slowing reactive evasion strategy, the evader chooses its heading according to classical

evasion, such that it heads directly away from the pursuer with constant θ̃i = 0. The

necessary speed of the evader is given by

vslowingi = v̄i + vp cos θ̃p,i − v̄p, (4.22)

which is maximum at v̄i when the pursuer is heading directly towards the evader with θ̃p,i = 0,

and smoothly decreases to zero as the pursuer relative angle increases.

The equations of motion can be solved explicitly for an evader using this strategy when

the pursuer takes a straight line path. Consider a pursuer starting at the origin and moving

at full speed in the direction of the positive x-axis, such that rp(t) = (v̄pt, 0)T . We express

the evader position in polar coordinates (di, ψi) relative to the pursuer, such that

ri(t) =

xi(t)
yi(t)

 = rp(t) +

di(t) cosψi(t)

di(t) sinψi(t)

 .

From initial conditions di(0) = d0, ψi(0) = ψ0, the evader’s trajectory is described by

di(t) = d0 − (v̄p − v̄i)t

ψi(t) = 2 tan−1

(
tan

(
ψ0

2

)(
1− v̄p − v̄i

d0

t

) −v̄p
v̄p−v̄i

)
,

for t = 0 until

t =
d0

v̄p − v̄i

1−
(

cot

(
ψ0

2

)√
v̄i

2v̄p − v̄i

) v̄i−v̄p
v̄p

 .

86



at which time vslowingi = 0 and the evader can stop.
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Figure 4.6: Comparison of the “slowing” and “spiral” reactive evasion strategies for pursuer
with speed v̄p = 1 and evader with speed v̄e = 0.75. The pursuer starts at the origin
rp = (0, 0) and travels along the x-axis, and the evader starts at re = (2, 0.1). Circles
indicate initial positions and crosses show positions at 0.5 second intervals, continuing until
the slowing evader leaves the cone of evasion (reaches a point where its necessary speed is
zero). Top: trajectories of the agents in the inertial frame. Bottom: the same trajectories
in a frame relative to the pursuer. Spiral evasion leaves the cone of evasion at t = 3.0 s,
and slowing evasion at t = 4.6 s. Note that the slowing evasion strategy leaves the cone of
evasion at a smaller distance from the pursuer.
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Spiral evasion

For the spiral reactive evasion strategy, the evader sets its speed to be constant at the

maximum value vi = v̄i, with the associated relative angle that satisfies equality for (4.21),

θ̃spirali = − sgn(sin θ̃p,i) cos−1

(
vp cos θ̃p,i − v̄p + v̄i

v̄i

)
.

The sign is chosen such that the evader is turning away from the direction of motion of

the pursuer. For the duration of spiral reactive evasion the component of evader velocity

normal to the evader-pursuer baseline vector is at the maximum value that satisfies (4.21).

Consequently an evader using the strategy of spiral evasion leaves the zone where evasion

is necessary in minimum time. Unfortunately it does not afford an analytic solution for

trajectories as with slowing evasion. Though the spiral evasion strategy minimizes time

spent evading, it may not be the most efficient in terms of energy use for an evader. Figure

4.6 shows a comparison of trajectories for an evader using the spiral and slowing strategies.

Slowing evasion and spiral evasion are just two examples out of a family of possible

reactive evasion policies. Another possibility would be to set the angle to be θ̃i to a nonzero

constant, varying the speed to satisfy (4.21). This type of “constant bearing” strategy has

been observed in fish [37], where evading individuals are thought to turn such that the

pursuer remains at a constant position in the visual field.

4.5.2 Local target selection

Under local sensing, the pursuer must choose a control law based only on measurements of

evaders in N (P ). The optimal strategy is to target the evader in N (P ) that can be captured

in the minimum time:

up = v̄p r̂gp, where g = argmin
Ej∈N (P )

Tcap,j. (4.23)
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During pursuit, if a new evader Ei moves into N (P ) with Tcap,i < Tcap,g, the pursuer will

switch to targeting Ei. This will decrease the remaining bound on time-to-capture. Thus

the total time spent in pursuit will necessarily be less than or equal to the minimum local

Tcap calculated at the start of pursuit. This local strategy will not lead to an underestimate

of the total time spent pursuing, as the initial bound still holds throughout.

4.5.3 Local evasion strategy

Without evader turning constraints, the evader domain of danger partition as defined above

in (4.12) is equivalent to a multiplicatively-weighted Voronoi diagram [2], where the weight

on each evader’s distance is given by (v̄p − v̄i). This diagram generalizes the standard

Voronoi domain of danger partition that represents Hamilton’s selfish herd model of identical

evaders [39].

However, unlike in the global sensing case, each evader Ei needs an evasive strategy

when P /∈ N (Ei). We propose a local evasion strategy for evader Ei that consists of 1) a

risk reduction phase which is used when P /∈ N (Ei), and 2) a local reactive evasion phase

which is used when P ∈ N (Ei).

4.5.4 Risk reduction phase

We derive an evasive strategy for evader Ei when P /∈ N (Ei) to reduce the size of its domain

of danger. Let Ef and Es be two evaders with v̄f > v̄s. We show that in this risk reduction

phase Ef reduces the size of its domain of danger by moving close enough to Es. The

intuition is that were the pursuer to appear, Es would be chosen over Ef as the target since

Ef and Es are approximately the same distance from the pursuer and Es is slower than Ef .

Let rfs = rf − rs be the baseline vector from Es to Ef with associated distance dfs =

‖rfs‖2. Ef ’s domain of danger is the interior of the Apollonius circle [2] formed by the locus
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of points where Tcap,f = Tcap,s. The circle has its center at

rApol,fs = rf +
(v̄p − v̄f )2

(v̄p − v̄s)2 − (v̄p − v̄f )2
rfs (4.24)

and radius

RApol,fs =
(v̄p − v̄s)(v̄p − v̄f )

(v̄p − v̄s)2 − (v̄p − v̄f )2
dfs. (4.25)

Tcap,f cannot be the minimum where Tcap,s < Tcap,f . The maximum distance from Ef to the

boundary of the circle is

dApp,fs =

(
v̄p − v̄f
v̄f − v̄s

)
dfs, (4.26)

in the direction of rfs. Since dApp,fs is proportional to dfs, Ef may reduce this bound on

the size of its domain of danger by approaching Es and shrinking dfs. Since v̄f > v̄s, Ef can

always choose its velocity such that ḋfs < 0.

We define Ef as risk minimized with respect to Es if its Appolonius circle with respect

to Es lies completely within its sensing range, satisfying the following condition:

dfs + dApp,fs < dsense (4.27)

which is equivalent to

dfs <

(
v̄f − v̄s
v̄p − v̄s

)
dsense. (4.28)

The risk reduction phase consists of each evader moving towards any chosen slower neighbor

until either inequality (4.28) is satisfied or the pursuer enters the evader’s sensing range and

local reactive evasion is triggered. Fig. 4.7 illustrates how the domains of danger decrease

in size during risk reduction.
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4.5.5 Local reactive evasion phase

When pursuer P enters evader Ei’s sensing range, Ei only knows the Tcap of its neighbors

in N (Ei), and the pursuer P chooses its target based only on the Tcap of its neighbors in

N (P ). In this context, an evader must use its best estimate of the pursuer’s estimate of the

minimum Tcap in order to decide when to begin its reactive evasion strategy. Ei should begin

reactive evasion when Tcap,i− T ∗cap ≤ ε, for some ε > 0 where T ∗cap is the minimum Tcap for

the evaders in the set N (Ei).When Tcap,i − T ∗cap > ε, Ei can remain in place.

The following theorem states that a risk minimized evader is guaranteed to avoid capture

under local sensing if it also uses local reactive evasion.

Theorem 4.5.1. For system (4.1) under local sensing with pursuer P using local pursuit

strategy (4.23), let Ef and Es be evaders with maximum speeds v̄f > v̄s. If Ef is risk

minimized with respect to Es at the time t0 when P first enters N (Ef ), then there exists a

control input that guarantees that Ef will avoid capture.

Proof. We must consider two cases separately. In the first case, P has targeted Eg 6= Ef

when it first enters N (Ef ) Ef at time t0. In that case, Tcap,f > Tcap,g, so a local reactive

evasion strategy may be used by Ef in order to avoid becoming the target.

In the second case, P targets Ef at time t0 when it first enters N (Ef ) and dfp = dsense.

At time t0, P remains outside of the Apollonius circle defined by Tcap,f = Tcap,s by the risk

minimization condition (4.27)). Thus, P must switch to targeting Es at the moment that

Es enters N (P ) under its optimal target selection strategy. If we can guarantee that P will

sense Es before entering the circle, then P will switch its target before capturing Ef , and Ef

will be able to use reactive evasion at that point to avoid capture. Under the local pursuit

strategy with Ef as the target, ḋfp < 0, so P monotonically approaches Ef .

We will show that P cannot enter the circle without first sensing Es, so long as Ef

remains risk minimized. At the point when P senses Es, it will switch to targeting Es, and

Ef will be able to use local reactive evasion to avoid becoming the target again.
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Suppose that P does not sense Es, i.e. dsp > dsense. Suppose also that P is on the

boundary of the Appollonius circle: dfp = dApp,fs. By the triangle inequality, dsp ≤ dfp+dfs.

Substituting,

dsp ≤ dApp,fs + dfs (4.29)

≤
(
v̄p − v̄f
v̄f − v̄s

+ 1

)
dfs =

(
v̄p − v̄s
v̄f − v̄s

)
dfs.

By the risk minimization condition (4.28), we have dsp < dsense. Thus by contradiction P

cannot enter the Apollonius circle without first sensing Es.

Consider a graph G where evaders act as nodes, and an edge eij from evader Ei to evader

Ej is present only if Ei is risk minimized with respect to Ej. This forms a directed graph

with edges only going from a faster evader to a slower evader. Due to that hierarchy, any

connected component must contain a spanning tree with the slowest evader in the component

as the root.

Theorem 4.5.2. Under the local evasion strategy, an evader can only be captured if it is the

slowest evader in a connected component of G.

Proof. Let E1 be the initial target of pursuer P under local sensing when P enters N (E1)

at time t0. If E1 is risk minimized with respect to another evader E2 at t0, then by the

definition of G it is not the slowest evader in its connected component, and by Theorem 4.5.1

the target of P will eventually switch to another evader. If E1 is not risk minimized it must

be the slowest evader within its connected component, and the other evaders will be able to

use reactive evasion to avoid becoming the target, leading to the capture of E1
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Figure 4.7: Weighted-Voronoi domain of danger partition, calculated for a pursuer with
maximum speed v̄p = 1 and position not sensed by evaders. Each black dot denotes the
position of an evader and the color of the surrounding cell (domain of danger) indicates
the evader’s maximum speed. Top: initially with random initial positions. Bottom: after
running the risk reduction strategy for locally sensing evaders with sensing radius dsense = 10.
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4.6 Discussion

In this chapter, we have presented solutions for a pursuit-evasion differential game with

practical motion constraints for the evader not considered before in this setting. The optimal

strategies for the one-on-one game were used to analyze strategies in a system with multiple

evaders. We showed that the optimal strategy for the pursuer is to focus on a single evader

that can be captured in the minimum time, and that non-targeted evaders are always able to

avoid capture by using a strategy of reactive evasion. We show how to compute decentralized

state feedback reactive control laws. These reactive strategies allow an agent to remain still

until necessary. The strategies also include herding behaviors. Because of the constraint on

turning rate, the partition of the plane into domains of danger for the evaders depends not

only on relative positions but also on relative headings.

In the case that agents have limited sensing range we have shown, for evaders without

turning constraints, that a strategy for risk reduction provides a mechanism for group ag-

gregation. This behavior could be leveraged in engineered multi-agent systems with limited

sensing. For instance, if every agent (except for the slowest) stays close to at least one slower

neighbor at all times, the sensing network will remain connected at all times based on the

proof of Theorem 4.5.2.

A weakness of the current approach is the assumption that all agents have accurate

knowledge of the motion constraints and states of other agents. To address this, the strategies

will need to be adapted to uncertainties in the agent estimates of these system parameters.

For example, the approach of [58], provides strategies for each agent in a three-player pursuit-

evasion game, which are derived based on “worst case” values for uncertain parameters.
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Chapter 5

Zebra experiment

This chapter describes a field experiment conducted at the Ol Pejeta Conservancy in Laikipia,

Kenya in July 2014 to study evasive behaviors in herds of plains zebra under pursuit by an

artificial predator, the “robo-lion.”

The robo-lion zebra experiment most closely relates to the the herd evasion model of

Chapter 4, in that it features a single pursuer and a large group of heterogeneous evaders, and

indeed the model and experiment were developed in tandem. Our result for risk minimization

leading to group aggregation (presented in Section 4.5.1) sparked a discussion with Prof.

Daniel Rubenstein in the Princeton University Department of Ecology and Evolutionary

Biology, which led to our collaboration on the robo-lion zebra experiment. Observations

from the experiment in turn led to the development of the motion model incorporating

constraints on speed, turning rate, and lateral acceleration examined in Chapters 3 and 4.

Direct observation of predation has historically been difficult due to the low frequency

of events, coupled with remote locations and low visibility at night or in wooded areas. By

utilizing an artificial predator for our experiments, we can control the conditions for favorable

data collection and ensure that the behavior of the pursuer is consistent across trials. To

our knowledge, the experiment discussed in this chapter is the first example of the use of
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trajectory tracking from direct video footage to study evasive behavior in a large terrestrial

animal species in the field with an artificial predator.

Although the robo-lion is in some ways a poor substitute for a real predator (small size,

low speed, mechanical sound), the zebras do react to it as if it were a true threat. Seventeen

trials with the robo-lion were performed over the course of four days on different herds of

plains zebra. Across these trials, several behavioral themes stand out:

• Efficiency of movement: The zebras do not start to move as soon as they notice the

robo-lion, but wait until it comes closer. They match their speed to that of the robo-

lion and do not exert more effort than necessary in evasion. Once the robo-lion stops,

the zebras quickly stop and turn to face it.

• Alignment with neighbors: The zebras within a herd show a high degree of velocity

alignment with one another, staying together as a group more than would be expected

if each individual were to use a selfish classical evasion strategy.

• Spatial sorting: The different classes of zebra react differently to the threat. Mothers

and foals spend less time vigilant before starting to move, and generally move to the

front of the herd farther away from the pursuer. Males on the other hand stay to the

rear in a seemingly defensive posture.

The results presented here are preliminary, and we do not aim to prove facts about the

behavior of plains zebra, but rather to build insight into how features of our mathematical

models and behaviors in biological systems are related. We will continue work on this

project with a more thorough analysis to be published separately in the future, in which

we will characterize sources of error in the data and assess the statistical significance of our

results.

In Section 5.1, we provide background on the plains zebra and discuss previous work on

pursuit and evasion in animals. Section 5.2 describes the equipment and procedures used

to carry out the experiment. In Section 5.3 we discuss the process used to prepare the
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data for analysis. We present our results and numerical analyses in Section 5.4, focusing

on various aspects of the zebra behavior including initiation of movement, speed, distance

to the robo-lion, heading alignment, relative locations within the herd, and the relationship

between foals and their mothers during the chase. We finish with conclusions in Section 5.5.

5.1 Background

5.1.1 Plains zebra

The experiments were conducted in July 2014 at Ol Pejeta Conservancy in Laikipia, Kenya.

Ol Pejeta Conservancy is a 360 km2 fenced conservancy that features several grassy plains

separated by Acacia drepanolobium and Euclea divinorum woodlands[17].

We focus our attention solely on plains zebras (Equus burchellii). Plains zebras are found

in abundance at Ol Pejeta, allowing us to replicate our experiment on multiple different herds.

Plains zebras form large herds made up of different classes of individuals, including young

foals, their mothers, other adult females, and stallions, each of which may have different

motion capabilities and strategies for evasion. The zebras are under a constrant threat of

predation from multiple predator species in the park, primarily lions (Panthera leo). Not

unimportantly, the zebras at Ol Pejeta are accustomed to the presence of motor vehicles,

allowing researchers to come close enough to film them.

Plains zebras are large-bodied ungulates that spend the majority of their time grazing.

Social structure in plains zebra populations is organized in two layers. The fundamental

social unit for plains zebra is a “harem” consisting of a single adult male (the “stallion”) and

several unrelated adult females, along with their young offspring. The secondary structure

of a “herd” is formed where multiple harems come together. Herds can also include groups

of “bachelor males” made up of adult males that have not yet formed a harem of their own.

While membership in a harem is stable over months or years, herds fuse and fission on a

timescale of hours or days [29].
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Plains zebra foals are of the “follower” type, (as opposed to “hiding”), standing and

walking within an hour of birth and remaining with their mothers for between one and two

years [57]. As they reach sexual maturity, females are recruited to join another harem, and

males leave to join groups of bachelor males before starting their own harems.

Plains zebras at Ol Pejeta are subject to predation by lions (Panthera leo) and spotted

hyenas (Crocuta crocuta). Leopards (Panthera pardus) and cheetahs (Acinonyx jubatus)

typically favor smaller prey but have been observed to prey on zebra foals. Harems with

more young foals tend to come together with each other to form a herd, though predator

resistance for a large herd is not much more than in a harem with eight individuals [63].

Previous studies of plains zebra at Ol Pejeta suggest that lion presence can influence

the zebras’ choice of habitat. The zebras tend to favor more wooded areas at night, away

from the open plains where lions are more active [84]. Zebras staying on the plains at night

modify their behavior to move more often, and with more turns as a possible anti-predator

tactic [30].

5.1.2 Previous work

There has been much interest in recent years in understanding the hunting strategies used

by large mammalian predators. The development of low cost and high resolution Global

Positioning System (GPS) technology allows for unprecedented accuracy in the measurement

of animal trajectories, however limited battery capacity and the difficulty of deploying collars

on multiple animals necessitate tradeoffs in the design of experiments. Two main approaches

have been to place a single collar on a predator and record with high temporal resolution to

understand individual pursuit instances, or to place multiple collars with low measurement

frequency (but longer battery life) to study trends in habitat use.

Cheetah hunting behavior has been studied with a combination of GPS and accelerometer

sensors [81, 82, 40, 35]. Puma (Puma concolor) energetics during attacks were characterized

by accelerometer measurements [80]. Low frequency GPS collars were used to study space
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use by the competing predators: cheetah, lion, and spotted hyena [13]. A GPS study on

lions and plains zebras showed that zebras use lower quality grazing areas to avoid lions [9].

The “ZebraNet” project focused on understanding social dynamics in plains zebra herds,

and allowed communication between GPS collars [85, 84] over long timescale.

A hybrid approach can provide rich data as well, as in [52] where aerial LiDAR (Light

Detection And Ranging) scans of foliage were combined with GPS collars on lions to study

the effect of prey visibility on hunting strategies in different habitats.

Collecting direct video footage of an event allows the researcher to track all the members

of an animal group at once. However, processing the raw video data to extract quantitative

trajectories can be significantly more complex than with GPS sensors. In certain controlled

environments, automated tracking software can be used to automatically detect positions and

poses of animals within each video frame. For an extensive review of automated tracking

in biology, see [21]. Outdoor video tracking studies have focused on aerial species, in part

because of the high contrast between individuals and the sky facilitates automatic tracking.

However the use of multi-view video systems necessary to reconstruct three dimensional

trajectories poses additional issues. Examples include studies of collective flight trajectories

in large groups of starlings (Sturnus vulgaris) [8] and bats (Myotis velifer) [46].

Use of robotic devices in animal behavior experiments is reviewed in [47]. The use of

a robot disguised as an animal to influence group behavior in a leadership role has been

investigated successfully in several species, including stickleback fish (Gasterosteus aculeatus

L.) [28], zebrafish (Danio rerio) [61], and cockroaches (Periplaneta americana) [38].

The evasive actions of schools of zebrafish in response to an artificial predator have also

been studied, for a predator moving on a straight line path [70], and a predator controlled

through a real-time feedback control system based on visual tracking of the fish [73].

The experiment described in this chapter serves as a proof of concept that robotic artificial

predator experiments can be performed in the field with large mammals, using video footage

for quantitative tracking.
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Figure 5.1: The “robo-lion” remote-controlled artificial predator device, measuring approxi-
mately 40 cm wide and 60 cm long. Left: side view. Right: front view.

5.2 Equipment and methods

The “robo-lion” device is a remote controlled car (Traxxas E-Maxx model 3903) with a

puppet in the form of a lion mounted on top, shown in Fig. 5.1. The tan color, shaggy mane,

and upraised tail serve as visual cues to suggest the form of a predatory lion (Panthera leo).

The robo-lion is much smaller than any lion, and has a lower top speed. The top speed

reached by the robo-lion in our experiments is estimated to be 8.8 m/s, during trial 14-4

(though this was an outlier, as the mean top speed across all trials is approximately 4.2 m/s).

The top speed of a lion during a prey chase is reported as 13.9 m/s in [24]. Nonetheless, the

zebras did respond to the approaching robo-lion with evasive action in all trials.

Two cameras were used to capture the trials: a Canon VIXIA HF R500 digital camcorder

with zoom, and a wide-angle GoPro HERO3: White Edition with fixed focal length. Both

cameras record 1080p resolution video at 30 frames per second. The camcorder was mounted

on a tripod at eye level in the vehicle. It was used primarily to collect closeup views of each

zebra before the chase began that were viewed afterward to determine the sex and approx-

imate age of each individual. The camcorder footage during the chase was also consulted

during the tracking process to help disambiguate between zebras that crossed paths with
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each other. The GoPro was mounted at the top of a sturdy 6.81 m tall fishing pole. The

footage from the GoPro was used for trajectory tracking.

For each trial with the robo-lion we used the following procedure:

1. Drive to find a herd of plains zebras that includes at least one young foal less than a

year old.

2. Park the vehicle as close as possible without causing the herd to flee.

3. Set up the cameras and start filming, keeping as quiet as possible.

4. Wait ten minutes until the zebras have gone back to grazing.

5. Drive the robo-lion in a straight line path towards the herd, aiming for the foal when

possible.

The chase would continue for approximately 30 seconds, or until the robo-lion was out of

range of the controller, or out of view of the operator. In some cases we attempted a second

chase after a short pause, but in practice these occurred too far away from the camera to be

able to track them reliably. The analysis presented in this chapter truncates the tracks at

the time that the robo-lion starts its second chase.

5.3 Data processing

The process used to extract meaningful quantitative data from the raw GoPro video consists

of several steps. First, the videos from the GoPro are run through a stabilization algorithm

to remove the effects of camera movement due to wind. Second, the positions of the zebras

and the robo-lion are annotated manually to create the “track” data for each video. Next the

parameters for the transformation from the image coordinate frame to a “ground” coordinate

frame are estimated based on the location of the horizon within the video frame. Lastly, the

trajectory data is processed with a smoothing algorithm to remove noise from the manual

track data. The steps are described in detail in Appendix A.
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Zebras were categorized into four classes based on close analysis of the camcorder footage

and photographs taken prior to the robo-lion chase:

1. Foals : Zebras less than one year old.

2. Mothers : Adult females observed to nurse a foal, or otherwise associate closely with a

specific foal.

3. Males : Adult males, either the stallion of a harem or a member of a bachelor group.

4. Others : Any zebras not included in the other classes. These are primarily adult non-

lactating females, but may include adult males that could not be identified visually.

Zebra behavior at each video frame was categorized into one of four states:

1. Head down: Zebra is either lying on the ground or standing with its head at ground

level, either grazing or standing still.

2. Head up: Zebra is standing stationary with its head up, vigilant.

3. Moving : Zebra is walking or running with its head up.

4. Out of view : Zebra is not visible in the video frame.

The timings of state changes for an individual zebra are accurate to within one tracked video

frame in either direction (±0.2 s).

5.4 Results and analysis

Tracking data was recorded and analyzed for a total of seventeen trials with the robo-lion

taking place on July 13th through 16th, 2014. Table 5.1 summarizes the number of zebras

of each class tracked for each trial. The total number of tracks differs from the maximum

number of zebras in a single frame in some trials due to occlusion: If a zebra disappears
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Table 5.1: Summary of tracking data from trials of the robo-lion zebra experiment.

date trial duration (s) foals mothers males others
total
tracks

max zebras
in a frame

13 1 40.0 1 1 1 7 10 10
13 2 59.8 0 2 1 8 11 7
13 3 30.0 0 0 1 33 34 24
13 6 59.8 1 1 1 3 6 6
13 8 48.2 0 1 1 5 7 7
14 1 40.0 1 2 0 11 14 8
14 3 41.8 0 1 2 4 7 7
14 4 30.0 3 3 2 16 24 21
14 5 42.6 0 0 2 7 9 9
15 1 19.8 1 1 2 7 11 11
15 2 60.0 2 0 1 15 18 18
15 3 45.0 0 0 1 30 31 31
15 5 54.8 1 2 2 11 16 16
15 6 30.0 0 0 0 10 10 10
16 1 90.0 2 2 2 19 25 24
16 3 40.0 1 1 0 1 3 3
16 5 24.0 1 1 3 4 9 9

behind an obstacle for some frames, it is tracked as a new zebra when it reappears if the

identity is not clear to avoid the possibility of mislabeling.

The smoothed tracked trajectories are illustrated in Figs. 5.2, 5.3, and 5.4. In order to

compare between trials, the coordinates in a given trial are scaled by the average speed of

the robo-lion for that trial. Multiple trials are shown on the same set of axes for comparison

purposes only: in actuality trials took place kilometers apart from one another in separate

areas of the Ol Pejeta conservancy. We see in general that the zebra herds tend to stay

together, with individuals following paths roughly parallel to the aproaching robo-lion’s

heading.
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Figure 5.2: Smoothed trajectories for trials 13-1 through 14-1 in coordinates scaled by the
average speed of the robo-lion. Color denotes zebra class; see Fig. 5.4 for legend. Dotted
black lines indicate extrapolated robo-lion positions before it enters the camera view. Crosses
represent the origin of the world coordinate frame (camera location) for each trial.
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Figure 5.3: Smoothed trajectories for trials 14-3 through 15-3 in coordinates scaled by the
average speed of the robo-lion. Color denotes zebra class; see Fig. 5.4 for legend. Dotted
black lines indicate extrapolated robo-lion positions before it enters the camera view. Crosses
represent the origin of the world coordinate frame (camera location) for each trial.
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Figure 5.4: Smoothed trajectories for trials 15-5 through 16-5 in coordinates scaled by the
average speed of the robo-lion. Color denotes zebra class. Dotted black lines indicate ex-
trapolated robo-lion positions before it enters the camera view. Crosses represent the origin
of the world coordinate frame (camera location) for each trial.
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Table 5.2: Average, standard deviation σ, and maximum estimated speeds in m/s for each
trial, including only video frames where an individual’s activity state is “moving.” Dashes
indicate that no foals were present in the trial.

robo-lion foals all zebras
day trial mean σ max mean σ max mean σ max
13 1 2.5 0.6 4.0 2.6 1.2 4.8 2.1 1.4 5.4
13 2 4.0 1.0 5.7 - - - 2.7 1.5 8.2
13 3 3.3 1.5 6.7 - - - 1.9 1.6 15.1
13 6 2.2 1.1 3.8 0.8 0.7 2.5 0.8 0.6 2.8
13 8 1.1 0.5 2.0 - - - 0.9 0.5 3.3
14 1 3.1 1.1 5.0 3.2 2.5 7.1 4.3 2.3 10.7
14 3 1.9 0.8 3.6 - - - 1.5 0.8 3.9
14 4 7.8 0.7 8.8 8.1 3.6 15.7 7.2 4.1 16.2
14 5 3.8 1.3 5.6 - - - 4.2 2.4 21.1
15 1 3.1 0.5 4.2 1.1 1.5 4.3 2.4 1.4 4.7
15 2 1.9 0.8 3.3 1.9 0.8 3.6 0.9 0.7 4.4
15 3 2.0 0.7 3.0 - - - 2.2 1.7 6.6
15 5 1.9 1.0 3.6 0.6 0.3 1.3 0.7 0.5 2.7
15 6 2.6 0.4 3.4 - - - 1.8 0.7 4.4
16 1 1.2 0.8 2.4 0.5 0.5 1.4 0.4 0.3 1.8
16 3 2.0 0.6 3.0 1.5 0.7 2.9 1.5 0.7 3.4
16 5 3.0 0.5 3.6 1.6 0.9 3.9 1.8 1.1 5.5

5.4.1 Speed

Though the manufacturer claims that the remote-controlled car used in the robo-lion can

reach top speeds of greater than 30 miles per hour∗ (13.4 m/s), the top speed estimated

from smoothed tracking data is 8.8 m/s, during trial 14-4 (though this was an outlier, as the

mean top speed across all trials is approximately 4.2 m/s). The inconsistent and low speeds

were likely caused by a combination of difficult grassy terrain and partial battery discharge.

Nonetheless, in each trial the speed of the robo-lion during the chase is significantly less

than the top speed of a plains zebra, reported as approximately 16.0 m/s in [24]. Table 5.2

summarizes the average and maximum speeds for the robo-lion, zebra foals, and all zebras

for each trial.

∗https://traxxas.com/products/models/electric/emaxx-tsm
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In every trial with foals present, except for trial 15-5, the top speed of each foal is greater

than the average speed of the robo-lion in that trial. This suggests that all of the zebras

including young foals have the ability to outrun the robo-lion.

In order to compare results between trials, we normalize the smoothed trajectory data for

a given trial by dividing the spatial coordinates of the individuals by the average robo-lion

speed for that trial. One unit in these “scaled coordinates” represents the average distance

traversed by the robo-lion in one second. For the remainder of this chapter, all analysis is

based on scaled coordinates.

Using the scaled coordinates, we calculate the average speed of each zebra across the

video frames when its state is “moving.” Combining the 17 trials, the average speeds with

standard deviation for each class of zebra are: 0.64 ± 0.50 unit/s for foals, 0.60 ± 0.49 unit/s

for mothers, 0.62 ± 0.48 unit/s for males, 0.69 ± 0.61 unit/s for others, and 0.67 ± 0.58

unit/s overall including all classes. Since these average speeds are all less than one in the

scaled coordinates, it means that the zebras on average ran slower than the robo-lion over

the course of the chase. This indicates efficiency of motion, in that the zebras did not run

significantly faster than necessary to avoid capture by the robo-lion.

5.4.2 Initiation of movement

Zebra activity at each tracked frame was classified into one of four states: head down (graz-

ing), head up (alert), moving, and out of view. When possible, we would set up the camera

equipment and wait for the majority of the herd to go back to a head down state before de-

ploying the robo-lion, so that we could gather data on the time spent alert before movement

for each zebra. Fig. 5.5 shows the fraction of the visible zebras in each state over time for

each trial.

For zebras in the head down state at the start of the trial, we calculated the time spent

in the head up state before the initiation of movement. Individuals starting in the head up

or moving state were excluded. Fig. 5.6 illustrates the differences between the four classes
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of zebra with respect to time spent in the head up state. The mother zebras spent notably

less time with their heads up before initiating movement, with all but one spending less than

8 seconds with their head up prior to movement. The scaled distance to the robo-lion at

initiation of movement is shown for each zebra not initially moving in Fig. 5.7. There is no

apparent difference between the different classes with respect to the distance at the start of

movement.

5.4.3 Distance to the robo-lion

The success of a pursuit is measured by the minimum distance to the evader. A real lion

must come within a few meters before it can leap forward and attempt to grab its prey.

We calculate the minimum distance to each zebra attained by the robo-lion in the scaled

coordinates, shown organized by trial in Fig. 5.8.

The minimum scaled distance to the robo-lion among all foals is 2.28 units. Among all

mothers, the minimum scaled distance is 1.97 units. Among males it is 1.71 units, and among

others it is 1.01 units. The minimum scaled distance to the robo-lion out of all trials occurs

for zebra 5 (a non-mother adult female) in trial 13-1 at time t = 33 s, with a distance of 1.01

scaled units. At that time, zebra 5 is already in motion with a scaled speed of 1.78 units/s,

so the robo-lion with an average scaled speed of 1 unit/s would never be able to catch up.

The variation in minimum distances between trials may be due largely to differences in

herd vigilance. A predator that sneaks up on a herd without being detected can come closer

than if it approaches while the herd is watching. For a predator with a lower top speed and

less stamina than a zebra, such as a lion [24], capture will be impossible unless the predator

can close the distance to its target before the target accelerates past the predator’s speed.

Once the zebra reaches the speed of its pursuer, the distance will start to increase, assuming

they are both traveling in the same direction.
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Figure 5.5: Fraction of visible zebras in each activity state over time. Colors denote activity
state: Blue is moving, red is head up, and yellow is head down. The vertical dashed line
shows the time when the robo-lion comes into view, and the solid vertical line shows the
time when the robo-lion comes to a stop.
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Figure 5.6: Time spent with head up before initiating movement for each individual in the
four classes of zebra, combined from all tracked trials. Individuals with head up at the start
are excluded. Each dot represents a single zebra. Data is binned into 0.5 s intervals. Head
up durations are accurate to within two tracked video frames, or 0.4 s.

Figure 5.7: Scaled distance to robo-lion at start of movement for each individual in the
four classes of zebra, combined from all tracked trials. Individuals moving at the start are
excluded. Each dot represents a single zebra. Data is binned into 0.5 unit intervals.
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Figure 5.8: Minimum scaled distance to the robo-lion for individual zebras in each of the
tracked trials.

5.4.4 Dynamics of heading alignment

In order to remain together while in motion, the zebras must align their heading directions.

We can study the cohesiveness of the herd by computing order parameters that encode

alignment, both among the zebras and in relation to the robo-lion. For zebra Zi at time t with

heading angle θi(t), let ti = (cos θi, sin θi)
T be the unit vector in the direction of its heading,

and let ri(t) be its position in the scaled coordinates. Similarly let tlion = (cos θlion, sin θlion)T

for the robo-lion with heading θlion(t) at time t, and let rlion(t) be its position in the scaled

coordinates.
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For a herd of n zebras Z1 through Zn, we define the “herd alignment” order parameter

Φherd(t) at time t as

Φherd(t) =
1

n

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

ti(t)

∣∣∣∣∣
∣∣∣∣∣ .

The herd alignment order parameter takes values in the range [0, 1], with φ = 1 if and only

if all zebras in the herd are facing the same direction (ti = tj for all zebras Zi, Zj within the

herd).

To measure how closely the headings of the zebras match the heading of the robo-lion,

we define the “herd–lion heading correlation” order parameter Φlion at time t as

Φlion(t) =

(
1

n

n∑
i=1

ti(t)

)
· tlion(t).

The herd–lion heading correlation takes values in the range [−1, 1]. We note that as it is

defined, Φlion ≤ Φherd in all cases, with Φlion = 1 if and only if all zebras in the herd are facing

the same direction as the robo-lion (ti = tlion for all zebras Zi within the herd). Conversely,

if and only if all lions are facing the opposite direction of the lion, then Φlion = −1.

Lastly we define the “herd evasiveness” order parameter Φevade(t) at time t as

Φevade(t) =
1

n

n∑
i=1

(
ti(t) ·

ri(t)− rlion(t)

‖ri(t)− rlion(t)‖

)
.

This order parameter measures on average how close the heading of each individual zebra

in the herd matches the direction of classical evasion, the direction directly away from the

robo-lion. Φevade(t) = 1 only if each individual zebra is using a classical evasion strategy,

and Φevade(t) = −1 only if each zebra is facing directly towards the robo-lion.

There is an implicit tradeoff between herd alignment and herd evasiveness. The only

situation where both Φherd and Φevade both equal one is if the positions of all of the zebras

lie on the line of sight of the robo-lion, and all of the zebras and the robo-lion are facing in

the same direction.
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Figure 5.9: Herd alignment and evasiveness order parameters over time for trial 16-1, with
a maximum n = 23 zebras in frame at one time. The shaded region represents video frames
where the robo-lion is in view and moving. Robo-lion heading is extrapolated as constant
outside the shaded region.

We find that for all tracked trials, the herd alignment order parameter is higher than the

others when averaged over time. This suggests that the zebras are more concerned with herd

cohesion than their own evasion. However, the fact that the robo-lion is no match for the

zebras with respect to speed means that they can avoid capture without utilizing high-effort

strategies like those discussed in Chapter 4.

Fig. 5.9 shows the timeseries of the three order parameters for trial 16-1. Herd alignment

is highest throughout, with the other two varying during the chase. Once the robo-lion stops,

the three order parameters approach zero as some members of the herd turn around to face

the robo-lion in a defensive posture.

5.4.5 Locations within the herd

From watching the video footage, it appears that young foals and their mothers stay towards

the front of the herd during the chase, and the male stallions seem to steer the group from

the rear. To measure the extent of this spatial sorting, we define the “forward herd position”
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parameter a which represents how far an individual is from the center of mass of its herd,

projected onto the average direction of motion of the herd. For zebra Zi in a herd of n

zebras, its forward herd position at time t is calculated as

ai(t) = (ri(t)− rherd(t)) ·
vherd(t)

‖vherd(t)‖

where rherd is the herd center of mass with each zebra weighted equally, and vherd(t) is the

velocity of the center of mass, equivalent to the average velocity of zebras in the herd.

Fig. 5.10 illustrates the average forward position for each zebra, arranged by trial and by

class. Taking the average within each class combined for all trials, the foals (a = 1.37±2.60)

and mothers (a = 1.78 ± 3.27) are more often found towards the front of the herd (a > 0),

and males (a = −0.17 ± 2.60) and others (a = −0.31 ± 4.45) are found towards the rear

(a < 0). Although the differences in means are small, with considerable standard deviations,

it supports the theories that mothers and foals seek to keep the bulk of the herd between

them and the pursuer, and that males lag towards the rear in order to defend their harem

from the attacker.

There is a large apparent variation in herd size between different trials. In some cases this

is due to some zebras not participating in the chase. For instance, in trial 14-4, one zebra

does not regard the robo-lion as a threat, and remains stationary as the robo-lion passes it.

Additionally in some trials, the different harem groups making up the herd do not come

together, seeming to evade from the robo-lion as separate independent units. It may be that

if we study zebra positioning within an individual harem, rather than in the whole herd,

then the spatial sorting of mothers, foals, and stallions will become more clear.

5.4.6 Dynamics of mother-foal pairs

We were especially interested in studying the behavior of mother and foal pairs to see how

they react to a pursuer. From careful analysis of the camcorder footage taken before the
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Figure 5.10: Average forward position in herd in scaled coordinates for each tracked zebra.
Standard deviations for individual zebras are typically on the order of 1 or 2 units. Top:
arranged by trial with color denoting zebra class. Bottom: arranged by zebra class, binned
in 0.2 unit increments. Each dot represents a single zebra.
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robo-lion chases, eleven mother-calf pairs were identified in the tracked zebra data across

several trials: 13-1, 13-6, 14-4 (3 pairs), 15-1, 15-5, 16-1 (2 pairs), 16-3, and 16-5. Trajectories

of the mother-foal pairs and the robo-lion are illustrated in Fig. 5.11.

In all cases, the mother-foal distance remained below the foal-lion and mother-lion dis-

tances at all times, and the ratio of mother-foal distance to foal-lion distance was never

observed to be greater than 0.4. In the four cases that the mother initiates movement first,

the foal follows by moving within 2.8 s. In four cases, the foal is moving at the start of the

trial. In two cases the mother and foal initiate movement at the same time. The last case

has the foal leading its mother in movement initiation by 2.4 s.

We calculate the relative angle between lion-zebra baseline vectors for the pairs, as in

the angle ψ in the shape coordinates of the three-agent pursuit-evasion model in Chapter

2. This angle measures how close the robo-lion comes to a state with the robo-lion directly

between the mother-foal pair, which would correspond to ψ = 180◦. Across all mother-foal

pairs, we found the maximum relative heading difference to be only ψ = 16.1◦.

The data suggests that the zebra foals pay close attention to their mothers in the initiation

of movement, and follow them during the chase.
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Figure 5.11: Trajectories of mother-foal pairs with the robo-lion, in the robo-lion speed-
scaled coordinate frame. Trajectories begin at the time of first movement from either zebra,
and end when the tracks end, or prior to robo-lion starting its second chase, whichever occurs
first. Grey lines indicate the baseline vector from lion to zebra at the time when the zebra
begins moving.
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5.5 Conclusion

In this chapter we presented results and analysis for a field experiment to study the evasive

behavior of plains zebra in response to an artificial predator, the robo-lion. We showed that

it is possible to use video footage from a single camera to extract quantitative trajectory data

for all members of the herd, which allows us to study many aspects of the herd behavior.

In many ways the zebras behaved in a manner consistent with our mathematical models,

and the differences in behavior from our predictions serve as inspiration to develop new

models. We found that the behavior of zebra foals and their mothers differed from the

others in the herd with respect to movement initiation and relative position in the herd, in

that they spent less time with their heads up before starting to move, and tended to be found

in the front half of the herd over the course of the robo-lion chase. The mother and foal

pairs stayed close together while evading, avoiding separation as in the model of Chapter 2.

The zebras did not apparently use their full effort to evade, only moving when necessary

and as fast as necessary to keep a safe distance from the robo-lion. This is consistent with

our model of reactive evasion from Section 4.4, however we did not account for the situation

of group evasion from a pursuer with a lower top speed.

Though the results are still preliminary, this experiment has served as both a validation

of our modeling approaches and inspiration for the development of new models of pursuit

and evasion.
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Chapter 6

Final remarks

In this thesis we have discussed several systems of pursuit and evasion with multiple evaders.

We looked at feedback control laws trading off between herding and evasion in Chapter 2.

We solved the problem of reaching a point on the plane in minimum time for an agent with

constraints on speed, turning rate, and lateral acceleration in Chapter 3. In Chapter 4,

we analyzed a differential game of pursuit featuring an evader with constraints on speed,

turning rate, and lateral acceleration, against an omnidirectional, but speed-limited, pursuer,

and extended that model to include multiple heterogeneous evaders, and derived strategies

that allow individuals to avoid capture under different conditions. Finally in Chapter 5 we

discussed preliminary results from a field experiment that looked at the evasive actions of

plains zebra in response to pursuit from an artificial predator.

In Section 6.1 we summarize our results from each chapter, and in Section 6.2 we offer

some ideas for future research in the mathematical modeling of pursuit and evasion, and in

the use of robotic systems to aid in biological research in the field.

6.1 Conclusions

In Chapter 2 we presented a nonlinear model for a pursuer and two evaders inspired by

predation in caribou. We defined strategies a priori in the form of feedback control laws
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such that for each agent a single parameter encodes a tradeoff between two goals by linear

interpolation. The pursuer trades off between targeting each of the two evaders for classical

pursuit. The evaders each trade off between a herding strategy of approaching each other,

and a classical evasion strategy of moving directly away from the pursuer.

We took inspiration from the example of caribou predation in nature to define the capture

condition. A young caribou is most vulnerable when it is separated from its mother, so we

label one evader as the calf and one as its mother, and define capture as the condition that

the pursuer reaches a point between the two evaders.

By studying a model with constant speeds and no turning constraints on the agents, we

were able to reduce the full system of three agents moving on the plane to a three-dimensional

reduced system of shape-variables describing the relative positions of the agents. We showed

that if the two evaders both use a pure evasion strategy, the pursuer is always able to

separate them from each other. In the case of the mother using a pure evasion strategy we

prove conditions such that the pursuer cannot come between the mother and the calf. We

showed that as long as the mother is initially closer to the calf than to the pursuer, a calf

strategy of pure herding will always avoid capture.

We next turned to the study of optimal strategies for an agent with constraints on speed,

angular turning rate, and lateral acceleration. The constraints were chosen as a step towards

a biologically relevant model of terrestrial animal locomotion while still keeping the steered-

particle equations of motion. In Chapter 3 we solved the problem of reaching a point on the

plane in minimum time for an agent with these motion constraints, and in Chapter 4 we con-

sidered a pursuit and evasion system with this type of agent as the evader. We demonstrated

the connection between minimum-time problems and pursuit-evasion differential games by

showing how the extremal trajectories generated through Pontryagin’s minimum principle

are identical in both systems.

For the minimum-time problem in Chapter 3, we derived analytic expressions for the op-

timal open-loop control switching times for any destination point on the plane. In addition,
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we presented a state-feedback formulation of the optimal control based on the relative posi-

tion of the destination in a body-fixed frame. Special cases for relaxed and extreme values

of the lateral acceleration constraint were also considered, with minimum-time trajectories

derived in both open-loop and state-feedback form in each case. For highly constrained lat-

eral acceleration, we showed that the minimum-time trajectories resemble those found for

differential-drive robots, consisting of rotation in place and forward straight-line motion.

In Chapter 4 we studied agents with constraints on speed, turning rate, and lateral ac-

celeration as evaders against an omnidirectional pursuer with limited speed, both in a one-

on-one setting as a differential game and in a system with multiple heterogeneous evaders

interacting with each other. For the one-on-one differential game, we derived optimal trajec-

tories for each agent for any initial conditions, and showed how feedback control laws could

be computed based on the pursuer’s position relative to the evader in the reduced coordi-

nates. We found that the optimal pursuer strategy is to follow a straight line path, and

the optimal evader strategy is to follow a trajectory that is equivalent to the minimum-time

trajectory to reach its location at capture.

We used the optimal strategies from the one-on-one differential game as building blocks to

derive strategies in a system with a single pursuer and a group of evaders with heterogeneous

motion constraints. We showed that the optimal strategy for the pursuer is to focus on a

single evader that can be captured in the minimum time, and that non-targeted evaders are

always able to avoid capture by using a strategy of reactive evasion. Under reactive evasion,

we show that evaders are only forced to move evasively when they are close to becoming the

target, which is equivalent to the pursuer approaching the edge of their domain of danger.

This efficiency of motion gives the evaders the freedom to enact other behaviors at times

when they are not in danger, such as a control law that brings evaders to a desired formation

or maintains group cohesion.

We also considered the case in which the pursuer and evaders have radius-limited sensing.

In the system with limited sensing, we showed that evaders without constraints on turning
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rate can avoid capture through a strategy of risk reduction whereby each individual evader

approaches a slower neighbor. The strategy provides a mechanism for group aggregation, as

the selfish actions of each individual bring the group closer together as a whole. We suggested

how the risk-reduction strategy could be adapted in engineered multi-agent systems with

limited sensing to ensure that the sensing network remains connected at all times.

In Chapter 5 we presented preliminary results from a field experiment that used an

artificial remote-controlled predator to study the evasive behaviors of plains zebra. We

showed that it is possible to use video footage from a single camera to extract quantitative

trajectory data for all members of the herd, which allows us to study many aspects of the herd

behavior. In many ways the zebras behaved in a manner consistent with our mathematical

models, and the differences in behavior from our predictions serve as inspiration to develop

new models.

From analysis of the robo-lion chases, we identified a few consistent motifs in the evasive

behavior of the zebras. The zebras were efficient in their movement, only starting when

necessary and matching the speed of the robo-lion to keep a safe distance. The zebras

showed a preference for herd cohesion over individual evasion by aligning their velocities

with each other throughout the chase. Lastly, the different classes of zebras appeared to

differ in their reactions to the robo-lion. The mother and foal pairs seemed to spend less

time vigilant before deciding to move, and they were found in the front half of the herd more

often than males, on average.

6.2 Future directions

6.2.1 Improving models of pursuit and evasion

There is still much work to be done in the study of mathematical models for pursuit and

evasion. If we aim to design control laws for autonomous robots to implement pursuit and

evasion, the development of more realistic motion models will be necessary. However, as
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more complexity is added to a model, it becomes less analytically tractable, forcing the use

of numerical methods to compute the optimal control inputs. While numerical methods

can provide practical results, it is important to study simplified models as well in order to

gain intuition into the structural features of the system. In this thesis we have focused our

attention on simple models that afford analytic results while displaying some qualitative

features of the biological systems that inspire us.

There are some clear paths forward to extend the work presented in this thesis. For the

one-on-one differential game presented in Chapter 4, we assumed an omnidirectional pursuer

with no constraints on its turning ability. Since the pursuer’s heading was not included as a

system state, we were able to reduce the system to two dimensions. If we adapt the model

to include both pursuer and evader turning constraints, richer and more complex strategies

would be possible, such as the veering maneuvers considered in [44, 41] that allow a slower

but more agile evader to avoid capture. However, as more dimensions are added to the

system it will be more difficult to find analytic solutions.

Similarly, adding constraints on forward acceleration would make the movement models

of Chapters 3 and 4 more realistic while raising the complexity significantly, as the speeds

of each agent would become additional states in the system.

A common feature of the mathematical models presented in this thesis is that each agent

has exact knowledge of the system state, including the parameters of the motion constraints

for each agent. In a realistic system, these quantities would be subject to uncertainties due

to limitations in sensing abilities. To address this, the strategies will need to be adapted to

accommodate uncertainties in the agent estimates of these system parameters. One approach

is for evaders to build their strategy based on their worst-case estimate of the abilities of

the pursuer, as in the model with uncertain speeds in [58]. In a sense, the evasive strategies

developed in Chapter 4 represent a worst-case response to a pursuer with known speed but

unknown limits on turning constraints, in that an evader strategy that avoids capture from

an omnidirectional pursuer will also work on a pursuer with more constraints on its motion.
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Control laws derived from pursuit and evasion can be relevant for the deployment of

multi-agent robotic systems. In real world environments, robots might face pursuit, either

from hostile agents or from natural predators mistaking the robots for their prey. Thus the

ability to avoid capture while staying cohesive as a group will be important to successful

operation. As suggested at the conclusion to Chapter 4, individual pursuit control laws can

be adapted for problems of group aggregation and rendezvous.

6.2.2 Use of robotics in biological research

The use of robotic devices in biological field experiments presents a great opportunity to test

theories and gather data that would otherwise be unavailable, both in the sense of bringing

the behavior of interest closer to the researcher and in accessing remote locations to observe

animals in a natural setting. Our robo-lion experiment presented in Chapter 5 serves as a

proof of concept of the viability of the use of vision-based tracking along with artificial robotic

predators to study evasive behaviors in terrestrial animals. The accuracy of the trajectory

tracking was limited primarily by the low resolution of the camera, and the low viewing

angle due to the distance from the herd. In future studies, higher spatial resolution can be

achieved through the use of an unmanned aerial vehicle, such as a quadcopter, mounted with

a high resolution camera to capture an aerial overhead view of the movement of the herd.

An appropriately designed robot can go to places that would be too dangerous for a per-

son, opening up new opportunities to collect data about animal behavior in the field. Unob-

trusive terrestrial vehicles could be utilized to stealthily follow a herd of animals throughout

the day by posing as a member of a non-threatening species, for instance using a “robo-

warthog” to monitor herds of plains zebra. Such a robot could safely approach the animals

of interest closer than a person could, and with modern battery and solar technology a robot

could endure long deployments and wait tirelessly to gather data. As automated vision-

based tracking improves, it may even become possible to program a robot to follow a specific

animal of interest without the need to install an obtrusive GPS collar.
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Appendix A

Data processing for the robo-lion

zebra experiment

A.1 Video stabilization

In order to achieve consistent tracking between video frames and remove distortion due

to camera movement, it was necessary to process the overhead video with a stabilization

algorithm. We used a custom algorithm based on the “SIFT Flow” dense optical flow

algorithm [50] with additional smoothing along each row of pixels in the frame.

The wide-angle lens of the GoPro Hero3 introduces radial distortion that warps pixel

positions near the edge of the frame, causing straight lines in the scene to become curves in

the image. Using the functions of the Matlab Computer Vision System Toolbox, we estimated

the camera’s distortion coefficients using a checkerboard grid pattern and corrected for the

distortion in the stabilized video frames. For these stabilized and “rectified” frames, straight

lines in the scene are displayed as straight lines in the image.

During the experiments, high wind combined with the flexibility of the camera-mounting

pole to cause unsteady oscillations in the camera’s position and orientation. The GoPro

Hero3 camera features a CMOS light sensor with a “rolling shutter.” This means that
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during filming, each frame is generated by reading one row of pixels at a time from the

sensor to build up the full image. When the camera is moving while filming, each row of

pixels in a given frame will have a slightly different view of the scene, and must be stabilized

independently.

Stabilization is useful for many video applications, including hand-held video, automotive

dash-cam footage, and video taken from unmanned air vehicles such as remote controlled

quadcopters. Previous work on video stabilization with rolling shutter focus on removing

jitter for aesthetic reasons, and are unconcerned with the perfect registration of background

between frames that is necessary for out tracking approach. Several algorithms have been

proposed, including [3] that views stabilization as a temporal super-resolution problem, al-

lowing them to separate moving objects from background jitter. In many cases the time-

varying pose of the camera is estimated explicitly under a simplified motion model for camera

movement within a frame, such as rectilinear motion [16], affine motion [15], or a piecewise

quadratic model [49].

Simplified motion models allow for faster computation, but give less accurate results. For

our purposes we seek the highest accuracy without regard for the time it takes to compute.

Thus we use a dense optical flow algorithm to consider the movement of each pixel in the

image individually, rather than a sparse feature detection scheme that considers a subset of

points of interest to estimate global motion.

The procedure we follow for stabilization is as follows. Let F0 and F1 be two consecutive

frames of video. Let pk(x, y) be the “pixel” in frame Fk at location (x, y), where x is

the column and y is the row. We apply the “SIFT Flow” dense correspondence algorithm

from [50] to analyze pixel movement (or “optical flow”) between the frames. For each pixel

p0(x, y) in F0, SIFT Flow returns an offset vector ∆(x, y) = (∆x,∆y)
T such that the pixel

p1(x + ∆x, y + ∆y) is the pixel in frame in F1 that most closely matches p0(x, y) according

to the “Scale-invariant feature transform” (SIFT) descriptor. The SIFT descriptor, first
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proposed in [53], is a mathematical description of the color gradients in the neighborhood of

a given pixel in an image.

For each row y in F0, we use least-squares minimization to calculate coefficients cy =

(c1, c2, c3, c4, c5) that minimize the error

E =
∑
x

||∆(x, y)− g(x, cy)|| (A.1)

where g(x, c) is a smooth polynomial mapping from the column x and coefficients c to the

value of the offset vector in the form

g(x, c) =

 c1 + c2x

c3 + c4x+ c5x
2

 . (A.2)

Other forms of the mapping with higher order polynomials were considered, but the form

in (A.2) that is linear for the column and quadratic for the row was found to produce results

that were visibly indistiguishable with less computation time.

Once the coefficients have been computed for each row, the set of all smoothed pixel

offsets are used to generate an inverse image transform, which is applied to frame F1 to

bring it into alignment with F0. The whole process is repeated for frames F1 and F2, and so

on, for all frames in the video.

The SIFT Flow algorithm works well for pixels in highly textured regions of an image

with rich color gradients. Image areas covered by a single flat color, e.g. a clear blue sky,

can yield low quality results. Since any one pixel in the sky is similar to any other, the

offset vector returned by the algorithm may not correspond to the actual camera movement.

To address that problem in videos with a clear sky, we segmented each frame into sky and

ground regions using Matlab’s rgb2ind color quantization function and discarded pixel offsets

from the sky region. The overhead video from trials 13-8, 15-5, and 16-5 were processed in

this way.

128



A.2 Track extraction

Due to the low contrast and changing size and shape of the zebras within the video frames,

none of the off-the-shelf tracking programs that we tried were able to reliably track zebra

positions automatically. Thus, the positions of each zebra and the robo-lion were recorded

manually for each trial. The framerate was subsampled to five frames per second (down from

thirty frames per second in the stabilized video) in order to reduce the workload. The track

position data was entered using “Tracker” (physlets.org/tracker/), a free program from

the NSF-funded Open Source Physics project. Princeton University undergraduates Julie

Pourtois, Marina Latif, Pria Louka, and Lisa Sheridan assisted with the manual tracking.

In all, tracking data was recorded for seventeen trials with the robo-lion taking place on

July 13 through 16, 2004. Table 5.1 summarizes the number of zebras of each class tracked

for each trial.

A.3 Coordinate transformation

In order to analyze the tracked trajectories, we need to find a transformation from the tracked

positions on the image to the actual positions on the plane of the ground. If we assume that

the ground is flat and level with the horizon, then it is possible to construct a “homography”

transformation (a mapping between two planes in a 3D space) from the image plane of the

camera to the ground plane in the world by estimating the orientation (roll, pitch, and yaw

angles) and height of the camera relative to the ground.

We use the position of the horizon in the first frame of the stabilized video to estimate

the orientation of the camera in world coordinates. The horizon line in the image is detected

automatically: First a Sobel filter is applied to highlight vertical gradients in the image, then

a Hough transform is performed which detects the location of the dominant horizontal line.

The angle of the horizon line in the image provides a direct estimate of the roll angle θroll

of the camera. The pitch angle θpitch is calculated from the vertical distance from the horizon
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Figure A.1: This image illustrates the homography transformation from image to world
coordinates for trial 14-4. The green line is the estimated position of the horizon. The red +
indicates the center of the image, which is the origin of the image coordinate frame. Yellow
lines show points on a square grid of lines spaced 25 m apart in world coordinates that have
been transformed to the image coordinates and overlaid on the image. It is clear that spatial
resolution in the depth direction (y-axis in world coordinates) is severely reduced for faraway
points due to the low view angle.

line from the center of the picture. The yaw angle is a free parameter and we set it to zero,

with the consequence that the y-axis in our world coordinates corresponds with the projection

of the camera direction on the ground plane (i.e. the world (ground plane) coordinate frame

is not necessarily aligned with magnetic North or any other absolute heading). The rotation

matrix describing the camera’s pose is then given by

Rcam =


1 0 0

0 cos θpitch − sin θpitch

0 sin θpitch cos θpicth




cos θroll − sin θroll 0

sin θroll cos θroll 0

0 0 1

 .

Based on the estimate of the camera rotation matrix Rcam and a measurement of the

height of the camera hcam, the homography transform matrix H mapping points from image
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to world coordinates is written as

H = −hcamRcam


1/fx 0 0

0 1/fy 0

0 0 1




1 0 −w/2

0 1 −h/2

0 0 1

 ,

where fx and fy are the image focal lengths, and w and h are the width and height of the

image in pixels, respectively. The transformation from a point in image coordinates rim =

(xim, yim) to a point in world coordinates rwor = (xwor, ywor) is given by


x′wor

y′wor

w′wor

 = H


xim

yim

1

 (A.3)

with

rwor =

xwor
ywor

 =

x′wor/w′wor
y′wor/w

′
wor

 . (A.4)

Let h represent the inverse of this nonlinear transform function, such that rim = h(rwor). It

is computed the same as in (A.3) and (A.4), using the inverse matrix H−1.

The low viewing angle of the GoPro camera (relative to an ideal overhead camera looking

directly down at the ground) means that the track data has much higher resolution in the

horizontal direction than the vertical direction. Thus the homography transformation is

sensitive to small errors to the pitch angle. If the estimated pitch angle is too low, faraway

points (points closer to the horizon in the image) appear more distant than they actually are,

becoming increasingly skewed as the distance increases. Conversely if the estimated pitch

angle is too high, distant points appear closer together than in reality.

In the absense of “ground truth” measurements of true distances in the scene, we look

to the trajectory of the robo-lion as a source of data to perform camera pose calibration.
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During chases, the controller of the robo-lion was set to maximum speed, with the operator

attempting to follow a nominally straight path towards the zebra herd. If the camera pose

is accurate, the speed of the robo-lion should be relatively constant throughout the chase,

with some disturbance caused by the terrain.

We propose an algorithm for pitch angle correction that searches for the pitch angle which

gives the smallest variation in robo-lion speed as a function of its distance to the camera in

the world coordinates. We first smooth the robo-lion’s trajectory using the method described

in Section A.4. Least squares regression is applied to fit a linear model to the relationship

between distance to the camera dl and the speed of the robo-lion vl at each frame. If the

slope coefficient is positive, the estimate of the pitch angle is lowered, and vice versa. This

continues in an iterative process until an angle is found which cancels out the effect of

distance on the speed.

Table A.1 presents the initial estimates and refined values for the camera parameters in

each tracked trial.
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Table A.1: Image to world transformation parameters for each trial. Camera height is the
sum of the mounting pole height (6.81 m) and the height of the vehicle used for that trial:
Toyota bus (0.96 m), Land Rover floor (0.96 m), and Land Rover on the spare tire (1.17 m).

day trial height (m) roll pitch corrected pitch
13 1 7.77 7.00◦ -99.06◦ -102.38◦

13 2 7.77 1.00◦ -99.96◦ -101.12◦

13 3 7.77 -2.00◦ -97.49◦ -99.83◦

13 6 7.77 -8.00◦ -90.54◦ -92.01◦

13 8 7.77 -7.00◦ -90.65◦ -99.25◦

14 1 7.77 1.00◦ -98.65◦ -98.99◦

14 3 7.77 -0.00◦ -95.72◦ -100.68◦

14 4 7.77 6.00◦ -99.88◦ -99.38◦

14 5 7.77 5.00◦ -98.16◦ -99.01◦

15 1 7.98 -4.00◦ -106.49◦ -110.53◦

15 2 7.98 -1.00◦ -98.73◦ -99.63◦

15 3 7.77 -5.00◦ -107.47◦ -110.64◦

15 5 7.77 -6.00◦ -104.51◦ -110.11◦

15 6 7.77 -1.00◦ -101.26◦ -104.48◦

16 1 7.77 -2.00◦ -105.76◦ -112.23◦

16 3 7.77 -7.00◦ -101.15◦ -104.83◦

16 5 7.77 5.00◦ -101.45◦ -104.19◦

A.4 Trajectory smoothing

To remove noise from the track data, we define a motion model and objective function

for each agent and use numerical optimization to find a trajectory which minimizes the

objective function. We adapt the jerk-minimization objective function of [22] to take into

account the nonlinear effects of the homography transform used to map track data in the

image coordinates to trajectories in the world coordinate frame.

We use a triple integrator system as our motion model. The system input is the rate of

change of acceleration, known as “jerk.” For a zebra Zi, let ri(t) ∈ R2 be its position in the

world coordinate frame at time t, vi(t) ∈ R2 its velocity vector, ai(t) ∈ R2 its acceleration

vector, and ui(t) =∈ R2 its jerk input vector. The motion model for zebra Zi is

ṙi = vi,

133



v̇i = ai,

ȧi = ui. (A.5)

Let zki be the tracked position of zebra Zi in image coordinates for video frame k. The

time between frames is constant at ∆t = 0.2 s. Let t = 0 at frame 0. Then the time at frame

k is defined as tk = k∆t.

We define the objective function as a combination of position error and jerk input summed

over the trajectory. We consider position error in image coordinates and jerk in world

coordinates. This differs from [22] where position error is computed in world coordinates.

Our modification is necessary for the current system because the noise is introduced to the

system in the manual tracking data in the image frame, and the nonlinear homography

transform would stretch the effect of the tracking errors so that they are no longer isotropic,

accentuating errors in one direction over another.

The objective function for zebra Zi in a track with N + 1 measurements z0
i through zNi

is

J =
N∑
k=0

∥∥h(ri(t
k))− zki

∥∥2

2
+ λ

∫ T

0

‖ui(t)‖2
2 dt.

The parameter λ > 0 controls the relative weighting of position error and jerk. High values

of λ will yield a smoother trajectory, but at the cost of a higher error. We used λ = 0.001

for all results presented in Chapter 5. It was chosen based on qualitative comparisons, since

the high computational time of the smoothing algorithm prevented the implementation of a

cross validation scheme to quantitatively assess goodness of fit.

To simplify the optimization procedure, we assume that the jerk input is constant between

frames, such that ui(t) = uki = constant for tk ≤ t < tk+1. The objective function simplifies

to

J =
N∑
k=0

∥∥h(ri(t
k))− zki

∥∥2

2
+ λ

N−1∑
k=0

∥∥uki ∥∥2

2
.
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We use Matlab’s built in unconstrained optimization solver fminunc to find a solution to

the minimization problem. The state to optimize for a zebra track with N+1 measurements

z0
i through zNi is the set of jerk inputs uki for k = 0, 1, 2, ..., N , along with initial position

ri(0), initial veloctity vi(0), and initial acceleration ai(0). From the output of the solver,

we can reconstruct the full trajectory. The same process is used for each zebra and the

robo-lion in each of the tracked trials. For zebras that are stationary at the start of the trial,

we smooth over a subset of tracked positions starting at the frame where the zebra initiates

movement.
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[35] S. Grünewälder, F. Broekhuis, D. W. Macdonald, A. M. Wilson, J. W. McNutt,
J. Shawe-Taylor, and S. Hailes. Movement activity based classification of animal be-
haviour with an application to data from cheetah (Acinonyx jubatus). PLoS ONE,
7(11):e49120, 11 2012.

[36] S. Gueron, S. A. Levin, and D. I. Rubenstein. The dynamics of herds: From individuals
to aggregations. J. Theoretical Biology, 182:85–98, 1996.

[37] S. J. Hall, C. S. Wardle, and D. N. MacLennan. Predator evasion in a fish school: test
of a model for the fountain effect. Marine Biology, 91(1):143–148, 1986.

[38] J. Halloy, G. Sempo, G. Caprari, C. Rivault, M. Asadpour, F. Tâche, I. Said, V. Durier,
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[46] Z. Kong, N. Fuller, S. Wang, K. Özcimder, E. Gillam, D. Theriault, M. Betke, and
J. Baillieul. Perceptual modalities guiding bat flight in a native habitat. Scientific
Reports, 6:27252, 2016.

[47] J. Krause, A. F. T. Winfield, and J.-L. Deneubourg. Interactive robots in experimental
biology. Trends in Ecology & Evolution, 26(7):369–375, 2011.

[48] S. H. Lee, H. K. Pak, and T. S. Chon. Dynamics of prey-flock escaping behavior in
response to predator’s attack. J. Theoretical Biology, 240(2):250–259, 2006.

[49] Y. G. Lee and G. Kai. Fast-rolling shutter compensation based on piecewise quadratic
approximation of a camera trajectory. Optical Engineering, 53(9):093101, 2014.

[50] C. Liu, J. Yuen, and A. Torralba. SIFT flow: Dense correspondence across scenes and its
applications. IEEE Trans. Pattern Analysis and Machine Intelligence, 33(5):978–994,
2011.

[51] S. Y. Liu, Z. Zhou, C. Tomlin, and K. Hedrick. Evasion as a team against a faster
pursuer. In Proc. American Control Conference, pages 5368–5373, 2013.

[52] S. R. Loarie, C. J. Tambling, and G. P. Asner. Lion hunting behaviour and vegetation
structure in an African savanna. Animal Behaviour, 85(5):899–906, 2013.

[53] D. G. Lowe. Object recognition from local scale-invariant features. In Proc. IEEE Int.
Conf. Computer Vision, volume 2, pages 1150–1157. Ieee, 1999.

[54] S. P. Mahoney and J. A. Schaefer. Long-term changes in demography and migration of
Newfoundland caribou. Journal of Mammalogy, 83(4):957–963, 2002.

139



[55] A. W. Merz. The game of two identical cars. J. Optimization Theory and Applications,
9(5):324–343, 1972.

[56] P. J. Nahin. Chases and Escapes: The Mathematics of Pursuit and Evasion. Princeton
University Press, 2012.

[57] C. M. V. Nunez, C. S. Asa, and D. I. Rubenstein. Zebra reproduction: Plains zebra
(Equus burchelli), mountain zebra (Equus zebra), and Grevy’s zebra (Equus grevyi).
In A. O. McKinnon, E. L. Squires, W. E. Vaala, and D. D. Varner, editors, Equine
Reproduction, volume 2, pages 2851–2865. Wiley-Blackwell, 2nd edition, 2011.

[58] D. W. Oyler, P. T. Kabamba, and A. R. Girard. Dominance in pursuit-evasion games
with uncertainty. In Proc. IEEE Conf. Decision and Control, pages 5859–5864. IEEE,
2015.

[59] D. Pais and N. H. Leonard. Pursuit and evasion: Evolutionary dynamics and collective
motion. In Proc. AIAA Guidance, Navigation, and Control Conference, 2010.

[60] D. A. Paley, N. E. Leonard, R. Sepulchre, and I. D. Couzin. Spatial models of bistability
in biological collectives. In Proc. IEEE Conf. Decision and Control, pages 4851–4856,
2007.

[61] G. Polverino, N. Abaid, V. Kopman, S. Macr̀ı, and M. Porfiri. Zebrafish response to
robotic fish: preference experiments on isolated individuals and small shoals. Bioinspi-
ration & Biomimetics, 7(3):036019, 2012.

[62] T. C. Reluga and S. Viscido. Simulated evolution of selfish herd behavior. J. Theoretical
Biology, 234(2):213–225, 2005.

[63] D. I. Rubenstein. Ecology, social behavior, and conservation in zebras. In R. Macedo,
editor, Advances in the Study Behavior: Behavioral Ecology of Tropical Animals, vol-
ume 42, pages 231–258. Elsevier Press, 2010.

[64] U. Ruiz and R. Murrieta-Cid. A differential pursuit/evasion game of capture between
an omnidirectional agent and a differential drive robot, and their winning roles. Int. J.
Control, pages 1–16, 2016.

[65] U. Ruiz, R. Murrieta-Cid, and J. L. Marroquin. Time-optimal motion strategies for cap-
turing an omnidirectional evader using a differential drive robot. IEEE Trans. Robotics,
29(5):1180–1196, Oct 2013.

[66] W. L. Scott and N. E. Leonard. Pursuit, herding and evasion: A three-agent model of
caribou predation. In Proc. American Control Conference, pages 2978–2983, 2013.

[67] W. L. Scott and N. E. Leonard. Dynamics of pursuit and evasion in a heterogeneous
herd. In Proc. IEEE Conf. Decision and Control, pages 2920–2925, 2014.

[68] W. L. Scott and N. E. Leonard. Time-optimal trajectories for steered agent with con-
straints on speed and turning rate. In Proc. ASME Dynamic Systems and Control
Conference, 2016.

140



[69] P. Souères and J.-D. Boissonnat. Optimal trajectories for nonholonomic mobile robots.
In J.-P. Laumond, editor, Robot Motion Planning and Control, pages 93–170. Springer,
1998.

[70] W. J. Stewart, A. Nair, H. Jiang, and M. J. McHenry. Prey fish escape by sensing the
bow wave of a predator. J. Experimental Biology, 217(24):4328–4336, 2014.

[71] H. J. Sussmann and G. Tang. Shortest paths for the Reeds-Shepp car: a worked out
example of the use of geometric techniques in nonlinear optimal control. Rutgers Center
for Systems and Control Technical Report, 10:1–71, 1991.

[72] H. J. Sussmann and J. C. Willems. 300 years of optimal control: from the brachys-
tochrone to the maximum principle. IEEE Control Systems, 17(3):32–44, 1997.

[73] D. T. Swain, I. D. Couzin, and N. E. Leonard. Real-time feedback-controlled robotic
fish for behavioral experiments with fish schools. Proc. of the IEEE, 100(1):150–163,
2012.

[74] H. Tan and A. M. Wilson. Grip and limb force limits to turning performance in competi-
tion horses. Proc. Royal Society of London B: Biological Sciences, 278(1715):2105–2111,
2011.

[75] R. Vabø and L. Nøttestad. An individual based model of fish school reactions: predicting
antipredator behaviour as observed in nature. Fisheries Oceanography, 6(3):155–171,
1997.

[76] R. Vabø and G. Skaret. Emerging school structures and collective dynamics in spawning
herring: A simulation study. Ecological Modelling, 214(2):125–140, 2008.

[77] S. V. Viscido, M. Miller, and D. S. Wethey. The response of a selfish herd to an attack
from outside the group perimeter. J. Theoretical Biology, 208(3):315–328, 2001.

[78] E. Wei, E. W. Justh, and P. S. Krishnaprasad. Pursuit and an evolutionary game. Proc.
Royal Society A: Mathematical, Physical and Engineering Science, 465(2105):1539–1559,
2009.

[79] D. Weihs and P. W. Webb. Optimal avoidance and evasion tactics in predator-prey
interactions. J. Theoretical Biology, 106(2):189–206, 1984.

[80] T. M. Williams, L. Wolfe, T. Davis, T. Kendall, B. Richter, Y. Wang, C. Bryce, G. H.
Elkaim, and C. C. Wilmers. Instantaneous energetics of puma kills reveal advantage of
felid sneak attacks. Science, 346(6205):81–85, 2014.

[81] A. M. Wilson, J. C. Lowe, K. Roskilly, P. E. Hudson, K. A. Golabek, and J. W. McNutt.
Locomotion dynamics of hunting in wild cheetahs. Nature, 498(7453):185–189, 2013.

[82] J. W. Wilson, M. G. L. Mills, R. P. Wilson, G. Peters, M. E. J. Mills, J. R. Speakman,
S. M. Durant, N. C. Bennett, N. J. Marks, and M. Scantlebury. Cheetahs, Acinonyx
jubatus, balance turn capacity with pace when chasing prey. Biology Letters, 9(5), 2013.

141



[83] A. J. Wood and G. J. Ackland. Evolving the selfish herd: emergence of distinct ag-
gregating strategies in an individual-based model. Proc. Royal Society B: Biological
Sciences, 274(1618):1637–1642, 2007.

[84] P. Zhang, C. M. Sadler, T. Liu, I. Fischhoff, M. Martonosi, S. A. Lyon, and D. I.
Rubenstein. Habitat monitoring with ZebraNet: design and experiences. In N. Bulusu
and S. Jha, editors, Wireless Sensor Networks: A Systems Perspective, pages 235–257.
Artech House, Norwood, MA, 2005.

[85] P. Zhang, C. M. Sadler, S. A. Lyon, and M. Martonosi. Hardware design experiences
in ZebraNet. In Proc. Int. Conf. Embedded Networked Sensor Systems, pages 227–238.
ACM, 2004.

[86] M. Zheng, Y. Kashimori, O. Hoshino, K. Fujita, and T. Kambara. Behavior pattern
(innate action) of individuals in fish schools generating efficient collective evasion from
predation. J. Theoretical Biology, 235(2):153–167, 2005.

142


	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Overview of topics
	1.1.1 Pursuit and evasion
	1.1.2 Minimum-time optimal control
	1.1.3 Pursuit and evasion with multiple evaders
	1.1.4 Field studies of pursuit in nature

	1.2 Outline

	2 Three agent model of pursuit, evasion, and herding
	2.1 Introduction
	2.2 Steered-particle model
	2.3 Simplified first-order model
	2.3.1 Length dynamics
	2.3.2 Angle dynamics
	2.3.3 Parallel motion equilibria

	2.4 Mother caribou in pure evasion
	2.4.1 Avoiding mother-calf separation
	2.4.2 Disadvantage of pure evasion by the calf
	2.4.3 When the bear ignores the calf

	2.5 Simulations and estimated solution to a two-player game

	3 Minimum-time trajectories for steered agent with constraints on speed, lateral acceleration, and turning rate
	3.1 Introduction
	3.2 Problem statement and system dynamics
	3.3 Extremal trajectories from Pontryagin's minimum principle
	3.3.1 Switching functions and generic control inputs
	3.3.2 Singular control inputs
	3.3.3 Multiply-singular control

	3.4 Families of optimal trajectories
	3.4.1 Trajectories ending in forward motion
	3.4.2 Trajectories ending in fast turn

	3.5 The Optimal Trajectory
	3.5.1 Trajectory parameterized by switching times
	3.5.2 Trajectory-type partition
	3.5.3 Optimal switching times for each compound trajectory type

	3.6 State-feedback formulation of optimal control law
	3.7 Special cases for large and small values of mu
	3.7.1 Relaxed acceleration constraint
	3.7.2 Highly constrained lateral acceleration

	3.8 Final Remarks

	4 Optimal evasive strategies for multiple interacting agents with motion constraints
	4.1 Introduction
	4.2 Problem statement and equations of motion
	4.3 Pursuit and evasion with two agents
	4.3.1 Terminal conditions
	4.3.2 Optimal trajectories for pursuit and evasion
	4.3.3 Evader control switching times
	4.3.4 Evader state-feedback control law
	4.3.5 Condition on capture radius
	4.3.6 The case of the slower pursuer

	4.4 Reactive evasion with multiple evaders
	4.4.1 Evader domain of danger and target avoidance

	4.5 Risk minimization under limited sensing
	4.5.1 Relaxing constraints on evader turning rate
	4.5.2 Local target selection
	4.5.3 Local evasion strategy
	4.5.4 Risk reduction phase
	4.5.5 Local reactive evasion phase

	4.6 Discussion

	5 Zebra experiment
	5.1 Background
	5.1.1 Plains zebra
	5.1.2 Previous work

	5.2 Equipment and methods
	5.3 Data processing
	5.4 Results and analysis
	5.4.1 Speed
	5.4.2 Initiation of movement
	5.4.3 Distance to the robo-lion
	5.4.4 Dynamics of heading alignment
	5.4.5 Locations within the herd
	5.4.6 Dynamics of mother-foal pairs

	5.5 Conclusion

	6 Final remarks
	6.1 Conclusions
	6.2 Future directions
	6.2.1 Improving models of pursuit and evasion
	6.2.2 Use of robotics in biological research


	A Data processing for the robo-lion zebra experiment
	A.1 Video stabilization
	A.2 Track extraction
	A.3 Coordinate transformation
	A.4 Trajectory smoothing

	Bibliography

