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Abstract—With an eye towards design of human-in-the-loop
systems, we investigate human decision making in a social
context for tasks that require the human to make repeated
choices among finite alternatives. We consider a human decision
maker who receives feedback on his/her own performance as
well as on the choices of others performing the same task.
We use a drift-diffusion, decision-making model that has been
fitted to human neural and behavioral data in sequential,
two-alternative, forced-choice tasks and recently extended to
the social context with an empirically derived feedback term
that depends on choices of other decision makers. We show
conditions for this model to be a Markov process, and we derive
the steady-state probability distribution for choice sequences
and individual performance as a function of the strength of
the social feedback. It has recently been shown in behavioral
experiments that human decision-making performance for a
relatively easy task is decreased with this social feedback; we
show that our analytic predictions agree with this finding.

I. INTRODUCTION

There is increasing interest in design of human-in-the-
loop systems to address complex problems that demand
the combined strengths of humans and machines. In many
contexts, human decision makers will be faced with making
repeated choices among finite alternatives in response to
priorities among objectives and observations of evolving per-
formance. Examples include human flight control operators
who choose between approving or grounding flights in order
to maximize throughput and ensure safety in air traffic [1]
and human supervisors of unmanned air vehicles who must
choose between attending to targets and ensuring safe return
of vehicles [2]. In [3] a human repeatedly chooses one of
two robotic oxygen extraction systems operating on Mars;
the investigation focuses on the well-known difficulty that
humans have with making long-term optimal decisions when
short-term performance is high.
In human-in-the-loop systems such as these there may

be multiple human decision makers carrying out tasks in
parallel; a challenging problem is the design of social feed-
back, that is how to pass decision-making information among
decision makers, in order to improve performance. Con-
sider, for example, taskable human sensors in information-
gathering missions who decide their next move in order to
best contribute to situational awareness in the field. Under
what circumstances will it be helpful for an individual to
learn what choices others are making and/or how well others
are performing?
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Models that reliably predict how humans behave under
relevant circumstances are critical to developing principled
methodology for design of human-in-the-loop systems with
social feedback. We leverage experimental and theoretical
studies of human decision making from cognitive and so-
cial psychology, where the Two-Alternative Forced-Choice
(TAFC) task has been used to investigate human decision-
making in problems that require sequential choices among
finite alternatives [4].
The successful fitting of both behavioral and neural data

taken during TAFC task experiments provides strong jus-
tification for use of the Drift Diffusion Model (DDM) to
describe human decision making in TAFC tasks [4], [5].
Recently authors of [6], [7] have extended studies to inves-
tigate multiple human subjects in social TAFC tasks; using
experimental data they derive a model that couples multiple
DDMs with a social feedback term.
In this paper we use the coupled DDM model [6], [7] and

our previous analysis of an individual decision maker [8] to
derive an analytic prediction of the role of social feedback in
the steady-state performance of a decision maker who sees
choices ofM others (who are not receiving social feedback).
Our results apply to a subset of TAFC tasks studied in [6],
[7]. It is observed in [7] that a human subject in the TAFC
task with the relatively easy converging gaussians reward
structure experiences a performance decrease when given
feedback on choices of other decision makers. We show
formally that our prediction agrees with this observation.

Fig. 1. The converging gaussians reward structure [6]: dotted curve rA is
the reward for choice A and solid curve rB the reward for choice B. The
dashed line is the average value of reward. The limiting distribution π0,
given by (11), is shown for N = 20 and μ = 2.5 by the circular points.
The limiting distribution π0 for the model without Assumption 2 is shown
by the x’s. Each component πi0 is plotted against y = i

N
.
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The TAFC task in a social context is modeled in Section II
and the DDM for decision making with social feedback is
described in Section III. In Section IV we validate assump-
tions and in Section V we prove that our model is Markov.
The steady-state choice distribution for an individual with
feedback on choices of others is derived in Section VI and
used in Section VII to prove performance in the converging
gaussians task as a function of parameters defining the social
feedback. We make final remarks in Section VIII.

II. THE TAFC TASK IN A SOCIAL CONTEXT

The two-alternative forced-choice (TAFC) task, introduced
by Montague and co-authors [5], [4], has become a valuable
tool for studying decision making in a variety of contexts.
In the TAFC task a decision maker is required to choose
between two alternatives (denoted A and B), sequentially in
time, and a reward (performance measure) is received after
each choice is made. The goal is to maximize accumulated
reward over the duration of the task (optimize performance
over the long run). The reward is a function not only of the
immediate choice but also of the subject’s recent history of
choices [4], [9], [5]; this dependence on past decisions is
highly relevant for real-world human-in-the-loop decision-
making problems.
Figure 1 shows an example reward schedule called con-

verging gaussians (CG) that is used in the human behavioral
studies of [6], [7]. The reward rA for choosing A (resp. rB
for B) is plotted as a dotted curve (resp. solid curve) as a
function of y = i/N , where i is the number of times A is
chosen in the past N decision trials. E.g., when y = 0.4,
a choice of A yields a large reward of value 1, whereas a
choice of B yields a significantly lower reward. The average
value of reward rA(y)y+ rB(y)(1− y) is the dashed curve.
This curve shows that for the CG task, choice sequences
corresponding to y = .5 maximize average reward and thus
accumulated reward. Note that the CG structure of Figure 1 is
symmetric about y = 0.5, e.g., if y = 0.6, then the situation
is the same as above with the roles of A and B swapped.
The point at which the reward curves intersect is called the

matching point; it corresponds to the point at which the deci-
sion maker gets the same reward whether A or B is chosen.
The CG task is one of several well studied tasks for which
there is a matching point; others are the matching shoulders
(MS) and the rising optimum (RO) reward structures. There
is extensive empirical evidence that human decision makers
converge in aggregate to choice sequences y that correspond
to the matching point [5], [4], [6]. Convergence of human
decision making to the matching point has been analyzed
using decision-making models in [10], [8], [4], [11].
Interestingly, for the MS and RO tasks, decision making

at the matching point does not typically correspond to the
maximum average reward. For example, the RO structure
has a matching point that is separated from the point of
maximum reward by a range of decision sequences that yield
very low rewards; this a “difficult” task since the decision
maker must move away from the matching point and forego
higher rewards in order to find the global optimum. The CG

task, on the other hand, is a relatively “easy” task, since the
matching point is coincident with the maximum reward.
The authors of [6], [7] have run extensive experiments

with multiple human subjects to investigate decision making
in TAFC tasks with social feedback. A series of TAFC
experiments using CG, RO and diverging gaussians (DG)
reward structures were run with groups of five human sub-
jects who each received feedback on choices, rewards or both
choices and rewards of the other four subjects in the group.
One of the reported observations concerns the case of the
CG task with choice feedback: decision-making performance
deteriorates with choice feedback. The feedback seems to
trigger increased exploration that takes the decision maker
away from the otherwise easy-to-find optimal solution.
In this paper we derive probabilistic predictions for perfor-

mance in the social TAFC task in the case of choice feedback.
Our results apply to the CG, DG and MS tasks where the
assumptions we make are validated. We consider the case
of directed information passing; i.e., we study an individual
given feedback on the choices of others, who themselves are
not receiving any feedback. This differs from experiments in
[6], [7] where feedback is all-to-all; however, we find our
predictions agree qualitatively with the finding of decreased
performance in the CG task with choice feedback.
We consider a focal individual in the social TAFC receiv-

ing feedback on choices of M other decision makers. Let
x(t) = (x1(t), x2(t), . . . , xN (t)) denote the past N choices
of a focal decision maker ordered sequentially with x1(t) ∈
{A,B} the most recent decision at time t, x2(t) ∈ {A,B}
the most recent decision at time t− 1, etc. We have

xk(t+1) = xk−1(t), k = 2, . . . , N, t = 0, 1, 2, . . . (1)

The proportion of choice A in the last N trials at time t is

y(t) =
1

N

N∑
k=1

δkA(t) (2)

where δkA(t) = 1 if xk(t) = A and δka(t) = 0 if
xk(t) = B. Note that y takes values from a discrete set
Y =

{
i
N
, i = 0, 1, . . . , N

}
. The reward at time t is

r(t) =

{
rA(y(t)) if x1(t) = A
rB(y(t)) if x1(t) = B .

(3)

We define the difference in reward as

Δr(y(t)) := rB(y(t)) − rA(y(t)). (4)

III. DRIFT DIFFUSION MODEL WITH SOCIAL FEEDBACK

The Drift Diffusion Model (DDM) for decision making
is described by a scalar drift diffusion process given by the
following stochastic differential equation [6], [12], [13]:

dz = αdt+ σdW, z(0) = 0. (5)

Here z represents accumulated evidence in favor of a candi-
date choice, α is the drift rate representing signal intensity
of stimulus acting on z and σdW is a Wiener process with
standard deviation σ, which is the diffusion rate representing
the effect of white noise.
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Consider the TAFC task with choices A and B. The drift
rate α, as described in [5], [14], is determined by a subject’s
anticipated rewards (denoted wA for a decision of A and wB

for a decision of B). Let z be the accumulated evidence for
choice A relative to choice B. Then on each trial a choice
is made when z(t) first crosses one of the predetermined
thresholds ±ξ. If +ξ is crossed then choice A is made, and
if −ξ is crossed then choice B is made.
As pointed out in [6], using tools in [15] it can be shown

that the probability of choosing A is

pA(t+ 1) =
1

1 + e−μ(wA(t)−wB(t))
, (6)

where μ(wA − wB) is identified with 2(α/σ)2(ξ/α). The
right side of (6) is a sigmoidal function of wA − wB with
slope μ. Larger μ implies more certainty in decision making,
sometimes interpreted as less of a tendency to explore.
We follow the approach in [6], [7] to model choice

feedback by biasing anticipated rewards with a feedback
parameter ν so that the probability of choosing A in the
next time step is

pA(t+ 1, ν) =
1

1 + e−μ(wA(t)−wB(t)+νu(t))
(7)

u(t) =

⎧⎨
⎩

1 if #A’s≥ �M+1
2 �

−1 if #B’s≥ �M+1
2 �

0 otherwise
(8)

where #A’s refers to the number of others (not receiving
feedback) who choose A at time t, and �·� gives the smallest
integer greater than its argument. The no-feedback case (6)
is equivalent to pA(t+ 1, 0) in (7).
Studies of the role of dopamine neurons in coding for re-

ward prediction [16] motivate the use of temporal difference
learning theory [17] to describe the dynamics of wA and wB .
Let Z ∈ {A,B} be the choice made at time t, then

wZ(t+ 1) = (1 − λ)ωZ(t) + λr(t) (9)

wZ̄(t+ 1) = wZ̄(t) t = 0, 1, 2, . . . (10)

where ·̄ denotes the “not” operator. Here, λ ∈ [0, 1] acts as
a learning rate, controlling how the anticipated reward of
choice Z at t+ 1 is affected by its value at t.

IV. ASSUMPTIONS

In Section VI we analyze the focal DDM decision maker
receiving choice feedback from M others in the TAFC task
as modeled in Sections II and III by (1)-(3) and (7)-(10). Our
approach is to use pA(t+1, 0) to model the probability that
each of theM others makes choice A at time t+1. The focal
decision maker has the N -element decision history x(t), the
expected rewards wA(t) and wB(t) and the choices of M
others at time t as the state. We make use of the following
assumptions in Sections V and VI:
Assumption 1: Pr{xk(t) = A|x(t)} = y(t)

Assumption 2: wB(t) − wA(t) = Δr(y(t)).

Assumption 1 implies that the yN A’s and (1 − yN)
B’s in x(t) are uniformly distributed in the finite history.

Assumption 2 sets the difference in anticipated rewards at
time t equal to the difference in rewards evaluated at y(t);
according to Montague and Berns [4] this assumption is true
“on average” in experiments.
We further examine Assumption 2 in this section by

comparing equilibrium distributions for the model computed
with and without Assumption 2 and showing they are close.
Let πi0 denote the long-run probability that y(t) = i

N
, i =

0, 1, . . . , N for a decision maker without social feedback.
In [8] we use Assumptions 1 and 2 to show that πi0 =
πi(μ, ν,N,Δr)|ν=0 is given by

πi0 =
αi(1 + eμΔr( i

N
))e−μβi∑N

j=0 αje−μβj (1 + eμΔr( j
N

))
(11)

where αi = N !
(N−i)!i! and βi =

∑i
j=1 Δr( j

N
). This distri-

bution for the CG reward structure is plotted with circular
points in Figure 1 with μ = 2.5 (the fitted value of μ from
experimental data in the no-feedback condition [7]).
We also compute the steady-state distribution for the CG

reward structure without using Assumption 2 in the case that
λ = 1, which is typical of the fitted data for the CG, DG and
MS reward structures [7]. When λ = 1 it can be seen in (9)
and (10) that wA and wB are each restricted to a finite set
defined by the values of rA and rB , respectively. Inclusion of
wA and wB in the state space for λ = 1 therefore results in
a state transition matrix with (N +1)3× (N +1)3 elements.
Numerical computation of the steady-state distribution for
the CG reward structure without using Assumption 2 yields
the distribution plotted with x’s in Figure 1. The closeness
of the two distributions suggests Assumption 2 is valid for
the CG task. We have similarly validated Assumption 2 in
the DG and MS cases.
We can use (11) to determine pA(∞, 0), the long-run

probability that any of theM others (not receiving feedback)
chooses A:

pA(∞, 0) =
N∑

i=0

πi0

1 + eμΔr( i
N

)
. (12)

Assumption 2 allows us to compute the probability that
a focal decision maker will make choice A simply as a
function of choice history, y(t). By conditioning on the
value of u(t) we can compute the expectation of pA(t+ 1)
in (7). Transition probabilities for a focal decision maker’s
proportion of choice A are determined by computing the
probability that xN (t) is an A or B via Assumption 1. This
reduces the state space to one dimension. We next show that
the task and decision-making model in the social context is
Markov under these assumptions.

V. MARKOV MODEL OF SOCIAL DECISION MAKING

Consider again the focal DDM decision maker in the social
TAFC task. We derive the probability transition function for
y(t) and build a state transition matrix which is used in
Section VI to compute the steady-state distribution for the
process.

3798



Proposition 1: Suppose Assumptions 1 and 2 hold. Then,
the DDM with social feedback (7) for the TAFC task (1)-
(3) is a Markov Process with state y(t) and transition
probabilities given by

Pr{y(t+ 1) = y(t) −
1

N
} =

[
1 − p̄A

(
y(t)

)]
y(t) (13)

Pr{y(t+ 1) = y(t)} =
[
1 − p̄A

(
y(t)

)](
1 − y(t)

)
+ p̄A

(
y(t)

)
y(t) (14)

Pr{y(t+ 1) = y(t) +
1

N
} = p̄A

(
y(t)

)(
1 − y(t)

)
(15)

where Δr = Δr(y(t)) is given by (4) and p̄A(y(t)) is

p̄A(y(t), ν) =

Pr{u(t) = 1}

1 + eμ(Δr−ν)
+
Pr{u(t) = −1}

1 + eμ(Δr+ν)
+
Pr{u(t) = 0}

1 + eμΔr
. (16)

The conditional probabilities on u(t) are given by

Pr{u(t) = 1} =
M∑

k=�M+1
2 �

(
M
k

)
pA(∞, 0)k(1 − pA(∞, 0))M−k, (17)

Pr{u(t) = −1} =
M∑

k=�M+1
2 �

(
M
k

)
(1 − pA(∞, 0))kpA(∞, 0)M−k, (18)

Pr{u(t) = 0} = 1 −
(
Pr{u(t) = −1} + Pr{u(t) = 1}

)
(19)

and

(
M
k

)
= M !

k!(M−k)! .

Proof of Proposition 1:
Since for a given choice x1(t+ 1) at time t+ 1, y(t+ 1)

can only change from y(t) to y(t) + 1
N
, y(t)− 1

N
or stay at

y(t), we need only compute the probability of each event for
all y(t) ∈ Y . Each of these depends upon the current value
of y(t) as well as x1(t + 1) and xN (t) since y(t + 1) will
only differ from y(t) if x1(t+ 1) also differs from xN (t).
The event that y(t+1) = y(t)− 1

N
requires x1(t+1) = B

and xN (t) = A. Treating these as independent events and
using (7) yields

Pr{y(t+ 1) = y(t) −
1

N
} =

eμ(wB(t)−wA(t)−νu(t))y(t)

1 + eμ(wB(t)−wA(t)−νu(t))
.

Substituting in Assumption 2, and treating the M peer
decisions as independent events, we condition on the value
of u(t) and get Pr{x1(t+ 1) = B} = 1− p̄A(y(t), ν) which
with Assumption 1 gives us (13).
Similarly,

Pr{y(t+ 1) = y(t) +
1

N
} =

1 − y(t)

1 + eμ(wB(t)−wA(t)−νu(t))
.

Conditioning on the value of u(t) and substituting in As-
sumption 2, we get (15).
The event that y(t+1) = y(t) requires either x1(t+1) = A

and xN (t) = A or x1(t + 1) = B and xN (t) = B. The

probability of the union of these events is

Pr{y(t+ 1) = y(t)} =
y(t) + (1 − y(t))eμ(wB(t)−wA(t)−νu(t))

1 + eμ(wB(t)−wA(t)−νu(t))
.

Conditioning on the value of u(t) and substituting in As-
sumption 2, we get (14). Since the probabilities depend only
upon y(t), the current value of the state at time t, the process
is Markov. �
Equations (13)-(15) are used to build the (N+1)×(N+1)

one-step state transition matrix P which has entries

Pij = Pr{y(t+ 1) =
j

N
|y(t) =

i

N
}, (20)

i, j ∈ {0, 1, . . . , N}.

VI. STEADY-STATE CHOICE DISTRIBUTION

Since the Markov process modeled in Section V is ir-
reducible and aperiodic, it has a unique limiting distribu-
tion π = (π0, π1, . . . , πN ) describing the fraction of time
the chain spends in each enumerated state (y = i

N
, i =

0, 1, 2 . . . , N ) in the long run (as t→ ∞) [18]. The steady-
state distribution is the solution to:

πP = π (21)

N∑
i=0

πi = 1. (22)

Proposition 2: For the transition probabilities given by
(13) - (15) the unique steady-state distribution is

πi = αi

∏i
j=1 q(

i
N
, ν)∑N

j=0 αj

∏j
k=1 q(

k
N
, ν)

(23)

where αi = N !
(N−i)!i! and q(

i
N
, ν) =

p̄A( i−1
N

,ν)

1−p̄A( i
N

,ν)
.

Proof of Proposition 2: Solving (21) alone yields a row vector
v whose elements are given by

vi =
N !

(N − i)!i!

i∏
j=1

p̄A( j−1
N
, ν)

1 − p̄A( j
N
, ν)
.

To solve (22) we normalize the vector v to get π =
v/

∑N
i=0 vi. The elements of π are then given by (23). �

VII. SOCIAL FEEDBACK PERFORMANCE

IN CONVERGING GAUSSIANS TASK

A key measure of performance in the TAFC task with
CG reward structure is variance in the decision making.
Since the convergent matching point (y = 0.5) is coincident
with the optimal allocation to choice A, better performance
corresponds to minimizing variance about y = 0.5. In this
section we prove for the predictive model that variance is
minimal for ν = 0; i.e. receiving social feedback in the CG
task decreases performance. This is in direct agreement with
experimental results of [7]. We also investigate the effect on
performance of the strength of the feedback ν, the number
of other decision makers M and the focal individual’s own
certainty parameter μ.
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Let Σ denote the second moment of the steady-state
distribution about y = 0.5. Then using π derived in Section
VI, Σ can be written as a function of the feedback gain ν as

Σ(ν) =

∑N
i=0 αi(

i
N

− 1
2 )2Qi(ν)∑N

j=0 αjQj(ν)
, (24)

where Qi(ν) :=
∏i

j=1 q(
j
N
, ν).

The converging gaussians structure is given by

rA(y) = e
−

“
y−ȳA√

2σA

”2

+cA, rB(y) = e
−

“
y−ȳB√

2σB

”2

+cB. (25)

In this work we consider symmetric CG structures in which
cA = cB , ȳA < ȳB and |ȳA| = |ȳB| (as in Figure 1) so that
y = 0.5 is the converging matching point.

A. Effect of choice feedback on performance

In Theorem 1 we prove that variance is minimized at
ν = 0 in the case M = 4. This implies that with choice
feedback (corresponding to ν �= 0), the focal individual tends
to do more exploring away from the optimal solution and
performance deteriorates.
Theorem 1: For the CG reward structure of (25), in the

case that after every choice the focal decision maker sees
the most recent decision of each of M = 4 other decision
makers performing the same task, the variance Σ(μ, ν) of
the focal individual is minimal for ν = 0.

We prove Theorem 1 by first proving four lemmas.

Lemma 1: ν = 0 is a critical point of Σ(μ, ν)

To prove Lemma 1 we introduce the following:

Lemma 2: Q′
i(0) := ∂

∂ν

∏i
j=1 q(

i
N
, ν)

∣∣
ν=0

= 0.

Proof of Lemma 2: We compute

∂q

∂ν
( i

N
, ν) =

∂
∂ν
p̄A

(
i−1
N
, ν

)
1 − p̄A

(
i
N
, ν

) −
∂
∂ν
p̄A

(
i
N
, ν

)(
1 − p̄A

(
i−1
N
, ν

))
(
1 − p̄A

(
i
N

)
, ν

)2 . (26)

In the case that M = 4, for the CG reward schedule
pA(∞, 0) = 1

2 and p̄A in (7) becomes p̄A( i
N
, ν) =

3
4

1
(1+eμΔr)

1
8

[
1

1+eμ(Δr−ν) + 1
1+eμ(Δr+ν)

]
. Differentiating p̄A

with respect to ν yields

∂

∂ν
p̄A( i

N
, ν) =

μeμΔr

8

[
e−μν

(1 + eμ(Δr−ν))2
−

eμν

(1 + eμ(Δr+ν))2

]
. (27)

Evaluating (27) at ν = 0 we get ∂
∂ν
p̄A( i

N
, ν)|ν=0 = 0, ∀i.

Therefore, in (26) we see that ∂
∂ν
q( i

N
, ν)|ν=0 = 0. From the

definition of Q′
i(ν) we can write

Q′
i(ν) =

i∑
k=1

∂

∂ν
q
(

k
N
, ν

) i∏
j=1,j �=k

q
(

j
N
, ν

)
. (28)

Evaluating (28) at ν = 0 with ∂
∂ν
q( i

N
, ν)|ν=0 = 0 gives

Q′
i(0) = 0. �

Proof of Lemma 1: The derivative of Σ(μ, ν) can be written

∂

∂ν
Σ(μ, ν) =

∑N
i=1 αi(

i
N

− 1
2 )2Q′

i(ν)∑N
k=1 αkQk(ν)

−

∑N
i=1 αi(

i
N

− 1
2 )2Qi(ν)

∑N
k=1 αkQ

′
k(ν)( ∑N

k=1 αkQk(ν)
)2 .

It follows from Lemma 2 that ∂
∂ν

Σ(μ, ν)|ν=0 = 0. �
It is now left to show that ν = 0 is a minimum of Σ(μ, ν).
Lemma 3: ∂2

∂ν2 Σ(μ, ν)
∣∣
ν=0

> 0.

To prove Lemma 3 we introduce the following:
Lemma 4: Q′′

i (ν) < 0.
Proof of Lemma 4: Differentiating Q′

i(ν) with respect to ν,
and making use of the fact that ∂

∂ν
p̄A( i

N
, ν)|ν=0 = 0 gives

Q′′
i (0) =

∂2

∂ν2 p̄A( i−1
N
, ν)|ν=0

(
1 − p̄A( i

N
, 0)

)
(
1 − p̄A( i

N
)
)2

+
∂2

∂ν2 p̄A( i
N
, ν)|ν=0

(
p̄A( i−1

N
, 0)

)
(
1 − p̄A( i

N
)
)2 . (29)

Since ∂2

∂ν2 p̄A( i
N
, ν)|ν=0 = −μ2e

μΔr( i
N

)(1+e
2μΔr( i

N
))

(1+e
μΔr( i

N
))4

< 0,

we can conclude that Q′′
i (0) < 0. �

Proof of Lemma 3: Invoking Lemma 2 we can write

∂2

∂ν2
Σ(μ, ν)

∣∣
ν=0

=

∑N
i=0 αi

(
i
N

− 1
2

)2
Q′′

i (0)∑N
k=0 αkQk(0)

−

∑N
i=0 αi

(
i
N

− 1
2

)2
Qi(0)

∑N
k=0 αkQ

′′
k(0)( ∑N

k=0 αkQk(0)
)2 . (30)

Denote the numerator of ∂2

∂ν2

∣∣
ν=0

Σ(μ, ν) by Γ. Then

Γ =

N∑
i=0

N∑
k=0

γi,k (31)

where γi,k = αiQ
′′
i (0)αkQk(0)

[(
i
N

− 1
2

)2
−

(
k
N

− 1
2

)2]
.

Lemma 4 tells us that γi,k > 0 for all i, k that satisfy
(
i

N
−

1

2

)2

−

(
k

N
−

1

2

)2

< 0. (32)

It is also true that γN
2 , N

2
= 0. It can be shown that for all

i, k �= N
2 , γi,k > 0 and γN

2 , N
2

= 0. It therefore must be true

that Γ =
∑N

i=0

∑N
k=0 γi,k > 0. �

Proof of Theorem 1: Lemma 1 and Lemma 3 guarantee that
ν = 0 is a minimum of Σ(μ, ν). �

B. Sensitivity to ν, μ and M

It is also of interest to examine sensitivity of performance
in the social feedback case to decision-making parameters
ν, μ and M . In Figure 2 the steady state distribution of y is
plotted for μ = 2.6 (the fitted value for an individual in the
CG task with social feedback) without feedback and with
feedback in the case M = 4 and M = 2. In Figure 3 the
normalized standard deviation 100

√
Σ(μ, ν,M) is plotted as

a function of ν for three different values of μ and M .
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Fig. 2. Steady-state distribution of y for the CG task with social feedback.
(A)M = 4 (B)M = 2. In each plot μ = 2.6, the circular points correspond
to ν = 0, and the x’s to ν = 1. In each plot N = 20.

Fig. 3. Standard deviation of steady-state distribution of y from the mean
y = 0.5 for the CG task as a function of feedback parameter ν (given by
100

p
Σ(μ, ν, M)). A) μ = 0.5 B) μ = 2.6 C) μ = 10. In each plot, the

dotted curve corresponds to M = 2, the solid curve to M = 4 and the
dashed curve to M = 10. In each plot N = 20.

Variance increases as a function of ν for all μ andM plot-
ted; this is as predicted for M = 4 by Theorem 1. We also
see variance is higher for smallerM . This implies that social
feedback has a greater effect on performance in smaller
groups of decision makers. As the number of decision makers
in the group increases, so does the probability that among
the M other choices there will be an equal number of A′s
and B′s, thereby decreasing the influence of social effects.

The results show that dependence of variance on μ is sig-
nificant. In Figure 3 it can be seen that increasing μ (certainty
in decision making) magnifies sensitivity to the feedback
gain ν. In previous work [8] we determined that increasing
μ in the CG task decreases variance for a single individual
without social feedback. The “uncertainty” parameter μ and
feedback gain ν have a coupling effect in the CG task with
social feedback that causes a more substantial decrease in
performance as ν increases for larger values of certainty μ.

VIII. FINAL REMARKS

In ongoing work we are investigating the effect of social
feedback on convergence rate and the role of the feedback in-
terconnection topology.We are extending the current analysis
to the undirected case in which each of the M + 1 decision
makers receives feedback from M others as in experiments
of [6], [7]. We are also considering the role of social feedback
in tasks with more “difficult” reward structures such as
the Rising Optimum; we predict that social feedback will
improve performance there. A key goal of this research is to
determine a principled means to design social interaction to
improve performance and mitigate performance degradation
in scenarios like the one studied in this paper.
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