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Abstract— We study a path planning problem in an environ-
ment that is abruptly changing due to the arrival of unknown
spatial events. The objective of the path planning problem is
to collect the data that is most evidential about the events.
We formulate this problem as a multiarmed bandit (MAB)
problem with Gaussian rewards and change points, and address
the fundamental tradeoff between learning the true event
(exploration), and collecting the data that is most evidential
about the true event (exploitation). We extend the switching-
window UCB algorithm for MAB problems with bounded
rewards and change points to the context of correlated Gaussian
rewards and develop the switching-window UCL (SW-UCL)
algorithm. We extend the SW-UCL algorithm to an adaptive
SW-UCL algorithm that utilizes statistical change detection to
adapt the SW-UCL algorithm. We also develop a block SW-
UCL algorithm that reduces the number of transitions among
arms in the SW-UCL algorithm, and is more amenable to
robotic applications.

I. INTRODUCTION

Several robotic missions including persistent surveillance
and environmental monitoring involve learning the envi-
ronment while collecting mission specific data from the
environment. For instance, in the context of environmental
monitoring, we may want to collect as much data as possible
about a particular type of algae in the ocean whose location
depends on the environment. As we learn the environment
(exploration), we would like to focus more and more on the
region in the environment where the algae exists (exploita-
tion). This is called the exploration-exploitation tradeoff,
which is at the heart of in-situ robotic missions.

The multiarmed bandit (MAB) problems are canonical
formulations of the exploration-exploitation tradeoff. In a
stochastic MAB problem a set of options (arms) are given.
A stochastic reward with an unknown mean is associated
with each arm. A player can pick only one option at a
time, and the objective of the player is to maximize the
cumulative expected reward. In an MAB problem, the player
needs to balance the tradeoff between learning the mean
rewards at each arm (exploration), and picking the arm with
maximum mean reward (exploitation). The spatial MAB
problem, in which arms are spatially embedded, models
animal and robotic foraging well [1]. In this paper, we
study MAB problems in which the reward at each arm may
abruptly change to another value, and we propose these
MAB problems for use in modeling robotic missions like
surveillance and environmental monitoring.
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Surveillance and persistent monitoring problems have been
studied extensively in the literature. In one of the common
formulations of this problem, trajectories of the robots are
planned such that (i) the information collected along the way-
points is maximized, and (ii) the total distance traveled is
minimized, or is within a predefined budget. Such informa-
tive path planning problems are studied in [2–11].

In the aforementioned works, the trajectories for the robots
are designed to maximize the total gain in information or
equivalently, the total reduction in uncertainty about the
environment. However, in applications like tracking and
detection of events, the objective is to collect observations
that are most evidential about the event, e.g., collecting data
that maximizes the likelihood of the event conditioned on
the occurrence of the event. Since the occurrence of an event
is not known apriori, exploration is needed to learn which
event has occurred while exploitation is needed to collect
the most evidential data about the event. This tradeoff can
be formulated in an MAB framework as follows.

The environment can be partitioned into a set of regions
according to the footprint of the sensors on the robot, and
each region can be viewed as an arm. Conditioned on the
occurrence of a particular event in the environment, a feature
map of the environment can be constructed, e.g., if the event
is “fire at a location”, then a possible feature map is a
temperature profile across the environment, or if the event
is the presence of fish at a location, then the feature map
is a binary map telling if the fish are present or absent at
an arm. The value of the feature map at each arm can be
viewed as the reward from the arm. At each time the robot
collects a noisy measurement of the reward (e.g., temperature
or presence of fish) at the current arm, and the objective of
the path planning algorithm is to maximize the cumulative
expected reward. Note that such a path planning algorithm
needs to maintain a good estimate of rewards at each arm
while maximizing the number of measurements from the arm
associated with the maximum reward. If the reward at each
arm is identical, then this path planning problem reduces to
the aforementioned informative path planning problems.

The MAB problem has been extensively studied; see [12]
for a detailed review. A popular algorithm for stationary
MABs with bounded rewards that achieves logarithmic (cu-
mulative expected) regret is the UCB algorithm proposed
in [13]. For the MABs with Gaussian rewards, the upper
credible limit (UCL) algorithm is proposed in [14] and is
shown to achieve a logarithmic regret for uninformative
priors. The UCL algorithm is a variation of the Bayes-UCB
algorithm proposed in [15]. We review the UCL algorithm
and regret as a performance measure in Section II.

In this paper, we study the exploration-exploitation trade-
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off in MAB problems with change points. In such problems,
the mean rewards from arms are not stationary, and may
abruptly change to an unknown value at some unknown time.
It is assumed that the order of the number of possible changes
within time T is known. We focus on MAB problems in
which rewards at arms are modeled by a Gaussian process
with an unknown mean and a known correlation structure.

For MAB problems with change points and bounded
rewards, Garivier and Moulines [16] proposed the sliding-
window UCB algorithm in which only the observations in a
recent time-window are used to estimate the mean rewards
and select the arms. The width of the time-window is chosen
to achieve a provably efficient performance. In Section III,
we extend the sliding-window UCB algorithm to the sliding-
window UCL (SW-UCL) algorithm for correlated Gaussian
MABs. For an uncorrelated and uninformative prior, the
SW-UCL algorithm is practically identical to the frequentist
algorithm in [16]; however, the Bayesian nature of the UCL
algorithm and the assumption of Gaussian rewards allow us
to encode the structure of the environment (feature map)
through the covariance in the prior. The ability to encode
the environment structure is a useful property for robotic
applications.

One drawback of the sliding-window algorithms is that
these algorithms do not utilize the collected data to detect
changes in the mean, and accordingly, adapt the width of
the time-window. In Section IV, we adopt the Page-Hinkley
non-parametric change detection test to detect a change in
the mean reward and adapt the width of the time-window
accordingly.

The SW-UCL algorithm allows for transition among arms
at each time. In the context of robotic missions, transition
among arms corresponds to traveling between locations in
the physical space. This is an undesirable feature if travel is
costly. To remove this drawback, in Section V, we extend the
SW-UCL algorithm to an algorithm that restricts the number
of transitions among arms by incorporating a block allocation
strategy in which the same arm is selected for a block of time
instants. The block allocation strategy used in this paper is
similar to the block allocation strategy used in [17, 14].

II. PRELIMINARIES

In this section we review the MAB problem with Gaussian
rewards and the UCL algorithm to solve this problem.

A. The Gaussian MAB Problem

Consider an N -armed bandit problem, i.e., a MAB prob-
lem with N arms. The reward associated with arm i ∈
{1, . . . , N} is a Gaussian random variable with an unknown
mean mi, and a known variance σ2

s . The mean of the
Gaussian reward at arm i can be interpreted as the signal
strength at the arm, while the variance can be interpreted
as the sampling noise that is the same at each arm. Let the
agent choose arm it at time t ∈ {1, . . . , T} and receive a
reward rt ∼ N (mit , σ

2
s). The decision-maker’s objective is

to choose a sequence of arms {it}t∈{1,...,T} that maximizes
the expected cumulative reward

∑T
t=1mit , where T is the

horizon length of the sequential allocation process.

For an MAB problem, the expected regret at time t is
defined by Rt = mi∗ − mit , where mi∗ = max{mi | i ∈
{1, . . . , N}}. The objective of the decision-maker can be
equivalently defined as minimizing the expected cumulative
regret defined by

∑T
t=1Rt =

∑N
i=1 ∆iE[nTi ], where nTi is

the cumulative number of times arm i has been chosen until
time T and ∆i = mi∗ − mi is the expected regret due to
picking arm i instead of arm i∗. It is known that the regret
of any algorithm for an MAB problem is lower bounded by
a logarithmic function of the horizon length T [12].

B. UCL Algorithm for Gaussian MAB Problem

The UCL algorithm proposed in [14] is a variation of
the Bayes-UCB algorithm [15] and is described as follows.
Let the prior distribution on the vector of mean reward at
arms be a Gaussian random variable with mean µ0 ∈ RN
and covariance Σ0 ∈ RN×N . Note that the environment
structure can be encoded into the covariance Σ0. Let {φt ∈
RN}t∈{1,...,T} be the indicator vector corresponding to the
currently chosen arm it, where (φt)k = 1 if k = it, and zero
otherwise. Then the posterior belief about the mean rewards
vector at time t is a Gaussian random variable with mean
µt ∈ RN and covariance Σt ∈ RN×N given by

Λtµt = rtφt/σ
2
s + Λt−1µt−1

Λt = φtφ
T
t /σ

2
s + Λt−1, Σt = Λ−1

t ,
(1)

where Λt = Σ−1
t is the precision matrix. Let µti and (σti)

2

be the posterior mean and variance of arm i at time t.
The UCL algorithm at each (discrete) time t first computes

the (1−1/Kt)-upper credible limit Qti associated with each
arm i ∈ {1, . . . , N} defined by

Qti := µti + σtiΦ
−1(1− 1/Kt),

where K =
√

2πe and Φ−1(·) is the inverse cumula-
tive distribution function for the standard normal random
variable. The UCL algorithm then selects an arm it :=
arg max{Qti | i ∈ {1, . . . , N}}. For an uninformative and
uncorrelated prior, the UCL algorithm achieves a logarithmic
cumulative expected regret, which is within a constant factor
of the optimal.
III. GAUSSIAN MAB PROBLEM WITH CHANGE POINTS:

A SLIDING WINDOW APPROACH

We now consider the MAB problem with non-stationary
Gaussian rewards. In particular, we focus on the scenario in
which rewards may change abruptly at some unknown time.
We assume that the number of times the rewards may change
until time T is upper bounded by a known constant ζT .
We present the SW-UCL algorithm for the Gaussian MAB
problem with change points. The SW-UCL algorithm is an
adaptation of the sliding-window UCB algorithm proposed
in [16] to the context of correlated Gaussian rewards. The
following analysis combines ideas from [16] and [14] to
derive performance metrics similar to [16].

A. The SW-UCL Algorithm

For Gaussian MAB problems with change points, the SW-
UCL algorithm is similar to the UCL algorithm, except that it
uses only recent observations; in particular, observations col-
lected within a fixed width time-window before the current
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time. For a given width of time-window tw, the SW-UCL
algorithm at time t:

(i) sets the posterior distribution of mean rewards at time
(t− tw)+ to N (µ0,Σ0), where (·)+ = max{0, ·};

(ii) performs the estimation in (1) using observations at
times {(t− tw)+ + 1, . . . , t};

(iii) selects the arm i with the maximum value of

Qt,twi := µt,twi + σt,twi Φ−1(1− 1/Kt̃w),

where t̃w = min{tw, t}, and µt,twi and (σt,twi )2 are,
respectively, the posterior mean and variance of the
mean reward at arm i, obtained at step (ii).

B. Regret Analysis of the SW-UCL Algorithm
We now analyze the regret associated with the SW-UCL

algorithm. Let nTi be the number of times arm i is selected
until time T when it is suboptimal. Let mt

i be the mean
reward from arm i at time t, it be the arm selected at time t,
and i∗t be the best arm at time t. Define ∆i,min = min{mi∗t

−
mt
i | t ∈ {1, . . . , T}, and i∗t 6= i}.
Theorem 1 (Regret of the SW-UCL algorithm): For the

Gaussian MAB problem with change points and the SW-
UCL algorithm with an uncorrelated and uninformative prior,
the following statements hold:

(i) the expected number of times arm i is selected when
it is suboptimal satisfies

E[nTi ] ≤
⌈ T
tw

⌉⌈ 4σ2
sβ

2

∆2
i,min

(1+2 log tw−log 2−log log tw)
⌉

+ ζT tw +
2

K
log tw +

2T

Ktw
,

where β = 1.02;
(ii) for a number of abrupt changes ζT = O(T ν), ν ∈

[0, 1) and tw = d
√
T log T/ζT e,

E[nTi ] ≤ O(T
1+ν
2

√
log T );

(iii) for a number of abrupt changes ζT ≤ λT , for some
λ ∈ [0, 1), and tw = d

√
− log λ/λe,

E[nTi ] ≤ O(T
√
−λ log λ).

Proof: Let nt,twi be the number of times a suboptimal
arm i has been selected within time interval {(t − tw)+ +
1, . . . , t}. For an uncorrelated and uninformative prior, Qt,twi

reduces to

Qt,twi =m̄t,tw
i + σsΦ

−1(1− 1/Kt̃w)/

√
nt,twi ,

where m̄t,tw
i is the empirical mean of the rewards collected

from arm i within time-interval {(t− tw)++1, . . . , t}. Note
that

nTi =

T∑

t=1

1(it = i 6= i∗t )

=

T∑

t=1

(
1(it = i 6= i∗t , n

t,tw
i ≤ η) + 1(it = i 6= i∗t , n

t,tw
i > η)

)

≤
⌈ T
tw

⌉
η + ζT tw +

∑

t∈T
1(it = i 6= i∗t , n

t,tw
i > η), (2)

where the second term corresponds to windows with change-
points, and T = {t ∈ {1, . . . , T} | m(t−tw)++1

i = . . . =
mt
i, ∀i}, i.e., the set of consecutive tw times at which the

mean is constant.
We now analyze the last term in equation (2). For the set

T , the MAB problem with switching points is the same as
the standard MAB problem, and it follows similar to the case
of UCL algorithm [14] that

P[it = i 6= i∗t ] ≤ P[Qt,twi ≥ Qt,twi∗t
]

≤ 2P
[
z ≥ Φ−1(1− 1/Kt̃w)

]
+

P
[
m∗it ≤ mi + 2σsΦ

−1(1− 1/Kt̃w)/

√
nt,twi

]
. (3)

Again, similar to the case of the UCL algorithm [14], using
an upper bound on Φ−1, it can be shown that the argument
of the last term in equation (3) is true only if

nt,twi ≤ 4σ2
sβ

2

∆2
i,min

(1 + 2 log tw − log 2− log log tw).

Therefore, picking η = d 4σ2
sβ

2

∆2
i,min

(1 + 2 log tw − log 2 −
log log tw)e, yields

E[nTi ] ≤
⌈ T
tw

⌉⌈ 4σ2
sβ

2

∆2
i,min

(1+ 2 log tw− log 2− log log tw)
⌉

+ ζT tw +
2

K
log tw +

2T

Ktw
. (4)

This establishes the first statement.
The second and third statements can be verified by sub-

stituting the expressions for ζT and tw in (4).
Theorem 1 implies that if the number of change points is

a sublinear function of the time-horizon T , then the fraction
of times the SW-UCL algorithm selects a suboptimal arm
approaches zero as T approaches infinity. However, this
fraction may not approach zero if the number of change
points is a linear function of horizon length.

The convergence of the fraction of suboptimal arm selec-
tions may be very slow if the number of arms is high. In
particular, for small time horizons, the width tw of the time-
window may be smaller than the number of arms, and the
algorithm may not select each arm even once in each time-
window. In such cases, the width of the time-window should
be chosen as the maximum of N and the designed width.

IV. GAUSSIAN MAB PROBLEM WITH CHANGE POINTS:
AN ADAPTIVE SLIDING WINDOW APPROACH

A drawback of the SW-UCL algorithm studied in the pre-
vious section is that it uses a fixed width of the observation
widow. This leads to all the observations within the given
time-window being used to estimate the true mean of the
reward from an arm, even if there is an abrupt change within
the time-window. However, for a given arm, we can utilize
the rewards collected within the time-window to estimate a
change point, and accordingly, can use only the observations
made after the change point to obtain a better estimate of
the mean rewards.

In this section we use the Page-Hinkley change detection
algorithm to adapt the width of the time-window in the
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aforementioned way, and develop the adaptive SW-UCL
algorithm. In the following, we first review the Page-Hinkley
change point detection algorithm and then utilize it to
adaptively select the width of the sliding window.

A. The Page-Hinkley algorithm for change detection

Consider a sequence of observations {yτ}τ∈N. Suppose
the set of observations {y1, . . . , yυ}, with υ ∈ N unknown,
are i.i.d. with a Gaussian distribution and unknown mean m̂0.
Similarly, the set of observations {yυ+1, . . .} are i.i.d. with a
Gaussian distribution with unknown mean m̂1 6= m̂0. Let the
variance of each observation be the same. The Page-Hinkley
algorithm [18] detects the change point as follows:

(i) at each time t, it maintains a running estimate of the
mean ȳt = 1

t

∑t
τ=1 yτ ;

(ii) it integrates the observations adjusted by the estimated
mean: Λt = Λt−1 + yt − ȳt, with Λ0 = 0;

(iii) it computes the maximum and minimum evidence

Λmax = max{Λτ | τ ∈ {1, . . . , t}}, and
Λmin = min{Λτ | τ ∈ {1, . . . , t}};

(iv) it compares the current evidence with the maximum
evidence to declare a decrease in mean, i.e., if Λmax−
Λt is greater than a threshold η, then a decrease in
mean is declared, and the change point is picked as
tchng = argmax{Λτ | τ ∈ {1, . . . , t}};

(v) it compares the current evidence with the minimum
evidence to declare an increase in mean, i.e., if Λt −
Λmin is greater than a threshold η, then an increase in
mean is declared, and the change point is picked as
tchng = argmin{Λτ | τ ∈ {1, . . . , t}};

B. The adaptive SW-UCL algorithm

The adaptive SW-UCL algorithm works similar to the SW-
UCL algorithm and at each time t:

(i) estimates the change point at each arm tchng
i , initialized

to 1;
(ii) selects the width of the time-window at arm i at time

t as t̂iw = min{tw, t− tchng
i + 1};

(iii) performs the estimation in (1) using observations from
arm i in the time-window {(t− t̂iw)+ + 1, . . . , t} ;

(iv) selects arm i with the maximum value of

Q
t,t̂iw
i := µ

t,t̂iw
i + σ

t,t̂iw
i Φ−1(1− 1/K min{t̂iw, t}),

where µt,t̂
i
w

i and (σ
t,t̂iw
i )2 are, respectively, the posterior

mean and variance of the mean reward at arm i,
obtained at step (iii).

The inference in step (iii) can be performed by setting the
sampling variance to infinity for all observations from arm
i not collected in the time-window {(t − t̂iw)+ + 1, . . . , t}.
The estimate of the change point tchng

i at arm i is determined
as follows.

(i) an empirical mean of the reward from arm i is
calculated using the time-window determined using
the current estimate of change point, i.e., m̂t

i :=∑t
τ=t−t̂iw+1 rt1(it = i)/

∑t
τ=t−t̂iw+1 1(it = i) ;

(ii) mean adjusted reward yt = rt − m̂t
it

is calculated;

(iii) the Page-Hinkley statistics are calculated

Λit =

t∑

τ=(t−t̂iw)++1

yτ1(iτ = i)

Λimax = max{Λiτ | τ ∈ {(t− t̂iw)+ + 1, . . . , t}}
Λimin = min{Λiτ | τ ∈ {(t− t̂iw)+ + 1, . . . , t}}

(iv) if (Λimax − Λit) > η, then tchng
i is updated to

argmax{Λiτ | τ ∈ {(t− t̂iw)+ + 1, . . . , t}};
(v) if (Λiτ − Λimin) > η, then tchng

i is updated to
argmin{Λiτ | τ ∈ {(t− t̂iw)+ + 1, . . . , t}}.

The performance of the Page-Hinkley test is characterized
only in the asymptotic limit, and this makes the analysis
of the adaptive SW-UCL algorithm hard. In this paper, we
will only numerically characterize the performance of the
adaptive SW-UCL algorithm.

V. GAUSSIAN MAB PROBLEM WITH CHANGE POINTS:
A BLOCK ALLOCATION STRATEGY

We now study a block allocation strategy for the Gaussian
MAB problem with change points. The purpose of the block
allocation strategy is to restrict the number of transitions
among arms while maintaining a performance similar to the
SW-UCL algorithm.

A. The block SW-UCL algorithm

We first define a block structure that we will use to define
our block allocation strategy. We divide the set of selection
instances {1, . . . , T} into frames {fk | k ∈ {1, . . . , L+ 1}},
for some L ∈ N. We subdivide frame fk into blocks each of
which will correspond to a sequence of choices of the same
arm. Let the maximum width of a block be kw. Given the
time horizon T , let ` ∈ N be the smallest index such that
T < 2`. It is easy to verify that ` ≤ 1 + log2 T =: ¯̀.

We design frames such that for k ≤ min{kw, `} =: L, we
start the frame fk begin at time instant 2k−1 and finish at
time instant 2k. Thus, the length of frame fk, for k ≤ L, is
2k−1. We define frame L+ 1 as the set {2L + 1, . . . , T}.

For k ≤ L, let the first b2k−1/kc blocks in frame fk have
length k and the remaining choices in frame fk constitute a
single block of length 2k−1 − b2k−1/kck. The total number
of blocks in frame fk, k ≤ L is bk = d2k−1/ke.

For k = L + 1, let the first b(T − 2kw)/kwc blocks in
frame fk have length kw and the remaining choices in frame
fk constitute a single block. The total number of blocks in
frame fL+1 is bL+1 = d(T − 2kw)/kwe. The block structure
is illustrated in Fig. 1. This block structure is obtained by
adding saturation to the block structure in [14].

20 21 22 23 2kw

2k−1 2k

k ≤ kk k

2k−1 2k 2�

T����frame fk

τk(r−1) ����
block r

2kw T

kw ≤ kwkwkw

(a) Frame structure20 21 22 23 2kw

2k−1 2k

k ≤ kk k

2k−1 2k 2�

T����frame fk

τk(r−1) ����
block r

2kw T

kw ≤ kwkwkw(b) Block structure for k ≤ L

20 21 22 23 2kw

2k−1 2k

k ≤ kk k

2k−1 2k 2�

T����frame fk

τk(r−1) ����
block r

2kw T

kw ≤ kwkwkw

(c) (L+ 1)-th block structure

Fig. 1. Block allocation strategy
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Each block is characterized by the tuple (k, r), for some
k ∈ {1, . . . , L+ 1}, and r ∈ {1, . . . , bk}, where k identifies
the frame and r identifies the block within the frame. We
denote the time at the beginning of block (k, r) by τkr ∈ N.

The block SW-UCL algorithm at time τkr:
(i) sets the posterior distribution of mean rewards at time

(τkr − 2kw)+ to N (µ0,Σ0);
(ii) performs the estimation in (1) using the observa-

tions collected in the time-window {(τkr − 2kw)+ +
1, . . . , τkr};

(iii) selects the arm i with the maximum value of

Qτkr,kwi := µkr,kwi + σkr,kwi Φ−1(1− 1/Kτ̃wkr),

for the duration of the block, where τ̃wkr =
min{2kw, τkr}, µkr,kwi and (σkr,kwi )2 are, respectively,
the posterior mean and variance of the mean reward at
arm i, obtained at step (ii).

B. Regret analysis of the block SW-UCL algorithm
We now analyze the performance of the block SW-UCL

algorithm and show that it achieves a performance similar to
the performance of the SW-UCL algorithm.

Theorem 2 (Regret of the block SW-UCL algorithm):
For the Gaussian MAB problem with change points and
the block SW-UCL algorithm with an uncorrelated and
uninformative prior, the following statements hold:

(i) the expected number of times arm i is selected when
it is suboptimal satisfies

E[nTi ] ≤
⌈ T

2kw

⌉⌈ 4β2σ2
s

∆2
i,min

(1+2kw log 2)+min{kw, ¯̀}
⌉

+ ζT (2kw + kw) +
8

K
+

2 log 2

K
min{kw, ¯̀}

+
2kw
K2kw

max
{

0,
⌈T − 2kw

kw

⌉}
;

(ii) for a number of abrupt changes ζT = O(T ν), ν ∈
[0, 1) and kw =

⌈
1
2 log2

T log T
ζT

⌉
,

E[nTi ] ≤ O(T
1+ν
2

√
log T );

(iii) for a number of abrupt changes ζT ≤ λT , for some
λ ∈ [0, 1), and kw =

⌈
1
2 log2

− log λ
λ

⌉
,

E[nTi ] ≤ O(T
√
−λ log λ).

Proof: The proof proceeds similarly to Theorem 1. In
the following, we only highlight the key differences in the
proofs. Let nkri (kw) be the number of times a suboptimal
arm i has been selected within time interval {(τkr−2kw)+ +
1, . . . , τkr}. Let (kt, rt) be the largest tuple such that τktrt ≤
t. We note that

nTi =

T∑

t=1

1(it = i 6= i∗t )

=

T∑

t=1

(
1(it = i 6= i∗t , n

ktrt
i ≤ η)+1(it = i 6= i∗t , n

ktrt
i > η)

)

≤
⌈ T

2kw

⌉
(η + min{`, kw}) + ζT (2kw + kw)+

+
∑

t∈T
1(it = i 6= i∗t , n

ktrt
i (kw) > η),

where the second term corresponds to windows with change-
points, and
T = {t ∈ {1, . . . , T} | m(t−2kw )++1

i = . . . = mt+kw
i , ∀i}.

It follows that

nTi ≤
⌈ T

2kw

⌉
(η + min{`, kw}) + ζT (2kw + kw)

+

L+1∑

k=1

bk∑

r=1

k̃1(iτkr = i 6= i∗τkr , τkr ∈ T , nkri (kw) > η), (5)

where k̃ = min{k, kw}.
Following the same reasoning as in the proof of Theo-

rem 1, we can show that the expect number of selections of
suboptimal instances of arm i is upper bounded by

E[nTi ] ≤
⌈ T

2kw

⌉⌈ 4β2σ2
s

∆2
i,min

(1 + 2kw log 2) + min{kw, ¯̀}
⌉

+ ζT (2kw + kw) +
2

K

L∑

k=1

bk∑

r=1

k

2k−1 + (r − 1)k
+

2kwbL+1

K2kw
.

It can be shown that
L∑

k=1

bk∑

r=1

k

2k−1 + (r − 1)k
≤ 4 + (log 2) min{kw, ¯̀}.

Therefore, it follows that

E[nTi ] ≤
⌈ T

2kw

⌉⌈ 4β2σ2
s

∆2
i,min

(1 + 2kw log 2) + min{kw, ¯̀}
⌉

+ ζT (2kw + kw) +
8

K
+

2 log 2

K
min{kw, ¯̀}

+
2kw
K2kw

max
{

0,
⌈T − 2kw

kw

⌉}
. (6)

This establishes the first statement.
The second and the third statement follow by substituting

expressions for ζT and kw in (6).
The convergence of the fraction of suboptimal arm selec-

tions for the block SW-UCL algorithm may be very slow
if the number of arms is high. In particular, for small time
horizons, the number of blocks within each time-window
may be smaller than the number of arms, and the algorithm
may not select each arm even once in each time-window.
In such cases, the width of the maximum block width kw
should be chosen as the maximum of d{k > 1 | 2k = Nk}e
and the designed width.

VI. NUMERICAL ILLUSTRATIONS

Consider a 5 × 5 square grid environment. Let the cen-
ters of the cells in the grid coincide with points (k, l) ∈
{1, . . . , 5}2 in the Euclidean space. Let each cell in the grid
denote a region in the environment that we identify as arms.
Let arms {1, . . . , 25} be numbered in the lexicographically
increasing order of the centers of the cells.

Suppose if an event occurs at arm i, then we define the
mean reward at arm i as mi = 10, and define the reward
at another arm j as mj = mi exp(−0.3dij), where dij is
the Euclidean distance between arms i and j. We pick the
sampling variance σ2

s = 1, the mean in the prior µ0i = 0,
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and the covariance in the prior (Σ0)ij = σ2
0ρij , for each

i, j ∈ {1, . . . , 5}, where σ2
0 = 10, and ρij = exp(−0.3dij).

For a given horizon length T , we pick the number of
abrupt changes as b

√
T c, and pick instances of abrupt

changes uniformly in the set {1, . . . , T}. At each instance
of abrupt change, we pick an arm uniformly in {1, . . . , 25},
and place an event at that arm. The reward profile at each
arm is accordingly modified.

For the above set of parameters and a set of horizon
lengths, we simulated the SW-UCL algorithm, the adaptive
SW-UCL algorithm, and the block SW-UCL algorithm. For
each value of the horizon length, 20 trials of each algorithm
were performed. The time-window for the SW-UCL and
the block SW-UCL algorithms was picked according to
Theorems 1 and 2. The time window for the adaptive SW-
UCL algorithm was chosen as dT/ζT e.

The threshold for the Page-Hinkley algorithm for each arm
was chosen equal to 10. At each time the estimate of the
change-point was chosen as the maximum of the estimates
of change-points at each arm. This resulted in a uniform
time-window across all arms, and consequently, simplified
the inference procedure.

A comparison of the performance of the three algorithms
in our simulations is shown in Fig. 2. The fraction of times a
suboptimal arm is selected decreases with the horizon length
for each algorithm; however, its rate of decrease is much
smaller for the block-SWUCL algorithm as compared to the
SW-UCL and the adaptive SW-UCL algorithms.

The fraction of times a transition occurs among arms also
decreases with the horizon length, and it is substantially
smaller for the block SW-UCL algorithm as compared to the
SW-UCL and the adaptive SW-UCL algorithms. The number
of transitions for the adaptive SW-UCL algorithm is smaller
as compared to the SW-UCL algorithm.
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Fig. 2. Number of suboptimal arm selections and number of transitions
among arms normalized with respect to the horizon length. The solid black,
dashed-dotted red, and dashed green lines represent the performance of
the SW-UCL, the adaptive SW-UCL, and the block SW-UCL algorithms,
respectively. The error bars show the minimum and the maximum value of
corresponding quantities.

VII. CONCLUSIONS

In this paper, we formulated the path planning problem in
an environment with abrupt changes as an MAB problem
with Gaussian rewards and change points. We extended
the switching-window UCB algorithm for MAB problems
with bounded rewards to the context of correlated Gaussian
rewards, and developed the SW-UCL algorithm. The SW-
UCL algorithm is a Bayesian algorithm that allows us to
encode the environment structure through the covariance
matrix in the prior. We utilized the Page-Hinkley test for
change point detection to adapt the SW-UCL algorithm,
and developed the adaptive SW-UCL algorithm. Finally, we
incorporated a block allocation strategy in the SW-UCL
algorithm to develop the block SW-UCL algorithm. The

block allocation strategy restricts the number of transitions
among arms in the SW-UCL algorithm, and hence, is more
amenable to robotic applications.

There are several possible directions of future research.
First, the policies considered in this paper involve a single
robot. It is of interest to study policies for multiple robots.
One way to extend the results in this paper to multiple robots
is to construct an equitable partition of the environment such
that the total number of abrupt changes in each partition
is the same, and then use the single robot policy in each
partition. It is of interest to analyze the performance of such
policies, and also to consider alternative settings that require
coordination strategies. Second, we assumed that in between
the change points, the environment remains stationary. An
interesting direction is to consider environments that evolve
according to a known dynamic.
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