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Abstract— We present nonlinear deterministic models and
linear stochastic models of decision-making between alterna-
tives that connect biological groups as diverse as honeybees
and neurons. Using these models we explain how biological
groups, with decentralized control and limited sensing and
communication, select the highest quality alternative, flip a
coin for nearly equal alternatives, optimally balance speed
and accuracy, maintain robustness in the face of uncertainty,
and leverage heterogeneity. Motivated by these remarkable
behaviors, we present a generalizable agent-based model for the
design and control of network dynamics with the advantageous
features observed in the biological groups.

I. INTRODUCTION

Animals manage challenging tasks with speed, accuracy,
robustness and adaptability [1]. For example, animal groups
excel in tasks such as migration, foraging, and predator
evasion, despite the fact that as individuals they employ
decentralized strategies and face limitations on sensing, com-
munication, and computation [2, 3]. For many applications
of multi-agent system networks, ranging from transportation
networks and mobile sensing networks to power networks
and synthetic biological networks, features such as speed,
accuracy, robustness, and adaptability are difficult to achieve
yet critical for operation in complex, changing environments.

This paper focuses on a growing body of work aimed
at examining animal behavior from a systems theoretic
perspective and leveraging models and mechanisms for the
design of high performing network dynamics and control.
We present model-based investigations of the mechanisms
that explain collective dynamics observed in biology in the
context of decision-making among alternatives. We focus on
models of honeybee swarms and networks of neurons that
have been derived from empirical data, and we highlight the
commonalities in their collective dynamics. To rigorously
connect the mechanisms associated with decision-making
in the biological groups and design methodologies for bio-
inspired network dynamics and control, we describe and
study a generalized multi-agent dynamic model that realizes
the advantageous features observed in the biology.

Collective decision-making among alternatives is funda-
mental to group objectives such as navigation, migration,

This research has been supported in part by ONR grant N00014-14-1-
0635, ARO grant W911NF-14-1-0431 and NSF grants ECCS-1135724 and
CMMI-1635056.

V. Srivastava is with the Department of Electrical and Com-
puter Engineering, Michigan State University, East Lansing, MI, USA,
vaibhav@msu.edu

N. E. Leonard is with the Department of Mechanical and
Aerospace Engineering, Princeton University, Princeton, NJ, USA,
naomi@princeton.edu.

foraging, and predator-avoidance. Which direction to take,
when to travel, what patch to explore, whether or not to
flee, are decisions that often need to be made by the group
as a whole. We define a collective decision to be a group-
level decision that every agent in the group ultimately takes.
Typically, every agent in the group first makes an individual
decision, and the collective decision follows through an
external mechanism such as a quorum. Failure to come
to a collective decision can lead groups to split, to lose
their competitive advantage, and to become vulnerable to
predation.

In this paper, we primarily consider decision-making be-
tween two alternatives. In Section II we start with collective
decision-making in swarms of honeybees who choose a
new nest-site among scouted out alternatives. Honeybees can
choose the best quality nest-site and can also flip a coin when
necessary to make a quick choice between near-equal quality
alternatives. A fundamental feature of honeybee decision-
making is the adaptivity and resilience that results from the
interplay between the social effort of the swarm and the
value of the alternatives. A model-based investigation of
honeybee nest-site selection inspires control modalities for
network multi-agent systems that achieve a similar adaptive
and resilient performance.

In Section III, we consider collective decision-making
between two alternatives in networks of neurons. Models
of networks of neurons can be used to show how speed
and accuracy in decision-making can be balanced in the
presence of uncertainty. We present models across scales: (i)
detailed biophysical models, (ii) connectionist models with
abstract dynamics, and (iii) phenomenological models. We
show how biophysical models can be rigorously reduced to
connectionist models and how connectionist models can be
reduced to phenomenological models.

We identify the similarities between the nonlinear phe-
nomena associated with decision-making in honeybees and
those associated with the biophysical models of networks
of neurons. The biophysical models of neurons are non-
linear models and the phenomenological models are linear
stochastic models. The nonlinear models provide valuable
insights into the fundamental principles responsible for emer-
gent collective decision-making, and the linear stochastic
models provide analytic tractability essential for efficient
design of systems. Connecting these models across scales
enables systematic methodology to design control laws at the
phenomenological level that correspond to the sophisticated
mechanisms in the detailed models. This does not necessarily
mean that bio-inspired control laws should be designed
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using linear stochastic models. In fact bio-inspired control
laws have been designed using feedback of (bifurcation)
parameters of the nonlinear models by introducing dynamics
on these parameters at a slower time scale [4–6].

In Section IV, we present an abstract and generalizable
model for design and control of bio-inspired collective
decision-making in engineered multi-agent systems. We dis-
cuss various kinds of heterogeneities that can be explored
in the abstract model and how parameters associated with
these heterogeneities can be used as control inputs towards
systematic design of decision-making networks.

We specialize the abstract model to the deterministic
setting in Section V. We elucidate how the nonlinear phe-
nomena leading to the emergence of collective decisions in
models for honeybees and biophysical neuronal networks can
be realized in the abstract model. We also demonstrate how
value sensitive decision-making in honeybees and associated
robustness explored analytically can be designed and con-
trolled using the abstract model.

We specialize the abstract model to the linear stochastic
setting in Section VI. The tractability of the linear stochastic
setting allows a rigorous investigation of the influence of
heterogeneities on measures of decision-making performance
such as speed and accuracy. These influences can be used
to design control laws to drive network dynamics as shown
in [7].

Finally, in Section VII, we discuss several related research
directions. These include extensions of the above models to
choice among multiple alternatives, leadership as a control
variable, and more sophisticated decision-making scenarios
involving explore-exploit tradeoffs.

II. VALUE SENSITIVE DECISION-MAKING IN HONEYBEE
NEST-SITE SELECTION

In this section we discuss a model for nest-site selec-
tion in honeybees. The presentation in this section follows
from [8], [9], and the review in [10].

In the honeybee nest-site selection problem, an entire
swarm must unanimously choose a good nest-site where it
will live as a new colony with its queen. The choice should be
made quickly, since the bees cannot survive for long without
a nest, and the choice should be made accurately, since the
bees cannot survive the winter in a low quality nest. The
value of a candidate nest-site is determined by features such
as volume, size of entrance, and height above the ground.

The process starts with a subset of scout bees that each
search out a possible nest-site and ends with the swarm
choosing the best of the scouted out alternatives. Each
informed honeybee scout uses explicit signaling in the form
of a “waggle dance” on the vertical surface of the swarm
to recruit uninformed bees to commit to its discovered nest-
site. Using data from an experiment in which there were
two alternative sites made available to a honeybee swarm,
Seeley et al. [9] showed that, in addition to dancing to pro-
mote their discovered site, the scouts use a cross-inhibitory
stop signal to stop the dancing of the scouts recruiting for
the competing site. This stop signal contributes positively

to the collective decision-making; of particular note, it was
shown to facilitate breaking deadlock in the case of two near-
equal value alternative sites. Because of the time pressure on
the site selection process, efficient deadlock breaking can be
critical for a new colony, particularly if the nearly equal sites
have high value.

Seeley et al. [9] derived a model of the mean-field
population-level dynamics of the swarm under the assump-
tion that the total bee population size N is very large.
The model describes the dynamics of yA = NA/N and
yB = NB/N , the changing fraction of bees in the population
committed to nest-site A and B, respectively, and yU =
NU/N , the fraction of uncommitted bees in the population.
Since N = NA +NB +NU is constant, yA + yB + yU = 1.
Thus, the dynamics evolve on the two-dimensional unit
simplex and are given by

dyA =
(
gAyU − yA(aA − rAyU + sByB)

)
dt

+%
√
y2U + y2A + y2Uy

2
AdWA

dyB =
(
gByU − yB(aB − rByU + sAyA)

)
dt

+%
√
y2U + y2B + y2Uy

2
BdWB,

(1)

where gi is the rate of scouting discovery and commitment,
ai is the rate of abandonment of commitment, ri is the
rate of recruitment, si is the rate of stop signaling, % is
noise intensity, and dWA and dWB are i.i.d. Wiener process
increments that are independent of each other. It is assumed
that all but the stop-signal rate depend on the value υi
(quality) of the nest-site; in particular, gi = ri = υi and ai =
1/υi. The two stop-signal rates are assumed to be the same,
i.e., si = s. Let ∆υ = υA−υB and ῡ = (υA +υB)/2. When
yA or yB crosses above a quorum threshold θ ∈ (0.5, 1], a
collective decision is reached.

We consider the deterministic dynamics with % = 0
studied in [8]. It was shown that for a biologically plausible
parameter range, dynamics (1) admit time-scale separation
and the system quickly converges to the stable manifold
defined by

yAyB =
2ῡ

s

yU(1 + yA)(1 + yB)

3− yU
,

which interestingly does not depend on ∆υ. Thus, the
dynamics (1) reduce to one-dimensional dynamics on this
slow manifold. Even in presence of noise % 6= 0, the systems
quickly converges to a small neighborhood of this manifold
and the one-dimensional dynamics on this manifold provide
a good approximation.

For the dynamics projected onto the slow manifold and
equal value nest-sites, i.e., ∆υ = 0, the system admits a
pitchfork bifurcation at a critical stop-signaling strength s∗ =
4ῡ3/(ῡ2 − 1)2 (see Fig. 1, left panel). If s < s∗, then there
is one stable equilibrium corresponding to deadlock (yA =
yB = 0.5), i.e., half of the population committed to each
alternative. If s > s∗, then the deadlock solution is unstable
and there are two stable solutions, one corresponding to each
alternative. The critical stop signal s∗ decreases with the
value ῡ of alternatives (see Fig. 2), which means that it takes
higher effort to break deadlock on inferior quality nests. In
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other words, for high quality choices little social effort (stop
signal) is needed to convince others to reach a quorum while
for low quality choices more social effort (stop signal) is
needed to convince others.

When the symmetry in the value of the alternatives is
broken, i.e., ∆υ 6= 0, the resulting bifurcation diagrams
correspond to an unfolding of the pitchfork (see Fig. 1,
middle panel) in which for s � s∗, there is one stable
equilibrium corresponding to deadlock. For s near s∗, the
only stable equilibrium point favors the superior alternative,
and for s� s∗, two stable solutions emerge that correspond
to each alternative.

Another important feature of the dynamics (1) is the
hysteresis effect (see Fig. 1, right panel). If ∆υ < 0
and the dynamics have converged to alternative B, then as
∆υ increases, the solution does not switch to alternative
A immediately as ∆υ becomes positive but persists for
small positive values of ∆υ. The hysteresis effect imparts
robustness to decisions in the sense that once a nest is
selected and later its value is perceived to be slightly smaller
than for the other nest, then the choice of nest persists.

III. COLLECTIVE DECISION-MAKING IN NEURONAL
NETWORKS

In this section we review collective decision-making in
neuronal networks in the context of two-alternative choice
tasks. The presentation in this section follows from [11–15].

Before we discuss a biophysical model of decision-
making, we define some terminology from neuroscience.
Neurons are said to be excitatory or inhibitory if their activity
has an excitatory or inhibitory effect on the activity of the
neurons connected to them, respectively [16]. Two neurons
are connected through synapses and information is trans-
mitted across a synapse through a neurotransmitter. Several
neurotransmitters in a human brain have been identified.
Neurotransmitters that have a prominent effect on decision-
making in two alternative choice tasks are NMDA, AMPA,
and GABA [12]. For details on these neurotransmitters, we
refer the reader to [17, Appendix on Neural Signaling].

A. Biophysical models

Wang [18] numerically studied a biophysically inspired
model for decision-making in two alternative choice tasks.
This model was analytically studied using mean-field ap-
proximations by Wong and Wang [12]. The mean-field
model comprises four clusters of neurons, three of which
are excitatory and one of which is inhibitory (see Fig. 3).
Two of the excitatory clusters are selective to the stimulus
associated with one of the two alternatives (I1 or I2) and
the third excitatory cluster is non-selective. The excitatory
connections (synapses) are modulated by NMDA and AMPA
neurotransmitters while inhibitory connections are modulated
by GABA neurotransmitters. A decision is made in favor
of the alternative for which the neurons in the associated
selective cluster first cross a fixed firing rate (decision
threshold).

The postsynaptic current in cluster j is modeled as

I type
j (t) = −gtype

j (V̄ − Vtype)Nk ωkjS
type
k (t), (2)

where k ∈ {1, 2, 3, ı} is the presynaptic cluster, ı denotes
the inhibitory cluster, ωkj is the coupling strength between
the k-th and j-th cluster, Nk is the number of neurons in
the k-th cluster, V̄ is the fixed average membrane potential,
type ∈ {A,N,G,Aext} represents AMPA, NDMA, GABA,
and external stimulus driven AMPA neurotransmitter, respec-
tively, and Stype

k (t) is the average synaptic variable, which
measures the dynamics of the conductivity of the synapse.

The recurrent self-excitatory connections for selective
clusters, ω11 and ω22, play an important role in decision-
making as we will show later. In the following let ω11 =
ω22 =: ω̄. The steady-state firing rate of the j-th cluster
can be described using a mapping φj(I

syn
j ), where Isyn

j =∑
type I

type
j is the total synaptic current entering the j-th

cluster. We refer the reader to [12] for an expression for
φj(·).

Wang and Wong [12] modeled the mean-field dynamics of
synaptic currents and firing rates using 11 ODEs. They then
observed in simulations, for a relevant range of parameters,
that the firing activity of non-selective excitatory neurons
does not vary much and can be replaced by an appropriate
constant. They further observed that the time constants
associated with GABA and AMPA modulated synapses
are much smaller than the time constants associated with
NMDA modulated synapses. Thus, the currents associated
with GABA and AMPA neurotransmitters evolve on faster
time scales and converge to quasi-steady states quickly.

They further assumed that the firing rate dynamics asso-
ciated with neuronal clusters are fast and firing rates can
be approximated by their steady-state value φj(·). Thus the
model is reduced to a set of two coupled equations describing
the current associated with NMDA neurotransmitters in two
selective neuronal populations. From (2), it follows that the
current dynamics are completely determined by

dSNj
dt

= −
SNj
TN

+ γ̂(1− SNj )φj(I
syn
j ), for j ∈ {1, 2}, (3)

where γ̂ = 0.641 is computed using numerical simulations
with nominal system parameters and TN is the time constant
for the NMDA modulated synapse.

The dynamics were further simplified using approxima-
tions φ1 = H(y1, y2) and φ2 = H(y2, y1), where H is the
effective nonlinear firing rate-stimulus mapping (see [12] for
details), and

y1 = JN11S
N
1 − JN21SN2 + Isc

1 + Istim
1 + Inoise

1

y2 = −JN12SN1 + JN22S
N
2 + Isc

2 + Istim
2 + Inoise

2 .

JNij denote net self (i = j) and cross (i 6= j) connection
strengths, Isc

j are self-consistent currents due to GABA,
AMPA and cluster 3, Istim

j = µ(1 ± c′) are currents for
stimulus-selective clusters, Inoise

j are additive Gaussian noise,
and c′ ∈ [0, 1] is the coherence level of the stimuli (e.g.,
c′ = 1 for perfectly clear stimuli, and c′ = 0 for completely
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increasing cross-inhibition s improves decision-making by moving
the (pre-bifurcation) single stable attractor further and further
towards the state in which there is a more highly-activated
accumulator for the superior alternative. If the decision threshold,
defined by dashed lines, is set to an appropriate value, increasing
the cross-inhibition would therefore amplify the differences in the
qualities of the the alternatives sufficiently to precipitate a decision
for the better alternative, on average.

Figure 5 (Middle) also shows that too high a rate of cross-
inhibition s can be detrimental. If the cross-inhibition rate is
increased then a stable attractor for the inferior alternative suddenly
appears in a saddle-node bifurcation, with an unstable saddle point
between it and the original stable attractor. This can be helpful to
ensure a decision if a threshold is not reached pre-bifurcation;
however, in the case that a threshold is reached pre-bifurcation for
the superior alternative, the bifurcation might not be helpful
because post-bifurcation the superior alternative is no longer a
unique solution. Further increase in the cross-inhibition rate s
moves the inferior attractor further toward or beyond the decision
threshold for the inferior alternative, and moves the saddle point
closer towards equal-magnitude accumulators for each alternative
(0.5 on the y-axis of Figure 5 (Middle)). Thus increasing cross-
inhibition too much changes the dynamics such that there may be
an increasing risk of the decision-maker converging on choosing
the inferior of the two alternatives. However, as we show below
higher levels of cross-inhibition can have benefits for speed-
accuracy trade-offs.

In Figure 5 (Right), there is a hysteretic effect as difference in the
quality of alternatives Dv is smoothly increased and then decreased
over time; this is illustrated in an animation of stochastic
simulations in Text S1. While Dv is increasing, from an initially
low level, over the interval of Dv in which three fixed points co-
exist (approximately 20.5 to +0.5 in the figure) the system will be
in the vicinity of the lower of the two stable attractors. At a
sufficiently high value of Dv (approximately 0.5), the system will
jump to the other, upper stable attractor. If Dv is then reduced
over the same interval, the system will remain in the vicinity of the
upper, stable attractor until Dv is less than approximately -0.5.
While for a bee swarm, values of alternatives are unlikely to
change smoothly over time in this way, this may be the case for
other decision-makers, where exploitation of an alternative
degrades its value, as in the example of intracellular decisions on
activation of metabolic pathways considered in the Discussion. For
neural decision-circuits, as also mentioned in the Discussion,

laboratory experiments may be able to vary stimuli over time in
this way. In both these cases the hysteretic effect of Figure 5 (Right)
could act as a diagnostic that the decision-circuit used is similar in
form to that described in Eq. 1.

Other authors have previously presented similar bifurcation
results in different contexts for different models. For example [23]
examines error rate and reaction times in connectionist models
with non-linear interactions between accumulators, where these
interactions serve to act as priming biases for decisions. Cell-fate
decisions are analysed in [24] with respect to speed of intracellular
signalling change, using the tools of bifurcation analysis. Foraging
by social insect colonies, which differs from decision-making in
that optimal foragers should exploit resources proportionally to
their quality [25], has also been studied in this way [26], as has
accuracy of collective decisions in such models [27]. While these
previous studies do not, as we do, consider decisions in which a
single decision-maker must choose only one option whose value
they are rewarded by, they do highlight the importance of
nonlinear interactions between accumulators in enabling the kinds
of bifurcation behaviour presented here. In particular, nonlinear
interaction between accumulators is not necessary for such
behaviour; indirect nonlinear interaction, through accumulator
populations competing for a finite pool of uncommitted individuals
[26], for example, is sufficient.

Speed-Accuracy Trade-offs
As noted above, several classical models of decision-making,

including the DDM and the (un)stable O-U process, are described
using equations of stochastic motion on a line. The separation of
timescales result presented above demonstrates that the decision
dynamics converge rapidly to a line, along which they slowly
diffuse. Of particular interest in decision-making models are speed-
accuracy trade-offs [28-30], and the optimal compromise between
these two quantities [4,9]. We therefore undertook preliminary
numerical investigations (described in the Text S1) into the
stochastic behaviour of the decision system under different
parameterisations, once the system has converged to the stable
decision-manifold, and until it crosses a decision-threshold.

Figure 6 presents a classic speed-accuracy trade-off, for a
parameterisation that results in only a single attractor for the best
alternative available. In Figure S5 in Text S1 we present
numerical analyses of other cases, which highlight further
interesting decision dynamics; in particular, we show for certain
parameterisations that having an attractor for the incorrect

Figure 5. Full bifurcation behaviour of the stop-signal model of Eq. 1. According to parameterisation of the decision problem and decision-
maker, the dynamics include (i) pitchfork bifurcation as a function of cross-inhibition rate s in the equal alternatives case, (ii) saddle-node bifurcation
as a function of cross-inhibition s in the unequal alternatives case, and (iii) hysteresis as a function of difference in value of alternatives Dv. Fixed
points are projected onto the ½0,1" line as described in Text S1 and Figure S4. Blue dots indicate stable attractors, and red indicate unstable saddle
points. Decision thresholds at yA~yB~0:7 are indicated by dashed lines.
doi:10.1371/journal.pone.0073216.g005

Value-Sensitive Decision-Making
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Fig. 1. From [8]. Collective decision-making in the honeybee nest-site selection problem. For equal value alternatives, the decision-making is organized
by a symmetric supercritical pitchfork bifurcation with the stop signal as the bifurcation parameter (left panel). For asymmetric alternatives, an unfolding
of the pitchfork bifurcation favors superior alternatives for medium stop signals (middle panel). A hysteresis effect is observed as a function of ∆υ (right
panel).

presumably requires an adaptive deadlock to be maintained
between discovered medium-quality sites, until discovery of the
good-quality site enables its selection.

If, however, for the same rate of cross-inhibition s the value of
the equal alternatives is sufficiently high, then the dynamics
bifurcate so that the decision-maker converges on choosing one of
the two alternatives at random (Figure 2; top-right inset). This
illustrates a very sophisticated decision-making strategy; if
information about only two alternatives is available but neither
is very valuable then waiting to see if a better alternative is
discovered could be sensible, whereas if the two alternatives are
both of sufficient quality then quickly choosing one at random
rather than wasting further time waiting for alternatives would be
appropriate. Evolution could tune the level of cross-inhibition s in
a decision-maker to set the acceptance threshold for the value v of
equal alternatives to an appropriate level, given the needs of an
organism and the quality of alternatives typically available in an
environment, as Figure 2 illustrates.

The preceding analysis assumes an evolutionarily hard-wired
level of cross-inhibition, but further sophistication is possible if one
considers what might happen to our hypothetical decision-maker,
considering two equal but low value alternatives, if it waits too
long. Any decision-maker has finite time and resources available to
make decisions; in the case of a honeybee swarm members have
finite energy reserves, since they load up with honey before
swarming and do not resume foraging until the swarm has found a
suitable nest site [10]. If after a long period of time the swarm still
only has information about the two low-value alternatives then it is
reasonable to assume that no better alternatives are available as
they would likely have been discovered and, in any case, the
resources of the swarm are being rapidly depleted. In this scenario
it would be better for the swarm to choose one of the low value
nest sites than none at all. This can be achieved by progressively
increasing the cross-inhibition rate s; as Figure 2 indicates, by

Figure 2. Value-dependent decision-making over equal alter-
natives. A critical cross-inhibition level s! can be calculated, below
which stable decision-deadlock results due to a single stable attractor
on the yA~yB line. Increasing the strength of cross-inhibition above
the critical threshold s! , this attractor becomes unstable and two stable
attractors, one for each alternative, emerge from it and rapidly move
apart [13]; in this situation one alternative will thus be chosen at
random by the system. As the equation and plot for s! make clear, the
level of cross-inhibition required to break deadlock decreases with
increasing value v of the two alternatives. Thus, holding cross-inhibition
level constant, decisions over equal but low value alternatives can result
in deadlock, while decisions over equal but high value alternatives can
result in a random choice. This can lead to sophisticated decision
dynamics (Figs. 3 and S3).
doi:10.1371/journal.pone.0073216.g002

Figure 3. Stochastic simulation shows that for two sufficiently poor but equal alternatives, deadlock between the two persists until
a third, superior alternative is discovered (at time t~30), at which point it is selected by the decision-maker. The three-alternative
model simulated here is a simple extension of the two-alternative model of Eq. 1, as described in section S.2 of Text S1. Noise parameter k~0:05.
doi:10.1371/journal.pone.0073216.g003
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Fig. 2. From [8]. The critical value of stop signal as a function of the
value of symmetric nest-sites. Smaller value of stop signal is needed for
superior valued nest-sites.

random stimuli). The overall reduction procedure is summa-
rized in Fig. 3.

For no stimulus, the system (3) admits five equilibrium
points: three are stable and two are unstable. One stable node
is symmetric, i.e., SN1 = SN2 , while the other two stable
equilibria are asymmetric and favor one of the selective
clusters. A symmetric equilibrium point corresponds to a
decision-deadlock.

For stimuli with low coherence level, the system ad-
mits two stable and one unstable equilibria. The unstable
equilibrium point is symmetric while the stable ones are
asymmetric. As coherence is increased, the basin of attraction
of the asymmetric equilibrium point favoring the correct
decision increases. As coherence level is further increased
the symmetric unstable node and asymmetric stable node
favoring the incorrect decision are annihilated in a saddle-
node bifurcation, and the system admits only one asymmetric
equilibrium point associated with the correct decision. We
refer the reader to [12] for detailed bifurcation diagrams.

Stimulus 1
selective
cluster

Stimulus 2
selective
cluster

Non-selective
cluster

!̄
!̄

I1 I2

Interneuron
cluster

Stimulus 1
selective
cluster

Stimulus 2
selective
cluster

!̄
!̄

I1 I2

Interneuron
cluster

Stimulus 1
selective
cluster

Stimulus 2
selective
cluster

!̄
!̄

I1 I2

Fig. 3. Adapted from [12]. The original mean-field model that can
be described using 11 equations. Approximating the activity of the non-
selective cluster by a constant and using simplified frequency-current
relations reduces the number of equations to 8. Using time-scale separation
further reduces the number of equations to 2. Arrows represent excitatory
connections and solid dots represent inhibitory connections.
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Fig. 4. The short-term memory. If a stimulus of strength µ0 is applied and
it drives the system to one of the asymmetric stable equilibria associated
with a decision, then even after removing the stimulus, the system stays at
that asymmetric equilibrium point instead of moving to the deadlock state.

We note that the nonlinear phenomena associated with the
above model have strong similarities with the honeybee nest-
site selection model discussed in §II.

The bifurcation phenomenon described above exhibits rich
behavior as recurrent coupling strength ω̄ is varied. Indeed,
for a given ω̄, as stimulus µ0 is varied the possible set of
equilibria corresponds to one of the four cases described
above, but for different ω̄, the transition between these
sets is arranged by different classes of bifurcation including
supercritical pitchfork, subcritical pitchfork, and saddle-node
bifurcations. We refer the reader to [12] for more details. A
noteworthy behavior that is exhibited at a certain range of
ω̄ as stimulus strength µ0 is varied is called the short-term
memory shown in Fig. 4. This phenomenon is typical for a
subcritical pitchfork with a fifth order stabilizing term. The
presence of two saddle-node bifurcations with the subcritical
pitchfork bifurcations creates a hysteresis effect. That is, if
a stimulus is applied and it drives the system to one of the
asymmetric stable equilibria associated with a decision, then
even after removing the stimulus, the system stays at that
asymmetric equilibrium point.

B. Connectionist approaches to modeling human decision-
making

Unlike the biophysically detailed model described in the
previous section, the connectionist model involves abstract
averaged representation of the neural population. To un-
derstand decision-making at such an abstract level, firing
patterns in middle temporal (MT) and lateral inter-parietal
areas of the monkey brain in a moving dots experiment
were studied in [19]. MT neurons are involved in motion
processing and if leftward motion of the dots is more
coherent, then the MT neurons sensitive to the leftward
motion fire more. However, the difference between firing
patterns is not substantial. In contrast, the firing pattern
of LIP neurons, which are associated with eye movement
control, are clearly distinguishable as time proceeds. It is
believed that the LIP neurons integrate the noisy MT neuron
output and this integration process is subject to inhibition

from the other population (bottom panel Fig. 3).
Let x1 and x2 be the mean input current to the cells

in neuronal clusters selective to the two alternatives. The
leaky competitive accumulator (LCA) model [15] capturing
the above behavior is

τ ẋ1 = −x1 − lf(x2) + I1 + ση1(t) (4)
τ ẋ2 = −x2 − lf(x1) + I2 + ση2(t), (5)

where l is the strength of mutual inhibition, and f is a
sigmoidal function that captures “current-frequency” map-
ping, Ij is the stimulus received by population j, ηj is
additive white noise, σ is the standard deviation of the white
noise, and τ is the time constant. The above set of SDEs
implicitly define the integration process in the LIP neurons.
Note that (4) follows the same architecture as in the bottom
panel of Fig. 3.

A decision is made in favor of the alternative for which
firing rate f(xj(t)) first exceeds a threshold. These threshold
based policies are believed to be implemented through the
basal ganglia in the following way. The basal ganglia inhibits
the channels for the execution of each decision in the
default state. When the firing rate associated with a particular
decision is sufficiently high, the inhibition of the associated
channel is released leading to a winner-take-all behavior
(see [13] for details).

It has been argued that neural circuits equilibrate near
a point of maximum sensitivity, which corresponds to the
inflection point of the sigmoidal function [11, 15]. The
dynamics (4) can be linearized near the inflection point as

dx1 = (−κx1 − wx2 + ξ1)dt+ σdW1

dx2 = (−κx2 − wx1 + ξ2)dt+ σdW2,
(6)

where ξj = Ij/τ , κ = 1/τ , wτ/l is the maximum slope of
f and dWj are i.i.d. Wiener increments that are independent
of each other. A decision is made in favor of alternative 1
(alternative 2) if x1 (x2) crosses a threshold θ.

With a change of variable y1 = (x1 + x2)/
√

2 and y2 =
(x2−x1)/

√
2, the above system transforms to the decoupled

system

dy1 =
(
− (w + κ)y1 +

ξ1 + ξ2√
2

)
dt+ σdW̄1

dy2 =
(
`y2 +

ξ1 − ξ2√
2

)
dt+ σdW̄2,

(7)

where ` = w − κ and dW̄j are i.i.d. Wiener increments
independent of each other. The y1 dynamics are stable
and converge to a Gaussian distribution with mean (ξ1 +
ξ2)/
√

2(w+ k) and variance σ2/2(w+κ). Thus, if (w+κ)
is large, then y1 very quickly converges to a neighborhood
of the line y1 = (ξ1 + ξ2)/

√
2(w + κ). Along this line, the

dynamics reduce to the Ornstein-Uhlenbeck (O-U) process
y2 and thresholds of x1 and x2 become two thresholds on
y2 defined by θ̄ = ±2θ(w + κ) − (ξ1 + ξ2)/(

√
2(w + κ)).

When ` = 0, the y2 dynamics reduce to the so-called
drift-diffusion process and the associated decision model is
called the drift-diffusion model (DDM). The DDM has nice
optimality properties that we describe below.
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We note that the decomposition in (7) is similar to the
decomposition of the fast and slow time scales in the honey-
bee nest-site selection model discussed in §II. Interestingly,
similar to §II, the fast dynamics are independent of ξ1 − ξ2
and depend only on ξ1 + ξ2.

C. Phenomenological model of human decision-making

We now present a phenomenological model of human
decision-making. Animal and human decision-making in-
volves several tradeoffs. It is believed that evolutionary
pressure has led to behavior that is optimal in a certain sense.
The fundamental tradeoff involved in two alternative choice
tasks is the speed-accuracy tradeoff: making a quick decision
versus making an accurate decision. This problem has been
substantially studied in the engineering and mathematical
statistics literature. An optimal procedure that minimizes the
expected decision time for a desired level of decision error
was developed by Wald [20, 21] and is called the Sequential
Probability Ratio Test (SPRT).

Consider two alternatives (hypothesis) H1 and H2. Sup-
pose that the probability distribution functions of the stimulus
conditional on the true alternative are f1(y) := f(y|H1) and
f2(y) := f(y|H2). The decision-making agent may incur
three types of cost: (i) a fixed cost for each observation col-
lected, (ii) a fixed cost for a false alarm (declaring H2 when
H1 is true), and (iii) a fixed cost for misdetection (declaring
H1 when H2 is true). With infinitely many observations, an
accurate decision can be made and consequently, the costs
(ii) and (iii) can be made zero. However, this results in cost
(i) becoming very large. The tradeoff between (i) versus (ii)
and (iii) is called the speed-accuracy tradeoff, and the optimal
solution is the SPRT described as follows:

(i) at each time t ∈ N, collect measurement yt
(ii) integrate evidence Λ(t) :=

∑t
τ=1 log f2(yτ )

f1(yτ )

(iii)





declare H2, if Λ(t) ≥ θ,
declare H1, if Λ(t) ≤ −θ,
collect another observation, otherwise.

Here for simplicity, we have assumed that thresholds for
the two hypothesis are symmetric, i.e., ±θ. In general, the
magnitude of the two thresholds may be different. The choice
of these thresholds dictates the speed-accuracy tradeoff: the
higher the thresholds, the smaller is the probability of an
erroneous decision and the larger is the expected decision
time. Wald’s criterion selects the two thresholds to achieve
desired probabilities of misdetection and false-alarm.

The time evolution of the sufficient statistic Λ(t) is a
discrete time random walk in which the increment at each
time is a random variable with mean β := E

[
log f2(yτ )

f1(yτ )

∣∣Hk

]
,

and variance σ2 := var
[

log f2(yτ )
f1(yτ )

∣∣Hk

]
, where Hk is the

true alternative. Note that E
[

log f2(yτ )
f1(yτ )

∣∣H2

]
= D(f2||f1)

and E
[

log f1(yτ )
f0(yτ )

∣∣H1

]
= −D(f1||f2), where D(·||·) is the

Kullback-Leibler divergence and is always non-negative.
It is well known that the continuum limit of a random

walk (under certain regularity conditions) is a Wiener process
with drift. Therefore, the decision-making statistic for the

SPRT converges to the following drift-diffusion process in
the continuum limit:

dx(t) = βdt+ σdW (t), x(0) = x0, (8)

where x0 is the loglikeliood ratio computed using prior
probabilities. For simplicity, in the following we assume an
unbiased initial condition, i.e., x0 = 0. As discussed above
the drift rate β is positive (negative), when H2 (H1) is the
true alternative.

Comparing (8) with (7), we note that β = (ξ1 − ξ2)/
√

2,
i.e., the drift rate is the difference between the mean stimuli
for the two alternatives. This essentially means that in a
statistical sense the mean stimuli strength can be thought of
as the log-likelihood of the observations ξj = E[f j(y)|Hk].
Also the optimal statistical test requires the term ` to be
zero. In general, ` may not be zero, and positive values of
` are attributed to recency effect (old observations are given
more attention) and negative values of ` are attributed to
decay effects (newer observations are given more attention).
However, fits to the behavioral data usually result in a really
small value of ` suggesting near optimality of the decision
process.

For the DDM (8) with thresholds ±θ and drift rate β ∈
R>0, the decision time T is defined by

T = inf{t ∈ R≥0 | x(t) ∈ {−θ,+θ}},

and the probability of erroneous decision (error rate) ER is
defined by ER = P(x(T ) = −θ). Both mean decision time
and error rate can be analytically characterized for the DDM
and are given by

ET =
θ

β
tanh

(βθ
σ2

)
and ER =

1

1 + exp
(
2βθ
σ2

) , (9)

for unbiased initial condition, i.e., x0 = 0. In fact, the
distribution of the decision time can be analytically computed
and is given by

fT (t) = e−
β2t

2σ2

(
e−

2βθ

σ2 ϑ
(
t;
θ

σ1
,

2θ

σ1

)
+ e

2βθ

σ2 ϑ
(
t;
θ

σ
,

2θ

σ

))
,

where

ϑ(t;u, v) =

+∞∑

k=−∞

v − u+ 2kv√
2πt3/2

e−(v−u+2kv)2/2t, u < v.

Several properties of DDM can be explicitly character-
ized [22] and such analysis can even be extended to cases
when DDM parameters are time-varying [23]. Such analytic
properties lead to efficient fitting of DDM parameters to
behavioral data in two alternative choice tasks. This analytic
traction and optimality make DDM a popular model to study
human behavior in two alternative choice tasks.

In the context of human decision-making, the choice of
threshold θ, which dictates the speed-accuracy tradeoff, is
believed to be governed by reward rate maximization. The
notion of reward rate maximization has its roots in the
ecology literature and leads to the well-known marginal value
theorem for foraging [24]. Assuming a unit reward for each
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correct decision and no penalty for an incorrect decision, the
reward rate (RR) for decision-making is defined by

RR =
1− ER

ET + Tmotor +D + ERDp
,

where Tmotor is the motor time associated with the decision-
making process, D is the response time, and Dp is the addi-
tional time that the decision-maker takes after an erroneous
decision (see [11] for detailed description of the parameters).
The threshold that maximizes the reward rate is the solution
to the following transcendental equation:

e
2βθ

σ2 − 1 =
2β2

σ2

(
D +Dp + Tmotor − θ

β

)
. (10)

We remark that there exist regimes of parameters where
biophysical models, connectionist models, and phenomeno-
logical models are mathematically equivalent, and optimality
guarantees of phenomenological models extend to other
models in these parameter regimes.

IV. AN ABSTRACT MODEL FOR BIO-INSPIRED
NETWORK DECISION-MAKING AND CONTROL

In this section we introduce an agent-based model for
design and control of bio-inspired network decision-making.
The proposed model is a special case of the Hopfield
network [25, 26] in which we introduce enough structure
so that key behaviors can be controlled. The presentation in
this section follows [6, 27–31].

We consider a set of N interconnected agents. Let A ∈
RN×N be the agent network adjacency matrix, with aij ≥ 0
for i 6= j, and aii = 0, where i, j ∈ {1, . . . , N}. Let D ∈
RN×N be a diagonal matrix with Dii = di :=

∑N
j=1 aij

and let L = D − A be the network Laplacian matrix. We
assume that the interconnection graph is strongly connected
and undirected, that is, rank(L) = N −1 and L1N = 0,
where 1N is the N -column-vector with all unitary entries.

Consider the following decentralized dynamics for the re-
alization of bio-inspired collective decision-making behavior

dxi =
(
−kixi−dixi+

N∑

j=1

aijuj tanh(xj)+βi
)
dt+σdW̄i(t),

(11)
for each i ∈ {1, . . . , N}, Here, βi ∈ {−βA, 0, βB} is
the external stimulus, uj ≥ 0 is a non-negative parameter
representing social activity, ki ≥ 0 is the leadership strength,
and dW̄i are i.i.d. Wiener increments with dW̄i and dW̄j

being potentially correlated. In the vector form (11) is

dx = (−Kx−Dx+AU tanh(x)+β)dt+ΣdW (t), (12)

where K is a diagonal matrix of ki’s, U is a diagonal matrix
of uj’s, β is the vector of βi’s, Σ is the diffusion matrix,
and dW (t) is the i.i.d. N -dimensional Wiener increments.
We interpret the state x as the vector of agent opinions and
treat it as a measure of ensuing decisions. We refer to (12)
as the opinion dynamics.

The opinion dynamics model (11) may be interpreted
in the following way. The term uj tanh(xj) in (11) is

the opinion of agent j as perceived by a generic agent
i. In particular, the saturation function models an agent’s
assessment of the opinion of other agents: opinions with
small values are assessed as they are, while the opinions
with large values are assessed to have a smaller value. The
parameter uj controls this smaller value and models the
social effort: higher social effort leads to a broader range
of opinions being assessed correctly.

The stimulus term βi models information or preference
for agent i: βi = −βA means information or preference for
option A, βi = 0 means no information or preference, i.e.,
an uninformed agent, and βi = βB means information or
preference for option B. With this interpretation, the opinion
dynamics (12) are the continuous-time version of the process
in which each agent at each time: (i) computes a linear
combination of her opinion with the perceived opinions of
her neighbors, and (ii) updates her opinion by the sum of
the linear combination and the external stimulus. If ki = 0,
then the linear combination is a convex combination.

The opinion dynamics (12) only model the evolution of
the opinion in favor of the alternatives. For a unanimous
decision every agent at least must have opinion with the
same sign, or the opinion of each agent should be above a
positive threshold or below a negative threshold. Thus if the
sum of opinions is zero or really small, then a unanimous
decision cannot be reached.

Several types of common heterogeneities are captured
in (11) and (12). First is the heterogeneity of leadership
captured by ki. Specifically, ki > 0 for leaders and ki = 0
for followers. A leader is defined as an agent that has access
to some external signal and can guide the group in response
to that signal. Without loss of generality we assume that
the external signal is zero. Second is the heterogeneity of
location in the network captured through the matrices D
and A. Third is the heterogeneity of social effort captured
through matrix U . The higher the social effort of an agent, the
higher is its capacity to transmit its strong opinions to others.
Indeed, for small values of uj the uj tanh(xj) saturates
at a smaller value for high values of xj (strong opinions).
Fourth is the heterogeneity of access to information captured
through the βi’s. Different values of βi mean access to
different source of information, e.g., different nest-sites in the
honeybee example. βi = 0 means no access to information.
Fifth is the heterogeneity of noise captured through the
diffusion matrix Σ.

In the following, we will refer to (12) with no noise, i.e.,
Σ = 0, K = 0, and U = uIN , where IN is the identity
matrix of order N , as the deterministic opinion dynamics,
which take the form:

ẋ = −Dx+ uA tanh(x) + β. (13)

V. DETERMINISTIC OPINION DYNAMICS AND VALUE
SENSITIVE DECISION-MAKING

In this section, we discuss the deterministic opinion dy-
namics, and show how the model can be used to study and
control for value-sensitive decision-making. The presentation
follows [6, 28, 29].
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A. Bifurcations in deterministic opinion dynamics

To gain intuition for the model, we consider the determin-
istic opinion dynamics (11) with an all-to-all network and
β = 0:

ẋi = −(N − 1)xi +

N∑

j=1,j 6=i

u tanh(xj), (14)

for each i ∈ {1, . . . , N}.
For dynamics (14), the consensus manifold is globally

exponentially stable. This can be easily verified by consid-
ering a Lyapunov function V =

∑N
i=1

∑N
j=1 Vij(x), where

Vij(x) = (xi − xj)2/2. It follows that

V̇ij(x) = −(N − 1)(xi − xj)(xi − xj+
u(tanh(xi)− tanh(xj)))

< −(N − 1)(xi − xj)2 = −2(N − 1)Vij ,

for all xi 6= xj . Therefore,

V̇ (x) < −2(N − 1)V (x),

for all x /∈ span(1N ). Invoking LaSalle’s invariance prin-
ciple, it follows that the consensus manifold is globally
exponentially stable.

On the consensus manifold these dynamics reduce to the
scalar dynamics

ẏ = −(N − 1)y + (N − 1)u tanh(y).

It can be verified that for the dynamics on the consensus
manifold: (i) the origin is globally exponentially stable for
u ∈ [0, 1) and globally asymptotically stable for u = 1;
and (ii) the origin is unstable and there exist two stable
equilibrium points on the consensus manifold for u > 1.
In other words, the system admits a pitchfork bifurcation at
u = 1.

We will now discuss the deterministic opinion dynamics
for β 6= 0 and for general connected undirected graphs
and argue that a similar bifurcation behavior persists. The
methodology that we use is that of Lyapunov-Schmidt (LS)
reduction [32]. For a nonlinear set of equations ζ(x) = 0, a
singular point is defined as a point at which the Jacobian
matrix ∂ζ

∂x loses rank. The LS reduction decomposes the
vector space into two subspaces: (i) the linear space tangent
to the center manifold, i.e., the linear space spanned by
eigenvectors associated with eigenvalues with zero real part,
and (ii) the linear space orthogonal to linear space (i). The LS
reduction then projects x near the singular point on spaces
(i) and (ii). Let x1 and x2 be these projections. Since by
construction the projection of ζ(x) onto space (ii) is full
rank and locally ζ(x) is a linear set of equations, x2 can be
represented in terms of x1. Using this representation of x2,
the projection of ζ(x) onto space (i) can be written explicitly
in terms of x1. Taylor series expansion of ζ(x) projected on
subspace (i) at the singular point can be used to analyze the
local nonlinear phenomena on the center manifold.

For deterministic opinion dynamics (13), it can be verified
using a Lyapunov function of the form V (x) = x>x/2 that

for β = 0, the origin is globally asymptotically stable if
0 < u ≤ 1, and is locally exponentially stable if 0 < u < 1.
At u = 1 the origin x = 0 is a singular point for the
fixed point equation of (13). Indeed, the linearization at
the origin for u = 1 is −Lx, and the Laplacian matrix L
has an eigenvalue at zero. Importantly, the center manifold
locally corresponds to the consensus manifold, i.e., any local
nonlinear phenomena on the center manifold will be the same
for each agent (cf. (14) in which the consensus manifold is
globally exponentially stable for all values of u and each
agent’s opinion bifurcates in the same way on the consensus
manifold).

Let {0,±ys} be the three solution of the equation y −
uS(y) = 0, u > 1. Let P = IN − 1

N 11> the projector on
1⊥N and d be the vector of node degrees. Define

d̄ := (L− (u− 1)PA)+Pd, β̄ := (L− (u− 1)PA)+Pβ,

and ε = (u− 1)d̄+ 1N .

The Lyapunov-Schmidt reduction of the fixed points equa-
tion of (13) along the center manifold at (x∗, u,β) =
(0, 1, 0) is

g(y, u,β) :=

N∑

i=1

di
(
u tanh(εiy + β̄i)− (εiy + β̄i)

)
+

N∑

i=1

βi

=

N∑

i=1

βi +

N∑

i=1

di(u− 1)y −
N∑

i=1

diβ̄iy
2 − 1

3

n∑

i=1

diy
3

+O(β2, (u− 1)2, y4),

where y is the component of x along 1N .
For β = 0, the bifurcation problem g(y, u, 0) =∑n
i=1 di(u−1)y− 1

3

∑n
i=1 diy

3+ h.o.t. and corresponds to a
symmetric pitchfork singularity. In particular, for u > 1 and
|u−1| sufficiently small, there are exactly three fixed points:
the origin and ±ys1N . For β 6= 0, the bifurcation problem
g(y, u,β) is an unfolding of the symmetric pitchfork and the
associated bifurcation diagrams are similar to the bifurcation
diagram in the middle panel of Fig. 1.

B. Value-sensitive decision-making

As shown in §II, a noteworthy feature of collective deci-
sion making in honeybees is the value sensitivity of the social
effort, i.e., the stop signal required to break the deadlock for
superior nest-sites is smaller than for low quality nest-sites.
We now show that such behavior can be accomplished using
our agent-based model.

To this end, consider the following modification of opinion
dynamics (13):

ẋ(t) = −u1Dx(t) + u2AS(x) + υ, (15)

where υ ∈ Rn is the vector with entries equal to the value of
the alternative to which the corresponding agent is exposed.
For simplicity, suppose agents have to select between two
alternatives both with values υ ∈ R>0. Then, υi = υ if the
agent i is exposed to alternative 1, υi = −υ if the agent
i is exposed to alternative 2 and υi = 0 if the agent i is
not exposed to any alternative. By changing to time scale
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τ = u1t, we can map (15) back to the deterministic opinion
dynamics (13) with u = u2υ and βi ∈ {−υ2, 0, υ2}.

In (15), u1 ∈ R>0 is the rate at which an agent commits
to the alternative it is exposed to, and u2 ∈ R>0 is the
rate at which an agent is attracted by other agents to their
alternative. We let u1 = 1

υ . Such choice of u1 means that
for small values of υ and a fixed value of u2, the opinions
converge to deadlock quickly.

Assume that the number of agents exposed to each nest-
site is the same. Then, for small values of u2, the sum
of all opinions in (15) converges to zero and there is no
unanimity in the group. However, at a critical value of u2
a symmetric pitchfork bifurcation occurs and the sum of
opinion converges to a positive or a negative equilibrium
point that corresponds to a decision for one of the nest-sites.
For all-to-all graphs, the expression u∗2 in terms of the nest-
site value υ can be analytically computed:

u∗2 =
1

υ
+

(1 + 3N3)2(N − n3)

9N9
υ3 +O(υ7), (16)

where n3 is the number of informed agents. Thus, dimin-
ishing social effort for decision-making as a function of
the value of the alternative can be captured by the abstract
model (12).

VI. LINEAR STOCHASTIC OPINION DYNAMICS:
INFLUENCE OF HETEROGENEITY

We now study dynamics (12) with noise. Nonlinear
stochastic differential equations are very hard to analyze.
Therefore, to gain tractability we linearize dynamics (12)
to obtain

dx = (β − L̄x)dt+ ΣdW (t), x(0) = x0, (17)

where L̄ = (K + D − AU). The linear stochastic model
allows for explicit analysis of the influence of heterogeneity
on decision-making performance, e.g., on expected decision
times and error rates. The presentation in this section follows
from [27, 30, 31].

For simplicity we assume that the matrix L̄ is diagonaliz-
able and has all but one eigenvalue with positive real part.
Further, suppose the eigenvalue with the smallest real part
is purely real. Let ep and e†p be right and left eigenvectors
of L̄ associated with eigenvalue λp, p ∈ {1, . . . , n} such
that L̄ =

∑n
p=1 λpepe

†
p. We assume that eigenvalues are

ordered in increasing order of their real parts. To analyze
decision-making properties of each agent in the opinion dy-
namics (17), we develop a decoupled approximation to (17).

To this end, we decompose the opinion dynamics (17) into
principal and residual components. We define the principal
component of x(t) as xprin(t) = xpe1, where xp = e†1x(t).
We define the residual component as ε(t) = x(t)−xprin(t).
It follows that the principal component satisfies

dxp(t) = −e†1L̄x(t)dt+ e†1βdt+ e†1ΣdW n(t)

= −λ1xp(t)dt+ βpdt+ σpdW1(t), (18)

where βp = e†1β, σp = ‖e†1Σ‖2, and W1(t) is the standard
one-dimensional Weiner process. Thus, the principal com-
ponent evolves according to an Ornstein-Uhlenbeck (O-U)
process [33].
Similarly, the residual component satisfies

dε(t) = −L̄x(t)dt+ λ1e1e
†
1x(t) + β̄dt+ Σ̄dW n(t)

= −L̄ε(t)dt+ β̄dt+ Σ̄dW n(t), (19)

where β̄ = β − e†1βe1 and Σ̄ = (IN − e1e†1)Σ.
It can be shown that the expected value and variance of

principal component xp satisfy

E[xp(t)] = lim
λ→λ+

1

βp
λ

(1− exp(−λt)), and

Var[xp(t)] = lim
λ→λ+

1

σ2
p

2λ
(1− exp(−2λt)).

The expected value and covariance of residual component
ε(t) satisfy

lim
t→+∞

E[ε(t)] =

n∑

p=2

1

λp
epe
†
pβ, and

lim
t→+∞

Cov[ε(t)] =

n∑

q=2

n∑

r=2

e†qΣΣ>e‡r
λq + λr

equ
>
r ,

where e‡q is the transpose of e†q . Furthermore, the covariance
between the principal component and the residual component
satisfies

lim
t→+∞

Cov(xp(t), ε(t)) =

n∑

q=2

e†qΣΣ>e‡1
λ1 + λq

eq.

We note that the principal component is already decoupled.
In particular, the k-th principal component is xprin

k (t) =
xp(t)e1k, where u1k is the k-th element of e1, and can be
modeled by the O-U process (18).

We now compute an asymptotically matching approxi-
mation to the residual component ε(t). Since ε(t) is the
solution of the linear SDE (19) with constant coefficients
and a constant input, it is a continuous Gaussian process. The
asymptotic values of expected value and variance of ε(t) are
constants. A simple, scalar, and continuous Gaussian process
with a constant asymptotic expected value and a constant
asymptotic variance is the O-U process. In the following,
we approximate the k-th element of the residual component
εk(t) by an O-U process. Such an approximate O-U process
must also capture the correlation between xp(t) and εk(t).
We first introduce some notation. Let

1

µk
:= lim

t→+∞
Var(εk(t)), αk := lim

t→+∞
E[εk(t)], and

γk := lim
t→+∞

Cov(xp(t), εk(t)).

We now propose the following coupled dynamics for xprin
k (t)
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and εk(t)

[
dxprin
k (t)

dεk(t)

]
=
[
−λ1 0
0 −µk2

] [
xprin
k (t)

εk(t)

]
dt+

[
βpu1k
αkµk

2

]
dt

+

[
σpu1k 0

(2λ1+µk)γk
2σp

√
1−

(2λ1+µk)2γ2
k

4σ2p

] [
dW1(t)
dW2(t)

]
. (20)

Equation (20) can be solved to show that it asymptotically
matches the metrics for residual component (19), i.e.,

lim
t→+∞

E[εk(t)] = αk, lim
t→+∞

Var(εk(t)) =
1

µk
,

and lim
t→+∞

Cov(xprin
k (t), εk(t)) = u1kγk.

Notice that if L̄ is a symmetric matrix and Σ is an identity
matrix, then the decomposition in (18) and (19) corresponds
to principal components of the covariance of x(t). In such
a case, xprin

k (t) and εk(t) are uncorrelated and the diffusion
matrix in (20) is a diagonal matrix. It should be noted that in
contrast to standard spectral methods, which consider only
the principal component or a few principal components, we
consider the principal component and compute an asymptotic
matching approximation to the residual components. This
ensures that the original dynamics and the approximate
decoupled dynamics converge to the same values.

The approximate dynamics (20) can be used to obtain the
dynamics of the approximate state yk(t) = xprin

k (t) + εk(t):

[
dyk(t)
dεk(t)

]
=
[
−λ1 λ1−

µk
2

0 −µk2

] [
yk(t)
εk(t)

]
dt+

[
βpu1k+

αkµk
2

αkµk
2

]
dt

+



σpu1k+

(2λ1+µk)γk
2σp

√
1−

(2λ1+µk)2γ2
k

4σ2p

(2λ1+µk)γk
2σp

√
1−

(2λ1+µk)2γ2
k

4σ2p



[
dW1(t)
dW2(t)

]
. (21)

For K = 0, U = IN , and Σ = IN , the dynamics (17) are
called a coupled DDM and are given by

dx = (β − Lx)dt+ dW (t), x(0) = x0. (22)

Coupled DDM (22) is the continuum limit of distributed
log-likelihood aggregation for binary sequential hypothesis
testing in which at each time every agent (i) gathers an
observation and computes the log likelihood ratio of the
current observation, (ii) adds it to her current decision-
making statistic, and (iii) computes the convex combination
of her updated statistic with her neighbors. Using the updated
statistic xk(t), the k-th agent decides on alternative 1 if xk(t)
crosses the threshold θk and on alternative 2 if xk(t) crosses
the threshold −θk.

Unlike SPRT and DDM, such distributed decision-making
policy is not necessarily optimal. However, such policy is
asymptotically optimal, i.e., optimal when decision times are
large, e.g., when thresholds are high or the drift rates are low.
Here optimality is defined with respect to the speed-accuracy
tradeoff, i.e., the decision-maker has the minimum expected
decision time for a given error rate.

We now specialize the decoupled approximation (20)
to (22). The approximate evidence at node k is yk(t) :=

1
N 1>Nx(t) + εk(t). Here, the principal component corre-
sponds to evidence averaged across the network, and the
residual component corresponds to the deviation from this
average. The evidence aggregation dynamics for the reduced
model are
[
dyk(t)
dεk(t)

]
=

[
β̂ + µk

2 (αk − εk(t))
µk
2 (αk − εk(t))

]
dt+

[ 1√
n

1

0 1

] [
dW1(t)
dW2(t)

]
,

(23)

with yk(0) = x̄0, εk(0) = 0, and β̂ = 1
N 1>Nβ.

We can further assume that the only heterogeneity among
agents is the heterogeneity of location in the network, i.e.,
β = β1N . Also, for simplicity let x̄0 = 0. Then, the reduced
model (23) further reduces to
[
dyk(t)
dεk(t)

]
=

[
β − µkεk(t)

2

−µkεk(t)2

]
dt+

[ 1√
n

1

0 1

] [
dW1(t)
dW2(t)

]
. (24)

Note that as we made the noise i.i.d. across agents, i.e.,
set Σ = IN in (17), γk goes to 0. Similarly, making
the drift rates identical, i.e., β = β1N , αk goes to 0.
In this sense, the parameters µk, αk, and γk primarily
capture the influence of heterogeneity due to location in the
network, heterogeneity due to access to different quality of
information, and heterogeneity due to coherence of noise,
respectively.

For the coupled DDM (22), the ek’s are the eigenvectors
of the Laplacian matrix, and µk is called the node certainty
index defined by

1

µk
=

n∑

p=2

1

2λp
e
(p)
k

2
.

It has been shown in [27] that the node certainty index
is equivalent to the information centrality [34] which is
defined as the inverse of the harmonic mean of the resistance
distance [35] of the given node to every other node in the
network graph. In particular,

1

µk
=
σ2

2

( 1

κinfo(k)
− Kf

n2

)
,

where κinfo(k) is the information centrality of the k-th node
and Kf is the Kirchhoff index of the network graph.

It should be noted that for the coupled DDM (22), the
evidence yk(t) = xprin

k (t) + εk(t) = 1
N 1>Nx(t) + εk(t),

and the principal component is the same for each agent. So
any difference in performance among agents is attributed
to εk(t). Consequently, if the only heterogeneity is the
heterogeneity of location in the network, then the difference
in performance of agents is completely determined by µk
and hence, by the information centrality of that agent.

Without loss of generality we assume that β > 0. Then the
decision time for the k-th agent is Tk = inf{t ≥ 0 | yk(t) ∈
{−θk, θk}}. The error rate, i.e., the probability of making an
incorrect decision is ERk = P(yk(Tk) = −θk). It was ob-
served in [30] that the effect of location heterogeneity can be
accurately captured by keeping the opinion evolution of each
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agent the same and equal to yk(t) = xprin
k (t) = 1

N 1>Nx(t)
and delegating the effect of εk(t) to the threshold ±θk.
In particular, it was observed that for large thresholds, the
decision-making performance of the k-th agent is equivalent
to the performance of the DDM

dxcen(t) = βdt+ 1/
√
Ndt, xcen(0) = 0, (25)

with thresholds ±θk∓K̄(β)/
√
µk. The function K̄ : R>0 →

R>0 was empirically computed and is defined by

K̄(β) =
e
− 1

4
√
β

√
β(1 + β/3)

.

Therefore if each agent has the same thresholds, then the
effective thresholds for (22) are higher for a more centralized
agent as defined by information centrality. Consequently, a
more central agent has a larger expected decision time and
a smaller error rate. This effect can be seen in Fig. 5.
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Fig. 5. From [30]. The decision-making performance of agents interacting
according to (22) and (25) with corrected thresholds. The blue ×, the
red +, and the green triangles represent the performance of the coupled
DDM (22) for decision-makers 1, 2, and 6, respectively. The blue dashed
lines, the red solid lines with dots, and the green solid lines represent the
performance of the threshold corrected DDM (25) for decision-makers 1,
2, and 6, respectively.

Consider the scenario when each agent may chose thresh-
olds to maximize their reward rates defined in §III-C. Let
±θ∗ be the optimal thresholds that maximize the reward
rate for DDM (25). Then, the k-th agent can choose her
thresholds as ±θ∗ ± K̄(β)/

√
µk to achieve the optimal

threshold. Thus, in this setting the more central agent has
lower thresholds. Moreover, each agent has the same error
rate and expected decision time.

VII. DISCUSSION

We presented models for collective decision-making in
fundamental decision-making tasks, namely, the two alter-
native choice tasks. In this section, we summarize the ideas

presented in the paper and point to several interesting and
related research directions that we did not cover.

We presented a model for collective decision-making
in a swarm of honeybees that must decide between two
potential nest-sites and discussed how a decision-deadlock
is broken using social effort (stop signal). This model was
originally studied in [8, 9]. We showed that the fundamental
nonlinear phenomenon associated with the decision-making
in nest-site selection by honeybees is the pitchfork bifur-
cation and its unfolding. This is not the only scenario in
which the collective decision-making in animal groups is
realized through a pitchfork bifurcation. In the context of
foraging decisions in a school of fish [36–38], the pitchfork
bifurcation plays a pivotal role. In particular, it was shown
in [38] that a democratic collective decision emerges through
the unfolding of a pitchfork bifurcation when the number of
uninformed individuals is treated as a bifurcation parameter.
Another context in which decision-making emerges through
a pitchfork bifurcation is in the replicator-mutator equations
from evolutionary dynamics [39]. These equations serve as a
model for the evolution of language and behavioral dynamics
in social networks.

We discussed collective decision-making in neuronal net-
works at several levels of abstraction. At the biophysical
level, we discussed the pivotal role the pitchfork bifurcation
plays in decision-making using the model from [12, 18]. For
different combinations of the stimulus strength and recurrent
connection strength in the neuronal clusters, there may exist
only one stable symmetric equilibrium point, two asymmetric
equilibrium points, or three stable equilibrium point of which
two are asymmetric and one is symmetric. Two stable equi-
librium points are realized through a supercritical pitchfork
bifurcation, while three stable equilibrium points are realized
through a subcritical pitchfork bifurcation.

We discussed a connectionist model proposed in [15] and
studied in detail in [40]. The connectionist models rely on
similar architectures as in the biophysical models but employ
a simpler abstract dynamics. In particular, they rely on
evidence integration and mutual-inhibition. The neural data
suggesting such dynamics was observed in [19, 41, 42]. We
discussed how, using time-scale separation and linearization,
these models can be reduced to the OU model of decision-
making of which DDM is a special case.

We discussed phenomenological models of collective
decision-making. The underlying philosophy of such models
is that the evolutionary forces have led to optimal behavior
when faced with decision-making tradeoffs. We discussed
the SPRT which is the optimal decision-making algorithm
in the context of the speed-accuracy tradeoff. The SPRT
in the continuum limit converges to the DDM. The use of
SPRT and DDM to study human decision-making goes back
to Laming [43]. Ratcliff [44] made significant advances to
DDM-like models of human decision-making. For a review
of such decision models see [11, 45]. Extensions of DDM to
tasks in which contextual information needs to be learned are
discussed in [46]. Luce [47] discusses how decision-making
performance captured through reaction times and error rates

2036



can inform about mental organization.
We discussed an abstract model for realization of bio-

inspired collective decision-making in engineered networks.
These models were inspired by Hopfield networks [26]. We
presented different kind of heterogeneities and individual dif-
ferences captured by the abstract model. For the deterministic
version of the model, we elucidated the nonlinear phenomena
associated with the model using Lyapunov-Schmidt reduc-
tion and singularity theory. Specifically, the abstract model
realizes the pitchfork bifurcation and its unfolding along the
consensus manifold, i.e., the abstract model achieves a unan-
imous decision using nonlinear phenomena similar to those
in animal groups and neuronal networks. We also showed
that the abstract model can realize value-sensitive decision-
making as in the honeybee nest-site selection problem.

We presented the linearized stochastic version of the
abstract model. The linearized stochastic model is amenable
to explicit analysis of the influence of heterogeneities on
the decision-making performance of individuals. We showed
that if the only heterogeneity is due to agent location in the
network, then the performance of an agent is determined by
the information centrality of the agent in the network graph.
Specifically, if each agent has the same thresholds, then a
more (information) central agent is slower and more accurate.
The linearized stochastic model is the continuum limit of
distributed sequential hypothesis test and is asymptotically
optimal. Such distributed hypothesis testing problems have
been extensively studied in the engineering literature [48–
51]. The bio-inspired abstract model provides insights into
how social efforts can be incorporated in these distributed
models to control for better performance.

We primarily focused on heterogeneities due to location
in the network, due to access to different information, and
due to coherence of noise across agents. An important class
of heterogeneity is leadership, which has received a lot of at-
tention recently. A significant focus is on the leader selection
problem, i.e., which agents should be selected as leaders such
that the overall system uncertainty is minimized [52–55]. It
can be argued that minimum overall uncertainty may lead
to smaller overall decision-making error. The study of emer-
gence of leadership from an evolutionary perspective [56–58]
is another area that has received attention.

We focused on two alternative choice tasks in this paper.
However, the kind of analysis we presented is not limited
to two alternative choice tasks. The bifurcation model can
be extended to multiple choices. However, the associated
nonlinear phenomenon become more complex. For example,
in the context of the replicator-mutator equations of evolu-
tionary dynamics, the nonlinear phenomenon associated with
the three alternative choice task studied in [59] is shown in
Fig. 6. Indeed, the bifurcation diagram is more complicated
than a simple pitchfork bifurcation. Nevertheless, it still
provides valuable insights into the remarkable adaptive and
robust properties of collective decision-making.

The connectionist models for collective decision-making
in neuronal networks also extend to multiple alterna-
tives [15]. The multiple alternative equivalent of DDM is
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Fig. 6. Bifurcations associated with three symmetric choices. For large
values of u we observe a decision-deadlock among three alternatives, as u
is decreased six new equilibrium points appear in three symmetric saddle
node bifurcations. The new stable nodes correspond to the choice of each
alternative, and the three saddle nodes correspond to deadlock between
each pair. Finally as u is further increased, three saddle nodes cross the
stable node corresponding to deadlock among all three alternatives in an
S3 symmetric transcritical bifurcation and three choices emerge as the only
stable equilibrium points.

called the race model [60] and is the continuum limit of the
multiple sequential probability ratio test (MSPRT) [61]. In
MSPRT, the farther a hypothesis is from the true hypothesis
in the sense of KL divergence between the underlying
distributions, the sooner that hypothesis is rejected. After
some time, the MSPRT reduces to a test of hypothesis
between the true alternative and the second best alternative.
This is remarkably similar to the bifurcation diagram in
Fig. 6: as three new stable equilibrium points appear, the
farthest hypothesis is rejected. We are not aware of bio-
physical models that capture decision-making behavior in
multiple alternative choice tasks. However, we believe that
the nonlinear phenomena in such models for three-alternative
choices tasks should be similar to Fig. 6.

Another decision-making tradeoff that is significant both
in natural systems and engineered networks is explore-vs-
exploit, i.e., choosing between the most informative and the
most rewarding actions. A multiarmed bandit problem [62]
is a canonical example that captures this tradeoff. Conse-
quently, these problems have received significant attention
in both mathematical biology and the engineering literature.
These problems have been used to study foraging decisions
in animal groups [63–65]. In the context of neuronal net-
works, these problems have been studied at the phenomeno-
logical level [66, 67]. Explore-exploit problems using the
linear stochastic abstract framework discussed here have
been studied in [68, 69]. The importance of studying the
biophysics and neuroscience of sensory systems with eco-
logical and evolutionary processes in the context of explore-
exploit tension has been argued [70] and is an active research
direction.

In conclusion, there is a lot of commonality in decision-
making problems that exist in seemingly disparate fields
of ecology, neuroscience, and engineering. A synergistic
approach that leverages the salient features of approaches
in these fields towards a unified framework for adaptive, re-
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silient, and tractable design and control of network systems is
needed. We summarized some of our efforts in this direction,
but a lot still needs to be explored for the realization of such
a framework.
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