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ABSTRACT | With a principled methodology for systematic

design of human–robot decision-making teams as a motivating

goal, we seek an analytic, model-based description of the

influence of team and network design parameters on decision-

making performance. Given that there are few reliably predictive

models of human decision making, we consider the relatively

well-understood two-alternative choice tasks from cognitive

psychology, where individuals make sequential decisions with

limited information, and we study a stochastic decision-making

model, which has been successfully fitted to human behavioral

and neural data for a range of such tasks. We use an extension of

the model, fitted to experimental data from groups of humans

performing the same task simultaneously and receiving feedback

on the choices of others in the group. First, we show how the task

andmodel can be regarded as a Markov process. Then, we derive

analytically the steady-state probability distributions for deci-

sions and performance as a function of model and design

parameters such as the strength and path of the social feedback.

Finally, we discuss application to human–robot teamand network

design and next steps with a multirobot testbed.

KEYWORDS | Decision making; human machine systems; multi-

agent systems; psychology

I . INTRODUCTION

There is growing interest in enabling humans and robots to

jointly make decisions that address problems in a variety of

complex tasks, such as information gathering in an uncer-

tain, dynamic environment [1], search and rescue [2], and
characterization of a hazardous environment [3], where

neither a fully automated nor a fully manual operation is

sufficient. This motivates development of a principled
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methodology that systematizes the design of human–robot
decision-making teams. Such a methodology should lever-

age strengths and compensate for weaknesses in both the

humans and the robots who constitute the team.

In [4]–[6], it is argued that for humans and robots to

best leverage each other’s strengths, they should collabo-

rate as peers. This means expanding from the more tradi-

tional view of humans as supervisors of robots to one in

which robots can make their own decisions. In these
works, there is an emphasis on adjustable autonomy, i.e.,

robots work autonomously but query humans as needed. In

[4], humans and robots work in parallel on a task, resolving

problems through interaction. Conditions for when and

how humans and robots should communicate are pre-

sented in [6].

We too are interested in designing decision-making

teams of humans and robots acting as peers; however, our
approach is to make use of developments in cognitive psy-

chology and rigorously examine human decision-making

dynamics with social interactions. In this paper, we seek to

derive analytic expressions for decision-making perfor-

mance of human–robot teams as a function of design

parameters. These include those that define the social

context, such as the size of the team, the distribution of

different types of decision makers on the team, and the
social feedback network, that is, how information flows

among human and robot team members. Such expressions

make it possible to systematically select design param-

eters so that decision-making teams meet performance

requirements.

The general problem of rigorously examining social

decision making presents a major challenge because the

space of decision-making problems is vast, and there are
few rigorously derived and analytically tractable models

that reliably predict how humans make decisions. Ac-

cordingly, in this paper, we focus on a relatively well-

understood family of tasks from the cognitive psychology

literature and a well-tested model for human decision

making that has recently been extended and fitted to

experimental data for groups of human decision makers in

a social context.
This family of tasks, known as two-alternative forced-

choice (TAFC) tasks, has been used in human decision-

making experiments and studies to investigate a variety of

fundamental questions, such as how humans trade off

exploration versus exploitation to find optimal decision

strategies [7]–[9] and how humans often settle for subop-

timal strategies [10]–[12]. A TAFC task requires a human

subject to make a sequence of choices between two known
alternatives. After every choice, the subject receives a

score that serves as a reward, and the subject’s goal is to

maximize accumulated reward over the entire sequence of

choices.

By manipulating the reward structure, the task can be

changed to represent different kinds of decision-making

challenges. We consider four prototypical TAFC tasks from

the literature, each corresponding to a different reward
structure as described in Section II. In each of the four

tasks, the reward depends not only on the most recent

choice but also on a recent finite history of choices. In

every case, there is an optimal sequence of choices, i.e.,

one that maximizes average reward; however, the amount

of exploration required to find the optimal sequence varies

among the four tasks.

We base our analysis on a stochastic soft-max choice
model used in the cognitive psychology literature to pre-

dict how a human makes decisions in TAFC tasks. The

successful fitting of both human behavioral and neural

[functional magnetic resonance imaging (fMRI)] data

taken during TAFC task experiments [7] justifies the use of

the model to describe a human decision maker in TAFC

tasks. It is shown in [13] that the soft-max choice model

emerges from a drift-diffusion (DD) equation. For empi-
rical work that justifies using the DD model in perceptual

TAFC tasks, see, for example, [14]–[16]. Derivations and

applications of the DD equation for decision making are

treated comprehensively in [13]. There it is shown that the

DD model is the continuum limit of the sequential proba-

bility ratio test for binary hypothesis testing from statistical

decision theory [17], [18]. The DD model can also be

derived from the dynamics of a variable that represents the
evidence in neuronal populations in favor of one alterna-

tive over the other [13].

Adopting the soft-max choice model for our analysis is

further motivated by the recent extension and empirical

fitting of this model to decision making in groups of hu-

mans performing the TAFC tasks of Section II [8], [19]. In

the experiments of [8] and [19], human subjects, working

in parallel on the same TAFC task, made simultaneous
choices while receiving social feedback. The social feed-

back was provided after each choice: each human subject

received not only his or her own reward, but also a report

on the current choice and/or reward of the other subjects.

The goal of these experiments was to explore the role of

this kind of limited group information feedback in indi-

vidual decision making in the TAFC task setting. The

extended model uses a soft-max choice model for each
decision maker and couples the multiple models with

behaviors representing individual responses to the choices

and/or rewards of others.

In this paper, we focus on choice feedback among

groups of decision makers engaged in parallel in the same

TAFC task. Our central contribution is to use the extended

model of [8], which has already been fitted to experimen-

tal data, to derive analytic predictions of the decisions and
performance as a function of model parameters. With a

small number of reasonable, simplifying assumptions, we

make the problem tractable by showing it can be repre-

sented as a low-dimensional Markov process. We derive

probability distributions of steady-state decision sequences

and corresponding steady-state performance as a function

of parameters that characterize the task, the individual
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decision makers, and the feedback network. We show that
our analytic predictions produce the same trends as those

produced with the original empirically validated model of

[8] and also those from the experiments.

Using our analytic predictions, we examine how per-

formance varies as a function of model parameters, and we

consider how to choose those that are design parameters to

enforce decision-making performance as desired. For

example, we can choose how many and which human
team members to include. If we model each robotic de-

cision maker on the team with a soft-max choice model,

then we can design the characterizing parameters for each

robotic team member. We can also design the choice

feedback network, i.e., who gets information from whom.

We describe new experiments underway that will test

predicted performance of designed human–robot systems.

Because of the generalizability of TAFC tasks, our ana-
lysis has potential applicability to real-world problems be-

yond those that map well into binary decision-making

tasks. As in many real-world problems, the TAFC tasks

require a decision maker to evaluate information from the

environment and from other decision makers and to

respond with a decision. While the output of a single bi-

nary decision is rather simple, the evaluative process re-

quired to optimally perform a TAFC task is complex. A
decision maker has to make do with a limited measure of

the environment that takes value in an unknown set and

changes with every decision. In the case with choice

feedback, a decision maker can also evaluate the choices of

others, which take value in a binary set, but which may

appear to be in conflict with the information associated

with measurements from the environment. The TAFC

tasks we study represent a range of explore-versus-
exploit challenges, and the learning and implementation

of explore-versus-exploit policies are pervasive compo-

nents of any decision-making process in an unknown

environment.

The paper is organized as follows. The TAFC tasks are

described in Section II. The model for decision making is

described in Section III. We analyze decision making and

derive steady-state probability distributions as a function of
model and task parameters in Section IV for a decision

maker alone, and in Section V, for a group of decision

makers in the social context. We conclude and discuss

application to human–robot team design and next steps

with a multirobot testbed in Section VI. Proofs can be

found in the Appendix. Preliminary results have appeared

in [20] and [21].

II . TWO-ALTERNATIVE
FORCED-CHOICE TASK

A. Task Description
In the TAFC task introduced in [7], [9], a human

subject is prompted by a computer to choose between two

alternatives (denoted A and B) within a fixed period of time
after the prompt. Once a choice is made and the BA[ or BB[
button is pushed, the computer reports a score that

represents a reward (performance measure), and the task

repeats. The subject’s goal is to maximize total accumu-

lated reward over the duration of the task (optimize

performance over the long run); at the end of the

experiment, the subject is paid in proportion to the sum

of rewards received.
In [7], each experiment consisted of 250 sequential

decisions. In [8] and [19], each experiment consisted

of 150 sequential decisions with a fixed period of 1.7 s

for response after the prompt; if the subject failed to

enter a choice within the allotted time, the system re-

corded the same choice as was made at the last decision

time.

Subjects are not told that their reward depends on
their recent choice history. The number of immediate

past choices N fixes the extent of choice history that

determines the reward. The choice history yðtÞ at time t
is the proportion of choices of A in the most recent N
choices. Let iðtÞ be the number of times A was chosen

in the most recent N choices up to time t, then

yðtÞ :¼ iðtÞ=N. Note that y belongs to a finite, discrete

set given by Y ¼ fði=NÞ; i ¼ 0; 1; . . . ;Ng. In the expe-
riments of [8], [19], and [22], N ¼ 20, and in [7], N ¼ 40;

these values push the limits of what a human subject can

remember.

Fig. 1 shows the four reward structures that we

examine in this paper; these reward structures are all

defined and used in the literature; see, e.g., [7]–[9], [19],

and [22]. Each reward structure in Fig. 1 is defined by two

curves of reward as a function of y: the dashed red curve
plots rAðyÞ, the reward received in the case that button A is

pushed, and the solid blue curve plots rBðyÞ, the reward

received in the case that button B is pushed. The long-

dashed black curve plots the average value of reward

�rðyÞ ¼ yrAðyÞ þ ð1� yÞrBðyÞ.
A choice sequence y is optimal if it maximizes �rðyÞ. A

local maximum can be found by climbing the gradient in �r;

however, this is difficult in practice. Each of the four
reward structures in Fig. 1 defines a different task with its

own decision-making challenge; the four tasks range in

how much the human subject must explore to find an

optimal choice sequence. We refer to a task as Beasy[ if the

optimum can be found with little exploration and

Bdifficult[ if it is only found with considerable exploration.

The value of y that maximizes �rðyÞ is not necessarily an

element in Y, but there is always a y 2 Y that differs from
the optimal value by less than 1=N.

1) Matching Shoulders Task: The matching shoulders

(MS) reward structure is illustrated in Fig. 1(a). For the

MS task, the reward curves are lines: rAðyÞ ¼ kAyþ cA and

rBðyÞ ¼ kByþ cB. In Fig. 1(a), kA ¼ �0:5, cA ¼ 0:6,

kB ¼ 1, and cB ¼ 0. So, for example, if the decision maker
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has chosen A half of the time in the last N trials of the task,
then a current choice of A yields a reward of rAð0:5Þ ¼ 0:35

and a current choice of B yields a reward of rBð0:5Þ ¼ 0:5.

The value of y that maximizes �r is found by solving

ðd=dyÞ�rðyÞ ¼ 0 to get y ¼ ðkB þ cA � cBÞ=ð2ðkB� kAÞÞ. In

Fig. 1(a), �rðyÞ has a unique maximum at y ¼ 0:53.

The slopes of the MS reward curves represent two

resources A and B that have diminishing returns. Indeed

the reward for choosing A drops the more frequently A is
chosen and likewise the reward for choosing B drops the

more frequently B is chosen. An optimal choice sequence

corresponds to y ¼ 0:53; however, it is challenging for the

subject to find this optimal value. This is because the point

at which the two curves intersect ðy ¼ 0:4Þ, called the

matching point, is an attractor.

To see this, note from Fig. 1(a) that the decision maker
receives a higher reward for choosing B rather than A
whenever y > 0:4. However, continued choice of B re-

duces y and when y G 0:4, the decision maker will find that

choosing A yields a higher reward than choosing B. Subse-

quent choices of A will increase y and the process repeats

once y > 0:4 again. Indeed, there is extensive empirical

evidence that human decision makers converge in aggre-

gate to choice sequences y that correspond to the matching
point [7]–[9]. The consequence of matching behavior

leading to suboptimal choices was studied extensively by

Herrnstein [10]–[12]. Conditions for convergence of

human decision making to the matching point have been

proved and analyzed using decision-making models in [9]

and [23]–[25].

Fig. 1. Four reward structures: (a) matching shoulders (MS); (b) rising optimum (RO); (c) converging Gaussians (CG); and (d) diverging

Gaussians (DG). In each plot, the dashed red curve is rA, the reward for choice A, and the solid blue curve is rB, the reward for choice B.

The long-dashed black curve is the average value of the reward -r. Each is plotted against choice history y ¼ i=N, i ¼ 0; 1; 2; . . . ;N, i.e.,

the proportion of choice A in the last N choices.
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In order to formalize the role of social feedback in tasks
with an attracting matching point, such as the MS task, we

first use our analysis in Section IV to examine the in-

fluence of model parameters for individual decision

makers on matching and suboptimal decision making.

2) Rising Optimum Task: The rising optimum (RO)

reward structure of Fig. 1(b) also has a matching point, but

it is a more complex task since there is a local optimum at
y ¼ 0 and a global optimum at y ¼ 1. This RO reward

structure is studied with and without social feedback in [8]

with subjects who begin the task with the initial condition

yð0Þ ¼ 0. Subjects tend to spend time at the local optimum

or near the matching point, but rarely find the global

optimum, since to do so requires making choice sequences

along the way that yield the lowest possible rewards in the

task [in Fig. 1(b), these are choice sequences in the range
y ¼ 0:4 to y ¼ 0:5].

Even if a subject reaches the optimum at y ¼ 1, a choice

of B will yield an even higher reward than a choice of

AVthis will reduce y, moving the decision maker away

from the optimal solution. Thus, considerable exploration

is needed to find the optimal choice sequence, and so the

RO task is a difficult task. An important question is how to

design human–robot teams with the right kind of feedback
so that they perform better in a difficult task like the RO

task as compared to individuals who do not share informa-

tion with one another. We use our analytic predictions to

systematically explore the implications of feedback in the

RO task in Section V-D.

3) Converging and Diverging Gaussians Tasks: Fig. 1(c)

and (d) shows converging Gaussians (CG) and diverging
Gaussians (DG) reward structures, respectively. These two

structures differ only in that what is rA in the CG structure

is rB in the DG structure and what is rB in the CG structure

is rA in the DG structure. The implication of the differ-

ence is inherent in the name of the tasks. In the CG task,

the matching point is an attractor such that decision makers

tend to converge to it, whereas in the DG task the matching

point is divergent such that decision makers tend to move
away from it. Both structures are symmetric about y ¼ 0:5,

which corresponds both to the matching point and to the

optimal decision-making solution.

The CG task is an easy task since the matching point,

and therefore the optimal solution, is attracting, and thus

very little exploration is needed to find it. The DG task is

more difficult since the optimal solution is divergent. The

DG task was designed in [8] to enable exploratory behavior
to split decision makers into arbitrary groups on either side

of the symmetry point y ¼ 0:5, and thus allowing the

impact of social feedback to be investigated.

B. Task Model
Let xðtÞ ¼ ðx1ðtÞ; x2ðtÞ; . . . ; xNðtÞÞ denote the last N

choices of the decision maker ordered sequentially in time

with x1ðtÞ 2 fA; Bg denoting the decision at time t,
x2ðtÞ 2 fA; Bg the decision at time t� 1, etc., i.e.,

xkðtþ 1Þ ¼ xk�1ðtÞ; k ¼ 2; . . . ;N
t ¼ 0; 1; 2; . . . :

(1)

The choice history, i.e., the proportion of choice A in the

last N decisions at time t, can be computed from xðtÞ as

yðtÞ ¼ 1

N

XN

k¼1

�kAðtÞ (2)

where �kAðtÞ ¼ 1 if xkðtÞ ¼ A and �kAðtÞ ¼ 0 if xkðtÞ ¼ B.

The reward rðtÞ at time t is given by

rðtÞ ¼ rA yðtÞð Þ; if x1ðtÞ ¼ A
rB yðtÞð Þ; if x1ðtÞ ¼ B.

�
(3)

We define the reward difference as

�r yðtÞð Þ :¼ rB yðtÞð Þ � rA yðtÞð Þ: (4)

The variables xðtÞ and yðtÞ evolve according to a sto-

chastic decision-making process, presented in Section III,

and thus are treated as random variables.

C. Task With Social Feedback
The RO, CG, and DG tasks were all used in the expe-

riments with and without social feedback as described in

[8] and [19]. In each experiment, five human subjects,

physically isolated from one another, made choices in

parallel for the same task at the same time. In experiments

without social feedback, the human subjects were in the

Balone condition.[ In experiments with social feedback,
after every choice when the computer reported the reward,

it also reported the current choice of each of the other four

subjects (choice feedback), the current reward of each of

the other four subjects (reward feedback), or both the

current choice and reward of the other four subjects

(choice and reward feedback). Accordingly, in the expe-

riments with social feedback, each human subject could

use the information reported about the four others in their
own decision making. In this paper, we restrict our

analysis of social feedback to the case of choice feedback.

In the experiments of [8] and [19], the feedback on

choices and/or rewards passed from every individual to

every other individual in the group, i.e., interconnections

were undirected and the network graph was complete.

These experiments were intentionally designed as a first
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step to investigate social feedback in the case that each
subject’s role was the same and information was shared

equally.

It is of great interest to understand how social feedback

affects decision-making performance in the case of more

general feedback interconnections. In this paper, we study

networks of human decision makers with choice feedback

paths defined by directed graphs as well as the undirected

graph used in the experiments.
In the directed case, we study the decision-making

dynamics of a focal individual who receives feedback on

the choices of M other decision makers, each of whom

receives no social feedback. We make a formal comparison

between the influence of directed versus undirected choice

feedback in Section V-E, and we describe new human

subject experiments underway that test our predictions in

the case of directed choice feedback in Section V-D. The
directed case allows us to investigate the influence of

designed (i.e., robotic) peer decision makers who provide

feedback but do not change their own strategies; we

discuss additional experiments underway in this context.

III . DECISION-MAKING MODEL

A. Soft-Max Choice Model
The stochastic soft-max choice model was first pro-

posed by Egelman et al. [7] to describe human decision

making in TAFC tasks of the kind presented in Section II.

This model saw continued use by Montague and Berns [9]

and has since become a well-accepted decision-making

model in this context. The model prescribes the probability

pAðtþ 1Þ :¼ Prfx1ðtþ 1Þ ¼ Ag that a subject will choose

A at time tþ 1 as a sigmoidal function of the state at time t

pAðtþ 1Þ ¼ 1

1þ e�� wAðtÞ�wBðtÞð Þ : (5)

The probability pA depends explicitly on the difference

between the subject’s anticipated reward wA for choosing A
next and the subject’s anticipated reward wB for choosing B
next. Note that wA and wB are independent from rA and rB,

i.e., wA and wB are modeled as having been determined by

the subject according to a learning process, described

below.

Fig. 2 shows pA as a function of wA � wB in the case that

� ¼ 1. The parameter � determines the slope of the sig-

moidal function. Larger � implies more certainty in deci-
sion making, which can be interpreted as less of a tendency

to explore. As � tends to infinity, (5) becomes determin-

istic: in this case, whenever wA > wBðwA G wBÞ, a choice

of AðBÞ is made. In [24], we proved convergence results

for this deterministic limit.

As shown in [8], the choice model best predicts a

subject’s choice sequences in the RO task when � ¼ 11:0

and in the CG task when � ¼ 2:5. These values correspond

to fits over all subjects, but fits of � were also made to

individual subjects. It is a goal of this work to develop a

formal understanding of the effects on performance of

parameters such as �. In the social context, a heteroge-

neous group of decision makers can be studied by distin-

guishing individuals by their own characteristic value of �.

Inspired by temporal difference learning, the studies
in [7] of the role of dopamine neurons in coding for reward

prediction error [26] have suggested a discrete-time linear

model of the dynamic update of wA and wB. Let Z 2 fA; Bg
be the choice made at time t, then

wZðtþ 1Þ ¼ ð1� �ÞwZðtÞ þ �rðtÞ (6)

w�Zðtþ 1Þ ¼w�ZðtÞ; t ¼ 0; 1; 2; . . . (7)

where �Z denotes the alternative choice to Z. Here, � 2
½0; 1� is a learning rate. Larger � implies less Bmemory[;

when � ¼ 1 there is no memory since the anticipated

reward is equal to the most recent reward received.

The model (5) has the same form as that predicted by

the stochastic differential equation that describes a scalar

DD process used widely to model perceptual decision

making [13], [27], [28]

dz ¼ �dtþ �dW; zð0Þ ¼ 0: (8)

Here z represents the accumulated evidence in favor of a

candidate choice of interest (e.g., choice A), � is a drift rate

representing the signal intensity of the stimulus acting on z,

and �dW is a Wiener process with standard deviation �,

which is the diffusion rate representing the effect of white

noise. On each trial a choice of A is made when zðtÞ first

Fig. 2. Sigmoidal function given by (5) representing probability pA

of choosing A as a function of wA �wB (plotted here with � ¼ 1).

Stewart et al. : Towards Human-Robot Teams: Model-Based Analysis of Human Decision Making

756 Proceedings of the IEEE | Vol. 100, No. 3, March 2012



crosses the predetermined thresholdþ� and a choice of B is
made when zðtÞ first crosses ��. It can be computed using

tools developed in [13] that the probability of choosing A in

the next time step is given by (5) with the appropriate

mapping between parameters.

B. Soft-Max Choice Model With Social Feedback
Each individual in a group of decision makers can be

modeled with a soft-max choice model as described above.

In [8] and [19], social feedback was introduced with a

feedback term that interconnects the individual choice
models. Models with different numbers of fitting parame-

ters were compared using the Akaike information criterion

together with estimated maximum likelihoods for the pre-

diction of choice sequences. The following choice feedback

model performed well in those tests.

Consider a focal decision maker who receives choice

feedback from M other decision makers. The favored

choice feedback model of [8] and [19] biases the focal
decision maker’s anticipated rewards with a feedback pa-

rameter � that reinforces his/her tendency to choose AðBÞ
when a majority of the M others chooses AðBÞ. The proba-

bility that the focal individual chooses A is

pAðtþ 1; �Þ ¼ 1

1þ e�� wAðtÞ�wBðtÞþ�uðtÞð Þ (9)

uðtÞ ¼

1; if jAj � Mþ 1

2

� �

�1; if jBj � Mþ 1

2

� �
0; otherwise

8>>>>><
>>>>>:

(10)

where jAj is the number of others who choose A at time t
(similarly for jBj), and d�e gives the smallest integer greater

than or equal to its argument. The no-feedback case (5) is
equivalent to pAðtþ 1; 0Þ in (9).

C. Assumptions for Analysis
The state of the choice model for a single decision

maker in the TAFC task is the N-element decision history

xðtÞ and the two anticipated rewards wAðtÞ and wBðtÞ. In

this section, we define two assumptions that reduce the

state to the scalar choice history yðtÞ; we make these

assumptions in our analysis for the remainder of the paper.

Since xðtÞ evolves according to a stochastic process defined

by the model and yðtÞ is computed from xðtÞ, we treat yðtÞ
as a random variable in our analysis.

We make Assumption 1 for all reward structures. We

make Assumption 2a for the MS, CG, and DG reward

structures and Assumption 2b for the RO reward structure.

Recall that �rðyÞ :¼ rBðyÞ � rAðyÞ.

Assumption 1: PrfxkðtÞ ¼ AjxðtÞg ¼ yðtÞ.

Assumption 2a: wBðtÞ � wAðtÞ ¼ �rðyðtÞÞ.

Assumption 2b: wBðtÞ � wAðtÞ ¼ fðyðtÞÞ, where fðyÞ is

given by the curve in Fig. 3.

Assumption 1 implies that the yN A’s and ð1� yÞN B’s

in xðtÞ are uniformly distributed in the choice history.

When Assumption 1 holds, the state of the system can be
represented by yðtÞ, wAðtÞ, and wBðtÞ. Assumption 1 is be-

lieved to hold when the decision making occurs over long

time periods [9], since, for each yðtÞ visited by the system,

all possible combinations of ordering of choices within xðtÞ
should occur with approximately equal frequency. Exten-

sive numerical simulations of the soft-max choice model

support the assumption.

Assumption 2a sets the difference in the subject’s anti-
cipated rewards at time t equal to the difference in actual

rewards evaluated at yðtÞ. The subject knows the actual

reward at yðtÞ corresponding to his/her choice at time t,
and may have recently learned the actual reward for the

other alternative at yðtÞ. When Assumptions 1 and 2a hold,

the system state can be represented by yðtÞ.
Assumption 2a was introduced by Montague and Berns

[9] in their analysis of attraction to the matching point in
reward functions. To further investigate we performed a

numerical study without using Assumption 2a by building

a Markov chain with state yðtÞ, wAðtÞ, and wBðtÞ. We used

� ¼ 1 as this approximates well the fitted value of � in the

CG and DG tasks [8]. We computed an equilibrium distri-

bution for this case and observed that it varied insignif-

icantly from the equilibrium distribution derived in the

case where we let Assumption 2a hold (see Section IV-B).
This result supports Assumption 2a.

Assumption 2b is specific to the RO reward structure of

Fig. 1(b) where Assumption 2a does not apply. The func-

tion fðyÞ, shown in Fig. 3, is determined from a simulation

in which the model (5)–(7) made choice sequences in the

Fig. 3. Computed difference in anticipated reward fðyÞ used in

Assumption 2b for the RO reward structure (shown for N ¼ 20).
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RO task and the computed anticipated rewards for each
value of y were averaged. In the simulation, � ¼ 0:1, which

approximates well the fitted value of � for the RO task [8].

In this difficult RO task, the subject does not make choice

A often enough to achieve yðtÞ � 0:65, and so fðyÞ ¼ 0 for

y � 0:65.

IV. ANALYSIS OF DECISION MAKING
IN THE ALONE CONDITION

In this section, we analyze a single model decision maker

performing the TAFC tasks of Section II. In Section IV-A,
we show how to model the system as a Markov process. In

Section IV-B, we derive analytically the steady-state proba-

bility distribution for that process, i.e., the long-run proba-

bility that a decision maker will make choice sequences

corresponding to y 2 Y. We compare the derived distribu-

tions to distributions computed from experimental data.

We then use the derived distributions to study perfor-

mance. We prove conditions under which the decision
maker will converge to a matching point in Section IV-C;

since matching behavior is critical to how much explora-

tion is needed to make optimal choice sequences in TAFC

tasks, this is an important result both for individual and

social decision making. In Section IV-D, we derive sensiti-

vity of performance to the model parameter �, which

quantifies an individual’s tendency to explore.

A. Markov Model
The transition probabilities for the Markov model of

the system with random variable y 2 Y as its state can be

computed as follows.

Proposition 1: Suppose Assumptions 1 and 2a hold.

Then, the choice model (5) for the TAFC task (1)–(3) is a

Markov process with state yðtÞ and transition probabilities

given by

Pr yðtþ1Þ¼yðtÞ� 1

N

� �
¼ e��ryðtÞ

1þe��r
(11)

Pr yðtþ1Þ¼yðtÞf g¼ e��rþð1�e��rÞyðtÞ
1þe��r

(12)

Pr yðtþ1Þ¼yðtÞþ 1

N

� �
¼ 1�yðtÞ

1þe��r
(13)

where �r ¼ �rðyðtÞÞ is given by (4). In case Assumption 2b

holds instead of Assumption 2a, then the transition

probabilities are given by (11)–(13) with �rðyðtÞÞ replaced

with fðyðtÞÞ.
Equations (11)–(13) are used to build the ðN þ 1Þ �

ðN þ 1Þ state transition matrix P which has entries Pij ¼
Prfyðtþ 1Þ ¼ ðj=NÞjyðtÞ ¼ ði=NÞg, i; j 2 f0; 1; . . . ;Ng.

B. Steady-State Choice Distribution
The state transition matrix P is tridiagonal, and all

tridiagonal elements are positive. So, any state can be

reached from any another in finite time, guaranteeing

irreducibility. It is aperiodic since return to state i from

state i can happen as quickly as one time step, but no state

is absorbing. Thus, the process has a unique limiting dis-

tribution P ¼ ð	0; 	1; . . . ; 	NÞ describing the fraction of

time the process will spend in each of the enumerated states
y ¼ i=N, i ¼ 0; 1; . . . ;N, in the long run (as t!1) [29].

This steady-state distribution satisfies

	P ¼ 	 (14)XN

i¼0

	i ¼ 1: (15)

Proposition 2: For the transition probabilities given by
(11)–(13), the unique steady-state distribution is

	i ¼
�i 1þ e��r i

Nð Þ
� �

e��
i

PN
j¼0 �je��
j 1þ e��r

j
Nð Þ

� � (16)

where �i ¼ N!=ððN � iÞ!i!Þ and 
i ¼
Pi

j¼1 �rðj=NÞ.
The distribution 	 from (16) is plotted in Fig. 4 for each

of the four reward structures of Fig. 1. Fig. 4(a) shows that

the decision maker in the MS task primarily makes choices

that keep y near the matching point ðy ¼ 0:4Þ rather than

near the optimal solution at the peak of the average reward
curve ðy ¼ 0:53Þ. Fig. 4(b) shows that the decision maker

in the difficult RO task is unable to find the global

optimum at y ¼ 1 as observed in the experiments of [8].

Instead, time is spent at the local optimum ðy ¼ 0Þ and

near the matching point. Fig. 4(c) shows for the easy CG

task that the decision maker spends most time at the

optimum ðy ¼ 0:5Þ, coincident with the matching point.

As shown in Fig. 4(d), the DG task is more difficult than
the CG task since decision makers are attracted to either

side away from the optimum ðy ¼ 0:5Þ.
The distribution of Fig. 4(a) for the MS task agrees with

experimental results in the literature, e.g., see [7, Fig. 2].

In Fig. 5, we plot the distributions of Fig. 4(b)–4(d) and

compare to the distributions from the experiments of

the RO, CG, and DG tasks reported in [8]. These expe-

rimental distributions are computed as the percentage of
time spent with each possible choice history y 2 Y,

where N ¼ 20, averaged over all subjects in the alone

condition.

The comparison in Fig. 5(a) shows that the prediction

captures the difficulty for a decision maker to find the

optimal solution in the difficult RO task and the relatively

long time that the decision maker will spend near the local
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optimum ðy ¼ 0Þ and the matching point. The prediction

misses the very few human subjects who did find the

optimal solution in the experiments. The prediction also

slightly overpredicts time spent near the matching point

and slightly underpredicts time spent near the local

optimum. These differences may be attributable to error

introduced in the estimation of fðyÞ of Assumption 2b.
The comparison in Fig. 5(b) for the CG task is excel-

lent, while the comparison in Fig. 5(c) shows some differ-

ences. We expect that these differences are due to the

convergence rate of decision making, which is slower in

the more challenging DG task as compared to the CG task.

Each experiment in [8] consisted of 150 sequential

choices. It is likely that this was sufficient in the easy

CG task for subjects to converge to a steady-state sequence.
However, in the DG task, the subjects do considerable

exploring, switching from values of y lower and higher

than 0.5, and it may take a longer time for them to settle on

one side or the other.

C. Performance and Steady-State Matching
As discussed in Section II, matching behavior, preva-

lent in TAFC tasks, can have significant implications for

how much exploration is needed to find an optimal choice
sequence. Near the matching point, the decision maker

receives approximately the same reward for choosing A as

for choosing B; however, this can be suboptimal in the long

run as has been studied extensively by Herrnstein [10]–

[12], [30] and more recently by [7]–[9]. Rigorous proofs of

matching behavior are limited. In [9], Assumption 2a is

used to show that the matching point in the MS reward

structure is an attractor. Conditions for convergence to
matching are rigorously proved in [24] for the determin-

istic limit of the choice model (5)–(7). Convergence to

matching is proved in [23] and [24] for the win–stay–lose–

switch (WSLS) decision-making model. A related analysis

for the WSLS model is shown in [25].

In this section, we prove steady-state matching behav-

ior for the choice model (5) by finding sufficient

Fig. 4. Steady-state probability distribution 	 of y from (16) for TAFC tasks with N ¼ 20: (a) MS with � ¼ 5; (b) RO with � ¼ 11; (c) CG with

� ¼ 2:5; and (d) DG with � ¼ 2:91. The probability 	i describes the time the decision maker spends making choice sequences corresponding

to y ¼ i=N; 	i is plotted with the symbol ‘‘o’’ for each i ¼ 0; 1; . . . ;N for all tasks. The dashed red curve is rA, the solid blue curve is rB, and the

long-dashed black curve is -r. The values of � for the RO, CG, and DG tasks are from the best fit to experimental data [8].
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conditions on the slope � that guarantee that 	i is greatest

for y ¼ i=N at or near the matching point. In Theorem 1,

we find a bound �1 such that if � > �1, then 	i peaks in a

small neighborhood of the matching point. In Theorem 2,
we find a bound �2 > �1 such that if � > �2, then 	i peaks

at the matching point.

Definition 1: A reward structure with a unique matching
point of type 1 consists of reward curves rAðyÞ, rBðyÞ, for

which there exists y� ¼ i�=N, i� 2 f1; 2; . . . ;N � 1g that

satisfies �rðy�Þ ¼ 0, �rðyÞ G 0 for y G y�, and �rðyÞ > 0

for y > y�.
Let b�cðd�eÞ be the largest (smallest) integer less than

its argument. Define � ¼ ððN � i�Þ!i�!Þ=ð2bN=2c!dN=2e!Þ.

Theorem 1: Consider a reward structure with a unique

matching point of type 1 and suppose that Assumptions 1

and 2a hold. If

� > �1 :¼ max
1� �

��r
i� þ 2

N

� 	 ; 1� �

��r
i� � 2

N

� 	
8>><
>>:

9>>=
>>; (17)

then the steady-state choice distribution is maximum for

y 2 fy� � ð1=NÞ; y�; y� þ ð1=NÞg.

Theorem 2: Consider a reward structure with a unique

matching point of type 1 and suppose that Assumptions 1

and 2a hold. If

� > �2 :¼ max
1� �

��r
i� þ 1

N

� 	 ; 1� �

��r
i� � 1

N

� 	
8>><
>>:

9>>=
>>; (18)

then the steady-state choice distribution is maximum for

y ¼ y�.

Example 1: For the MS task of Fig. 1(a), we have rAðyÞ ¼
kAyþ cA and rBðyÞ ¼ kByþ cB, where kA ¼ �0:5, cA ¼ 0:6,
kB ¼ 1, and cB ¼ 0. For N ¼ 20, by Theorems 1 and 2,

�1 ¼ 5:45 and �2 ¼ 10:91. These values shrink for smaller

N and grow for larger N.

Example 2: For the CG task of Fig. 1(c), we have

rAðyÞ ¼ e
� y��yAffiffi

2
p

�A

� �2

þ cA; rBðyÞ ¼ e
� y��yBffiffi

2
p

�B

� �2

þ cB (19)

with �yA ¼ 0:4, �yB ¼ 0:6 and �A ¼ �B ¼ 0:2 and cA ¼
cB ¼ 0:3. For N ¼ 20, by Theorems 1 and 2, �1 ¼ 3:30 and

�2 ¼ 6:06.

Fig. 5. Comparison of steady-state distribution 	 of y from (16),

plotted as black ‘‘o,’’ and distributions computed from experimental

data from [8], plotted as blue ‘‘x.’’ (a) RO task. (b) CG task. (c) DG task.
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D. Performance Sensitivity to Model Parameters
Given the analytic expression (16) for 	, we compute

sensitivity of long-run decision-making performance to the

parameter �. Larger � corresponds to increased certainty

in the decision making, which can also be interpreted as a

reduced tendency to explore.

Let �ri denote the reward received on average if the

decision maker were to maintain choice sequences corre-

sponding y ¼ i=N, i.e., �ri :¼ ði=NÞrAði=NÞ þ ð1� ði=
NÞÞrBði=NÞ. Then, the expected value of the reward ~r is

~r ¼
XN

i¼0

	i�ri: (20)

The sensitivity of performance to � is the derivative of the

expected value of the reward with respect to �

d

d�
~r ¼
XN

i¼0

�ri
d

d�
	i ¼

XN

i¼0

i

N
rA

i

N

� 	
þ N � i

N
rB

i

N

� 	� 	
d

d�
	i:

(21)

Denoting gið�Þ :¼ ð1þ e��rði=NÞÞ and Mð�Þ :¼
PN

j¼0 	j,

the derivative of 	i with respect to � can be written as
(22), shown at the bottom of the page.

Example 1 (Continued): Consider again the MS task of

Fig. 1(a). The expected value of reward ~r and its sensitivity

to � given by ðd=d�Þ~r of (21) are both plotted in Fig. 6 for

N ¼ 20. The sensitivity has a critical point at �c ¼ 1:15.

For � G �c increasing � results in substantially higher

reward. However, as � increases further, the expected
value of reward decreases. Our analysis precisely describes

how much exploratory behavior in the decision making is

beneficial. This result is directly related to Theorems 1

and 2: for � > �1 ¼ 5:11, i.e., with too much certainty

(equivalently not enough exploration), the decision maker

converges to the matching point, which is not the optimal

strategy.

Example 2 (Continued): Consider again the CG task of

Fig. 1(c). The expected value of reward ~r and its sensitivity

to � given by ðd=d�Þ~r of (21) are both plotted in Fig. 7 for

N ¼ 20. In this case, ðd=d�Þ~r is positive for all �. This is

true for any N because the matching point coincides with

the maximum of the expected value of reward, and, there-

fore, increasing the parameter � (equivalently decreasing

exploration in the decision making) results in higher

expected reward for the task. We note, however, that there

is not a great deal of gain in performance once � increases
above a threshold approximately equal to 5.

V. ANALYSIS OF DECISION MAKING IN
A SOCIAL CONTEXT

In this section, we analyze a group of model decision

makers who make simultaneous decisions with choice

feedback in the TAFC tasks of Section II. We focus first on

directed feedback, and we examine the decision dynamics
of the focal individual who receives choice feedback from

M others, who themselves do not receive any social feed-

back. In Section V-A, we show how to model the system as

an inhomogeneous Markov process. We investigate con-

vergence in Section V-B and derive analytically the ex-

pected equilibrium probability distribution for the

process. Using this probability distribution in Section V-C,

we study the role of choice feedback in performance in
the CG task, we compare to experimental data, and we

compute sensitivity of performance to team and network

parameters �, �, and M. In Section V-D, we study the

role of choice feedback in performance in the RO task,

and we design a heterogeneous team predicted to

Fig. 6. Expected value of reward ~r and sensitivity ðd=d�Þr~ from (21)

for the MS task of Fig. 1(a) for N ¼ 20. The solid blue curve is r~ and

the dashed red curve is ðd=d�Þr~, both plotted as a function of �.

d

d�
	i ¼

�ie
��
i 4r

i

N

� 	
e�4r i

Nð Þ � 
igið�Þ
� 	

Mð�Þ �
�ie
��
i gið�Þ

XN

j¼0

�je
��
j 4r

j

N

� 	
e�4r

j
Nð Þ � 
jgjð�Þ

� 	

Mð�Þ2
(22)
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improve performance for the focal decision maker. In

Section V-E, we analyze the case of undirected choice

feedback and compare results to the directed feedback
case for the CG and DG tasks.

A. Expectation of the Markov Model
The identification of the dynamics of the focal

decision maker with directed choice feedback from M
others as a Markov process with state yðtÞ is analogous to

that for the decision maker in the alone condition

studied in Section IV-A. However, in the social context,

the Markov process is inhomogeneous because at each

time t, the one-step state transition matrix depends on the

choices of others through the function uðtÞ in (10). By
conditioning on the value of uðtÞ at each time, we can

analyze the expectation of the inhomogeneous process; we

derive the expectation of the state transition matrix as

follows.

Proposition 3: Suppose Assumptions 1 and 2a hold.

Then, the choice model representing the focal individual

receiving choice feedback from M others (9)–(10) for
the TAFC task (1)–(3) is a Markov process with state

yðtÞ and expected state transition probabilities given by

Pr yðtþ 1Þ ¼ yðtÞ � 1

N

� �
¼ 1� �pA yðtÞð Þ½ �yðtÞ (23)

Pr yðtþ 1Þ ¼ yðtÞf g ¼ 1� �pA yðtÞð Þ½ �
� ð1� yðtÞÞ þ �pA yðtÞð ÞyðtÞ

(24)

Pr yðtþ 1Þ ¼ yðtÞ þ 1

N

� �
¼ �pA yðtÞð Þ 1� yðtÞð Þ (25)

where �r ¼ �rðyðtÞÞ is given by (4) and

�pA yðtÞ; �ð Þ ¼ PrfuðtÞ ¼ 1g
1þ e�ð�r��Þ þ

PrfuðtÞ ¼ �1g
1þ e�ð�rþ�Þ

þPrfuðtÞ ¼ 0g
1þ e��r

: (26)

The conditional probabilities on uðtÞ are given by

Pr uðtÞ¼1f g¼
XM

k¼ Mþ1
2d e

M

k

� 	
pAð1; 0Þk 1� pAð1; 0Þð ÞM�k

Pr uðtÞ¼�1f g¼
XM

k¼ Mþ1
2d e

M

k

� 	
1� pAð1; 0Þð ÞkpAð1; 0ÞM�k

Pr uðtÞ ¼ 0f g¼ 1� Pr uðtÞ ¼ 1f g þ Pr uðtÞ ¼ �1f gð Þ

(27)

with M
k

� �
¼ M!=ðk!ðM� kÞ!Þ. In case Assumption 2b holds

instead of Assumption 2a, then the results hold with

�rðyðtÞÞ replaced with fðyðtÞÞ.
The ðN þ 1Þ � ðN þ 1Þ one-step state transition matrix

PðtÞ has entries

Pij ¼ Pr yðtþ 1Þ ¼ j

N
jyðtÞ ¼ i

N

� �
(28)

i; j 2 f0; 1; . . . ;Ng. Using (23)–(25), we can build the ex-

pectation P of this transition matrix.

B. Convergence and Steady-State Choice Distribution

1) Convergence in Probability: In Section V-A, before

conditioning on uðtÞ, we have obtained an explicit expres-
sion for the ðN þ 1Þ-dimensional state transition matrix

PðtÞ. The sequence of PðtÞ in t is a sequence of inde-

pendent identically distributed (i.i.d.) matrix-valued

random variables. It is easy to check that each PðtÞ is a

tridiagonal matrix in which all the elements on the

diagonal, subdiagonal, and superdiagonal are positive. To

show that the distribution of y converges in probability, it

suffices to show that the matrix RðtÞ ¼ Pð0ÞPð1Þ � � � PðtÞ
converges almost surely to a rank-one matrix 1	 for some

probability distribution 	, where 1 is the vector of all

ones. Towards this end, we introduce the following result

from [31].

Proposition 4: The matrix RðtÞ converges almost surely

to a rank-one matrix as t goes to infinity if and only if for

Fig. 7. Expected value of reward r~ and sensitivity ðd=d�Þr~ from (21) for

the CG task of Fig. 1(c) for N ¼ 20. The solid blue curve is r~ and the

dashed red curve is ðd=d�Þr~, both plotted as a function of �.
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every i; j 2 f1; . . . ;N þ 1g

PrfE ijg ¼ 1

where

E ij ¼ 9k; 9tjRikðtÞRjkðtÞ > 0

 �

:

This result can be used to show that the distribution of

yðtÞ converges in probability.

Theorem 3: There exists a probability distribution 	
such that

lim
t!1

RðtÞ ¼ 1	 almost surely:

2) Steady-State Choice Distribution: Theorem 3 motivates

us to compute the asymptotic distribution of y. In this

section, we compute the expected steady-state distribution

of y by using the expected state transition matrix P. Since

the Markov process in Section V-A modeled by the ex-

pected state transition matrix P is irreducible and ape-
riodic, it has a unique limiting distribution P ¼ ð	0; 	1;
. . . ; 	NÞ describing the fraction of time the process will

spend in each of the enumerated states y ¼ i=N, i ¼ 0;
1; 2 . . . N, in the long run (as t!1) [29]. This steady-

state distribution is the solution to (14) and (15).

Proposition 5: For the expected transition probabilities

given by (23)–(25), the unique expected steady-state
distribution is

	i ¼ �i

Yi

j¼1

q
i

N
; �

� 	

XN

j¼0

�j

Yj

k¼1

q
k

N
; �

� 	 (29)

where �i ¼ N!=ððN � iÞ!i!Þ and qðði=NÞ; �Þ ¼ �pAððði� 1Þ=
NÞ; �Þ=ð1� �pAðði=NÞ; �ÞÞ.

3) A Different Proof for Convergence: We have shown that
the distribution of yðtÞ converges in probability and pro-

vided the explicit form for the expectation of the steady-

state distribution. The convergence results can be further

strengthened by utilizing the fact that PðtÞ arising in the

tested TAFC tasks belongs to a compact set. More speci-

fically, we show here that the elements on the diagonal,

superdiagonal, and subdiagonal of PðtÞ are lower bounded

by a positive constant. In the TAFC tasks, we usually have
� 2 ½0; 15� and � 2 ½0; 1�. Then, from (26)

1� 1� pAð1; 0Þð Þ
M
2b c�1

1þ e�ð�rþ�Þ � �pAðy; �Þ

� 1� 1� pAð1; 0Þð Þ
M
2b c�1

1þ e�ð�r��Þ :

Let �1 ¼ ð1� ð1� pAð1; 0ÞÞbM=2c�1Þ=ð1þ e�ð�rþ�ÞÞ.
Since pAð1; 0Þ > 0, we have

�pAðy; �Þ � �1 > 0: (30)

Let �2 ¼ ð1� ð1� pAð1; 0ÞÞbM=2c�1Þ=ð1þ e�ð�r��ÞÞ, then

�pAðy; �Þ � �2 G 1: (31)

Then, for yðtÞ > 0, from (23)

Pr yðtþ 1Þ ¼ yðtÞ � 1

N

� �
� ð1� �2Þ

1

N
: (32)

In other words, we have found a positive lower bound for

the elements on the subdiagonal of PðtÞ. Similarly, for

yðtÞ G 1, from (25)

Pr yðtþ 1Þ ¼ yðtÞ þ 1

N

� �
� �1

1

N
: (33)

So we have constructed a positive lower bound for the

elements on the superdiagonal of PðtÞ. When 0 G yðtÞ G 1,

from (24), we know that Prfyðtþ 1Þ ¼ yðtÞg is a convex

combination of the values of 1� yðtÞ and yðtÞ, so

Pr yðtþ 1Þ ¼ yðtÞf g � 1

N
:

It is easy to check that when yðtÞ ¼ 0

Pr yðtþ 1Þ ¼ yðtÞf g ¼ 1� �pAð0Þ � 1� �2

and when yðtÞ ¼ 1

Pr yðtþ 1Þ ¼ yðtÞf g ¼ �pAð1Þ � �1:
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So

Pr yðtþ 1Þ ¼ yðtÞf g � min
1

N
; 1� �2; �1

� �
: (34)

Hence, we have also constructed a positive lower bound

for the elements on the diagonal of PðtÞ. In view of (32),

(33), and (34), we have proved the following result.

Proposition 6: All the elements on the diagonal, subdi-
agonal, and superdiagonal of PðtÞ are lower bounded by a

positive constant

� ¼ min ð1� �2Þ
1

N
; �1

1

N
;

1

N
; 1� �2; �1

� �
: (35)

Proposition 6 can be used to prove a stronger con-

vergence result for yðtÞ than that stated in Theorem 3.

Theorem 4: For the TAFC tasks under consideration,

there always exists a probability distribution 	 such that

lim
t!1

RðtÞ ¼ 1	:

The approach taken in this section that uses tools from

matrix analysis has one additional advantage: it allows us
to conveniently examine the convergence rate by looking

at the relevant elements of PðtÞ.

4) Convergence Rate: We first review some results on the

estimation of the convergence rate of inhomogeneous

Markov chains in the literature. For a stochastic matrix S,

its scrambling constant [32], [33] is defined to be

%ðSÞ ¼ max
i;j

1�
Xn

k¼1

minfsik; sjkg
 !

: (36)

A stochastic matrix is then called a scrambling matrix if its

scrambling constant is strictly less than one. It is well

known [32], [33] that the product of any infinite sequence

of scrambling matrices S1; S2; . . . from a compact set S
converges exponentially fast to a rank-one matrix at a rate

no slower than

max
S2S

%ðSÞ:

Now we use the scrambling constant to estimate the con-
vergence rate of yðtÞ.

It is easy to check that any stochastic matrix with a

positive column is a scrambling matrix. For any sequence

of bN=2c state transition matrices PðtÞ; Pðtþ 1Þ; . . . ;
Pðtþ bN=2c � 1Þ, let RðtÞ denote the matrix product

PðtÞPðtþ 1Þ � � � Pðtþ bN=2c � 1Þ. Consider j ¼ bN=2cþ 1.

Then, for any i 2 f1; 2; . . . ;N þ 1g, from the tridiagonal

structures of the state transition matrices we know that
PðtÞi;iþ1; Pðtþ 1Þiþ1;iþ2; . . . ; Pðtþ j� i� 1Þi;j; Pðtþ j�
iÞj;j; . . . ; Pðtþ bN=2c � 1Þj;j are all lower bounded by the

positive constant � as defined in (35). Then, the ijth
element of RðtÞ is positive. Since such a conclusion holds

for all i, the jth column of RðtÞmust be positive. Hence, the

product of any bN=2c state transition matrices PðtÞ is a

scrambling matrix.

The above argument implies the following lower bound
for %ðRðtÞÞ:

% RðtÞð Þ � 1�minfR1;j; RNþ1;jg:

It can be further checked that when u ¼ 1, R1;j increases
and RNþ1;j decreases and when u ¼ �1, R1;j decreases and

RNþ1;j increases. This suggests that the effect of social

feedback on the convergence rate of yðtÞ is a delicate issue

and the design of social feedback for the purpose of

accelerating convergence is an interesting and worthwhile

topic for future research.

C. Performance With Choice Feedback in
the CG Task

A key measure of performance in the TAFC task with

CG reward structure is variance about the optimal choice

sequence. We consider symmetric CG structures of the
form (19) in which cA ¼ cB, �yA G �yB, and j�yAj ¼ j�yBj [as in

Fig. 1(c)], so that y ¼ 0:5 is the converging matching point

and the optimal choice sequence. Accordingly, better per-

formance corresponds to minimizing the variance about

y ¼ 0:5.

Let � denote the variance, or second moment, of the

expected steady-state distribution about y ¼ 0:5. Then,

using 	 given by (29), � can be written as a function of the
feedback gain � as

�ð�Þ ¼

XN

i¼0

�i
i

N
� 1

2

� 	2

Qið�Þ

XN

j¼0

�jQjð�Þ
(37)

where Qið�Þ :¼
Qi

j¼1 qððj=NÞ; �Þ.
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1) Effect of Choice Feedback on Variance About Optimum:
We prove here that variance is minimized at � ¼ 0 in the

case M ¼ 4. This implies that with choice feedback (corre-

sponding to � 6¼ 0), the focal individual tends to do more

exploring away from the optimal solution and performance

deteriorates.

Theorem 5: Consider the CG reward structure of the

form (19) where the matching point and optimal choice
sequence coincide at y ¼ 0:5. Consider a focal decision

maker who receives choice feedback from M ¼ 4 others

who receive no feedback. Suppose that Assumptions 1

and 2a hold. Then, the variance �ð�Þ about y ¼ 0:5 of

the expected steady-state choice distribution of the focal

individual is minimal for � ¼ 0.

Evidence of increased exploration and deterioration of

performance in the CG task with choice feedback has also
been observed in the experimental data of [8], where

feedback was undirected. We compute the variance in

choice history about y ¼ 0:5 as a function of time (choice

number from 1 to 150) by averaging over all subjects in the

experiments. In Fig. 8, we plot this variance from the

experimental data of [8] in the case of undirected choice

feedback (dashed curve) and compare to the case of no

feedback (solid curve); as predicted by Theorem 5, the
experiments show that choice feedback increases variance

about y ¼ 0:5 for the average subject.

2) Performance Sensitivity to Parameters: We next exa-

mine the sensitivity of performance in the CG task with

choice feedback to parameters �, �, and M. In Fig. 9, the

(expected) steady-state distribution of y is plotted with and

without feedback in the cases M ¼ 4 and M ¼ 2. We use
� ¼ 2:6, which is the fitted value for an individual in the

CG task with social feedback [8]. In Fig. 10, the normalized
standard deviation 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�; �;MÞ

p
is plotted as a func-

tion of � for three different values of � and M.

In both Figs. 9 and 10, it can be seen that variance

increases as a function of � for each value of � and M plotted;

this is as predicted for the case M ¼ 4 by Theorem 5. We

also see that variance is higher for smaller M. This implies

that choice feedback of this kind has a greater effect on

performance in smaller groups.
The results also show that dependence of the variance

on � is significant. In Fig. 10, it can be seen that

increasing � (equivalently, decreasing the exploratory

tendency) magnifies sensitivity to the feedback gain �. In

Section IV-D, we showed that increasing � in the CG task

decreases variance for a single individual without social

feedback. The exploratory parameter � and the feedback

gain � have a coupling effect in the CG task with choice

Fig. 8. Variance in choice history about y ¼ 0:5 for experiments in [8].

The case with undirected choice feedback is the dashed curve and

with no feedback is a solid curve; both are plotted as a function of

time (choice number). N ¼ 20.

Fig. 9. Expected steady-state distribution 	 of y from (29) for the

CG task with choice feedback. (a) M ¼ 4. (b) M ¼ 2. In each plot � ¼ 2:6,

the black ‘‘o’’ symbols correspond to � ¼ 0, and the blue ‘‘x’’ symbols

to � ¼ 1.
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feedback that causes a more substantial decrease in per-

formance as � increases for larger values of �.

D. Performance in the RO Task With Choice
Feedback From Designed Decision Makers

In this section, we use our analytic results to study
performance in the RO task with choice feedback. We

examine how the ability of a focal decision maker to find

the optimal solution in the RO task is influenced by the

design of the rest of the team members who provide choice

feedback. The space of design alternatives is large; we

focus on a parameterized family of designs for systematic

evaluation. We let the rest of the team be a heterogeneous

group of M ¼ 4 decision makers (the same M as in [8]),
and we prescribe the (constant) probability pA;m that deci-

sion maker m chooses A, for m ¼ 1; 2; 3; 4.

To measure performance, we consider the likelihood

that the focal decision maker finds the optimal solution at

y ¼ 1. This we can formalize by defining the probability

that, at steady state, the focal decision maker’s choice

history y will be greater than a critical value yc 2 ½0; 1�

Pr y > yc ¼
ic

N

� �
¼
XNþ1

i¼ic

	ið�; �;�r; pA;1; . . . ; pA;4Þ: (38)

In Fig. 11(a), we illustrate three choices of yc as vertical

gray lines: yc ¼ 0:45; 0:70; and 0:85 are light, medium,

and dark lines, respectively. The probability in (38) is
the fraction of the steady-state distribution of y to the

right of the vertical line, i.e., the fraction of the distribu-

tion in the gray shaded area (light, medium, and dark,

respectively).

Because this performance measure is an analytic

function of model and design parameters, we can evaluate

performance systematically. As design choices, we let

pA;1 ¼ 0:05, implying that decision maker 1 spends a lot
of time near the local optimum at y ¼ 0, pA;2 ¼ 0:95,

implying that decision maker 2 spends a lot of time near

the global optimum at y ¼ 1, and pA;3 ¼ 0:5, implying

that decision maker 3 chooses randomly between A and B.

Fig. 10. Standard deviation of expected steady-state distribution

of y from the mean y ¼ 0:5 for the CG task as a function of feedback

parameter � [given by 100
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�; �;MÞ

p
]. (a) � ¼ 0:5. (b) � ¼ 2:6.

(c) � ¼ 10. In each plot, the short-dashed curve corresponds to M ¼ 2,

the solid curve to M ¼ 4, and the long-dashed curve to M ¼ 10.

Fig. 11. Probability given by (38) that at steady state y > yc in the

RO task for a focal decision maker receiving choice feedback from

four decision makers with pA;1 ¼ 0:05, pA;2 ¼ 0:95, and pA;3 ¼ 0:5.

(a) The values yc ¼ 0:45;0:7; and 0:85 are shown as (light, medium,

and dark) vertical lines on the plot of RO reward structure. For each

value of yc , the probability y > yc describes the fraction of time

that a decision maker will spend with y inside the shaded region to the

right of the corresponding vertical line. (b) Probability y > yc as a

function of pA;4 for yc ¼ 0:45 (light), yc ¼ 0:70 (medium), and

yc ¼ 0:85 (dark).
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The average of these three probabilities is 0.5, which
again corresponds to a random decision maker. We look

at the sensitivity of performance of the focal decision

maker to the design of decision maker 4, parametrized

by pA;4.

Fig. 11(b) plots the performance from (38) as a func-

tion of pA;4 for yc ¼ 0:45; 0:7; and 0:85 (light, medium, and

dark curves, respectively). The yc ¼ 0:45 curve measures

how likely the focal decision maker is to choose A fre-
quently enough to make it past the minimum reward

choice sequence. The yc ¼ 0:7 curve measures how likely

the focal decision maker is to move well beyond the mi-

nimum reward choice sequence. The yc ¼ 0:85 curve

measures how likely the focal decision maker is to spend

time near the global optimum. The three curves have

similar sigmoidal shape with relatively steep slope: perfor-

mance increases with increasing likelihood pA;4 that de-
cision maker 4 chooses A, and this increase is steep after

some critical value of pA;4. Since higher yc defines higher

performance, higher values of pA;4 are required to maintain

good performance; thus, the curves move to the right with

increasing yc.

Fig. 12 shows the corresponding expected steady-state

distribution for the focal individual with choice feedback

from the same four decision makers in cases pA;4 ¼ 0:05
[Fig. 12(a)] and pA;4 ¼ 0:95 [Fig. 12(b)]. It can be observed

that the focal decision maker is very sensitive to decision

maker 4 in these cases: in Fig. 12(a), when decision

maker 4 spends most time near the local optimum, so does

the focal decision maker, and in Fig. 12(b), when decision

maker 4 spends most time near the global optimum, so

does the focal decision maker.

Figs. 11 and 12 illustrate how parameters can be chosen
in the design of a decision-making team to improve

performance of a focal decision maker receiving choice

feedback. Experiments with human subjects receiving

choice feedback from designed decision makers are under-

way to test the predictions of Fig. 12.

E. Undirected Feedback
In this section, we study decision making in the case of

undirected choice feedback. We consider again a group of

ðMþ 1Þ model decision makers simultaneously making

choices in the TAFC task. However, in the undirected case,

each decision maker receives choice feedback from each of

the other M decision makers, i.e., the graph that describes

the communication topology is complete. The probability

that any of the decision makers chooses A is given by (9)

where feedback depends on the choices of others. We
make Assumptions 1 and 2a (or 2b) so that the state of

decision maker k is ykðtÞ, k ¼ 1; . . . ;Mþ 1. Because the

decision makers are all interconnected, we must retain the

state of each decision maker, so the state of the system

becomes ðy1ðtÞ; . . . ; yMþ1ðtÞÞ.
To study the dynamics, we first identify the task and

decision-making model as a Markov process. As in

Section V-A, the Markov process is inhomogeneous, and

we can compute the expectation of the state transition

probabilities by conditioning on ukðtÞ, k ¼ 1; . . . ;Mþ 1.

We then use these probabilities to build the expected state

transition matrix P, which in this case will be a matrix of

dimension ðN þ 1ÞMþ1 � ðN þ 1ÞMþ1
.

Proposition 7: Suppose Assumptions 1 and 2a hold.

Then, ðMþ 1Þ model decision makers each receiving

choice feedback from the M others (9)–(10) for the TAFC

task (1)–(3) form a Markov process with state

ðy1ðtÞ; . . . ; yMþ1ðtÞÞ and expected state transition proba-

bilities given by

Pr yiðtþ 1Þ ¼ yiðtÞ þ
di

N
; i¼1; . . . ;Mþ 1

� �
¼
YMþ1

i¼1

p̂i;di

(39)

Fig. 12. Expected steady-state distribution 	 of y from (29) for a

focal decision maker in the RO task, receiving choice feedback from

four designed decision makers with pA;1 ¼ 0:05, pA;2 ¼ 0:95, and

pA;3 ¼ 0:5. The distribution is plotted with ‘‘x’’ symbols on the

RO reward structure. (a) pA;4 ¼ 0:05. (b) pA;4 ¼ 0:95.
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where

p̂m;dðtÞ ¼

1� pA;mðtÞ
� �

ymðtÞ if d ¼ �1

pA;mðtÞymðtÞ
þ 1� ymðtÞð Þ 1� pA;mðtÞ

� �
; if d ¼ 0

pA;mðtÞ 1� ymðtÞð Þ; if d ¼ 1

0; otherwise

8>>>><
>>>>:

(40)

The probability pA;mðtÞ that decision maker m chooses A is

given by

pA;mðtÞ ¼
Pr umðtÞ ¼ 1f g

1þ e�m �rðymÞ��mð Þ þ
Pr umðtÞ ¼ �1f g
1þ e�m �rðymÞþ�mð Þ

þ Pr umðtÞ ¼ 0f g
1þ e�m �rðymÞð Þ : (41)

PrfumðtÞ ¼ 1g (respectively, PrfumðtÞ ¼ �1g) is the pro-

bability that, among the M decision makers excluding

decision maker m, at least dðMþ 1Þ=2e chose A (respec-

tively, B) at time t. PrfumðtÞ ¼ 0g ¼ 1� PrfumðtÞ ¼ 1g�
PrfumðtÞ ¼ �1g is the probability that an equal number of

A’s and B’s were chosen. In case Assumption 2b holds

instead of Assumption 2a, then the results hold with

�rðyðtÞÞ replaced with fðyðtÞÞ.
Because of the high dimensionality of the matrix P, we

compute the expected distributions numerically. This is

done by raising P to a high power so that the elements

along each column are equal. Any row in the resulting
matrix then has the steady-state distribution as its ele-

ments. All rows being equal implies that the probability of

transitioning to any of the possible states in the long run is

independent of the initial condition.

In Fig. 13, we plot (with Bx[ symbols) the numerically

computed expected steady-state distribution of y for one of

the decision makers where there is undirected choice

feedback and M ¼ 2. We compare this to the plot (with
Bo[ symbols) of the expected steady-state distribution of y
from (29) for the focal decision maker in the case of

directed choice feedback and M ¼ 2. The case of the CG

task with � ¼ 2:6 is shown in Fig. 13(a). We see that there

is little difference in the distributions, suggesting that for

our model the CG task results do not depend significantly

on whether the feedback is undirected or directed. This is

consistent with our comparison between the model pre-
dictions in the directed case and the experimental data in

the undirected case for the CG task as described in

Section V-C1.

The case of the DG task with � ¼ 2:9 is shown in

Fig. 13(b). The plot shows that for the DG task the undi-

rected case can differ substantially from the directed case.

The focal decision maker makes steady-state choices in the

undirected case that are further from the optimal solution

as compared to the steady-state choices in the directed

case. This suggests that undirected feedback reinforces the

tendency for decision makers to move toward relatively
high and low values of y, leading to reduced performance

as compared to the directed feedback case. The result

illustrates the influence that the interconnection topology,

in this case directed versus undirected interconnections,

can have on the performance of individuals in a group.

VI. CONCLUSION AND FUTURE WORK

We have studied decision making in the TAFC task using

the empirically verified soft-max choice model and the

new extension of this model to decision making in the

social context [8], [19]. We have derived analytic

expressions that predict steady-state decision sequences

and performance of individuals in a group who make

Fig. 13. Comparison of expected steady-state distribution of y with

undirected versus directed choice feedback for M ¼ 2. In both plots,

black ‘‘o’’ symbols correspond to directed feedback [where 	 is

computed from (29)] and blue ‘‘x’’ symbols correspond to undirected

feedback (where 	 is computed numerically). (a) CG task with � ¼ 2:6.

(b) DG task with � ¼ 2:9.
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choices at the same time in the same TAFC task in re-
sponse to feedback on their own performance and on the

choices made by others in the group. From these derived

expressions, performance can be systematically evaluated

as a function of parameters; alternatively, parameters can

be systematically selected to meet desired performance

criteria. This provides an important step towards a

principled approach to design of decision-making groups.

The derived expressions for performance depend expli-
citly on parameters associated with the task, the decision

makers, and the feedback interconnections. Parameters

that define the task include the reward curves, rA and rB,

and the number of past choices N upon which the reward

depends. Each decision maker is defined by a certainty

parameter �, which models the tendency to explore, and a

feedback gain �, which models how much attention is paid

to the choice feedback received. Other key parameters
include M, the number of individuals providing choice

feedback, and the topology of the feedback network, e.g.,

undirected versus directed choice feedback.

If the decision-making group is composed of robots as

well as humans, and the robots make choices according

to the soft-max choice model, then the parameters that

define the composition of the team, the defining param-

eters for the robots, e.g., � and �, and the network
topology can be designed to improve performance. The

results on convergence in Section V-B suggest further

possibilities for design of social feedback to maximize

convergence rate in decision making. We have explored

sensitivity of performance in four prototypical TAFC tasks

to many of these parameters. We have also illustrated the

design of a team in which one human decision maker

receives feedback from four other programmed decision
makers in the challenging RO task; experimental testing of

this design is underway.

Future work includes using the model to further ex-

plore a range of stationary and time-varying reward struc-

tures, heterogeneous groups of decision makers, the role of

alternative interconnection topologies, and open questions

in convergence and convergence rates. It is also of interest

to extend our methods to other types of social feedback as
well as framing effects, such as the incentive structure

provided to participants and the identification of group

members as human or robotic.

Future work also includes experiments with a multi-

robot testbed and a multihuman interface to explore the

applicability of our results to real-world scenarios. New

experiments are planned that leverage the generalizability

of the TAFC tasks and extend our framework to human–
robot team decision making in tasks that require balancing

exploration and exploitation to search noisy, unknown,

spatially distributed resource fields.

First, in the case that a mixed group of human and

robot decision makers is assigned to a decision-making

problem that maps to a TAFC task, then the results of the

present paper can be applied directly to the design of high-

performing decision-making teams. For example, if the
human members of the team can be selected, design

parameters include the number of humans with strong

exploratory tendencies (e.g., risk takers) and the number

of humans with more conservative tendencies. If each

robot is programmed to make decisions according to the

same model, then design parameters include the number

of robots and the value of � and � for each robot. The

network topology, i.e., who receives feedback from whom,
can also be designed for good performance.

To make this more concrete, consider the following

example of a decision-making problem that maps onto the

class of TAFC tasks. The setting is the Gulf of Mexico after

the BP oil spill where two autonomous vehicles move

around in a fixed region, each making a different, regular

pattern just below the water surface. Each vehicle mea-

sures concentration of oil, recording its position with every
sample. A land-based operator seeks to acquire data on

locations of high oil concentration in real time in order to

more quickly aid oil cleanup activities. The operator can

query the vehicles for data readings at regular time inter-

vals; however, because of bandwidth limitations, only one

of the two vehicles can be queried at a time. Thus, the

operator must choose between vehicle A and vehicle B at

every time interval; in response, the operator will get a
score on the merit of the latest query. The score reflects

the value of the new data to an automated assignment of oil

cleanup resources, and it depends on the current choice

(high concentration values are helpful) as well as the

recent history of choices (redundant data are wasteful).

The decision-making problem is complex due to the

combination of the advection of the oil in the water and

the dynamics of the vehicles. The complexity implies that
the structure of the score may not look as clean as one

of the four TAFC reward structures studied in this paper.

However, there are likely to be choice sequences that

provide high performance, and likewise other attributes

of the four prototypical structures, such as a matching

point that is not coincident with optimal performance.

Further, in the case that this scenario is repeated in sev-

eral fixed regions, over which there is likely to be corre-
lation in the dynamics of the oil, feedback among

operators can prove useful. If we allow some of the ope-

rators to be humans and some to be robots, then we can

apply the approach described above to design the

decision-making team.

Beyond the problems that map to TAFC tasks (see also

[24]), significant potential for application lies in the

generalizability of the TAFC tasks. The TAFC tasks span a
range of explore-versus-exploit challenges that are repre-

sentative of fundamental challenges in any decision-making

process in an uncertain environment. Accordingly, the

results in this paper provide a stepping stone towards a

systematic, principled approach for designing decision-

making teams for more general decision-making processes

that require strategies for explore versus exploit.
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Indeed, in ongoing work, we are building on the pre-

sent paper to examine mixed human–robot decision mak-

ing in a task where decision makers search for peaks in an

unknown, noisy, spatially distributed resource field. At

regular time intervals, each decision maker chooses a new
location to search. Choices in a new area of the field sug-

gest exploration, while choices in the immediate area sug-

gest exploitation. Social feedback can come in the form of

choices (where others are searching) or of rewards (how

much resource others are finding). As an example appli-

cation, consider again the oil field in the Gulf of Mexico.

The search problem is one in which each (human or robot)

decision maker picks waypoints for a vehicle or coordi-
nated group of vehicles with the goal of finding the

location with the highest concentration of oil.

To further investigate the applicability of our work to

concrete tasks, we have planned experiments in our 3-D

multirobot testbed with human–robot decision-making

teams performing tasks much like the two oil spill sampling

problems. The testbed can be manipulated to resemble

real-world settings and can be quickly reconfigured for an
array of conditions. The facility, part of Princeton Univer-

sity’s Dynamical Control Systems Laboratory, houses a

20 000-gal water tank and a fleet of small, neutral-

buoyancy, submersible vehicles. Access to real-time

tracking measurements of the robotic vehicles from the

streaming video of a system of overhead cameras adds

versatility. For example, the topology of communication

among the robots can be designed and any virtual, spatially
distributed resource field can be imposed. The human

interface, shown in Fig. 14, allows for applications such as

human assignment of waypoints in search problems.

Importantly, the interface uses the internet for commu-

nications so the humans can be remotely located, e.g., in

the cognitive psychology laboratory for rigorous human
subject experiments. h

APPENDIX

A. Proof of Proposition 1
Since for a given choice x1ðtþ 1Þ at time tþ 1, yðtþ 1Þ

can only change from its current value of yðtÞ to

yðtÞ þ ð1=NÞ, yðtÞ � ð1=NÞ or stay at yðtÞ, we need only

compute the probability of each of these three events for
all yðtÞ 2 Y. Each of these events depends on the current

value of yðtÞ as well as x1ðtþ 1Þ and xNðtÞ since yðtþ 1Þ
will only differ from yðtÞ if x1ðtþ 1Þ also differs from xNðtÞ.

The event that yðtþ 1Þ ¼ yðtÞ � ð1=NÞ requires

x1ðtþ 1Þ ¼ B and xNðtÞ ¼ A. We treat the latter as inde-

pendent events since, in these tasks, the decision makers

are not told that their reward depends on choice history.

Using (5) with Assumption 1 yields

Pr yðtþ 1Þ ¼ yðtÞ � 1

N

� �
¼ Pr x1ðtþ 1Þ ¼ Bf g
� Pr xNðtÞ ¼ Af g

¼ e� wBðtÞ�wAðtÞð ÞyðtÞ
1þ e� wBðtÞ�wAðtÞð Þ :

Substituting in the identity of Assumption 2a, we get (11).

Similarly, the probability that yðtþ 1Þ takes the value

yðtÞ þ ð1=NÞ is given by

Pr yðtþ 1Þ ¼ yðtÞ þ 1

N

� �
¼ Pr x1ðtþ 1Þ ¼ Af g
� Pr xNðtÞ ¼ Bf g

¼ 1� yðtÞ
1þ e� wBðtÞ�wAðtÞð Þ :

Substituting in the identity of Assumption 2a, we get (13).
The event that yðtþ 1Þ ¼ yðtÞ requires either x1ðtþ

1Þ ¼ A and xNðtÞ ¼ A or x1ðtþ 1Þ ¼ B and xNðtÞ ¼ B. The

probability of the union of these events is

Pr yðtþ 1Þ ¼ yðtÞf g
¼ Pr x1ðtþ 1Þ ¼ Af gPr xNðtÞ ¼ Af g
þ Pr x1ðtþ 1Þ ¼ Bf gPr xNðtÞ ¼ Bf g

¼ yðtÞ þ 1� yðtÞð Þe� wBðtÞ�wAðtÞð Þ

1þ e� wBðtÞ�wAðtÞð Þ :

Substituting in the identity of Assumption 2a, we get (12).

Since all of the probabilities depend on yðtÞ only, the state at

time t, the process is Markov. The case when Assumption 2b

holds follows similarly. h

Fig. 14. Human interface to robotic vehicles in tank testbed. The

human can make choices, which are communicated to the vehicle

control system, and can observe vehicle performance, including live

video feeds.
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B. Proof of Proposition 2
Solving (14) alone yields a row vector v with elements

vi ¼
N!

ðN � iÞ!i! 1þ e��r i
Nð Þ

� �
e
��
Pi

j¼1
�r

j
Nð Þ:

To solve (15), we normalize the vector v to get

	 ¼ vPN
i¼0 vi

:

The elements of 	 are then given by (16). h

C. Proof of Theorem 1
To prove Theorem 1, we examine 
ðiÞ ¼ 	i=	i� , the

ratio of time spent at y ¼ i=N, i 6¼ i�, to time spent at

y� ¼ i�=N. From (16), we compute


ðiÞ ¼
ðN � i�Þ!i�! 1þ e��r i

Nð Þ
� �

e
��
Pi

j¼1
�r

j
Nð Þ

2ðN � i�Þ!i�!e��
Pi�

j¼1
�r

j
Nð Þ

:

We show that 
ðiÞ G 1 for all i 62 fi� � 1; i�; i� þ 1g by

proving each of two cases. In the first case, we show that


ðiÞ G 1 for all i > i� þ 1. In the second case, we show that


ðiÞ G 1 for i G i� � 1.

Case 1: Let � ¼ i� i� with � > 0. Then, we have


ðiÞ ¼
ðN � i�Þ!i�! 1þ e��r i�þ�

Nð Þ
� �

e�� �r i�þ1
Nð Þþ���þ�r i�þ�

Nð Þð Þ

2ðN � i� � �Þ!ði� þ �Þ! :

(42)

Replacing ðN � iÞ!i! in the denominator of (42) with its

minimal possible value for i 2 f0; 1; . . . ;Ng yields


ðiÞ � � 1þ e���r i�þ�
Nð Þ

� �
e�� �r i�þ1

Nð Þþ���þ�r i�þ��1
Nð Þð Þ (43)

where � ¼ ððN � i�Þ!i�!Þ=ð2bN=2c!dN=2e!Þ.
Now assume � � 2. Since �rðði� þ �Þ=NÞ > 0 for all

� � 1, 
ðiÞ decreases with increasing � so from (43) we

can write


ðiÞ G � 1þ e���r i�þ2
Nð Þ

� �
: (44)

If (17) is satisfied, then (44) becomes 
ðiÞ G 1.

Case 2: Let � ¼ i� i� with � G 0. Following the same

steps as in Case 1, and making use of the fact that

�rðði� � �Þ=NÞ G 0 for all � > 0, we can write


ðiÞ � � 1þ e�� �r i���
Nð Þj j

� �
e�� �r i���þ1

Nð Þj jþ���þ �r i�
Nð Þj jð Þ:

Now assume � � �2. Since 
ðiÞ decreases with de-

creasing � for � G 0, we can write


ðiÞ G ðN � i�Þ!i�!
N
2

� �
! N

2

� �
!

1þ e�� �r i��2
Nð Þj j

� �
: (45)

If (17) is satisfied, then (45) becomes 
ðiÞ G 1. h

D. Proof of Theorem 2
Again we examine 
ðiÞ ¼ 	i=	i� . To prove Theorem 2,

we follow the same process used in Theorem 1. We show

that 
ðiÞ G 1 for all i 6¼ i� by proving each of two cases. In

the first case, we show that 
ðiÞ G 1 for all i > i�. In the

second case, we show that 
ðiÞ G 1 for i G i�.

Case 1: Let � ¼ i� i� with � > 0. Assume � � 1. We

have shown that 
ðiÞ decreases with increasing � so using

(43), we arrive at


ðiÞ G N � i�

2ði� þ 1Þ 1þ e���r i�þ1
Nð Þ

� �
: (46)

If (18) is satisfied, then (46) becomes 
ðiÞ G 1.

Case 2: Let � ¼ i� i� with � G 0. We assume

� � �1. Since 
ðiÞ decreases with decreasing � for

� G 0, then


ðiÞ G ðN � i�Þ!i�!
N
2

� �
! N

2

� �
!

1þ e�� �r i��1
Nð Þj j

� �
: (47)

If (18) is satisfied, then (47) becomes 
ðiÞ G 1. h

E. Proof of Proposition 3
Since for a given choice x1ðtþ 1Þ at time tþ 1, yðtþ 1Þ

can only change from its current value of yðtÞ to

yðtÞ þ ð1=NÞ, yðtÞ � ð1=NÞ or stay at yðtÞ, we need only

compute the probability of each of these three events for

all yðtÞ 2 Y. Each of these events depends on the current
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value of yðtÞ as well as x1ðtþ 1Þ and xNðtÞ since yðtþ 1Þ
will only differ from yðtÞ if x1ðtþ 1Þ also differs from xNðtÞ.

The event that yðtþ 1Þ ¼ yðtÞ � ð1=NÞ requires x1ðtþ
1Þ ¼ B and xNðtÞ ¼ A. Treating these as independent

events and using (9) yields

Pr yðtþ 1Þ ¼ yðtÞ � 1

N

� �
¼ Pr x1ðtþ 1Þ ¼ Bf gPr xNðtÞ ¼ Af g

¼ e� wBðtÞ�wAðtÞ��uðtÞð ÞyðtÞ
1þ e� wBðtÞ�wAðtÞ��uðtÞð Þ :

We treat the M peer decisions as independent events since

in these tasks the decision makers are told that their

performance does not depend on the choices or rewards of

others. Substituting in the identity of Assumption 2a, we

condition on the value of uðtÞ and get Prfx1ðtþ 1Þ ¼ Bg ¼
1� �pAðyðtÞ; �Þ, which with Assumption 1 gives us (23).

Similarly, the probability that yðtþ 1Þ ¼ yðtÞ þ
ð1=NÞ is

Pr yðtþ 1Þ ¼ yðtÞ þ 1

N

� �
¼ Pr x1ðtþ 1Þ ¼ Af gPr xNðtÞ ¼ Bf g

¼ 1� yðtÞ
1þ e� wBðtÞ�wAðtÞ��uðtÞð Þ :

Conditioning on the value of uðtÞ and substituting in the

identity of Assumption 2a, we get (25).

The event that yðtþ 1Þ ¼ yðtÞ requires either x1ðt þ
1Þ ¼ A and xNðtÞ ¼ A or x1ðtþ 1Þ ¼ B and xNðtÞ ¼ B. The

probability of the union of these events is

Pr yðtþ 1Þ ¼ yðtÞf g
¼ Pr x1ðtþ 1Þ ¼ Af gPr xNðtÞ ¼ Af g
þ Pr x1ðtþ 1Þ ¼ Bf gPr xNðtÞ ¼ Bf g

¼ yðtÞ þ 1� yðtÞð Þe� wBðtÞ�wAðtÞ��uðtÞð Þ

1þ e� wBðtÞ�wAðtÞ��uðtÞð Þ :

Conditioning on the value of uðtÞ and substituting in the

identity of Assumption 2a, we get (24).

Since the probabilities depend only on yðtÞ, the current

value of the state at time t, the process is Markov. By

conditioning on uðtÞ, the results (23)–(25) provide the

expectation of the transition probabilities. The case when

Assumption 2b holds follows similarly. h

F. Proof of Theorem 3
Consider i; j 2 f1; . . . ;N þ 1g. Without loss of gener-

ality, we assume i � j and let l ¼ j� i� 1. Since the

elements on the superdiagonals of PðtÞ are positive, we

know Pð0Þi;iþ1; Pð1Þiþ1;iþ2; . . . ; PðlÞj�1;j > 0. Then, RðlÞij >
Pð0Þi;iþ1Pð1Þiþ1;iþ2 � � � PðlÞj�1;j > 0 and thus PrfRðlÞij >
0g ¼ 1. Similarly, since the elements on the diagonals of

PðtÞ are positive, we know that RðlÞjj > Pð0ÞjjPð1Þjj � � �
PðlÞjj > 0 a n d t h u s PrfRðlÞjj > 0g ¼ 1. A p p l y i n g
Proposition 4 by taking k ¼ j and t ¼ l, we know that as

t goes to infinity, RðtÞ converges to a rank-one matrix almost

surely and thus 	 always exists. h

G. Proof of Proposition 5
Solving (14) alone yields a row vector v whose elements

are given by

vi ¼
N!

ðN � iÞ!i!
Yi

j¼1

�pA
j�1
N ; �
� �

1� �pA
j

N ; �
� � :

To solve (15), we normalize the vector v to get

	 ¼ v=
PN

i¼0 vi. Then, 	 is given by (29). h

H. Proof of Theorem 4
From Proposition 6, each PðtÞ is an ergodic stochastic

matrix [32]. To be more precise, each PðtÞ is taken from a

compact set of ergodic stochastic matrices with nonzero

elements lower bounded by a positive constant �. Then,

from classical results on inhomogeneous Markov chains
[32], the product of any infinite sequences of such PðtÞ will

always converge to a rank-one matrix. h

I. Proof of Theorem 5
We prove Theorem 5 by first proving four lemmas.

Lemma 1: � ¼ 0 is a critical point of �ð�Þ
To prove Lemma 1, we introduce the following.

Lemma 2: Q0ið0Þ :¼ ð@=@�Þ
Qi

j¼1 qðði=NÞ; �Þj
�¼0
¼ 0.

Proof of Lemma 2: We compute

@

@�
q

i

N
; �

� 	
¼

@

@�
�pA

i� 1

N
; �

� 	

1� �pA
i

N
; �

� 	

þ

@

@�
�pA

i

N
; �

� 	
1� �pA

i� 1

N
; �

� 	� 	

1� �pA
i

N
; �

� 	� 	2 :
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For the CG reward structure pAð1; 0Þ ¼ 1=2. Using
this and M ¼ 4 in (27), we can compute the condi-

tional probabilities on uðtÞ. Substituting into (26) for

�pA gives

�pA
i

N
; �

� 	
¼3

4

1

ð1þ e��rÞ þ
1

8

1

1þ e�ð�r��Þ þ
1

1þ e�ð�rþ�Þ

� �

where �r ¼ �rði=NÞ. Then

@

@�
�pA

i

N
; �

� 	
¼ �e��r

8

e���

1þ e�ð�r��Þð Þ2
� e��

1þ e�ð�rþ�Þð Þ2

" #
:

(48)

Evaluating (48) at � ¼ 0, we get ð@=@�Þ�pAðði=NÞ;
�Þj�¼0 ¼ 0, 8i. Therefore, ð@=@�Þqðði=NÞ; �Þj�¼0 ¼ 0.

Using the definition of Qið�Þ from (37), we can write

Q0ið�Þ ¼
Xi

k¼1

@

@�
q

k

N
; �

� 	 Yi

j¼1;j6¼k

q
j

N
; �

� 	
: (49)

Evaluating (49) at � ¼ 0 with ð@=@�Þqðði=NÞ; �Þj�¼0 ¼ 0

gives Q0ið0Þ ¼ 0. h

Proof of Lemma 1: The derivative of �ð�Þ is

@

@�
�ð�Þ ¼

XN

i¼1

�i
i

N
� 1

2

� 	2

Q0ið�Þ

XN

k¼1

�kQkð�Þ

�

XN

i¼1

�i
i

N
� 1

2

� 	2

Qið�Þ
XN

k¼1

�kQ0kð�Þ

XN

k¼1

�kQkð�Þ
 !2 :

It follows from Lemma 2 that ð@=@�Þ�ð�; �Þj�¼0 ¼ 0. h
It is now left to show that � ¼ 0 is a minimum

of �ð�Þ.

Lemma 3: ð@2=@�2Þ�ð�Þj�¼0 > 0.

To prove Lemma 3, we introduce the following.

Lemma 4: Q00i ð�Þ G 0.

Proof of Lemma 4: Differentiating Q0ið�Þ with respect

to �, and using the fact that ð@=@�Þ�pAðði=NÞ; �Þj�¼0 ¼ 0

gives

Q00i ð0Þ ¼

@2

@�2
�pA

i� 1

N
; �

� 	
�¼0 1� �pA

i

N
; 0

� 	� 	����
1� �pA

i

N
; 0

� 	� 	2

þ

@2

@�2
�pA

i

N
; �

� 	
�¼0 �pA

i� 1

N
; 0

� 	� 	����
1� �pA

i

N
; 0

� 	� 	2 :

Since

@2

@�2
�pA

i

N
; �

� 	����
�¼0

¼ �
�2e��r i

Nð Þ 1þ e2��r i
Nð Þ

� �
1þ e��r i

Nð Þ
� �4 G 0

we can conclude that Q00i ð0Þ G 0. h

Proof of Lemma 3: Invoking Lemma 2, we can write

@2

@�2
�ð�Þj�¼0 ¼

XN

i¼0

�i
i

N
� 1

2

� 	2

Q00i ð0Þ

XN

k¼0

�kQkð0Þ

�

XN

i¼0

�i
i

N
� 1

2

� 	2

Qið0Þ
XN

k¼0

�kQ00k ð0Þ

XN

k¼0

�kQkð0Þ
 !2 :

Denote the numerator of ð@2=@�2Þj�¼0�ð�Þ by �. Then

� ¼
XN

i¼0

XN

k¼0

�i;k (50)

where �i;k ¼ �iQ
00
i ð0Þ�kQkð0Þ ½ðði=NÞ � ð1=2ÞÞ2 � ððk=

NÞ � ð1=2ÞÞ2�. Lemma 4 tells us that �i;k > 0 for all i; k
that satisfy

i

N
� 1

2

� 	2

� k

N
� 1

2

� 	2

G 0:

It is also true that �ðN=2Þ;ðN=2Þ ¼ 0.
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It can be shown for all i; k 6¼ ðN=2Þ that �i;k > 0 and
�ðN=2Þ;ðN=2Þ ¼ 0. I t therefore must be true that

� ¼
PN

i¼0

PN
k¼0 �i;k > 0. h

Proof of Theorem 5: Lemma 1 and Lemma 3 guarantee

that � ¼ 0 is a minimum of �ð�Þ. h

J. Proof of Proposition 7
Since for a given choice by decision maker m at time

tþ 1, ymðtþ 1Þ can only change from its current value of

ymðtÞ to ymðtÞ þ ð1=NÞ, ymðtÞ � ð1=NÞ, or stay at ymðtÞ, we

need only compute the probability p̂m;d of each of these

three events, d ¼ 1; d ¼ �1; d ¼ 0, for all ymðtÞ 2 Y and

each m. Each of these events depends on the current state

ðy1ðtÞ; . . . ; yMðtÞÞ, as well as each decision maker’s most

recent choice and oldest choice in their history of N
choices, since ymðtþ 1Þ will only differ from ymðtÞ for

decision maker m if the most recent decision also differs

from the oldest decision in the history. The probabilities

p̂m;d of (40) are derived analogously to (23)–(25) in

Proposition 3 with the probability pA;m that decision maker

m chooses A of (41) derived analogously to �pA of (26). The

computation of pA;mðtÞ requires conditioning on the value

of umðtÞ.
Treating each decision maker’s choice as an indepen-

dent event, the transition probabilities for the group are

given by (39). Since the probabilities depend only on

ðy1ðtÞ; . . . ; yMðtÞÞ, the current value of the state at time t,
the process is Markov. The case when Assumption 2b holds

follows similarly. h
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