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Collective Decision-Making in Ideal Networks:
The Speed-Accuracy Tradeoff
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Abstract—We study collective decision-making in a model of
human groups, with network interactions, performing two alterna-
tive choice tasks. We focus on the speed-accuracy tradeoff, i.e., the
tradeoff between a quick decision and a reliable decision, for
individuals in the network. We model the evidence aggregation
process across the network using a coupled drift-diffusion model
(DDM) and consider the free response paradigm in which indivi-
duals take their time to make the decision. We develop a reduced
DDM as a decoupled approximation to the coupled DDM and
characterize its efficiency. We determine high probability bounds
on the error rate and the expected decision time for the reduced
DDM. We show the effect of the decision-maker’s location in the
network on their decision-making performance under several
threshold selection criteria. Finally, we extend the coupled DDM
to the coupled Ornstein—Uhlenbeck model for decision-making in
two alternative choice tasks with recency effects, and to the coupled
race model for decision-making in multiple alternative choice tasks.

Index Terms—Coupled drift-diffusion model (DDM), coupled
Orhstein—Uhlenbeck (O-U) model, coupled race model, decision
time, distributed decision-making, distributed sequential hypothesis
testing, error rate.

1. INTRODUCTION

OLLECTIVE cognition and decision-making in human

and animal groups have received significant attention in a
broad scientific community [2]-[4]. Extensive research has led to
several models for information assimilation in social networks
[5], [6]. Efficient models for decision-making dynamics of a
single individual have also been developed [7]-[9]. However,
applications like the deployment of a team of human operators
that supervises the operation of automata in complex and uncer-
tain environments involve joint evolution of information assimi-
lation and decision dynamics across the group and the possibility
of a collective intelligence. A principled approach to modeling
and analysis of such socio-cognitive networks is fundamental to
understanding team performance.

In this paper, we focus on the speed-accuracy tradeoff in
collective decision-making primarily using the context of pro-
blems in which the decision-maker must choose between two
alternatives. The speed-accuracy tradeoff is the fundamental
tradeoff between a quick decision and a reliable decision. The
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two alternative choice problem is a simplification of many
decision-making scenarios and captures the essence of the
speed-accuracy tradeoff in a variety of situations encountered
by animal groups [10], [11]. Moreover, human performance in
two alternative choice tasks is extensively studied and well
understood [7]-[9]. In particular, human performance in a two
alternative choice task is modeled well by the drifi-diffusion
model (DDM) and its variants; variants of the DDM under
optimal choice of parameters are equivalent to the DDM.

Collective decision-making in human groups is typically
studied under two extreme communication regimes: 1) the so-
called ideal group; and 2) the Condorcet group. In an ideal
group, each decision-maker interacts with every other decision-
maker and the group arrives at a consensus decision. In a
Condorcet group, decision-makers do not interact with one
another; instead a majority rule is employed to reach a decision.
In this paper, we study a generalization of the ideal group,
namely, the ideal network. In an ideal network, each decision-
maker interacts only with a subset of other decision-makers in the
group, and the group arrives at a consensus decision.

Human decision-making is typically studied in two para-
digms: 1) interrogation; and 2) free response. In the interrogation
paradigm, the human has to make a decision at the end of a
prescribed time duration, while in the free response paradigm, the
human takes his/her time to make a decision. In the model for
human decision-making in the interrogation (free response)
paradigm, the decision-maker compares the decision-making
evidence against a single threshold (two thresholds) and makes
a decision. In the context of the free response paradigm, the
choice of the thresholds dictates the speed-accuracy tradeoff in
decision-making.

Collective decision-making in ideal human groups and Con-
dorcet human groups is studied in [4] using the classical signal
detection model for human performance in two alternative choice
tasks. Collective decision-making in Condorcet human groups
using the DDM and the free response paradigm is studied in [12]
and [13]. Collective decision-making in ideal human groups
using the DDM and the interrogation paradigm is studied in [14].
Related collective decision-making models in animal groups are
studied in [15]. In this paper, we study the free response paradigm
for collective decision-making in ideal networks using the DDM,
the Ornstein—Uhlenbeck (O-U) model, and the race model [16].

The DDM is a continuum approximation to the evidence
aggregation process in a hypothesis testing problem. Moreover,
the hypothesis testing problem with fixed sample size and the
sequential hypothesis testing problem correspond to the interro-
gation paradigm and the free response paradigm in human
decision-making, respectively. Similarly, the race model in the
free response paradigm is a continuum approximation of an
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asymptotically optimal sequential multiple hypothesis test pro-
posed in [17]. Consequently, the collective decision-making
problem in human groups is similar to distributed hypothesis
testing problems studied in the engineering literature [18]-[21].
In particular, Braca et al. [19] study distributed implementations
of the hypothesis testing problem with fixed sample size as well
as the sequential hypothesis testing problem. They use the
running consensus algorithm [22] to aggregate the test statistic
across the network and show that the proposed algorithm
achieves the performance of a centralized algorithm asymptoti-
cally. We rely on the Laplacian flow [23] to aggregate evidence
across the network. Our information aggregation model is the
continuous time equivalent of the running consensus algorithm
with fixed network structure. In contrast to showing the asymp-
totic behavior of the running consensus as in [19], we character-
ize the finite time behavior of our information aggregation model
in the free response paradigm.

An additional relevant literature concerns the sensor selection
problem in decentralized decision-making. In the context of se-
quential multiple hypothesis testing with a fusion center, a sensor
selection problem to minimize the expected decision time for a
prescribed error rate has been studied in [24]. In the present paper,
for a prescribed error rate, we characterize the expected decision
time as a function of the node centrality. Such a characterization can
be used to select a representative node that has the minimum
expected decision time, among all nodes, for a prescribed error rate.

In this paper, we begin by studying the speed-accuracy
tradeoff in collective decision-making using the context of two
alternative choice tasks. We model the evidence aggregation
across the network using the Laplacian flow-based coupled
DDM [14]. In order to determine the decision-making perfor-
mance of each individual in the network, we develop a decoupled
approximation to the coupled DDM, namely, the reduced DDM,
and characterize its properties. We extend the coupled DDM to
the context of decision-making in two alternative choice tasks
with recency effects, i.e., tasks in which the recently collected
evidence is weighted more than the evidence collected earlier.
We also extend the coupled DDM to the context of decision-
making in multiple alternative choice tasks.

The major contributions of this paper are fivefold.

1) We propose a set of reduced DDMs, a novel decoupled
approximation to the coupled DDM, and characterize the
efficiency of the approximation. Each reduced DDM com-
prises two components: a) a centralized component common
to each reduced DDM; and b) a local component that depends
on the location of the decision-maker in the network.

2) We present partial differential equations (PDEs) to deter-
mine the expected decision time and the error rate for each
reduced DDM. We also derive high probability bounds on
the expected decision time and the error rate for each
reduced DDM. Our bounds rely on the first passage time
properties of the O—U process.

3) We numerically demonstrate that, for large thresholds, the
error rates and the expected decision times for the coupled
DDM are approximated well by the corresponding quanti-
ties for a centralized DDM with modified thresholds. We
also obtain an expression for threshold modifications (refer-
red to as threshold corrections) from our numerical data.

4) We examine various threshold selection criteria and ana-
lyze the decision-making performance as a function of the
decision-maker’s location in the network. Such an analysis
is helpful in selecting representative nodes for high per-
formance in decision-making, e.g., selecting a node that
has the minimum expected decision time, among all nodes,
for a prescribed maximum probability of error.

5) We extend the coupled DDM to the coupled O—U model
and the coupled race model for collective decision-making
in two alternative choice tasks with recency effects and
multiple alternative choice tasks, respectively.

An earlier version of this work [1] entitled “On the Speed-
Accuracy Tradeoff in Collective Decision Making” was pre-
sented at the 2013 IEEE Conference on Decision and Control.
This work improves the work in [1] and extends it to more
general decision-making scenarios.

The remainder of the paper is organized as follows. We review
decision-making models for individual humans and human
groups in Section II. We present properties of the coupled DDM
in Section III. We propose the reduced DDM and characterize its
performance in the free response decision-making paradigm in
Section IV. We present some numerical illustrations and results
in Section V. We examine various threshold selection criteria and
the effect of the decision-makers’s location in the network on
their decision-making performance in Section VI. We extend the
coupled DDM to the coupled O—U model and the coupled race
model in Section VII. Our conclusions are presented in
Section VIII.

II. HUMAN DECISION-MAKING MODELS

In this section, we survey models for human decision-making.
We present the DDM and the coupled DDM that capture
individual and network decision-making in a two-alternative
choice task, respectively.

A. Drift-Diffusion Model

A two alternative choice task [7] is a decision-making scenario
in which a decision-maker has to choose between two plausible
alternatives. In a two alternative choice task, the difference
between the log-likelihood of each alternative (evidence) is
aggregated and the aggregated evidence is compared against
thresholds to make a decision. The evidence aggregation is
modeled well by the drift-diffusion process [7] defined by

z(0) = o (1)

where # € R and o € R are the drift rate and the diffusion rate,
respectively, W (t) is the standard one-dimensional Weiner
process, x(t) is the aggregate evidence at time ¢, and z is the
initial evidence (see [7] for the details of the model). The two
decision hypotheses correspond to the drift rate being positive or
negative, i.e., 0 € Ry or 3 € R, respectively.

Human decision-making is studied in two paradigms: 1) inter-
rogation; and 2) free response. In the interrogation paradigm, a
time duration is prescribed to the human who decides on an
alternative at the end of this duration. In the model for the
interrogation paradigm, by the end of the prescribed duration,

dz(t) = Bdt + odW (1),
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the human compares the aggregated evidence against a single
threshold, and chooses an alternative. In the free response
paradigm, the human subject is free to take as much time as
needed to make a reliable decision. In the model for this
paradigm, at each time 7 € R, the human compares the
aggregated evidence against two symmetrically chosen thresh-
olds +n,n € Rxg: 1) if z(7) > n, then the human decides in
favor of the first alternative; 2) if z(7) < —7, then the human
decides in favor of the second alternative; 3) otherwise, the
human collects more evidence. The DDM in the free response
paradigm is the continuum limit of the sequential probability
ratio test [25] that requires a minimum expected number of
observations to decide within a prescribed probability of error.

A decision is said to be erroneous, if it is in favor of an
incorrect alternative. For the DDM and the free response
decision-making paradigm, the error rate is the probability of
making an erroneous decision, and the decision time is the time
required to decide on an alternative. In particular, for 5 € Ry,
the decision time 7 is defined by

T = inf{t € Ry |z(t) € {—n, +n}}

and the error rate ER is defined by ER = P(z(T) = —n). For
the DDM (1) with thresholds +7, the expected decision time ET
and the error rate ER are, respectively, given by [7]

1

— (2

ET = Ttann (P7) and ER =
B o?

B. Coupled DDM

Consider a set of n decision-makers performing a two alterna-
tive choice task and let their interaction topology be modeled by a
connected undirected graph G with Laplacian matrix L € R"*".
The evidence aggregation in collective decision-making is mod-
eled in the following way. At each time ¢ € R, every decision-
maker k € {1,...,n}: 1) computes a convex combination of her
evidence with her neighbor’s evidence; 2) collects new evidence;
and 3) adds the new evidence to the convex combination. This
collective evidence aggregation process is mathematically
described by the following coupled DDM [14]:

dx(t) = (81, — Lx(t))dt + oL, dW,(t) (3)

where x(t) € R" is the vector of aggregate evidence at time ¢,
W, (t) € R" is the standard n-dimensional vector of Weiner
processes, 1, is the column n-vector of all ones, and I, is the
identity matrix of order n. The two decision hypotheses corre-
spond to the drift rate being positive or negative, i.e., 5 € Ry or
0 € R, respectively.

The coupled DDM (3) captures the interaction among indi-
viduals using the Laplacian flow dynamics. The Laplacian flow
is the continuous time equivalent of the classical DeGroot model
[6], [26], which is a popular model for learning in social networks
[27]. However, the social network literature employs the DeGroot
model to reach a consensus on the belief of each individual [28],
while the coupled DDM employs the Laplacian flow to achieve
a consensus on the evidence available to each individual. The

coupled DDM (3) is the continuous time equivalent of the running
consensus algorithm [22] with a fixed interaction topology.

The solution to the stochastic differential equation (SDE) (3) is
a Gaussian process, and for x(0) = 0,,, where 0,, is the column
n-vector of all zeros,

E[x(t)] = pt1,

24 N1 — e 2t
Covlan(t), 73(1) = Z" 40 ST ulul?) (1)

for k,j € {1,...,n}, where \,, p € {2,...,n}, are non-zero
eigenvalues of the Laplacian matrix, and ugp ) is the kth compo-
nent of the normalized eigenvector associated with eigenvalue A,
(see [14] for details).

Assumption 1 (Unity Diffusion Rate): In the following,
without loss of generality, we assume the diffusion rate o = 1
in the coupled DDM (3). Note that if the diffusion rate is non-
unity, then it can be made unity by scaling the drift rate, the initial
condition, and the thresholds by 1/0. O

Remark 1 (Ideal Network as Generalized Ideal Group): In
contrast to the standard ideal group analysis [4] that assumes each
individual interacts with every other individual, in (3) each
individual interacts only with its neighbors in the interaction
graph G. Thus, the coupled DDM (3) generalizes the ideal group
model and captures more general interactions, e.g., organiza-
tional hierarchies. We refer to this decision-making system as an
ideal network. O

III. PROPERTIES OF THE COUPLED DDM

In this section, we study properties of the coupled DDM. We
first present the principal component analysis of the coupled
DDM. We then show that the coupled DDM is an asymptotically
optimal decision-making model. We utilize the principal com-
ponent analysis to decompose the coupled DDM into a central-
ized DDM and a coupled error dynamics. We then develop
decoupled approximations of the error dynamics.

A. Principal Component Analysis of the Coupled DDM

In this section, we study the principal components of the
coupled DDM. It follows from (4) that, for the coupled DDM (3),
the covariance matrix of the evidence at time ¢ is

tor o~ L
Cov(x(1) = 1,1, + ZT wu,  (5)

where u, € R" is the eigenvector of the Laplacian matrix L
corresponding to eigenvalue )\, € R~. Since

1— 6—2)\pt
27/\[) <t, foreachpe {2,...,n}

it follows that the first principal component of the coupled DDM
corresponds to the eigenvector 1,//n, i.e., the first principle
component is a set of identical DDMs, each of which is the
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average of the individual DDMs. Such an averaged DDM,
referred to as the centralized DDM, is described as follows:
1
deen(t) = Bdt +—1,dW,(t), Zeen(0)=0.  (6)
n
Other principal components correspond to the remaining
component x(t) — xeen(t)1,, of the evidence that we define as
the error vector €(t) € R™. It follows immediately that the error
dynamics are

de(t) = —Le(t)dt + <L,, - 11,,,11>dwn(t), €(0) = 0,.
n

(7)
We summarize the above discussion in Proposition 1.

Proposition 1 (Principal Components of the Coupled
DDM): The coupled DDM (3) can be decomposed into the
centralized DDM (6) at each node and the error dynamics (7).
Moreover, the centralized DDM is the first principal component
of the coupled DDM and the error dynamics correspond to the
remaining principal components.

B. Asymptotic Optimality of the Coupled DDM

The centralized DDM (6) is the DDM in which all evidence is
available at a fusion center. It follows from the optimality of the
DDM in the free response paradigm that the centralized DDM is
also optimal in the free response paradigm. We will show that the
coupled DDM is asymptotically equivalent to the centralized
DDM and thus asymptotically optimal.

Proposition 2 (Asymptotic Optimality): The evidence xy(t)
aggregated at each node k € {1,...,n} in the coupled DDM is
equivalent to the evidence x,(t) aggregated in the centralized
DDM as t — +o0.

Proof: We start by solving (7). Since (7) is a linear SDE, the
solution is a Gaussian process with E[e(t)] = 0,, and

! \ 1
Cov(e(t)):/ e L) (I - 1,11T> E(t=9) g5
0

t t
= / e sgs — = lnll.
0 n

n
1—e 2t u(m?

Therefore, Var(eg(t)) =

2%, Uk
We further note that p=2
xk(t) - ﬂt _ x(’en( ) 6], (t)
Vi ﬁ TV
4»,,1 <p)2
1 W Z :2 w
=—=W({ t).
Vnt ®) t (*)

Note that €(t) can be written as a scaled Weiner process
because it is an almost surely continuous Gaussian process.
Therefore

in distribution as ¢ — 400, and the asymptotic equivalence
follows. O

Remark 2 (Effectiveness of Collective Decision-Making): In
view of Proposition 2, for large thresholds, each node in the
coupled DDM behaves like the centralized DDM. In the limit of
large thresholds, it follows for (6) from (2) that the expected
decision time for each individual is approximately 7 7> and the error
rate is exp(— 2gm’) Therefore, for a given large threshold, the
expected decision-time is the same under collective decision-
making and individual decision-making. However, the error rate
decreases exponentially with increasing group size. O

Definition I (Node Certainty Index): For the coupled DDM (3)
and node k, the node certainty index [14], denoted by py, is
defined as the inverse of the steady-state error variance in (7), i.e.,

1 "1
i Zﬂusfﬂ
1223 p=2 D

It has been shown in [14] that the node certainty index is
equivalent to the information centrality [29] which is defined as
the inverse of the mean of the effective path lengths from the
given node to every other node in the interaction graph.
Furthermore, it can be verified that py > 2nAe_ i /(n — 1),
where A\o_,;, is the smallest positive eigenvalue of the
Laplacian matrix associated with the interaction graph.

C. Decoupled Approximation to the Error Dynamics

We examine the free response paradigm for the coupled
DDM, which corresponds to the boundary crossing of the
n-dimensional Weiner process with respect to the thresholds
+n. In general, for n > 1, boundary crossing properties of the
Weiner process are hard to characterize analytically. Therefore,
we resort to approximations for the coupled DDM. In particular,
we are interested in mean-field type approximations [30] that
reduce a coupled system with n components to a system with n
decoupled components.

We note that the error at node & is a Gaussian process with zero
mean and steady-state variance 1/ ;. In order to approximate the
coupled DDM with n decoupled systems, we approximate the
error dynamics at node k by the following O—U process

dep(t) = =Sran®) +dW(t), =(0)=0  (8)

for each k€ {1,...,n}. Note that different nodes will have
different realizations of the Weiner process W (¢) in (8); however,
for simplicity of notation, we do not use the index & in W (t). We
now study the efficiency of such an approximation. We first
introduce some notation. Let p € RY, be the vector of
pr, k€ {1,...,n}. Letdiag(-) represent the diagonal matrix with

its argument as the dlagonal entnes Let A, be the pth eigenvalue of
L + diag(pt/2) and let 2 be the assoc1ated eigenvector.

Proposition 3 (Efficiency of the Error Approximation): For the
coupled error dynamics (7) and the decoupled approximate error
dynamics (8), the following statements hold.

1) The expected error E[e; ()] and E[ex(t)] are zero uniformly

in time.
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2) The error variances E[e;(t)’] and E[e,(t)°] converge
exponentially to %
3) The steady-state correlation between ¢, (¢) and e (t) is

. no1 ~ 9
lim corr(e(t),ex(t)) = Z—~(u£?>)2 —-=.
=1 2N

t—-+o00 n

Proof: The combined error and approximate error dynamics
are

‘{gg}:‘{ﬁééﬁu>

1 T
T 1"171

, }de(t)
(9)

] dt + [I"

n

where &(t) is the vector of e (¢), k € {1,...,n}.
The combined error dynamics (9) is a linear SDE that can be
solved in closed form to obtain

e[o0) =[5 anstn ) [0] - [5:]
This establishes the first statement.

We further note that the covariance of |

e
COVQZS;D - /oteXp(_[ﬁ diag(%)}s)

x {I “nlaly ] {In LS In}
I, n ’

con([E W20 ] )

Some algebraic manipulations reduce (10) to

(10)

t
t

Cov(e(t)) = / e ods ——1,17
0 n

1 — et
Cov(eg(t),er(t)) = ———,
Hoke

t diag(p)\ . 1 iag
Ele(t)e(t)'] = / <e(“—* ) _ S 1] e 2“”8) ds.
n

0

and

It immediately follows that the steady-state variance of ¢, and
ej, i 1/ug. This establishes the second statement.

To establish the third statement, we simplify the expression for
Ele(t)e(t)"] to obtain
n_oq 672X,,t ) 2 (1 — e’%t)

Elc()en(t)] = 35— (@) - =
p=1 P

Thus, the steady-state correlation is

Elex(t)er(t)] kz": 1 (@2 2

T Bl 2 "

and this establishes the proposition.

Remark 3 (Efficiency of the Error Approximation). For a large

well connected network, the matrix L + di%(“) will be dominated

by di%'(“) and accordingly its eigenvectors will be close to the

standard basis in R". Thus, the steady-state correlation between
e and ¢, will be approximately 1 — % ~ 1, and the error
approximation will be fairly accurate. O

IV. REDUCED DDM: FREE RESPONSE PARADIGM

In this section, we use the O—U process-based error approxi-
mation (8) to develop an approximate information aggregation
model for each node that we, henceforth, refer to as the reduced
DDM. We then present PDEs for the decision time and the error
rate for the reduced DDM. Finally, we derive high probability
bounds on the error rate and the expected decision time for the
reduced DDM. We study the free response paradigm under
Assumption 2.

Assumption 2 (Persistent Evidence Aggregation): Each
decision-maker continues to aggregate and communicate
evidence according to the coupled DDM (3) even after
reaching a decision. O

A. The Reduced DDM

We utilize the approximate error dynamics (8) to define the
reduced DDM at each node. The reduced DDM atnode £ attime ¢
computes the evidence y;(t) by adding the approximate error
er(t) to the evidence x.., (t) aggregated by the centralized DDM.
Accordingly, the reduced DDM at node k is modeled by the
following SDE:

{dyk(t)] _ [ﬂ—%"(”

dei(t) _ Hk-EQk(f/)

dt—i—[? H[ffl%gﬂ (11)

where Wi (t) and W5(t) are independent standard one-dimen-
sional Weiner processes.

In the free response paradigm, decision-maker k& makes a
decision whenever y;(t) crosses one of the thresholds £, for the
firsttime. If 5 € R~ and y;(t) crosses threshold +7(—7y), then
the decision is made in favor of the correct (incorrect) alternative.
Note that even though each individual in the network is identical,
the model allows for them to have different thresholds. For
simplicity, we consider symmetric thresholds for each individu-
al; however, the following analysis holds for asymmetric thresh-
olds as well.

B. PDE:s for the Decision Time and the Error Rate

The error rate is the probability of deciding in favor of an
incorrect alternative. The decision time is the time required to
decide on an alternative. If 3 € R (8 € R<y), then an errone-
ous decision is made if the evidence crosses the threshold —n;
(+ny) before crossing the threshold +17;, (—mn;). Without loss of
generality, we assume that 5 € R~ (. We denote the error rate and
the decision time for the kth individual by ER; and T}, respec-
tively. We denote the expected decision time at node k by ETj.

We now determine the error rate and the expected decision
time for the free response paradigm associated with the reduced
DDM (11). For an SDE of'the form (11), the error rate and the deci-
sion time are typically characterized by solving the first passage
time problem for the associated Fokker—Planck equation [31].
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For a homogeneous Fokker—Planck equation, the mean first
passage time and the probability to cross the incorrect boundary
before crossing the correct boundary are characterized by PDEs
with initial conditions as variables. We now recall such PDEs and
for completeness, we also present a simple and direct derivation
of these PDEs that does not involve the Fokker—Plank equation.

Proposition 4 (PDEs for Error Rate and Decision Time): For
the reduced DDM (11) with arbitrary initial conditions y;(0) =
yp € [=m,m] and  ex(0) = &) € [=7k, ], 7k — +oo, the
following statements hold.

1) The PDE for the expected decision time is

g ukeg OET, uksk OET,
2 oY) 2 0e)
1({n+18°ET, _O°ET, . PET\ _
2\ n oy o) 9e) )
with  boundary conditions ETj(-,£n;) =0 and
ETk.(:I:T_]k, ) =0.
2) The PDE for the error rate is
ﬂ B ,ukag 3ERk _ Mk€2 é)ERk
2 ) oy} 2 0"
1 (n+10°ERy 0’ER;.  0°ER
T3 ozk+2 0 ]S"' 02k =0
2\ o ool o

with boundary conditions ERy (-, n:) = 0, ERi(-, =) =
1, ERk(’r_)k, ) =0, and ERk(—ﬁk, ) =1.

Proof: We start with the first statement. Let the expected
decision time for the reduced DDM with initial condition (3}, £7)
be ET (1}, 7). Consider the evolution of the reduced DDM over
an infinitesimally small duration h € R (. Then

) e i )

ex(h) — 62 _ @

By continuity of the trajectories of the reduced DDM, it
follows that ETy(y?, ") = h + E[ET)(yx(h),ex(h))], where
the expectation is over different realizations of (yx(h),ex(h)).
It follows from Taylor series expansion that

E[ETx(yx(h), ex(h))] — ETk(y}, €})
_ <ﬁ ,U;ké‘k) aETk h— ,u;ﬁk 8ETk h
2 oY) 2 0eY
[ SEE[EWA () + Wa(hY] 2
D) 49 PET ()ZETA +o(h%)
e [WQ( )] WZ( )

where o(h?) represents terms of order h?. Substituting
ETy(30, ) = b+ E[ETu(ye(h), ()] and  E[Wi(h)?] =

E[Wa(h)?] = h in the above expression, the PDE for the
expected decision time follows. The boundary conditions
follow from the definition of the decision time. The PDE for
the error rate follows similarly. O

The expected decision time and the error rate can be computed
using the PDEs in Proposition 4. These PDEs are nonlinear and to
the best of our knowledge do not admit a closed form solution;
however, they can be efficiently solved using numerical methods.

C. Bounds on the Expected Decision Time and the Error Rate

In order to gain analytic insight into the behavior of the expected
decision time and the error rate for the reduced DDM, we derive
bounds on them that hold with high probability. We first recall the
following result from [32] on the first passage time density of the
O-U process for large thresholds. Let 7%, : R — R be the first
passage time for the O—U process (8) as a function of the threshold.

ik
Moreover, let 77, denote the mean value of Tp&SS

Lemma 5 (First Passage Time Density for O-U Process): For
the O-U process (8), and a large threshold 17 € R, the first
passage time density is

1 t
Flg.tle) = 0) = exp
' g Tp]fdss( e) T]icdbb( e)

where Tk f) 2 ma(%) + (),
geTsz and (2 fo ™ e~ dsdr.

Lemma 5 suggests that for large thresholds the first passage
time density is an exponential random variable. However, the
expression for the mean first passage time does not provide much
insight into the behavior of the first passage time density. In order
to gain further insight into the first passage time density, we
derive the following bounds on the mean first passage time.

p(2) =

Lemma 6 (Bounds on the O—U Mean First Passage Time): For
the O-U process (8), and a large threshold 7, the mean first
passage time Tp,.s(75) satisfies

< VT e,
T}]fass(nZ) >~ W;e/k- ,1'4/./27 and
2 T /2 — 1 o2 _ 1 1
Tﬁasswz) 2 vl < ) + =2 To
P\ V205 0P

Proof: We start by bounding function ¢. We note that

z . z5
o) > / Tortgr =& =1
0 % 2z

Moreover, it trivially follows that (z) < ze* .
We now derive bounds on . We note that

/ / 2se”* dsdT—/ dT
’T
1

(¢! —1) 1
(=225

Z5, (¥
Furthermore, using the bounds on the error function of [33,
eq. (7.1.14)], we obtain

Y Vs e VT e
z) < e |l = |dr < —2ze".
z/}U_/o <2 THVTP+2) T 2
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Substituting these lower and upper bounds in the expression
for T;;lss(ni) in Lemma 5, we obtain the expressions in the
lemma. O

We now derive high probability bounds on the O-U pro-
cess (8). Since the bounds on the first passage time are domi-
nated by the term e'm/2 in the following we explore
bounds associated with thresholds of the form nj = K /./pr,
K € R sothat the probability of crossing these thresholds does
not vary much with the centrality of the node. Before we derive
high probability bounds, we define function Pioye :
R.g X Ryg X RZO — (0,1) by

Plower(Kv My t)
A
7 — 7 —
=exp| —t Hi V(e r )_1_6 -
2 V2K 2K? 2

Lemma 7 (Uniform Bounds for the O-U Process): For the
error dynamics (8) and a large constant K € R, the following
statements hold.

1) The probability that the error ¢, is uniformly upper

bounded by & i until time ¢ is

K
P € <— >|]:Dower K7 ‘7t-
(gf{ﬁ K(s) \/_> > Plower (K, b, t)

2) The probability that the error ¢y, is uniformly bounded in
the interval [— \/_ \/_] until time ¢ is

K
P < y— > 2P ower K ] 1.
(1m o)) < =) 2 2Pt -

Proof: We start by with establishing the first statement. We
note that

? gy 0 2 ) =2 (=) =1)

It follows from Lemma 5 that

K —1
[P’(Tk (—) <t> <l—exp | ————
pass |\ — | = = % I
Hk Tpaas( /#k)

Substituting, the lower bound on the mean first passage time
from Lemma 6, we obtain

K
P(T"i <—) < t) <1 = Plower (K, g t)
pass \/M_k - - ’ '

and the first statement follows.
By symmetry of the O—U process (8) about g;, = 0, it follows
that

K
Tk ( )St)gl_lpower K» ”7t~
( pass \//‘L_k 1 ( ik )

It follows from union bounds that

K
[P’(max |5k( )| 2 ) S 2(1 - Plower(Kv Nkvt))

s€(0,t] v/ Mk
and the second statement follows. m]

We now utilize the uniform bounds for the O-U process to
derive bounds on the expected decision time and error rate for the
reduced DDM.

Proposition 8 (Performance Bounds for the Reduced
DDM): For the reduced DDM (11) at node k£ with large
thresholds 47 and a sufficiently large constant K € R, the
following statements hold with probability higher than
2[Fplower(‘Kv7 Mok ETk)) -

1) The expected decision time satisfies

K
o ( < K))

tanh . — < ET,;
3 nh{ Bn| ;. i) = k

+
(o )

2) The error rate satisfies

1
1+ exp (2571 (m + \/%))
1
1+exp (25” (ﬁk -

< ERy

<

=)

Proof: 1t follows from Lemma 7 that until a given time ¢, the
error process (8) belongs to the set [—K/ /i, K/\/p] with
probability greater than 2Pygye, (K, px, t) — 1. For the reduced
DDM at node k, the time of interest is the decision time ¢t = T}..
Furthermore, Pjower (K, 115, t) is a convex function of ¢. Hence,
from the Jensen inequality, the error is bounded in the set
[-K/\/n, K/\/i] at the time of decision with probability
greater than 2Pygwer (K, pg, ET;)) — 1. This implies the
effective threshold for the centralized DDM component in
the reduced DDM at node k is greater than 7, — K /,/p and
smaller than 7, + K/,/{i; with probability greater than
2Power (K, i, ETg)) — 1. Since the decision time increases
with increasing threshold and the error rate decreases with
increasing threshold, inequalities for the decision time and the
error rate follow from the corresponding expressions in (2). O

V. NUMERICAL ILLUSTRATIONS

Consider a set of nine decision-makers and let their inter-
action topology be modeled by the graph shown in Fig. 1.
For this graph, the node certainty indices are p; = 8.1,
po = p3 = pa = ps = 4.26, and pg = py = pg = pg = 1.6.
We first compare the performance of the reduced DDM with
the coupled DDM. We pick the drift rate (3 at each node as 0.1.
We obtained error rates and decision times at node 6 for the
coupled DDM and the reduced DDM through Monte-Carlo
simulations, and we compare them in Fig. 2. Note that
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Fig. 1. Interaction graph for decision-makers.
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Fig. 2. Error rates, decision times, and the first passage time distribution of the
reduced DDM compared with the coupled DDM. (a) Log-Likelihood ratio of no
error. (b) Expected decision times. (c) Passage time distribution. Solid black,
dashed red, and black dashed-dotted lines represent the coupled DDM, the
reduced DDM, and the centralized DDM, respectively. Note that the performance
of the centralized DDM, which is asymptotically equivalent to the coupled DDM,
is significantly different from the performance of the coupled DDM for finite
thresholds.

throughout this section, for better illustration, we plot the log-
likelihood ratio of no error log(%) instead of the error rate
ERjy. The log-likelihood ratio of no error decreases monotonically
with the error rate. We also computed first passage time dis-
tributions at node 6 for the coupled DDM and the reduced DDM
with a threshold equal to 3, and we compare them in Fig. 2(c). It
can be seen that the performance of the reduced DDM approx-
imates the performance of the coupled DDM very well.

We compare the error rates and decision times for the coupled
DDM with the centralized DDM in Fig. 3. For the interaction
topology in Fig. 1 and 3 = 0.1, we performed Monte-Carlo
simulations on the coupled DDM to determine the error rates and
the decision times at each node as a function of threshold value.
Note that the difference in the performance of the coupled DDM
and the centralized DDM is smaller for a more centrally located
decision-maker. Furthermore, for large thresholds, the expected
decision time curve for the coupled DDM is parallel to the
expected decision time curve for the centralized DDM. Thus,
at large thresholds, the expected decision time curve for the
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Fig. 3. Comparison of the performance of the coupled DDM with the perfor-
mance of the centralized DDM at each node. (a) Log-Likelihood ratio of no error.
(b) Expected decision times. The dotted black line represents the performance of a
centralized decision-maker. The blue X, the red +, and the green A represent the
performance of the coupled DDM for decision-makers 1, 2, and 6, respectively.
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Fig. 4. (a) Threshold correction as a function of the node centrality. (b) Slope of
the linear trend in (a) as a function of the drift rate 3. The solid black line represents
numerically computed slopes and the dashed red line represents the fitted function

K(B).

coupled DDM at node %k can be obtained by translating the
expected decision time curve for the centralized DDM horizon-
tally to the right. Such a translation corresponds to a reduction in
the threshold for the centralized DDM. Moreover, this reduction
should be a function of the centrality of the node. This observa-
tion is in the spirit of our bounds in Proposition 8. In fact, insights
from Proposition 8§ and these numerical results suggest that for a
given instance of the coupled DDM, and large thresholds, there
exists a constant K such that the coupled DDM at node k is
equivalent to a centralized DDM with threshold 7, — K/ N

We now numerically investigate the behavior of the constant
K. Let ATj, be the difference between the expected decision
times at node k for the centralized DDM and the coupled DDM at
large thresholds. Then, the threshold for the centralized DDM
should be reduced by SAT}, to capture the performance of the
coupled DDM at node k. We now investigate the threshold
correction FAT}, as a function of the centrality ;2 of a node in the
interaction graph and the drift rate. To this end, we performed
Monte-Carlo simulations with Erd6s-Réyni graphs, and we plot
BAT], as a function of 1/,/1z in Fig. 4(a). For the Monte-Carlo
simulations, we picked the number of nodes n uniformly in
{3,...,10}, and connected any two nodes with probability
1.1 x log(n)/n. We set the threshold 7, at each node equal to
3. It can be seen in Fig. 4(a) that the threshold correction SAT},
varies linearly with 1/, /z. We further compute the slope of the
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Fig. 5. Comparison of the performance of the coupled DDM with the perfor-
mance of the threshold corrected centralized DDM at each node. (a) Log-
Likelihood ratio of no error. (b) Expected decision times. The blue X, the red
+, and the green A represent the performance of the coupled DDM for decision-
makers 1, 2, and 6, respectively. The blue dashed lines, the red solid lines with
dots, and the green solid lines represent the performance of the threshold corrected
centralized DDM for decision-makers 1, 2, and 6, respectively.

linear trend in Fig. 4(a) as a function of the drift rate, and plot
it in Fig. 4(b). We observe that the function K : R.g — Ry
defined by

R(B) = e
O =T8T 53

captures well the numerically observed slope as a function of the
drift rate. The function K(3) is the red dashed curve in
Fig. 4(b).

We refer to the centralized DDM with threshold 7;*" =
max{0,n, — K(8)//fr} as the threshold corrected centralized
DDM at node k. We compare the performance of the coupled
DDM with the threshold corrected centralized DDM at nodes 1,
2, and 6 in Fig. 5. It can be seen that the threshold corrected
centralized DDM is fairly accurate at large threshold values and
the minimum threshold value at which the threshold corrected
centralized DDM starts to capture the performance of the coupled
DDM well depends on the centrality of the node.

VI. OPTIMAL THRESHOLD DESIGN FOR THE SPEED-ACCURACY
TRADEOFF

In this section, we examine various threshold selection mech-
anisms for decision-makers in the group. We first discuss the
Wald-like threshold selection mechanism that is well suited to
threshold selection in engineering applications. Then, we discuss
the Bayes risk minimizing mechanism and the reward rate
maximizing mechanism, which are plausible threshold selection
methods in human decision-making. In the following, we focus
on the case of large thresholds and small error rates, and assume
that the threshold correction function K is known. We also define
the corrected threshold as 7" = max{0,n, — K/ /fir}.

A. Wald-Like Mechanism

In the classical sequential hypothesis testing problem [25], the
thresholds are designed such that the probability of error is below
a prescribed value. In a similar spirit, we can pick threshold 7y,
such that the probability of error is below a desired value

oy, € (0,1). Setting the error rate at node k equal to «y, in the
threshold corrected expression for the error rate, we obtain

waa  K(8) 1 (ﬂ) _

e~ ——=+—log
(073

JiE 200

Therefore, under the Wald criterion, if each node has to
achieve the same error rate «, then the expected decision time
at node £ is

; 1—-2a (K 1 1—«
E[T)™) ~ 5 ( \/g + %bg (—a ))

i.e., a more centrally located decision-maker has a smaller
expected decision time.

B. Bayes Risk Minimizing Mechanism

The Bayes risk minimization is one of the plausible mechan-
isms for threshold selection for humans [7]. In this mechanism,
the threshold 7, is selected to minimize the Bayes risk (BRy,)
defined by

BRy = ¢tER) + ET},

where ¢, € R is a parameter determined from empirical data
[7]. Tt is known [7] that for the centralized DDM (6) the threshold
n;°"" under the Bayes risk criterion is determined by the solution
of the following transcendental equation:

2Ckﬁ2n o 4ﬁn 772101'1' + 6726n e e?ﬁn /-

(12)

Furthermore, if the cost ¢ is the same for each agent, then the
corrected threshold obtained from (12) is the same for each
decision-maker. Consequently, the error rate and the expected
decision time are the same for each agent. However, the true
threshold 7y, is smaller for a more centrally located agent.

C. Reward Rate Maximizing Mechanism

Another plausible mechanism for threshold selection in
humans is reward rate maximization [7]. The reward rate
(RRy) is defined by

B 1 - ER,
- ETy + TP + Dy + ER, DY

RRy,

where T7°'" is the motor time associated with the decision-
making process, D, is the response time, and DY, is the additional
time that decision-maker & takes after an erroneous decision (see
[7] for detailed description of the parameters). It is known [ 7] that
for the centralized DDM (6), the threshold n°"" under the reward
rate criterion is determined by the solution of the following
transcendental equation:

eZﬂnnz_o" 1= Qﬁzn(Dk + DZ 4 T]znotor

-0 /B). (13)

Moreover, if the parameters 737", Dy, and D, are the same

for each agent, then the corrected threshold 7;*"" obtained from
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TABLE I
BEHAVIOR OF THE PERFORMANCE WITH INCREASING NODE CENTRALITY
Threshold ‘ Bayes risk ’ Reward rate

Expected

Error rate
decision time

Fixed threshold Decreases Increases Constant — —
Wald Constant Decreases Decreases | Decreases Increases
Bayes risk Constant Constant Decreases Constant Constant
Reward rate Constant Constant Decreases Constant Constant

(13) is the same for each decision-maker. Consequently, the error
rate and the expected decision time are the same for each agent.
However, the true threshold 7, is smaller for a more centrally
located agent.

We now summarize the effect of the node centrality on the
performance of the reduced DDM under four threshold selection
criteria: 1) fixed threshold at each node; 2) Wald criterion;
3) Bayes risk; and 4) reward rate in Table 1.

VII. EXTENSIONS TO OTHER DECISION-MAKING MODELS

In this section, we extend the coupled DDM to other decision-
making models. We first present the O—-U model for human
decision-making in two alternative choice tasks with recency
effects, and extend the coupled DDM to the coupled O—U model.
We then present the race model for human decision-making in
multiple alternative choice tasks, and extend the coupled DDM to
the coupled race model.

A. O-U Model

The DDM is an ideal evidence aggregation model and assumes
a perfect integration of the evidence. However, in reality, the
evidence aggregation process has recency effects, i.e., the evi-
dence aggregated later has more influence in the decision-
making than the evidence aggregated earlier. The O—U model
extends the DDM for human decision-making to incorporate
recency effects and is described as follows:

dx(t) = (8 — 0x(t))dt + cdW (t), x(0)=0 (14)
where 6 € R is a constant that produces a decay effect over the
evidence aggregation process [7]. It can be seen using the Euler
discretization of (14) that the O—U model is the continuum limit
of an autoregressive [AR(1)] model, and assigns exponentially
decreasing weights to past observations.

The evidence aggregation process (14) is Markovian, station-
ary, and Gaussian. The mean and the variance of the evidence
x(t) at time ¢ are (1 — e~%)/0 and o?(1 — e~2%") /20, respec-
tively. The two decision hypotheses correspond to the drift rate
being positive or negative, i.e., § € R-( and 5 € R, respec-
tively. The decision rules for the O—U model are the same as the
decision rules for the DDM. The expected decision time and the
error rate for the O—U model can be characterized in closed form.
We refer the reader to [7] for details.

B. The Coupled O-U Model

We now extend the coupled DDM to the coupled O—U model.
In the spirit of the coupled DDM, we model the evidence
aggregation across the network through the Laplacian flow.

o] n [o2]
o o o

Expected decision time

'S
o

2
Threshold

(a) (b)

Threshold

Fig. 6. Error rates and decision times for reduced O—U model compared with the
coupled O-U model. (a) Log-Likelihood ratio of no error. (b) Expected decision
times. Solid black and dashed red lines represent the coupled O—U model and the
reduced O—U model, respectively.

Without loss of generality, we assume that the diffusion rate is
unity. The coupled O-U model is described as follows:

dx(t) = (=(L+01,)x(t) + £1,)dt + dW,(t), x(0)=0,
where x € R" is the vector of evidence for each agent, L € R"*"
is the Laplacian matrix associated with the interaction graph,
f € R~ is a constant, 3 € R is the drift rate, and W, () is the
standard n-dimensional Weiner process.

Similar to the coupled DDM, it can be shown that the solution
to the coupled O—U model is a Gaussian process with mean and
covariance at time ¢ given by

1— —ot
E[x(t)] = % 1,,and
e 2N
Cov(zi(t),z;(t) = Y ———uu)
/ ; 20\, +0) *
where \,,p € {1,...,n} are the eigenvalues of the Laplacian

matrix L and u' are the associated eigenvectors.

Similar to Section III, principle component analysis followed
by the error approximations yield the following reduced O-U
model as a decoupled approximation to the coupled O—U model
at node k:

[dyk(t)} B [ﬁ — Oyr(t) + (0 — %)er(t)
deg(t) )
N % 1 [dWl (t)}
0 1]|LdWs(t)
where yy, is the evidence aggregated at node k, e, is the error
defined analogous to (tlge error in the reduced DDM, and
~ n 2
V=32 2()\:+6) ()"
Furthermore, similar to Proposition 4, PDEs to compute the
expected decision time and the error rate for the reduced O-U
process can be derived. For parameter values in Section V and

f = 0.1, a comparison between the performance of the coupled
O-U model and the reduced O—U model is presented in Fig. 6.

C. The Race Model

Consider the decision-making scenario in which the decision-
maker has to choose among m possible alternatives. Human
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decision-making in such multi-alternative choice tasks is mod-
eled well by the race model [16] described below.

Let the evidence aggregation process for an alternative
a € {1,...,m} be modeled by the DDM

dz®(t) = Bdt + odW*(t) (15)

where 2°(t) is the evidence in favor of alternative a at time ¢, 3% is
the drift rate, o0 € R~ is the diffusion rate, W*(t) is the
realization of the standard one-dimensional Weiner process for
alternative a. The decision hypotheses correspond to the drift rate
being positive for one alternative and zero for every other
alternative, i.e., /% € R, for some qy € {1,...,m}, and
B* =0, foreach a € {1,...,m}\{ao}.

For the evidence aggregation process (15) and the free re-
sponse paradigm, the decision is made in favor of the first
alternative a € {1,...,m} that satisfies

z(t) — max{2’(t)|j € {1,...,mPN\{a}} > n* (16)

where n® is the threshold for alternative a. For a prescribed
maximum probability R* of incorrectly deciding in favor of alter-
native a, the threshold is selected as n* = log((m — 1)/mR%).

For the race model (15) and the decision rule (16), the mean
reaction time and the error rate can be asymptotically character-
ized; see [16] for details. The race model is the continuum limit of
an asymptotically optimal sequential multiple hypothesis test
proposed in [17].

D. The Coupled Race Model

We now develop a distributed version of the race model (15).
Without loss of generality, we assume that the diffusion rate is
unity. In the spirit of the coupled DDM, we use the Laplacian
flow to aggregate the evidence across the network. Let the
evidence in favor of alternative a at node %k and at time ¢ be
xf(t). Let Zy(t) € R™ be the column vector with entries
z}(t),a € {1,...,m} and X(t) € R™ be the column vector
formed by concatenating vectors X (t) € R™. We define the
coupled race model by

dZ(t) = (L ® L)% (t)dt + (1, ® B)dt + AW, (t) (17)

with initial condition X¥(0) =0,,,,, where ® denotes the Kronecker
product, 3 € R™ is the column vector with entries (% a €
{1,...,m}, and Wmn(t) is the standard mn-dimensional
Weiner process. Note that dynamics (17) are equivalent to
running a set of m parallel coupled DDMs, one for each
alternative.

For the evidence aggregation process (17), node k makes a
decision in favor of the first alternative a € {1,...,m} that
satisfies

zj(t) —max{z}(t) | j € {1,....m}\{a}} > n}

where 7y is the threshold for alternative a at node k.

We define the centralized race model as the race model in
which at each time all the evidence distributed across the network
is available at a fusion center. Such a centralized race model is
obtained by replacing o in (15) with 1/y/n. It can be shown along
the lines of Proposition 2 that the coupled race model is asymp-
totically equivalent to the centralized race model, and hence, is
asymptotically optimal.

As pointed out earlier, the coupled race model is equivalent to
a set of m parallel coupled DDMs. Thus, the analysis for coupled
DDM extends to the coupled race model in a straightforward
fashion. In particular, for each alternative, the evidence aggre-
gation process can be split into the centralized process and the
error process, which can be utilized to construct reduced DDMs
for each alternative. Furthermore, similar to the case of the
coupled DDM, threshold corrections can be computed for the
coupled race model.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we used the context of two alternative choice
tasks to study the speed-accuracy tradeoff in collective decision-
making for a model of human groups with network interactions.
We focused on the free response decision-making paradigm in
which each individual takes their time to make a decision. We
utilized the Laplacian flow-based coupled DDM to capture the
evidence aggregation process across the network. We developed
the reduced DDM, a decoupled approximation to the coupled
DDM. We characterized the efficiency of the decoupled approx-
imation and derived PDEs for the expected decision time and
error rate for the reduced DDM. We then derived high probability
bounds on the expected decision time and error rate for the
reduced DDM. We characterized the effect of the node centrality
in the interaction graph of the group on decision-making metrics
under several threshold selection criteria. Finally, we extended
the coupled DDM to the coupled O—U model for decision-
making in the two alternative choice task with recency effects,
and the coupled race model for the multi-alternative choice task.

There are several possible extensions to this work. First, in this
paper, we utilized the Laplacian flow to model the evidence
aggregation process across the network. It is of interest to
consider other communication models for evidence aggregation
across network, e.g., gossip communication, bounded confi-
dence-based communication, etc. Second, we assumed that the
drift rate for each agent is the same. However, in the context of
robotic groups or animal groups, it may be the case that only a set
of individuals (leaders) have a positive drift rate while other
individuals (followers) may have zero drift rate. It is of interest to
extend this work to such leader—follower networks. Third, it is of
interest to extend the results in this paper to more general
decision-making tasks, e.g., the multi-armed bandit tasks [34].
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