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Abstract

The main theme of this thesis is coordination and stabilization of a network of me-
chanical systems or rigid bodies to achieve synchronized behaviour. The idea is to
use controls derived from potentials to couple the systems such that the closed-loop
system is also a mechanical system with a Lagrangian structure. This permits the
closed-loop Hamiltonian to be used as a Lyapunov function for stability analysis.

It is a big challenge to develop a provable, systematic methodology to control and
coordinate a network of systems to perform a given task. The control law should
be robust enough to handle environment uncertainties, avoid obstacles and collisions
and keep the system formation going. The fact that these systems may even have
unstable dynamics makes the problem even more interesting and exciting both from
a theoretical and applied point of view. This work investigates the coordination
problem when each individual system has its own (maybe unstable) dynamics; this
distinguishes this work from many other recent works on coordination control where
the individual system dynamics are assumed to be single/double integrators.

We build coordination techniques for three kinds of systems. The first one con-
sists of underactuated Lagrangian systems with Abelian symmetry groups lacking
gyroscopic forces. Asymptotic stabilization is proved for two cases, one which yields
convergence to synchronized motion restricted to a constant momentum surface and
one in which the system converges asymptotically to a relative equilibrium.

Next we consider rigid body systems where the configuration space of each indi-

vidual body is the non Abelian Lie group SO(3) or SE(3). In the SO(3) case, the

il



asymptotically stabilized solution corresponds to each rigid body rotating about its
unstable middle axis and all the bodies synchronized and pointing in a particular
direction in inertial space. In the SFE(3) case, the asymptotically stabilized solution
corresponds to each rigid body rotating about its unstable middle axis and translat-
ing along its middle axis and the whole network synchronized and moving along a
particular direction in inertial space.

We conclude with a brief summary of the results and with a note on numerous

directions in which this work can be extended.

v



Acknowledgements

Firstly, I would like to thank my advisor, Professor Naomi Leonard for her support,
inspiration and patience during my graduate school years. T also thank her for giving
me the freedom and flexibility on my research topic and for putting immense trust
in me. I am also thankful to her for allowing me to take the numerous mathematics
courses I have taken in Princeton.

I would like to acknowledge my thesis readers Professor Clancy Rowley and Pro-
fessor Craig Woolsey for their valuable time and comments. Their insights helped
improve the dissertation considerably.

I would like to thank everyone in the MAE department and acknowledge all the
staff members who have helped me all along.

Princeton University has provided a very pleasant and vibrant environment for
my work. Apart from the academics, it has also provided a very good forum for
exchange of various cultural experiences and outlooks. A special thanks goes to my
friends in Association of South Asians in Princeton, Princeton Peace Network, Drishti,
Princeton Association for India’s Development and the International Centre. I would
also like to thank all my past roommates for enriching my experience in Princeton.

I am grateful to my teachers at IIT Bombay, who shaped my outlook towards
science. Some have left a lasting impression on me.

Many good times were spent with my sister Swarni and brother-in-law Biju. Their
company has been a pleasant break from my work. I would also like to thank Matthew,

Anu, Babu and Roy for their hospitality and for always keeping their doors open for



me.
I am indebted to my parents, Usha and Sreenivasan, for their love and care.
Finally, a special thanks goes to my wife Rajani for her understanding, love and

patience over the years of my graduate school life.

vi



Contents

Abstract iii
Acknowledgements v
Contents vii
List of Figures X
1 Introduction 1
1.1 Theme . . . . . . . . e 1
1.2 Background . . . .. ... oo 2
1.3 Thesis Contributions . . . . . . .. ... ... oL 3
1.4 Outlineof Thesis . . . . . . .. . . ... ... .. ... .. ...... 5
2 Mathematical Background 7
2.1 Variational Principle . . . . . . .. ... 0o o oL 7
2.2 Smooth Manifolds and Riemannian Geometry . . . .. ... ... .. 8
2.3 Symmetry and Lie Groups . . .. ... ... ... .. .. ... ... 13
2.4 Momentum Map and Locked Inertia Tensor . . .. ... ... .. .. 16
25 Example . . . . .. 17
3 Stable Synchronization of Mechanical Systems: The Simplified Match-
ing Case 20

vii



3.1 Introduction . . . . . . . . . . .o 21

3.2 Notation and Definitions . . . . . . . . . .. ... L. 23
3.3 Controlled Lagrangians and Simplified Matching Conditions . . . . . 25
3.4 Matching for Network of SMC Systems . . . . . .. ... ... .... 30
3.5 Stable Coordination of SMC Network . . . . . ... ... ... .... 34
3.6 Asymptotic Stability of Constant Momentum Solution . . . .. ... 40
3.7 Asymptotic Stabilization of Relative Equilibria . . . . . . . . .. ... 48
3.8 Coordination of Multiple Inverted Pendulum on Cart Systems . ... 51

3.8.1 Asymptotic stability on constant momentum surface (ASSM) . 53

3.8.2 Asymptotic stability of relative equilibria (ASSRE) . . . . .. 56

4 Reduced Equations of Motion for Networked Rigid Bodies 58

4.1 Reduced equations of motions for SO(3) network. . . . . ... ... 59

4.2 Reduced equations of motions for SE(3) network. . . . .. .. ... 68

5 Stable Synchronization of Networked Rigid Bodies 70

5.1 Stable Synchronization of SO(3) vehicles . . . . ... ... ... ... 71

5.1.1 Spin Stabilization of SO(3) Vehicle about its Unstable Axis . 72

5.1.2  Coordination of SO(3) Network with Stable Dynamics . ... 75

5.1.3 Coordination of SO(3) Network with Unstable Dynamics . . . 84

5.2 Stable Synchronization of SE(3) vehicles . . . . . ... ... .. ... 85
5.2.1 Translation and Spin Stabilization of SE(3) vehicle about its

Unstable Axis . . . . .. .. ... L oo 87

5.2.2  Drift Removal for SE(3) vehicle . . . . .. ... ... .. ... 89

5.2.3 Coordination of SF(3) Network with Stable Dynamics . ... 93

5.2.4 Coordination of SF(3) Network with Unstable Dynamics . . . 98

6 Asymptotic Synchronization of Networked Rigid Bodies 100

6.1 Asymptotic Synchronization of Networked SO(3) Bodies . . .. . .. 100

6.2 Asymptotic Synchronization of Networked SE(3) Bodies . . .. . .. 104

viii



7 Conclusions and Future Work

7.1 Summary . . ... e
7.1.1 Comparison with LQR . . . . .. ... ... ... ...
7.1.2  Chapter Summary . . . . . . .. . ... ...

7.2 Future directions

7.3 Conclusion . . . .

A Calculations for F,

References

1X

110
110
111
114
116
118

119

121



List of Figures

2.5.1 Motion of a particlein R®. . . . . .. ... ... ... .. ....... 17
3.2.1 The planar pendulum on acart. . . . . . . . .. ... ... .. .... 24
3.5.1 Connected, undirected communication graph for four vehicles. . . . . 34

3.6.1 B, is a Lyapunov function on constant momentum surface J, = p,.

Such a surface is illustrated here as a level set of J,. . . . . . . . . .. 40
3.6.2 Completely connected communication graph for four vehicles. . . .. 43
3.7.1 Egg < 0 in neighbourhood of group orbit. . . . . . . ... ... ... 49
3.8.1 The planar pendulum on acart. . . . . . ... . ... ... ...... 51

3.8.2 Simulation of a controlled network of pendulum/cart systems with dis-
sipation designed for asymptotic stability of a synchronized motion on
a constant momentum surface (ASSM). The pendulum angle, cart po-
sition and cart velocity are plotted as a function of time for each of
three pendulum/cart systems in the network. . . . . .. ... ... .. 55
3.8.3 Simulation of a controlled network of pendulum/cart systems with dis-
sipation designed for asymptotic stability of a relative equilibrium (AS-
SRE). The pendulum angle, cart position and cart velocity are plotted
as a function of time for each of three pendulum/cart systems in the

network. . . . . L. s, 56

4.1.1 Illustration of relative orientation of body 1 with respect to body 2 and
relative orientation of body 2 with respect to body 3. . . . ... .. 60



6.1.1 The angular velocities €; (rad/s) three SO(3) vehicles as a function of

6.1.2 The attitudes g; (rad) for three SO(3) vehicles as a function of time.
6.2.1 The angular velocities ; (rad/s) and linear velocities v; (m/s) for

three SF(3) vehicles as a function of time. . . . . . .. .. ... ...
6.2.2 The attitudes g; (rad) and position b; (i) for three SE(3) vehicles as

a function of time. . . . . . . . .. L.

7.1.1 Simulation of a controlled network of pendulum/cart systems using
the LQR technique. The pendulum angle, cart position and cart ve-
locity are plotted as a function of time for each of three pendulum/cart
systems in the network. . . . . . . ... ... ... L.

7.1.2 Simulation of a controlled network of pendulum/cart systems using
the control law given in (3.7.2). The pendulum angle, cart position
and cart velocity are plotted as a function of time for each of three
pendulum/cart systems in the network. . . . . ... ... ... ...

7.1.3 Simulation of a controlled network of pendulum/cart systems using
the control law given in (3.7.2). The pendulum angle, cart position
and cart velocity are plotted as a function of time for each of three

pendulum/cart systems in the network. . . . . .. .. ... .. ...

xi

104
105

108

109

112

113



Chapter 1

Introduction

1.1 Theme

Coordinated control of vehicles has gained a lot of interest in recent times. Advances
in computational power, practical applications like ocean sampling and interferometry
have contributed towards increasing the focus on the coordination problem. Mobile
sensor networks are expected to provide better data about a distributed environment
if the sensors can be made to cooperate towards optimal coverage and efficient coor-
dination [18, 7]. Networks of communicating, sensor-equipped autonomous vehicles
are of interest in a growing number of applications; for example, a fleet of underwater
gliders was used collectively for adaptive ocean sampling in Monterey Bay, California
in August 2003 [21]. Formation control of UAVs is considered in [27, 20].

It is a big challenge in control theory to come up with control laws for such
problems. The control law should not only be able to coordinate these vehicles but
should also be robust enough to noise and environmental uncertainties. The control
law should also take care that the vehicles are able to avoid collisions with each other
and obstacles in their pathways.

The coordination problem becomes more difficult when the vehicle dynamics are

considered and the control is underactuated. Underactuated control refers to the case



in which the number of control inputs is fewer than the number of degrees of freedom
of the system. The theme of this thesis is coordination of vehicles when they have
unstable dynamics and are also possibly underactuated. Many of the recent works in
the coordination literature are not directly applicable in this setting. In our approach,
we consider the stabilization part of the problem and the coordination part together.
We show that it might not even be possible to separate these two sides of the problem
under certain circumstances. A central role in this thesis is played by energy-based
control and geometric mechanics tools. We show how these techniques can be used

to achieve stabilization and coordination simultaneously.

1.2 Background

Much of the recent work in coordinated control explores coordination and cooper-
ative control with very simple dynamical systems, e.g., single or double integrator
models (e.g., [26, 40, 41]). Double integrator models along with gyroscopic forces
are considered in [17] to tackle the problem of coordination with collision avoidance.
Nonholonomic models are studied in [19]. A network of kinematic models with steer-
ing controls is considered in [44] and closed-loop convergence to different types of
organized motion is studied.

These authors deliberately choose to focus on the coordination issues independent
of stabilization issues. Some of these problems were motivated by a search for theoret-
ical explanation of models for swarm behaviour in biological systems or an interest in
designing steering laws to generate realistic-looking coordinated motion for computer
graphics purposes.

On the other hand, for networks of autonomous systems such as unmanned heli-
copters or underwater vehicles, stability issues are important, and it may not always
be possible (or desirable) to decouple the stabilization problem from the coordination

problem. In [23], an extension to a previous work ([22]) on UAV motion planning is



presented for identical multiple-vehicle stabilization and coordination. The single ve-
hicle motion planning was based on the interconnection of a finite number of suitably
defined motion primitives. The problem was set in such a way that multiple-vehicle
motion coordination primitives are obtained from the single-vehicle primitives. The

technique is applied to motion planning for a group of small model helicopters.

1.3 Thesis Contributions

In this thesis, the two main design objectives are as follows:

1. Stabilize individual vehicles and coordinate a group of such vehicles.

2. For the stabilization part, design controls which respect the mechanical nature
of the system.

We now discuss these points in more detail. In many problems, it might not
be desirable or possible to separate the stabilization problem from the coordination
problem. For example, consider the case of a network of planar, inverted-pendulum-
on-a-cart systems with underactuated dynamics. In this system, the only control
input is the force input on the cart and there is no torque input to the swinging pen-
dulum. The goal is to stabilize the individual pendulum in its upright position and
to synchronize the dynamics across the network. Here, it is not possible to choose
controls which cancel the dynamics of the system to get a double integrator model
as a result. Hence, none of the methods in the references given above are directly
applicable to this problem as they assume that the individual system is a single or
double integrator system. Hence, for example, a network of planar pendulum/cart
system cannot be stably synchronized using their methodology. It also becomes crit-
ical that the coordination control, while trying to synchronize the network, does not
destabilize the individual systems.

A related problem of coordinating rigid bodies is considered in [25]. However, in

that paper, the focus is on the reduction of the coupled multibody dynamics. Controls



are derived from a potential that depends on the relative attitudes and positions of
the individual systems. Semi-direct product reduction theory is applied and reduced
equations of motion are derived. Stability is proved only for certain restricted cases
due to the lack of availability of Casimir functions.

In [46], the authors consider the problem of synchronizing a group of satellites.
However, their control law cancels all the natural dynamics of the individual rigid
bodies. In our work, we do not destroy the Hamiltonian structure of the system,
thereby allowing us to use the readily available Hamiltonian energy function for sta-
bility analysis. In [46], the authors also land up having a fully actuated system in
order to cancel the dynamics, whereas, in our approach we can achieve the same goal
with an underactuated system. This is the main advantage of using an energy-based
control. Since the closed-loop system is Hamiltonian, we are also able to use the
Energy-Momentum method, amended potentials and other such tools to study the
stability of relative equilibria of the network [33].

For systems like the planar inverted pendulum on a cart, we make further devel-
opments that build on on the method of Controlled Lagrangians (CL) to stabilize and
synchronize the network. The method of Controlled Lagrangians and the equivalent
Interconnection Damping Assignment - Port Based Control (IDA-PBC) method are
energy-based methods to stabilize underactuated mechanical systems (see [10, 8, 42]).
The former technique is used to design controls to stabilize a class of underactuated
mechanical systems by shaping its Lagrangian. For a mechanical system, Dirichlet’s
theorem implies that an equilibrium is stable if the energy is an extremum at the
equilibrium point. In a number of important and challenging physical examples with
instabilities, the kinetic energy is positive definite and potential energy is negative
definite at the equilibrium point. The method of CL gives an algorithm to design
controls such that the closed loop system has a negative definite kinetic energy at
the equilibrium point, which implies from Dirichlet’s theorem that the equilibrium is

stabilized.



1.4 Outline of Thesis

In Chapter 2, we briefly review some mathematical concepts and tools which will be
used in the later parts of the thesis. This chapter also serves to set the notation for
later chapters.

In Chapter 3, we review the method of CL in more detail and demonstrate how to
achieve stabilization for a network of mechanical systems by introducing additional
potential terms to couple the individual systems. The systems we consider belong
to the class of mechanical systems satisfying the Simplified Matching Conditions
(SMC). Briefly, SMC systems have Abelian symmetry and lack gyroscopic coupling
between the symmetry and non symmetry directions. We show that it is possible to
choose coupling potentials carefully so that the closed-loop network is also a SMC
system. The control gains are chosen so that the individual system is stabilized and
synchronization is achieved for the network. Next, dissipation is added to achieve
two kinds of asymptotic stability. One corresponds to synchronization of the network
on a constant momentum surface. The other corresponds to asymptotic stability of a
synchronized relative equilibrium for the network. We will illustrate our results with
the example of a network of three inverted pendulum cart systems.

In Chapter 4, we demonstrate how to derive the reduced equations of motion using
Lagrangian reduction for a network of systems with individual configuration spaces
as the Lie groups SO(3) or SE(3). We consider n such systems and couple them
using potentials. The reduced equations are also derived in [25] using semi-direct
product reduction theory. Using the notion of a connection on a bundle, we derive
the reduced equations on the Lagrangian side using the theory developed in [14].

In Chapter 5, we demonstrate how to achieve synchronization of a network of
rigid bodies, each of which belongs to the non Abelian Lie groups SO(3) or SE(3).
We introduce coupling using potentials that depend only on the relative attitudes
and position vectors among bodies. The bodies we consider are models for rigid

spacecraft in free space and underwater vehicles in potential flow with coincident



centre of gravity and centre of buoyancy. We discuss the Energy Momentum method
and its interpretation for the rigid bodies. Stability is proved for the following kinds
of synchronization motions:

1. For the SO(3) network, the solution we stabilize is the case when the bodies
are all aligned and rotating about their unstable middle axis, which itself is pointing
in a prescribed direction in free space.

2. For the SE(3) network, the solution we stabilize is the case when the bodies
are aligned in orientation and position, each one is rotating about and translating
along its unstable middle axis which in turn is pointing in a particular direction in
inertial space.

In Chapter 6, we add dissipation terms to asymptotically stabilize the solutions
we stabilized in Chapter 5. The relevant theory is developed to make rigorous the
proof of asymptotic stability. We will illustrate the results with a simulation for a
network of three rigid bodies in SO(3) or SE(3).

We conclude in Chapter 7 by discussing major contributions of this thesis and the

various directions this work can be taken in the future.



Chapter 2

Mathematical Background

This chapter gives a basic introduction to mathematical tools which are used through-
out the thesis. It also serves to set the notation used in the rest of the chapters. We
define and illustrate relevant notions from differential geometry and geometric me-
chanics including differentiable manifolds, symmetry, momentum maps and locked
inertia tensors. We will keep the discussion in this chapter at an informal level.
References for contents in this chapter are [45, 12, 3, 2, 1, 34, 39].

Many of the models used in the cooperative control literature can be put into two
categories, kinematic models and dynamical models. In our work, we use dynamical
models, by which we mean equations that follow Newton’s second law relating force
and acceleration in an inertial frame. Our motivation in using dynamical models
stems from the fact that in our work, we concentrate on stabilizing and coordinating

a group of mechanical systems using external forces or torques.

2.1 Variational Principle

Throughout this thesis, we study mechanical systems with differential equations of
motion that arise from the action principle in classical mechanics. The resulting

differential equation is called the Euler-Lagrange equation. What the action principle



says is the following. There is a function, called the action function, which depends
upon time, the system state, the time derivatives of the system state and the path
followed in configuration space from one point to another. All these parameters are
assumed to be smooth. For simple mechanical systems, the action function is usually
the difference between the kinetic and potential energies. The path which the system
takes in its configuration space is such that the action function is minimized. Making
these ideas mathematically rigourous leads us into notions of differentiable manifolds

and in particular Riemannian geometry.

2.2 Smooth Manifolds and Riemannian Geometry

The set of all configurations of a system is called the configuration space. For example,
the set of all configurations of a pendulum with one end fixed is the circle S'. The
set of all configurations of a point mass in space is the three-dimensional Euclidean
space denoted by R®. The configuration space of a double pendulum is the torus
T? and that of an inverted pendulum on a cart is R x S*. The configuration space
of a typical mechanical system has the structure of what is called a differentiable
manifold. S?,R3, 7% and R x S! are all very good illustrative examples of what are
called differentiable manifolds. We now look at this idea more formally.

An n—dimensional topological manifold without boundary M is a topological
Hausdorff space which locally looks like an n—dimensional Euclidean space, i.e., for
each point p in M, there is a neighbourhood U, of p in M and a continuous map with
continuous inverse ¢ : U, = R". ¢ is called a homeomorphism from U, to R" and each
such neighbourhood U, is called a chart for this manifold and is denoted by (U,, ¢).
On this manifold, it makes sense to talk of continuity of a function f : M — R
from M to the real line R as M is itself a topological space. But despite the fact
that M locally looks like R™, it does not make sense to talk of differentiability us-

ing such charts without further restrictions. For example, suppose that we define



f to be differentiable at a point p if for a chart U,, the map fo¢™' : R" — R is
differentiable. This definition of differentiability runs into problem if we consider for
example another nieghbourhood V,, of p with the homeomorphism ) : V, = R*. Now,
fory™ = fop o (poy!). Therefore, forp~! is differentiable only if ¢ o p~! is
differentiable. This need not hold true for any two charts. Whenever this does hold,
such charts are called smoothly compatible with each other. A family of smoothly
compatible charts covering M is called an atlas for M. A particular chart (U, ¢) is
also called a coordinate system on M around point p. It can be shown that each
such atlas is contained in a unique maximal atlas for M obtained by adding all charts
of M which are smoothly compatible to the charts already contained in the original

atlas. We denote this unique maximal atlas by A.

Definition 2.2.1 A differentible manifold or a smooth manifold is a pair (M, A)

where A is a mazrimal atlas for M.

The atlas for M is also referred to as the differentiable structure for M. If the

dimension of M is m, we will sometimes denote this manifold by M™.

Examples of smooth manifold

1. (R, Ajq) is a smooth manifold with the maximal atlas A;q containing the trivial
chart {(R%,id)} and all charts smoothly compatible with it. Here, id is the

identity map.

2. (R, A) is a smooth manifold with the maximal atlas A containing the chart

{(R,z — x3)} together with all charts smoothly compatible with it.

Definition 2.2.2 A map F': M™ — N" is called a smooth map at a point p € M if
Yo Fo¢™! is smooth as a map from R™ to R™ for any coordinate chart (U, ) and
(Vi) ) around p and F(p) respectively.
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If F' is smooth for one pair of coordinate systems, it is seen to be true for any other

pair.
Definition 2.2.3 A map F : M — N is smooth if it is smooth at each point p € M.

Two smooth manifolds (M, A) and (N, B) are called diffeomorphic if there is a one-
one onto smooth map F : M — N such that the inverse map F~* is also smooth. The

manifolds (R, Ajq) and (R, A) in example 2 above can be shown to be diffeomorphic.

Submanifold: A submanifold of M is a subset S C M with the property that for
each s € S there is a chart (U, ¢) in M with the property ¢ : U, — RF x R* % and
¢(U; N S) = ¢(Us) N (R* x 0)

It is a well known theorem of Whitney [45] that any abstract manifold is diffeo-
morphic to a submanifold of RY for some N. Hence, for understanding purposes at
least, any manifold can be thought of as a subset of some FEuclidean space.

Consider a point moving in R®. Let its position at time ¢ be z(t) = (z(t), y(¢), 2(t))-

Its velocity vector is given by @ (t) = (&(t), y(t), 2(t)). Recall that the derivative &(¢)
z(t+h) — z(t)
h
belong to the same vector space R, we are able to compute their difference in the

is calculated by taking the limit limy, g Since z(t + h) and (t)
calculation above. However, in general, if x, y, 2z are local coordinates for an arbitrary
manifold, it is not obvious how we make sense of the above operations in a coordinate
independent way. For this, we need to define tangent vectors to a smooth manifold
at a particular point.

To each point p of a differentiable manifold M, one can attach a tangent space,
a real vector space which intuitively contains all possible velocity vectors when one
passes through the point p in all possible directions. Elements of the tangent space
at p are called tangent vectors at p. Here is one of the many ways in which tangent
vectors can be defined.

Consider a smooth manifold M and a point p in it. Two smooth curves ¢; :

(—=1,1) —» M, i = 1,2 passing through the point p, i.e., ¢;(0) = p are called equivalent
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if given any chart (U,, ¢) around p,

d d
Z(600)(0) = L(60a)0).
A tangent vector v at p is an equivalence class of such smooth curves. It can be shown

that this equivalence relation is independent of the coordinate chart we use.

Definition 2.2.4 The set of all tangent vectors at p s called the tangent space of M
at p and is denoted by T,M .

The tangent space at p is a real vector space with dimension the same as that of M.
Any vector belonging to the tangent space at a point p acts on a smooth function
and gives the directional derivative of the function in the direction of the vector.
Thus, to each tangent vector, we can associate in an unambiguous way a function
operator. If the local coordinates around p are denoted by z : U, — R", i.e., if ¢ € M,

0
then z(q) € R, then the basis for the tangent space at p is spanned by — |, for

ox?
t = 1,...,n. Here, the notation Ey |, denotes the operator which takes a smooth
x
0 0
function on the manifold and gives a real number as follows — |, (f) = —f |p-
ox* ox*

Similarly, we can denote a basis element of the cotangent space, which is the dual

‘ X : 0 L
to the tangent space by dz’ [,. Its action on a basis element — |, is given by

5 oxJ
dz’ |, <% |p>=lifi:jand0ifi7éj.

Definition 2.2.5 The tangent bundle of M, denoted by T'M is defined as
TM = {(p,v) |pe M,veT,M}

The tangent bundle T'M is itself a smooth manifold with dimension equal to twice
the dimension of M.

When one introduces the notion of length, volume and angle to a manifold, one
gets what is called a Riemannian manifold. A Riemannian manifold is obtained by

assigning a metric to each tangent space T,M which varies smoothly as p varies
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smoothly over M. Before getting into details, it will help to briefly look into the
theory of tensors over vector spaces.

Tensors are generalization of quantities like scalars and vectors. They are geomet-
rical objects with intrinsic meanings, i.e., properties which do not depend upon the
coordinates or the frame of reference. Hence, tensors along with their derivaties are
used in formulating physical laws so that the results have physical meaning. Scalars,
vectors and covectors are very good illustrative examples of tensors. Tensors can be
combined with each other using tensor products to generate new higher dimensional
tensors. A metric tensor is a symmetric bilinear positive form over a vector space.
As a map, it takes two vectors and gives a real number in a bilinear manner. Tensors
are denoted by the components along with their indices. For example, a vector is
denoted by v* and a covector by u,;. Scalars being tensors of rank zero have no indices
on them. Tensor notations helps provide a concise way to write vector identities. For
example, the scalar obtained by the action of a covector u; on a vector v’ is written
as u;v°, where the repeated indices means we are summing over it. Metric tensors are
indicated by g;; and one appreciates the tensor notation when the scalar obtained by
the action of the metric tensor on two vectors v* and w® is written as g;jv'w/. The
summation convention holds here as well.

Tensor components change when one changes the coordinate system. For example,
if V' denotes a vector space and 7" : V' — V denotes a linear coordinate change a vector
v in original coordinates (written as a column vector) will have new components given
by Twv and a covector u in original coordinates (also written as a column vector)
will have new components 7~ 7u. Tensors which transform like a vector are called
contravariant tensors and those which transform like a covector are called covariant
tensors. A metric tensor is a covariant tensor of rank two.

If we take an arbitrary manifold and assign a tensor in a smooth way over each
point of the manifold, we get a tensor field. The vectors and covectors on which a

tensor acts at each point belong to the tangent space and its dual space respectively at
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that particular point. A vector field on a manifold is a very good illustrative example.
For example, a weather map showing horizontal wind velocity at each point on the
Earth’s surface is an example of a vector field on the curved surface of the Earth. Note
that the “acceleration” quantity, with components in g-coordinates usually denoted
by ¢ is not a tensor even though its denoted with a superscript index! . One way
to see this would be to note that if ¢ = 0 in g-coodinates, it is not necessarily true
that after a smooth change of coodinates given by ¢ = ¢(s), the quantity § is zero.
A metric tensor field on a manifold is a smooth assignment of a metric tensor to each
point in the manifold. Once a manifold is assigned a metric field, it makes sense to
talk of length of smooth curves, angle made by intersection of two smooth curves
etc. In local coordinates around a point p given by x, the metric field is denoted by
gij(z)dz dz?.

In mechanical problems, one usually uses the kinetic energy as a metric on the
configuration space M. This turns M into a Riemannian manifold. For example,
consider a point mass system in R® with global coordinates given by z,y,z. Its
velocity is given by components i, 9, 2. The kinetic energy is %m (2% + y* + 2%). This

is a metric on R3 which turns R® into a Riemannian manifold.

2.3 Symmetry and Lie Groups

A very important tool in the study of mechanical systems is the concept of a Lie group.
Lie groups are mathematical objects which quantifies the notion of a symmetry. An
equilateral triangle, a square, a cube, sphere are all examples of symmetric objects.
Similarly, certain differential equations also “look” the same under rotations and
translations. In both these cases, symmetry acts on the object (square, cube or

differential equation) and gives an object (square, cube or differential equation) which

'However, one can define a quantity given by §* + '}, ¢/¢*, which is the true acceleration vector,
i.e., it transforms like a vector. Here, I‘j-k are the Riemann-Christoffel symbols associated to a
Riemannin manifold. For Euclidean space R", the F;k coefficients are zero.
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“looks” the same as the original object.

Definition 2.3.1 A group? G is a set endowed with a binary operation - such that

for any f,g,h € G:
1. f-(g-h)=(f-9)-h
2. dJe€ G such thate-a=a-e=a Va e
3. Vae@G,Ja ' €G suchthata-a'=al-a=e

Definition 2.3.2 A Lie group is a group G which is also a smooth manifold with a

smooth structure such that the operations

(a,b) = a-b

ar—a "t

from G x G — G and G — G, respectively, are smooth.

From now on, we will denote the composition of two group elements f, g by fg instead

of f-g.

Definition 2.3.3 The Lie algebra g of a Lie group G s the tangent space to the
group at the identity together with a bracket operation induced by bracket operation of

left invariant vector fields.

See [45] for a proof of the fact that the tangent space to the identity can be given a
Lie algebra structure.

We now discuss what we mean by symmetries of a differential equation. A sym-
metry of a differential equation is a transformation which leaves intact its family of
solutions. For example, consider the Euler vector field in the plane R? with coordi-

. 0 0 . o
nates (x1,z3) given by Tig - + Tag - The rotation of the plane about the origin is
X1 X2

2See page 58 of [4] to see how the definition of a group can be motivated by first looking at the
transformation group of a set and then by ignoring the set that is transformed.
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a symmetry for this vector field and so is the dilation (x1, z3) — A(x1, z2). It can be
shown that the set of all the symmetries of a given field form a group. In the Euler
field case, the Lie group is GL(2, R).

R™ is one of the simplest examples of a Lie group with the operation being the
usual vector addition. Consider the configuration space which represents a dynamical
system and hence is also a differentiable manifold. The notion of a symmetry of a
dynamical system is captured mathematically using what are called actions of a Lie
group on a smooth manifold and its induced action on the tangent bundle of that

manifold.

Definition 2.3.4 A (left) action of a Lie group G on a smooth manifold M is a
smooth mapping ® : G x M — M such that

®e,z) = =z forall ze M

®(g,®(h,x)) = ®(gh,z) forall ghe G and z € M
Here e 1s the identity element of G.

For example, the Lie group R™ acts on the smooth manifold R” by & : R” x R* —
R" where ®(a,z) = a + x.

For a group action on a manifold, there is an associated induced action of the
same group on the tangent bundle of the manifold given by

g-(,0) = (g2, (g (1)

where ¢(t) is a smooth curve on the manifold passing through z such that ¢(0) = x and
¢ (0) = v. It can be shown that this definition does not depend upon the choice of the
curve c(t) used to define the induced action. Since the Lagrangian for a mechanical
system is a real valued function on the tangent bundle of the configuration space, this
induced action is useful to analyze symmetry of a Lagrangian system and to reduce

the system degrees of freedom.
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2.4 Momentum Map and Locked Inertia Tensor

For a Lagrangian system, symmetries lead to conservation laws by Noether’s theorem.
The quantity that is conserved is called the momentum map and is defined as follows

[33].

Definition 2.4.1 The momentum map J, : TQ — g* corresponding to the La-
grangian L : TQ) — R is defined by Ji,(vq) - € = (vg, 0(q)))-

Here, () is the configuration space, ¢ € @, v, € T,Q, and g* is the dual of the Lie
algebra g of the symmetry group G. The notation ((-,-)) denotes the G—invariant

metric on () which gives the kinetic energy K (v,) = ={(vq, v4)) and &g is the infinites-

imal generator corresponding to £ € g, i.e., {g(q) = —(exp(t€)q)|i=o. For each ¢ € @,

S:|&.L\')|>—l

the locked inertia tensor 1(q) : g — g*, is defined as

(I(q)&,m) = (€a(a),nq(a)) (2.4.1)

where (-, -) is the natural pairing between elements of g and g*. For a mechanical
system consisting of rigid links with joints, the locked inertia tensor is equal to the
inertia tensor when all the joints are locked, hence the nomenclature. The locked
inertial tensor is used in defining the amended potential which in turn is used to
prove stability of relative equilibri.

The momentum map and locked inertia tensor can be related using the mechanical

connection A : T'Q) — g defined as follows:

To(vg) = I(q)A(v). (2.4.2)

The mechanical connection can be used to derive the reduced Lagrangian equa-

tions in an intrinsic manner as is described in Chapter 4.
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2.5 Example

We now discuss an example to illustrate the concepts stated above. Consider a point
mass moving in the Euclidean space R?® under the influence of a potential V given by
V = k(y? + 2%) where (z,y, 2) are coordinates for R®. If the mass of the body is m,
its kinetic energy is given by K = %m(ﬁﬂ + 9% + 2?). In this case, the configuration
space manifold is just R* and the tangent bundle is TR® = R* x R®. Coordinates
for the tangent bundle are given by (z,v, 2, %, 7, 2). The velocity vector at the point
(z,v, 2) is a vector in R® located at (z,y,2) and pointing in the direction (i, 1, 2) as
pictured in Figure 2.5.1. The kinetic energy can be used as a metric for R?, i.e.,

z

(x,Y,2)

(%%,2)

X

Figure 2.5.1: Motion of a particle in R®.

«U(I’UQ» = (((x,y,z,dv,g),,é),(:E,y,z,g'c,'g,,é)»
= m(i® + 9 + 2%).

This turns R?® into a Riemannian manifold. The Lagrangian for the system is I =

K —V. 1t is easily seen that the Lagrangian does not depend upon the x coordinate of
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the body, i.e., the Lagrangian has a symmetry in the z-direction. The symmetry group
is just the real line R with the action given by ¢- (z,v, 2,2,9, 2) = (x +¢,y, 2, %, Y, 2).
The Lie algebra of the Lie group R is again R. Given a Lie algebra element £ € R,

the infinitesimal generator is computed as

o(0,0,7) = DO,y 7))o

d
= £($ + ft, Y, Z)|t:0

= (f, 0, 0)

The corresponding conserved momentum map lies in the vector space dual to R which
can again be identified with R. It can be found as follows using the definition stated

in the previous section:

(Jo(@,y,2,4,9,2),8) = ((@,y,2,4,9,2), & (7, 9, 2)))
= ((=,y,2%,9,2), (2,9, 2¢,0,0))
= ma€
= (mi, &)
Therefore,
J(x,y, 2, 8,9, 2) = ma, (2.5.1)

which is the linear momentum in the x—direction. That this quantity is a conserved
quantity for the motion can be easily checked by computing its time derivatie along
the flow Euler-Lagrange equations of motion. The locked inertia tensor in this case

is the mass m. This can be obtained as follows:

(I(z,y,2)6,m) = (&ee(2,y,2), Mrs (2, Y, 2)))
= ((z,9,2,¢0,0), (z,9,21,0,0))
= mén
= (m&,n)



19

Therefore,

I(z,y,2) =m. (2.5.2)

Using (2.4.2), (2.5.1) and (2.5.2), we get that the mechanical connection for our

example is given by

Alz,y,2,%,79,2) = . (2.5.3)



Chapter 3

Stable Synchronization of
Mechanical Systems: The
Simplified Matching Case

This chapter focuses on the stabilization and coordination problem for a class of
systems which satisfy the simplified matching conditions, henceforth denoted by SMC
systems. SMC systems have Abelian symmetry group in their kinetic energy term
and the control inputs are in the direction of the symmetry. For example, the planar
pendulum/cart system has the cart position as its Abelian symmetry direction and
for this system, we consider the underactuated case in which the control inputs are
force inputs in the cart direction. For a planar pendulum/cart system on an inclined
plane, the kinetic energy term still has Abelian symmetry. The Method of Controlled
Lagrangians [10, 8, 11] gives an algorithm to derive a control law to asymptotically
stabilize an equilibrium for an individual SMC system in full state space. We consider
n such systems and couple them using potentials. We demonstrate stabilization of
individual dynamics and synchronization across the network. The closed-loop network
is Lagrangian and energy methods are used to prove Lyapunov stability and two cases

of asymptotic stability. This chapter is based on an expanded discussion of [38].

20



21

3.1 Introduction

The Method of Controlled Lagrangians is an energy based method used for stabi-
lization of underactuated mechanical systems [10, 8, 11] . By a mechanical system,
we mean a Riemannin manifold where the Riemannian metric represents the kinetic
energy and a function on the manifold which represents the potential energy with the
system dynamics being the Euler-Lagrange equations. The control prescribed by this
method is such that the closed-loop system is a Lagrangian system, i.e., the closed-
loop system follows the Euler-Lagrange equations with the Lagrangian depending
upon the control law parameters. In particular, the kinetic and potential energy of
the closed-loop system can be “shaped” using the control law parameters. One of
the main advantages of this approach is that we can use techniques like Dirichlet’s
theorem to prove stability of the closed-loop system once we choose controls to shape
the closed loop kinetic and potential energy appropriately. This is an important tool
since for the closed-loop system, after adding dissipative terms, not all the eigenvalues
of the linearized system lie in the strict left half plane. Hence, to prove stability of the
closed-loop system, the energy corresponding to the closed-loop Lagrangian (which is
a readily available candidate for Lyapunov function) is crucial along with a LaSalle
argument. Having a Lyapunov function also makes possible estimates of region of
attraction. We point out that the Method of Controlled Lagrangians is also equava-
lent to the Interconnection Damping Assignment - Port Based Control (IDA-PBC)
method (see [8, 42] and references therein).

For a class of mechanical systems satisfying the simplified matching conditions or
SMCs, the Method of Controlled Lagrangians can be made algorithmic, i.e., we get
formulas for the closed-loop Lagrangian and control law directly [10, 8]. These are
the systems we consider in this chapter. As mentioned in the introduction to this
chapter, SMC systems have Abelian symmetry group with controls in the symmetry
direction and which satisfy a set of conditions which we state explicitly in §3.3. For a

derivation of these conditions, see [10, 8]. We will also give physical interpretations of
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these conditions in the same section. This class of SMC systems includes the planar
or spherical inverted pendulum on a (controlled) cart. The goal in this chapter is to
stabilize unstable dynamics for each individual mechanical system in the network and
stably synchronize the actuated configuration variables across the network. For indi-
vidual stabilization, the approach is based on the theory developed in [8]. Coupling
potentials are then added with the goal of synchronizing the network. We will show
that it is possible to choose the coupling potentials such that the closed-loop system
also satisfies the SMC conditions. By choosing the coupling potentials to depend
upon relative positions, the closed-loop system is made to have an Abelian symmetry
group. Routh’s criterion is then used to prove Lyapunov stability of the closed-loop
synchronized network. As an example, for a network of pendulum/cart systems, the
problem is to stabilize each pendulum in the upright position while synchronizing the
motion of the carts.

To achieve asymptotic stability, additional dissipative control terms are added.
Depending upon the Lyapunov function we use to design dissipation, we get two
cases of asymptotic stability. These two cases correspond to stably synchronized
constant momentum motion and stably synchronized relative equilibrium. For the
inverted pendulum on a cart system, the former case corresponds to a synchronized
motion of the carts such that all the carts move together with a common velocity
that is the sum of a constant plus an oscillation. Likewise, the pendula synchronize
and oscillate at the same frequency as the carts. The oscillation frequency for the
carts and pendula can be tuned using the control parameters. For the pendulum/cart
system, the latter case corresponds to steady, synchronized motion of n carts, with
each balancing its inverted pendulum.

The organization of this chapter is as follows. In §3.2 we define notation and the
different kinds of stabilization studied. In §3.3, we give a brief background on the
method of Controlled Lagrangians and mechanical systems that satisfy the simplified

matching conditions. We discuss how unstable dynamics are stabilized with feedback
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control that preserves Lagrangian structure. In §3.4, we study a network of n sys-
tems, each of which satisfies the simplified matching conditions. We choose coupling
potentials in §3.5, and we prove stability and coordination of the network. Asymp-
totic stabilization is investigated in §3.6 and §3.7. We illustrate the theory with the

example of n planar, inverted pendulum/cart systems in §3.8.

3.2 Notation and Definitions

In this section, we set the notation for the rest of the chapter and define the various
kinds of equilibrium solutions for which stability is proved. Consider an underactuated
mechanical system with an (m + r)-dimensional configuration space @ x R". Let z“
denote the coordinates for the unactuated directions @), with index « going from 1
to m. 0° denotes the coordinates for the actuated directions R", which are also the
Abelian symmetry directions of the kinetic energy of the system, with index a going
from 1 to 7! . In the case of a network of n mechanical systems, each with the same
(m+r)-dimensional configuration space, z§ and 6¢ are the corresponding coordinates
for the 7th mechanical system, 1 =1,...,n.

The goal of coordination is to synchronize the actuated variables 6} with the
variables 67 for all 7,5 = 1,...,n. We define stable synchronization of these variables
as stabilization of 6} — 67 = 0 for all 1 # j.

For a mechanical system which has a symmetry both in the kinetic energy as well
as potential energy term, a relative equilibrium is a motion which is a group orbit
as well as a solution of the Euler-Lagrange equations. For a planar pendulum/cart
example, this corresponds to the motion where the cart is moving with a constant
velocity and the pendulum is in its upright position.

We define the following stability notions for the mechanical system network.

Definition 3.2.1 (SSRE) A relative equilibrium of the mechanical system network

IThe actuated directions can also be the r-dimensional torus 7" or the space R® x 77~ for some
non-zero s < r as we are considering systems whose kinetic energy has an Abelian symmetry.
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dynamics is a Stable Synchronized Relative Equilibrium (SSRE) if it is defined by
07 — 07 = 0 for all v # j, x = 0 for all © and if it 1s Lyapunov stable. This
implies that the unactuated dynamics are stable and the actuated dynamics are stably

synchronized.

Definition 3.2.2 (ASSRE) A relative equilibrium of the mechanical system net-
work dynamics is an Asymptotically Stable Synchronized Relative Equilibrium (AS-
SRE) if it is SSRE and asymptotically stable.

Definition 3.2.3 (ASSM) An asymptotically stable solution of the mechanical sys-
tem network dynamics is an Asymptotically Stable Synchronized Motion (ASSM) if
it is defined by zff — x¥ = 0 and 6 — 07 = 0 for all i # j and the dynamics of the

network evolve on a constant momentum surface.

We will now discuss what the above three different kinds of motion means for a
network of inverted pendulum/cart systems. More details along with simulation plots
are given in §3.8. Such a system is illustrated in Figure 3.2.1. In this figure, z denotes
the angle made by the pendulum with the vertical and # denotes the position of the
cart on the track. Consider n such systems, each of whose configuration is denoted

A

Y

Figure 3.2.1: The planar pendulum on a cart.

by (z;,6;) for i = 1,...,n. Then, the SSRE case corresponds to the motion where
the cart positions are synchronized and each individual pendulum is in its upright

position. SSRE also requires such a solution to be Lyapunov stable. The ASSRE case
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corresponds to the motion where the cart positions are asymptotically synchronized
and the individual pendulum position asymptotically tend to the upright position.
The ASSM case corresponds to the motion where the cart positions are asymptotically
synchronized and the pendulum positions are also asymptotically synchronized. The
ASSM case for the inverted pendulum/cart network give a periodic orbit for the angle
made by each pendulum with the vertical line, with the velocity of the cart oscillating
about a constant velocity with the same frequency as the pendulum oscillation.
Recall that as mentioned in §3.1, for a network of planar inverted pendulum-on-a-
cart systems, ASSRE corresponds to the carts moving together at the same constant
speed with each pendulum at rest in the upright position. And for this network,
ASSM corresponds to stable synchronized motion, with the carts moving with a
common velocity with additional oscillation and at the same time, the pendulums
also have synchronized oscillations about the vertical with the same frequency. In
§3.8 we will state explicitly the corresponding control laws required to achieve this

motion.

3.3 Controlled Lagrangians and Simplified Match-
ing Conditions

We review here Controlled Lagrangians and simplified matching conditions as de-
scribed in [10, 8]. Let the Lagrangian for an individual mechanical system be given
by

. 1 . 1 ..
L(z®,6° j:ﬁ, 0”) = 5gaﬂgi:"‘jcﬂ + 9oa 0% + §gab0“0” - V(z*,0%

where summation over indices is implied, g is the kinetic energy metric and V is
the potential energy. We will assume that gag, gaa, gap are independent of 6%, i.e.,
the kinetic energy is independent of #° coordinates. The actuation for this system
is along the 6* directions only. The planar pendulum/cart system satisfies this but

the pendulum/cart system on a circular track does not satisfy this. The equations of
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motion for the mechanical system with control inputs u, along the #* directions are

given by

EL(z*) = 0
EL(6%) = u, (3.3.1)

where FL(q) denotes the Euler-Lagrange expression corresponding to a Lagrangian

L and generalized coordinates ¢, i.e.,
EL(q) = —— — . (3.3.2)

The idea behind Controlled Lagrangians (CL) is to choose u, such that the closed-
loop system can be derived from a Lagrangian, which we denote by L.. Assume the

closed-loop equations are as follows:

EL,(z*) = 0

EL(0%) = 0.

For general systems, u, and L. can be found by solving a set of PDEs [16]. These
PDEs can be highly nontrivial and there is no general procedure to solve them [6,
24, 15]. The method of CL gives an algorithm to solve these PDEs by restricting the
problem to a class of systems called the simplified matching condition (SMC) systems.

A system is said to be an SMC system if it satisfies the following conditions:

SMC1 g, = constant

agaa _ ag,b’a

MQC2 =
SMC oxP oz

9> 9?
SMC3 5250981 = 52555 9 Gaa-

With these assumptions, it is shown in [8] that it is possible to choose controls u, =
ue’™ to shape the kinetic and potential energy of the system. The closed-loop system

is a Lagrangian system depending upon control parameters. The planar inverted
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pendulum on a cart satisfies the SMC conditions but the inverted pendulum on a
rotating arm, also called the Furuta pendulum [5, 37] does not satisfy SMC conditions.
In particular, the Furuta pendulum does not satisfy SMC1. A free rigid body in space
does not satisfy SMC2. For the Euler equations of a rigid body, the right hand side
terms arise due to failure of SMC2.

Let us go over the interpretation of the SMC conditions. SMC1 and SMC2 imply
that SMC systems lack gyroscopic coupling terms in their equations of motion. By
that we mean that the Euler-Lagrange equations of motion for the z® variable without
external control terms have no 6% terms, i.e., the equations of motion for the z®
variables are

d )

. 1 OV
g7 90°) + 90" = 507,087 + 50

For systems with 6* symmetry, the “no gyroscope force” condition also means that

=0

there are no “magnetic terms” in the reduced equations of motion given by the
Routhian, i.e., the mechanical connection of the system has zero curvature. See [33]
for an expression of the reduced equations of motion. SMC3 is automatically satisfied
when the original system has #* variables as symmetry not only in the kinetic energy
term, but also for the potential energy. For systems in which 6% is not a symmetry
for the potential energy, the closed-loop potential, denoted by V., where € is a real
parameter, must satisfy the following PDE [8]:

av oV, p—1. .. V.
— —)g°® =0. 3.3.3
(80“ + 80a> (K + P )g God + py ( )

This PDE arises when one matches the non-velocity terms in the original system with
controls with the non-velocity terms in the closed-loop system. SMC3 is a necessary
and sufficient condition for the existence of solution V; in (3.3.3). In [8], it is shown

that the closed-loop Lagrangian can be chosen to be

: 1 1 .

Lo(a®,0%47,0") = 3 <ga/3 +p(k +1)(k+ pT)gaag“”gbﬁ> &% + p(k + 1)gaad*0°
1 ..

+509a0*0° — V (2%,6%) — Ve(a®,6°). (3.3.4)

2
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where p and k are real constant parameters. The expression for the control law such

that the closed-loop system is Lagrangian with Lagrangian given by L. is given by [8]

2

ov. oV 1 ov!
da - oo db €
+ K'g&aA o1 + o0a P (1 + K'gtSaA 9add ) o6

1 3.
Uy = Uy " ==K {gﬁm — gsa A’ [ga/a’ﬁ — 59ma — (1+ ﬁ)gadgdagﬁm} } 4

(3.3.5)
where
Aag = gap — (1 + ff)gadgdagﬁa-

The control law is obtained as follows. From (3.3.1), u°®® = EL(0*). The expression

cons
a

EL(6*) contains coordinates, velocities and acceleration terms. To express ul®™ in
terms of coordinates and velocities, we can solve for the acceleration terms using the
closed-loop equations corresponding to the closed-loop Lagrangian L. and substitute
it in EL(0") to get (3.3.5). Note that the closed loop Lagrangian L. depends upon the
(control) parameters p, k and e. In [8], it is shown how to choose these parameters
such that the system is stabilized in the full state space. If we assume that the
equilibrim point is a mazimum of the original potential energy V' (the case when the
origin is a minimum can be handled similarly), then the parameter € is chosen so
as to make the closed-loop potential also a maximum at the equilibrium point. The
inverted pendulum systems fall into this category. For this case, the parameter k
should be “sufficiently positive” and p < 0. The energy function E. for the controlled
Lagrangian has a maximum at the origin of the full state space. Asymptotic stability

is obtained by adding a dissipative term ud® to the control law, i.e.,

1 ..
cons diss
a + - Uy

P

Uy = U

which drives the controlled system to the maximum value of the energy E.. The

equations of motion after adding the dissipation term are:

EL.(2%) = (k+ pT) adg udss (3.3.6)

a

EL.(0%) = u®™, (3.3.7)

a
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Using SMC1, SMC2 and the Poincaré Lemma [34] for the form ¢*g,.dz® for
each ¢« = 1,...,r, there exists a function h*(z®) defined on an open subset of the

configuration space of the unactuated variables such that

oh* p—1\ . army
e = (K,-i- T) 9%°Gac;,  h*(0) =0. (3.3.8)

In [8], it is shown how to use h%(z®) to define new coordinates as follows:
(xa’ya) — (:L,Ot’ 90, + ha(l,a))

These coordinate are useful to prove asymptotic stability of the equilibrium point
after adding dissipation. For the system with dissipation, all the eigenvalues of the
linearized system do not lie in the strict left half plane. This is because, dissipation
is added only in the #* direction. Hence, these new coordinates become important
in proving asymptotic stability using energy methods. If the origin is an equilibrium
in the original coordinates it is also an equilibrium in the new coordinates. In these
coordinates, the closed-loop Lagrangian takes the form (with abuse of notation for
L)

1 -1 o a-a , L oy
L = = (%ﬂ —(r+ pT)gaag“”gbﬂ) 0" + Gaad“Y" + 5 p9ary" Y

2
V(% y* = h*(z%)) = Ve(y")

\)

1,., s ~ Qo a 1~ -q - o a a [0 a
= 500p3"8" + Gaad ™" + S "9’ — V(24" — b (z%)) = Ve(y"), (3.3.9)

2
where
~ p—1
Gop = (gaﬂ — (k+ T)QMQ“"QW,)
gaa = Yaa,
9ab = PYab - (3.3.10)

Further, after adding dissipation u®*, the Euler-Lagrange equations given by (3.3.6)

and (3.3.7) are transformed, in terms of the new coordinates, to
oh®

a a .a diss
ELc(2%) | _ 0@ y*) [ prata [ (3.3.11)
BL(y) | 0@\ ygs v
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where ZEL’Z; is the inverse transpose of the Jacobian matrix of the coordinate
xa’ a
transformation and is given by
(g 2 I oh®
(@%y") _ [ Amxm g | (3.3.12)
9(z=,0) 0 I

3.4 Matching for Network of SMC Systems

The goal in this section is to couple a network of n systems, each of which satisfies
SMC conditions, using potentials which depend upon their relative position coordi-
nates in such a way that the total closed-loop Lagrangian system is also an SMC
system. We will derive the most general form that the coupling potential can take
in this section and work with a particular class of such potentials in the next section
to prove stability for the stabilized and synchronized network of vehicles. Having
the closed-loop system be a SMC system enables us to exploit the SMC structure in
proving stability of the synchronized motion.

Let the sth SMC system have dynamics described by Lagrangian L; where

1 . .
Li(z%,00, 27 6° g;ﬂj:fd:i+g;a:i:?0a+ ga,ﬁ“@b Vi(zd, 67), (3.4.1)

z’ziz,z)_Q 1973

and the index 7 on every variable refers to the ith system. Note that we do not mean
to sum over i in this expression, i.e., g} is not a () tensor, but rather a () tensor.

The Lagrangian for the total system before adding control term is

L= Z L;= —a:TMm - Z Vi(z$, 07), (3.4.2)

=1
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where ¢ = (2¢,...,25,0%, ...,0°)T, and
[ g 0 | 9he 0 )
M= 0 ggﬂ 0 gga
géa 0 géb 0
\ 0 G| 0 o,

Since we are assuming that each system is an SMC system, g¢, = constant for each

t = 1,...,n. It can be easily verified that the simplified matching conditions are

satisfied for the total system L, since they are satisfied for each individual system.
For the Lagrangian given by (3.4.2), the symmetry coordinates are (6,...,6°).

As shown in [8], there exists a control law and a change of coordinates given by

x=(2¢,...,2%,00, .. %) = a = (22,..., 2%, 9%, ...,9°)

Y n?

such that the closed-loop system is also a Lagrangian system with Lagrangian L.

given by
1
L, = é(:b’)TMcd:' - V() (3.4.3)
and
(ga,@ 0 géa 0 \
0 grg | O gr My, | M
M, — 9ap Yaa — 11 12 , (3.4.4)
Jaa 0 | Gap 0 My | My
\ 0 Ji | 0 iy )

vz—Z( 2,y = b (@) + Valat, uf)

with an abuse of notation for V;. For the i** system, g5, §4,, and gi, are defined by

(3.3.10). At this stage, there is still no coupling between the systems.
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Using the choice of control gains «; and p; and control potentials V,; chosen so as
to be a maximum at the origin as prescribed in [8], the mass matrix M, can be made
negative definite and the potential V! can be made a maximum when the configuration
of each system, i.e., (2%, 6%), is at the origin. The control law asymptotically stabilizes
the origin for each individual system independently, i.e., the system is still completely
decoupled.

We will now make the following assumption about the potential for the individual

SMC systems. This will enable us to state explicitly the form which the closed-loop

potential V,; can take.

AS1. The potential energy for each system in the original coordinates
satisfies Vi(xd, 0F) = Vi (z) + Vi (67).

1771

Examples of systems which satisfy this assumption are the planar pendulum/cart
system on a level and on an inclined plane and the spherical pendulum on a level and
on an inclined plane.

Under the assumption AS1, V,; can be chosen to be

Va(af', yi) = =Vai(yi' = hi (7)) + Vailwi)

where V,; is an arbitrary function and h?(z$) is as in (3.3.8) for each i = 1,...,n:
8h‘-1 Pi — 1 ;
i (g acgi  pa(Q) = 0. 3.4.5
9z (fﬂ+ > )gz Jacr hi(0) (3.4.5)

Refer to [8] for more details on this. We now show that a more general form of
potential satisfies the simplified matching condition. This will enable us to make a

particular choice of potential to couple the systems.

Proposition 3.4.1 Under assumption AS1, the potential V + V. satisfies the sim-
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plified matching condition with

V= 30 (Vi) + Vit i)

V.=— (Z Vai (Y — h?(fﬁ?))) e AU
(3.4.6)

and V. an arbitrary function.

Proof. Recall that the potential V' + V. given by (3.4.6) satisfies the simplified
matching condition if (3.3.3) holds. From [8], we can use the definition of h%(z$)
given by (3.4.5) to rewrite the simplified matching condition (3.3.3) for the potential

in the following form:
oV, 0V Ohg(xy)
oz Oyf Ox¢

1

i=1,...,n. (3.4.7)

Now, if v} =y — hi(zy), then using (3.4.6) we get
oV,  OVy; Ovf
ory  Ovf Oz

(3.4.8)

Again, using (3.4.6) we get
OV Ohi(xg) OV Ov}
oys  Ox¥ ov? Oxg
From (3.4.8) and (3.4.9), we see that (3.4.7) is satisfied. |}

(3.4.9)

The closed-loop dynamics are now Lagrangian satisfying the SMC conditions. The
more flexibility we have in choosing V, enables us to introduce coupling between the
vehicles. Depending upon our choice of V., we have different degrees of coupling for
the network, i.e., we can obtain a completely connected system on the one hand and
on the other hand a completely uncoupled systems. Using a particular choice for V.,
we show in the next section how to obtain stable coordination for the network.

For the closed-loop system, the mass matrix is made negative definite. The part
of the potential term given by Y | (V4;(«®)) is maximum at the origin. Hence, we
will choose Ve(y%, ..., y%) to couple the system in such a way that its also maximum

at the desired configuration.
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3.5 Stable Coordination of SMC Network

In this section, we achieve stability of SSRE coordination as defined in §3.2 for a
network of n SMC systems. From Proposition 3.4.1, V. can be chosen to be an
arbitrary function of y;. This means that by choosing coupling potentials to be a
function of y! —y; = 0, for all ¢ # j, we can try to achieve stable synchronization of
y coordinates of the network.

Since we have assumed the potential for our original system to be maximum
at the origin, we will choose V. such that the closed-loop potential V!, defined in
Proposition 3.4.1, has a maximum when z{* = 0 and y;' — y§ = 0 for all ¢ # j. This is
made possible by choosing V. to be quadratic in (yf‘—y}-’) with maximum at y/'—y5 =0
for all ¢+ # j. Figure 3.5.1 illustrates a communication topology for a 4 vehicle network
where the edges between nodes i and j represents the term (y¢ — yf) appearing in the
quadratic function ffe(y‘f —y8, Y5 — 3, y5 — y3). For such a communication topology,
V! has a strict maximum when z¢ = 0 and y;' — y§ = 0 for all ¢ # j. In general, if
the communication topology is connected, i.e., there is a path between the i*" and
4% vehicle for all 4,5 € {1,...,n}, then V! has a strict maximum when z& = 0 and
yi —yj = 0 for all 4 # j. In our problem setting, we choose a particular V. and fix

the topology for the network for the analysis.

Figure 3.5.1: Connected, undirected communication graph for four vehicles.

The closed-loop network has a translational symmetry since the coupling poten-
tial depends only on y — y? and hence, if we translate y' and yj variables by the

same constant, the Lagrangian remains invariant. To exploit this symmetry, we will
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consider the following new set of coordinates given by
(2%, .. .28, 20, ..., 28) = (2%, 2l g0 —yd o=l S+ ). (3.5.1)

The reason we make this coordinate transformation is because in these coordinates,

2y is the symmetry variable, i.e., the closed-loop potential depends only upon

[ B8 .a b
(xf, .. 2, 2y, 20 ).

In this coordinate system, the controlled Lagrangian for the total system (with abuse

of notation for V) is
I

L= §wcTMcd:c —V!(z,) (3.5.2)
where . = (2¢,...,2%,2¢,...,22)T, &, = (2¢,...,28,28,..., 2 )T and
5 My M
M= TR (3.5.3)
ML My,
The transformation which takes the coordinates x. = (z¢,...,22,2%,...,2%) to
the coordinates ' = (z¢,...,25,y¢,...,y) is given by the matrix
1 0
B=| "™ (3.5.4)
0 Baso
where By, is the inverse of the transformation which takes (y5, ..., y4) to the coordi-
nates (2¢,...,2%) given by
'ITXT _‘I'I'XT' 0 ... O
'[TX”' 0 _ITXT' ... 0
(3.5.5)
‘[T'X'I' 0 .. 0 _I”'XT'
B IT'X'I' IT'XT' LR ITX”' IT'X?" |
Therefore, i i
Iy I v s I v
1 1—n)lwr L.« Iy,
By = — ( Mo g - (3.5.6)
| Irxr s (1 - n)lrxr Irxr ]
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and I;y; denotes a [ x [ identity matrix and By is an rn X rn matrix. The expression

for M, in terms of M, from (3.4.4) is

M, = BT M.B. (3.5.7)
We can compute the block elements in M, to be
Mll - Mll; (358)
[ G G e G G )
(1 - n)gia g?ya cee ggza gia
~ 1
My = — : 3.5.9
12 n ’ ( )
Joa' Goa Joa' Goa
\ @ G - -mgh, §h )
(3.5.10)

~ 1
My = EB;QMQQBZZ
where M, and My, are as defined in (3.4.4). From (3.5.6) and (3.4.4), we can calculate

the lowermost diagonal r x r block of M22 to be

i 1,
G = — > (Gh)- (3.5.11)

=1

Thus, we can define Moy = §a and My, and M, in terms of the other blocks of M,

such that
My, M -

i 11 i 12 M
ML My,

Then, we can rewrite (3.5.2) as

~ 1 Mn M12 z
chi(w,,r Zg) — 7 _ _T _‘/;I(mr)
M12 M22 Zy,
where z, = (22)" and @, = (z¢,...,25,2¢,...,28_)".
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As remarked before, in these coordinates 22 corresponds to the Abelian symmetry

variable. We are interested in the relative equilibria given by

a Y .G c L sy sa :C . d
(xlv"'7xn7217-"7Zn—17$17-"7xn7217'-'72n—172n)

=(0,...,0,0,...,0,0,...,0,0,...,0,¢%

—! VRE (3512)

where (? corresponds to (n times) the constant velocity of the center of mass of the
network. For systems with an Abelian symmetry group, the Routh reduction is very
useful for stability analysis of the relative equilibrium [33]. We will now define a
quantity called the Amended Potential, which will be needed to prove stability of
equilibrium given by (3.5.12).

Definition 3.5.1 (Amended Potential [33]) The amended potential for the La-
grangian system with Lagrangian (3.5.2) is defined by

1 ~c
Vu(w'r) - V;I(wr) + 59 dlufclu'd

where V! is given by (3.4.6) and g, is given by (3.5.11). Let J, be the momentum

conjugate to z2. Then p, is J, evaluated at the relative equilibrium corresponding to

20 = (9 ie.,
oL,

_ _ 0L
- 0z

= (Ml’l;wT + M22in)a, Ma = 82(1 = gabQ“. (3513)
", =0,52=¢o

Ja

By the Routh criteria [33], the relative equilibrium is stable if the second variation

of

1., - o
E, = 5:,;Z(M11 — MyoMsy' M) &, + V,(z,) (3.5.14)

evaluated at the origin is definite. Also, if R*(x,, ,) is defined as

1.5 - o 1T
R“ = iiﬂf(Mll — M12M221M11;)wr - Vu(wr): (3'5'15)
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then the reduced Euler-Lagrange equations can be written as?
ER!(z%) = 0.

Refer to [33] for more details on Routh reduction. The Routhian R* plays the role of a
Lagrangian for the reduced system in variables (z,, ). Since g’, is a constant for each
i € {1,2,...,n}, the second term in the amended potential V,, does not contribute
to the second variation. Therefore, the relative equilibrium with momentum g, is
stable if the matrix (My; — Mo My, ML) evaluated at the origin is negative definite,
since the potential V! is already maximum at the equilibrium. We now prove that

this matrix is negative definite using the following results from linear algebra.

Lemma 3.5.2 Consider the negative definite symmetric matrix

(3.5.16)

where (3.5.16) is any partition of the matriz T. Then Ti; and Tsy are also negative
definite.

Proof. This follows by evaluating the definite matrix 7" on the vectors (z,0) and

(0, y), respectively. |

Lemma 3.5.3 If T given by (3.5.16) is negative definite, then Ty, — TiyToy T is

also negative definite.
Proof. Let (T4,)? = —Tyy. Then,

(z, y)TT(xa y) = oz + 2yTT1j;fU + YT Topy
=z (T — TioT55' Tz — (Topy — Toy ' Tha) " (Taay — Toy ' Tiox).
(3.5.17)

2For general Lagrangian systems, there are “gyroscopic force” terms on the right hand side of
the reduced Euler-Lagrange equations. For SMC systems, these terms vanish.
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For any =, one can choose y = —T,,'T'Lx so that the second term on the right hand
side of (3.5.17) is made zero. Hence, it follows that Ty; — 15Ty, T < 0 since the left

hand side is less than zero for all nonzero vectors (z,y). |}

Theorem 3.5.4 (SSRE) Consider a network of n SMC systems that each satisfy
Assumption AS1. Suppose for each system that the origin is an equilibrium and that
the original potential energy is maximum at the origin. Consider the kinetic energy
shaping defined in §3.4 and potential energy coupling defined above with connected
graph so that the closed-loop dynamics derive from the Lagrangian L. given by (8.5.2)
and the potential energy V + V. is mazimized at the relative equilibrium (8.5.12). The

corresponding control law for the i™ mechanical system is

Yo = g =~ K {géaq — G A" [gém — S (14 m)gédgf“g%a,v] }m @]
+ Kigha AL g;/; + 27? - i (1 + Fig5a AT gaasi") 76(‘/8;; 2
(3.5.18)
where
Aty = gig — (1 + K949 9har P <0
and

ki + 1> max { | det (gfxﬂ - )\gfmgfbgég) |zo—0 = 0}.

Then, the relative equilibrium (3.5.12) is a Stable Synchronized Relative Equilibrium
(SSRE) for any .

Proof. By Lemmas 3.5.2 and 3.5.3, (Mll — MIQMQME;) evaluated at the origin
is negative definite. Thus, the second variation of E, evaluated at the origin is
definite. Hence, the relative equilibrium (3.5.12) is stable for the total network system
independent of momentum value . |

The control law (3.5.18) has the same form as in (3.3.5) except for the poten-
tial coupling term given by V + V. in (3.5.18). The conditions on p; and ; are
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required to make the mass matrix of the closed-loop Lagrangian negative definite at

the equilibrium point [8].

3.6 Asymptotic Stability of Constant Momentum
Solution

We now investigate ASSM coordination for a network of n SMC systems which have
been stabilized using the control law prescribed in (3.5.18). To achieve ASSM, we
need to add appropriate dissipation control terms to (3.5.18). We demonstrate how
to design such a dissipation in this section. We prove ASSM in the case when there
is no dissipation in the 2% direction. This means that the corresponding conjugate
momentum J, is preserved along the flow, i.e., the system evolves on the constant
momentum surface which depends upon the initial conditions as illustrated in Fig-

ure 3.6.1.  On this surface, E, as defined in (3.5.14) can be chosen as a Lyapunov

(x

rIX.,’)

Figure 3.6.1: E, is a Lyapunov function on constant momentum surface J, = .
Such a surface is illustrated here as a level set of J,.

function to prove stability. The system without dissipation in the z2 direction evolves
on the surface shown where F, is a conserved quantity. We show that by choos-
ing dissipation as given by (3.6.7), the solution is ASSM. The main idea is to use
the Energy-Momentum function as a Lyapunov function on the constant momentum
surface and then use a LaSalle argument after adding dissipation to prove that the

solutions tend to an ASSM solution.
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Let the control input for the th mechanical system be

1 .

cons diss

Uaq = U + —ugs (3.6.1)
(]

cons is the “conservative” control term given by (3.5.18) and udlss is the dis-

where ug’
sipative control term to be designed. The Euler-Lagrange equations in the original
coordinates for the ith uncontrolled systems are

1,
ELi(x3) =0 5 EL(07) = ugy® + —ug’
) pi b

where L; is given by (3.4.1). In the (z%,y?) coordinates, the closed loop Euler-

Lagrange equations are

EL(2%) =0 ; EL.(y2) = udiss

az

and these equations, in the new coordinates given by (3.5.1), transform to

~ 1 ..
= —qdiss (3.6.2)

a,i

where L, is given by (3.5.2) and

n
~diss __ § : diss diss -
’U,a,z- —_ ua’j _(n_].)ua,z+1, 2—1,,77,—1
j—l,j#i+1

~dlss § : udlSS

Case I: 405 = 0.
Let E, be the energy function for the Lagrangian L.. Given momentum value i,

let €% = §®pu,. Then, the function Ef defined by
E¢=E.— J&°

has the property that its restriction to the level set J, = o = §as&? of the momentum
gives E/,. We can use this fact to calculate the time derivative of E, as follows. From

(3.6.2), we get

— —Z dis), (3.6.3)
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d 1
Using (3.6.3) and the fact that pr —J, == glff, we get

N 1 <& : 1 _4
E ..a~d1$s _ _~dlSS a . 364
= Do) - (e (364)

=1

Q.|&

. d o
The expression for time derivative of £, is obtained by restricting %Eﬁ to the set

Jo = e This and (3.5.13) gives us

n—1

d 1 di 1 ~diss( 5
%Eﬂ = E ;(Zau SS) + Eua,n (Z2|Jb:“b - fa)
1 n—1 1 1 e o
= D)+ alna ( — (M) — &)
i=1
1 n—1 1 1 » i o
= o L) + JH 5 (W )
1=

Here, ML &, is a covariant vector just like a momentum. Hence, its component is

denoted by a subscript. Since ud‘SS is chosen to be zero, we get

n

= lz sediss). (3.6.5)
=1

Expressing udlss in terms of u‘jifs, we can write the expression for F,, as

d iss = 2a = iss 3] = 2Q
n%EM = ug (Z Z5) + Zug,j (—(n —1)zf  + z z (3.6.6)

k=1k#j—1

and choose

udlss—d ( (n—1) J1+sz>

k=1,k#j—1

j=2,...,m—1, (3.6.7)

where d,, is a positive definite control gain matrix, possibly dependent on zf, i =

d
1,...,n,and 2%, j = 1,...,n—1. With the dissipative control term (3.6.7), %Eu > 0.
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Note that this dissipation requires a complete communication topology as illus-
trated in Figure 3.6.2 for a network of 4 vehicles, i.e., ASSM requires more commu-

nication links between the vehicles as opposed to SSRE.

Figure 3.6.2: Completely connected communication graph for four vehicles.

Until now, we have shown that the system stays on a constant momentum surface
and the dynamics are such that the time derivative of the Lyapunov function is
non-negative. Using the LaSalle Invariance Principle [28], we will now characterize
the solutions to which the system converges. For ¢ < 0, the set given by €2, =
{(z,,x,;)|E, > c} is a compact and positive invariant set with integral curves starting

in €2, staying in €. for all ¢ > 0. Define the LaSalle surface

d
—E,=0¢.
dt " O}

On this surface, ugljs =0,7=1,...,n which implies that 2! =0fors=1,...,n— 1.

e = { @)

Let M be the largest invariant set contained in £. By the LaSalle Invariance Principle,
solutions that start in €. approach M. The relative equilibrium (3.5.12) in particular
is contained in M.

We now proceed to analyse in more detail the structure of solutions on the LaSalle
surface £. Using the condition 2} = 0 for ¢ = 1,...,n — 1, we get yi = y; for all
i,j € {1,...,n}. This gives yf — y§ = constant. Since we have chosen V. to be a
quadratic function of the terms yj' — y7, we get

ov.

g .
—— = constant =: A”.
oys @
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The equations of motion for the y restricted to £ are EL!(y?) = 0, where L is given

by (3.4.3). Equivalently,

+q, d ~ab i s« ~aba‘76 ~ab At
Y + dt (gz' gabxi) ==Y oy? = =g 7. (3.6.8)
Consider the function [ defined by
1
l‘."(_f]j‘.)‘) = —h‘."(xQ‘)
7 1 pz i 1 2 2
(ki + —)
where h¢ is as defined in (3.4.5). Then we have,
ol¢ ;
L= gq... 3.6.9
fs = 9 o (3.6.9)

We can assume, by shrinking ). if necessary, that (3.6.9) holds in €.

Let K be the projection of 2. onto the coordinates (x,, &,) where z,, = (2%, ...,z
Then, since [{ is continuous and K, is compact, there exist constants m; and n; such
that

for all zf* such that x, € (.. Using (3.6.8), (3.6.9) and the condition ¢ = g on &,
we get
d

(0 —05) = g" A — gy (3.6.11)

Therefore, on €

=1 = %(ggmg — GOADNE + V8t + VS (3.6.12)
for some constant vectors ¢ and v$. The only way (3.6.10) can also be satisfied is if
GPA] — gAY =0 and v§ = 0.

To simplify our calculations, we assume the n individual mechanical systems to
be identical. In this case, §¢* = g for any 4,5 € {1,...,n}. This gives, A, = A/

for any i,j € {1,...,n} and so for a connected network with potential V! having a
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maximum at z7 = 0 and y; = y7 for all 7+ # j, we get that y;! = yj on & for all
i,je{l,...,n}.

Using the definition (3.6.9) and the assumption that the individual systems are
identical, the fact that if — l? =0 on & yields

Gapds = G5 (3.6.13)

where g, = gap(xf), for all K = 1,...,n. Therefore, on the LaSalle surface &, we
see that solutions are of the form (z,,(t), T, (t), y2(t), .. ., ¥2 (), ¥5(t), - - ., ¥2(¢)) where
yi(t) = y§(t) for any 4,5 € {1,...,n}, J, = pa and condition (3.6.13) holds. Since

o =3%""  y? and the individual systems are identical, we have
oL S e .
e = D (Gea? + Gu)
n

i=1

Jo =

n
= gab Z gbcg;cj"z + y’L)

- ngab(gbcg;cj;z + yz)

for any i € {1,...,n}, where we have used the facts that g = y¢ and (3.6.13) holds

on &. Therefore, for each 7 we get

) 1. )
U = ﬁg“bub g“bgflbx (3.6.14)

Substituting (3.6.14) into the closed-loop equations for the Lagrangian L (3.4.3),

we get the following equations for the z{* variables,

d oLk aLH

dt - 3.6.15
dt 9%~ 9x? (3.6.15)
where
K Y 1 gt 2B e
i=1
3 1 { ab i 5 a
= 3 5l0hs = (e Vg™ ghugh)ite! = Viila?) ) (36.16)
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and Vy; is defined by assumption AS1. Here, k; =k foralli=1,...,n.

Note that L* is a sum of terms, each of which depends only upon the i*" vehicle
variables, i.e., on the LaSalle surface, the dynamics of #*" and ;' vehicle completely
decouple. Here L* is the Routhian R* for a mechanical system with Abelian symmetry
variables without a linear term in velocity and without the amended part of the
potential. For a general Lagrangian system, refer to [33] for an explicit expression for
the Routhian. In our case, the Routhian does not have the linear term in velocity
because, as mentioned in §3.3, for SMC systems, this term does not contribute to the
dynamics of the reduced system. The y{ dynamics given by (3.6.14) can be thought
of as a reconstruction of dynamics in the symmetry variables, obtained after solving
the reduced dynamics in the z{ variables.

We now make the following assumption for our systems.

AS2. Consider two solutions (x(t),y(t)) and (2°(t), §°(t)) of the Euler-
Lagrange equations corresponding to the Lagrangian L. given by (3.3.9).

If y2(t) = §7%(t) and gaa(2P(t))P(t) = gaa(ZP(t))2P(t) then x®(t) = 2(t).
Using (3.6.13) and the fact that yi = y$ on the LaSalle surface, we get from AS2
that 2¢ = x¢ and 0} = 07 for all 4,5 € {1,...,n}. So we get that the dissipation
control law given by (3.6.7) yields asymptotic convergence to synchronized motion on

a constant momentum surface (ASSM).

Theorem 3.6.1 (ASSM) Consider a network of n identical SMC' systems that each
satisfy AS1 and AS2. Suppose for each individual system that the origin is an equi-
librium and that the original potential energy is mazimum at the origin. Consider the
kinetic enerqy shaping defined in §3.4 and potential energy coupling V. defined in §3.5
where the terms in V. are quadratic in yi' — yj and the corresponding interconnection
graph is connected. The closed-loop dynamics (3.6.2) derive from the Lagrangian L.
given by (8.5.2) and the potential energy V! is mazimized at the relative equilibrium
(8.5.12). The control input takes the form (8.6.1) where ug® is given by (8.5.18) and

pi = p, ki = k. The dissipative control term given by equation (3.6.7) asymptotically
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stabilizes the solution in which all the vehicles have synchronized dynamics such that
07 = 07 and xi =z for all v and j, and each has the same constant momentum in
the 8¢ direction. The system stays on the constant momentum surface determined by

the initial conditions. |

~diss

Recall that in Case I above, we set ug,° = 0. Now consider Case II in which
we choose 49% = —A(J, — o). Let ug; for i = 1,...,n — 1 as in Case I. Then

Jo = (Ja(0) — pq) exp(—=At) + po and we can rewrite the reduced system in (z,, &)

coordinates as follows:

0 _
ERMa,)=| 1 |+ AMy, M??(J(0) — p) exp(—At). (3.6.17)
ﬁu
Here, u®™ = (4%, ...,a0% |) is an r(n — 1)-dimensional vector, J and  are r-

dimensional vectors with components J, and uy, respectively. When A = 0, we get
Case I. When X # 0, the momentum J, is no longer a conserved quantity. This case
needs to be analyzed more carefully since we are pumping energy into the system now
to drive it to a particular momentum value. Equation (3.6.17) can be considered to
be a parameter dependent differential equation with the parameter being A. When
A = 0, we already know the solution from Case I. From the continuity of dependence
of solutions upon parameters, we get that when 0 < A < 9§, the solution stays within an
e—tube of the solution in Case I for time ¢ € [0, ¢;] for some ¢; if the initial conditions
are in a § neighbourhood. Our simulation for pendulum/cart systems suggests that
this holds true for the infinite time interval. This can also be seen as a time scaling
problem. The fast time scale stabilizes the individual vehicle and synchronizes the
network. The slow time scale moves the whole network to a prescribed momentum

surface.
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3.7 Asymptotic Stabilization of Relative Equilib-
ria

In the previous section, we showed how to choose dissipation to achieve nontrivial,
synchronized dynamics given by 6 = 6 and z{ = z% for all 4,57 = 1,...,n. The
dissipation was chosen such that the network evolved staying on a constant momen-
tum surface depending upon the initial condition. Stabilization was proved using E,,
as a Lyapunov function on the reduced space. We also discussed the case (Case II)
in which we seek to drive the system to a prescribed momentum surface. We will
illustrate these dynamics for a planar pendulum-on-a-cart network in §3.8.

In this section, we show how to achieve ASSRE motion for a network of SMC
vehicles. We demonstate ASSRE for the relative equilibria given by (3.5.12). This is
done using a different choice of Lyapunov function from what is used in §3.6.

Consider the following function:
1. ~ 1 7=
Egrp = §(wc —vip) M(&. — Vi) + V! — §CTM22C (3.7.1)

where vgg is defined by (3.5.12). Egg is a Lyapunov function in directions transverse
to the group orbit of the relative equilibrium, i.e., Frr < 0 in a neighbourhood
of the Euler-Lagrange solution given by (x,,Z,, &,,2,) = (0,¢t,0,¢{) as shown in
Figure 3.7.1 and Egg = 0 at this solution. In this figure, Erg < 0 on each section
corresponding to a particular value of z,.

If we are to use Frg as a Lyapunov function, we need to know its time derivative.
For this, we need the following theorem. See [13] for the steps involved in proving

this theorem.

Theorem 3.7.1 [13] Consider the Lagrangian system with Lagrangian L. given by

(3.5.2) and equations of motion given by
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Figure 3.7.1: Frg < 0 in neighbourhood of group orbit.

For this system, the time derivative of Erg defined by (3.7.1) is given by

d . up,
%ERE = (flﬁc - VRE) :

i

Uq

In our case, there is no dissipation in the z¢ direction. Therefore, u’, = 0. Using
Theorem 3.7.1, the time derivative of Frp along the flow given by (3.6.2) can be

computed to be

d 1. . 0
d_ERE‘ = —(&. — VgE) - .
t n ﬁdlSS-

Choose

. no;zy for i=1,...,n—1
adiss = (3.7.2)
no, (22 —(¢*) for i=n

where control parameters o; are positive constants. Then,
_ERE‘ = ZO’Z + O'n Zb - Cb)Q > 0.

Let QFF = {(z,, &, 2%)|Ere > c} for ¢ < 0. QFF is a compact set, i.e., Egp is
a proper Lyapunov function. Assume that the system given by (3.6.2) satisfies the
following assumption.

AS3. The system (3.6.2) is linearly controllable at each point in a neigh-
bourhood of the relative equilibrium solution manifold.
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We now use the following result from nonlinear control theory which is stated as

Lemma 2.1 in [13] and the remark after that.

Theorem 3.7.2 [13] Let M be a smooth n-dimensional manifold and consider the

control system on M with coordinates x
&= f(z)+ ) gilx)u (3.7.3)
i=1

where f,g; are smooth vector fields and u;(t) are bounded measurable functions. Let
® be a smooth function such that ®(x) = 0 for x € S where S is a smooth, 1-
dimensional submanifold of M. Let Bg be a neighbourhood of S in M and ® be such
that ®(z) > 0 whenever x € Bg — S. Let ® be a first integral of f and u; be chosen

to be u; = — - gi. If the system (3.7.3) is linearly controllable at each point in Bg

ox
and 6*°®(x) > 0 for each x € S, then the submanifold S is exponentially stable, i.e.,

d(z(t)) < c®(x(0)) exp M for some positive ¢ and .

Using Theorem 3.7.2, we conclude that the system (3.6.2) with dissipative control
terms given by (3.7.2) goes exponentially to the set

Ere = {(x,, z,, %)) |[Erg = 0}.

On this set, the solution is given by (3.5.12). Thus, we have shown that the solutions

. 1
of the controlled system will exponentially converge to (z¢, 0% i’ 0°) = (0, —¢% +
n

17717 e

1
74,0, =¢?), with 4* constant.
n

Theorem 3.7.3 (ASSRE) Consider a network of n (not necessarily identical) indi-
vidual SMC systems that each satisfy Assumption AS1. Suppose for each individual
system that the origin is an equilibrium and that the original potential energy is maz-
imum at the origin. Consider the kinetic energy shaping defined in §3.4 and potential
energy coupling V. defined in §3.5 where the terms in V. are quadratic in yi — v
and the corresponding interconnection graph is connected. The closed-loop dynamics

(8.6.2) derive from the Lagrangian L. given by (3.5.2) and the potential energy V!
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is mazimized at the relative equilibrium (3.5.12). The control input takes the form
(8.6.1) where ugy'® is given by (3.5.18) and p; = p. If the dynamics given by 3.6.2
satisfy AS3, then the dissipative control term given by equation (3.7.2) exponentially
stabilizes the relative equilibrium given by (3.5.12) in which z¢ = ¥ = 0 for all

. . 1
i=1,...,n and 0] =0} and 6f =07 = —(* for all i and j.
n

3.8 Coordination of Multiple Inverted Pendulum

on Cart Systems

Y

Figure 3.8.1: The planar pendulum on a cart.

As an illustration, we now consider the coordination of n identical planar inverted
pendulum/cart systems. This section is taken verbatim from [38]. For the i*" system,
the pendulum angle relative to the vertical is x; and the position of the cart is 6;. Let
the Lagrangian for each system shown in Figure 3.8.1 be

1 . 1 .
L, = iaﬁcf + Beos(z;)x:0; + 5701-2 + Dcos(z;); i=1,...,n

where [, m, M are the pendulum length, pendulum bob mass and cart mass respec-
tively. g is the acceleration due to gravity. The quantities o, 3, and D are expressed

in terms of [, m, M, g as follows:

a=ml*>, B=ml, y=m+M, D=—mgl.
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The equations of motion for the i*" system are

ELi(z) = 0

where u; is the control force applied to the i® cart.

One can see that 6; is a symmetry variable. Further, it can be easily verified that
each pendulum/cart system satisfies the simplified matching conditions [8, 10]. The n
inverted planar pendulum/cart systems lie on n parallel tracks corresponding to the
0; directions. The coordination problem is to prescribe control forces u;, i = 1,...,n,
that asymptotically stabilize the solution where each pendulum is in the vertical
upright position (in the case of ASSRE) or moving synchronously (in the case of
ASSM) and the carts are moving at the same position along their respective tracks
with the same common velocity. The relative equilibrium vgg (3.5.12) corresponds
to x; = ; = 0 for all ¢, 0; = 0; for all + # j and QZ = %C for some constant scalar
velocity (.

Following (3.5.2), the closed-loop Lagrangian for the total system in the coordi-

nates €. = (T1,---,Tns 215+ -, 2n) = (L1, T2, Y1 — Y2, -, Y1 — Yns Y1 + ++* + Yn) Where
1
yi=0; + psinz; and p=xK+1— —is
P
r ]-.T"’ . !
L.= 5% Max -V (xy,...,Tn, 21,y 2n-1)- (3.8.1)

where M, is as in (3.5.7) and M, is as in (3.4.4),
~i 1.8 ~i
Jop = 0t — (k+1——=)—cos*(z;), b, = Bcos(x;)
b
n—1 1
gw=py, V!=-D Z (cos(mi) - —e—z2> — D cos(zy,)

with € > 0. The control law (3.6.1) for the #*! system is

kB (sin z; (ai? + cos(z;) D) — B; (?9‘9/6 _ u?iss))
: (3.8.2)

u; =
' a— ’5;—2(1 + k) cos?(x;)
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1 2 cos?(x;
where B; = — | o — 57(%) . Note that we have chosen p; = p and k; = k. In
) Y
the case ud™ = 0, by Theorem 3.5.4, we get stability of the relative equilibrium vgg

2
(SSRE) if we choose p < 0, € > 0 and & such that m, := a—(k+ 1)5— < 0. The choice
Y

of ud™® depends upon what kind of asymptotic stability we want, i.e, convergence to

a synchronized constant momentum solution or to a relative equilibrium.

3.8.1 Asymptotic stability on constant momentum surface

(ASSM)

Following (3.6.7), we let u{™ be

e

e 550)
1

and ud for s =2,...,n be

n—1
ud® — g, (—(n —Daia+ Y, zk)

k=1,k#i—1

=

£
Il

where coefficients d; are constant positive scalars.
We now analyze the dynamics on the LaSalle surface. On this surface, we have
y; =y; for all 4,5 € {1,...,n} and J = p where momentum y is determined by the

initial conditions. The expression for J is
J = Z (p’yéi + (B + ppy) cos(:vi):ic,) :
i=1

From the calculations made in §3.6, we also get y; = y; and cos(z;)&; = cos(z;)z;.

The z; dynamics are given by (3.6.15) with

LM = z": (% (a - (k+ 1)ﬁ—2 c0s2(:cz~))jcz2 + Dcos(zi)) . (3.8.3)

=1 v

To verify AS2 we need to check that if cos(z;)&; = cos(z;)4; about the origin for a

system corresponding to the Lagrangian L#, then z; = x; identically. This condition



04

can also be written as sin(z;) = sin(x;) + ¢, where c is a constant. Note that if z;(?)
is an Euler-Lagrange solution corresponding to L* for the i*" vehicle, then —x;(t)
is also a solution. Since we have a stable pendulum oscillation about the upright
position, z;(t) and therefore |sin(z;(t))| oscillates with mean zero for all i. This can
also be concluded from the fact that the solution curves are closed level curves in
the (x;,2;) plane of L* given by (3.8.3) and L* is invariant under the sign change
(x;,2;) — —(x;, ;). Since |sin(z;)| oscillates with zero mean for all 4, the constant ¢
must be zero. Hence, z;(t) = z;(t) for all 7, j identically and AS2 is verified. Thus
by Theorem 3.6.1 the pendulum network asymptotically goes to an ASSM.

From (3.8.3), it can be seen that on the LaSalle surface, the dynamics of z; are
decoupled from the dynamics of z; for all ¢ # j. For small z;, the dynamics of each
individual term in L* corresponds to the stable dynamics of a spring-mass system
with a x-dependent mass —m, > 0 and spring constant —D > 0. The mass —m,
which determines the oscillation frequency of the pendulum for each individual cart,
can be controlled by choice of k. For the nonlinear system also, constant energy
curves are closed curves in (x;,4;) plane. Hence, we have a periodic orbit for the
angle made by each pendulum with the vertical line with a Kk—dependent frequency.
On the LaSalle surface, py8; + (8 + ppy) cos(x;)i; = constant. Therefore, the velocity
of the cart 6; oscillates about a constant velocity with the same frequency as the
pendulum oscillation.

Figure 3.8.2 shows the results of a MATLAB simulation for the controlled network
of n = 3 pendulum /cart systems using the following values for the system parameters.
The pendulum/cart systems have identical pendulum bob masses, lengths and cart
masses. The pendulum bob mass is chosen to be m = 0.14 kg, cart mass is M = 0.44
kg, pendulum length is [ = 0.215 m. The control gains are p = —0.27, Kk = 40,
d; = d = 0.6 and € = 0.0005. We compute m, = —0.058 kgm? < 0 as required for
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stability. The initial conditions for the three systems shown are

(21(0) 21(0) 61(0) 61(0) 2(0) #2(0) 62(0) 62(0) w35(0) 3(0) 65(0) 65(0) )

=(0.45 0.70 0.58 0.50 0.07 0.19 0.37 0.27 0.77 0.31 0.63 0.98 ),

where the z; are in rad, z; in rad/sec, §; in m and 92 in m/s. Figure 3.8.2 shows
plots of the pendulum angle, cart position and cart velocity as a function of time for
all three of the coupled pendulum/cart systems. Convergence to an ASSM is evident.
The frequency of oscillation of the pendula can be observed to be the same as the
frequency of oscillation in the cart velocities. This frequency of oscillation can be
computed as w = \/lm and the period of oscillation as T = 27 /w = 2.8 s which

is precisely the period of the oscillations observed in Figure 3.8.2.

“J\H

t ﬂuw wm‘ ul ,..‘

l\l"m‘u"“ it

b (m/sec)
o

Figure 3.8.2: Simulation of a controlled network of pendulum/cart systems with
dissipation designed for asymptotic stability of a synchronized motion on a constant
momentum surface (ASSM). The pendulum angle, cart position and cart velocity are
plotted as a function of time for each of three pendulum/cart systems in the network.
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3.8.2 Asymptotic stability of relative equilibria (ASSRE)

In this case, we want to asymptotically stabilize the relative equilibrium vgg, i.e.,
z; = 2; = 0 for all 4, 6; = 0; for all ¢ # j and GZ = %C for all ¢ and any constant scalar
velocity (. Recall that this corresponds to each pendulum angle at rest in the upright
position and all carts aligned and moving together with the same constant velocity

(. Following (3.7.2), we let

diss

u; = nd;z;

fori=1,...,n—1and

ud™ = nd, (2, — ()

where the control parameters d; are positive constants.

1 1 1 1 1 1 1 1 1
15
0 20 40 60 80 100 120 140 160 180 200

t (sec)

’gwso— B

1 1 1 1 1 1 1 1 1
0
0 20 40 60 80 100 120 140 160 180 200

t (sec)

0 (m/sec)
& A LU o N & o

t (sec)

Figure 3.8.3: Simulation of a controlled network of pendulum/cart systems with
dissipation designed for asymptotic stability of a relative equilibrium (ASSRE). The
pendulum angle, cart position and cart velocity are plotted as a function of time for
each of three pendulum/cart systems in the network.
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Figure 3.8.3 shows the results of a MATLAB simulation for the controlled network
of pendulum/cart systems with this dissipative control. We choose ( = 3 m/s and
the remaining system and control parameters are as above in the ASSM case. The

initial conditions for the three systems are

(21(0) @1(0) 6:(0) 6:(0) 2(0) @2(0) 62(0) 62(0) x3(0) @3(0) 65(0) 65(0) )
=(095 0.23 0.61 0.49 0.89 0.76 0.46 0.02 0.82 0.44 0.62 0.79 ),
with same units as before. Figure 3.8.3 shows convergence of all three systems to

the relative equilibrium; the pendula are stabilized in the upright position, the cart

positions become synchronized and the cart velocities converge to % =1m/s.



Chapter 4

Reduced Equations of Motion for
Networked Rigid Bodies

In this chapter, we derive the reduced Lagrangian equations of motion for a network
of rigid bodies in SO(3) and SE(3). A similar problem is considered in [25], but in
that paper, the authors do the reduction using the Poisson setting. In this section, we
do Lagrangian reduction developed in [14]. Specifically, given a Lagrangian system
on T'() with Lagrangian L and symmetry group G, the reduced Lagrangian [ is a
function on TQ/G. Using a principal connection «, the bundle TQ/G is identified
with T(Q/G) @ g. Here, g is a bundle with base /G [14] and fibre g. Using «,
the variations are split into a vertical part and a horizontal part and the correspond-
ing vertical and horizontal equations are derived. For more details on Lagrangian
reduction, refer to [14].

The reduced dynamics derived in this chapter are used in Chapter 5 and 6 to
study stabilization and coordinated control of a network of rigid bodies. For example,
a network of rigid satellites has configuration space equal to n copies of SO(3) and
a network of underwater vehicles has configuration space equal to n copies of SE(3).
The symmetry in the dynamics of these systems comes from using coupling forces

and moments that only depend upon relative orientations and/or relative positions of

28
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the rigid bodies; the system dynamics are thus independent of the orientation and/or

position of the whole network.

4.1 Reduced equations of motions for SO(3) net-
work.

Here, we show how to derive the equations of motion for n rigid bodies, each with

configuration space SO(3) defined by
SO3) = {R e R¥>3 | det(R) = 1, RTR =T33}

where I35 is the 3 x 3 identity matrix. These bodies are coupled with a potential
depending upon their relative orientations. The configuration space is SO(3)" =

SO(3) x ... x SO(3) and the phase space is T(SO(3)") with coordinates
(Ri,...,Ru, By,..., Ry)

The coupling potential is chosen to be V = o 31 " tr(RL, R;). Let for a vector u,
denote the operator such that 4y = u x y for any vector y. Then, the Lagrangian in
terms of the angular velocity in body coordinates €2; € R® given by R, = RiS/Z\i is

n

1
L= > (@ Loy UZtr RL R (4.1.1)

i=1

L has SO(3) as its symmetry group with the symmetry action given by
R-(Ri,...,Ry, Ri€h, ..., R,,) = (RR:, ..., RR,, RRiQ, ..., RR,,). (4.1.2)

Let X; = RﬂlRi, i.e., X is the difference in orientations represented by R;;; and R;.
See Figure 4.1.1 for an illustration of the relative orientations in a system of three rigid
bodies. Then X; = X, — Q1 X; and X, X' = X; QX" — Qi = X, — Q.
Let w; = X;Q; — Qi1 be the difference of angular velocities of i*" and (i + 1) body
represented in the body frame of 7 + 1.
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AN

1 R3 R2
R-2 R1

Figure 4.1.1: Tllustration of relative orientation of body 1 with respect to body 2 and
relative orientation of body 2 with respect to body 3.

We identify the reduced space as

[Rl,Rg,...,Rn,Rlﬁl,RQQQ,...,Rnﬁn
S0(3)
= (Xl, XQ, ey Xn—l, Xle_l, X2X2_1, ce ;Xn—lezjla 91) (413)

= (Xl,XQ, .. .,anl,wl,w% e, Wh 1, Ql)

Here, we have used the notion of a principal connection on a principle bundle. In our
case, the “value” of the principle connection is the angular velocity of the first rigid
body in its body frame and belongs to the Lie algebra so(3). In our case, @@ = SO(3)",
G = S0(3), Q/G is n — 1 copies of SO(3) and g is so(3).

The Lagrangian L given by (4.1.1) should be thought of as a function of

(X,'w, Ql) = (Xl, Ce ,Xn_l,'wl, e, Wh1, Ql)

We denote by [ the Lagrangian on the reduced space such that

(X, w, Q) = % Xn: (] L) — V(X) (4.1.4)

=1
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where 2, j = 1,...,n can be expressed in terms of {2; recursively as
Qj = Xj—lﬂj—l —Ww;—1

and

The equations of motion are derived using the variational formulation of mechan-
ics. Using the identification given by (4.1.3), the variations are split into a vertical

part and a horizontal part [14] given by

Sy (X,w, Q) = ((X,w,),(0,0,7+ 2 xn)) (4.1.5)
S (X, w, Q) = ((X,w, Q), AX, A —w x A, o)) (4.1.6)

where n(t;) = 0,A(t;) =0for¢=0,1and j=1,...,n— 1 and

AX = (Xlxl, o Xn,lxn,l)
A-—wx A = <§\1—w1 x)\l,...,Xn_l—wn_l X >\n_1)-

Here, ty,t; are the initial and final times respectively of the paths in the variations.
We show the steps for calculating 6€2;. The calculations for § X and dw are similar.

Let 7 = R;'0R;, where §R; is the variation of a path R; in SO(3) with fixed end
points, i.e., 0R; (to) = 6Ry(t1) = 0. Since £ = Ry 'Ry, we have

~

6Q = RT'R; — RT'6R.R'R;
= R7YWR, — R7'SRRT'Ry + RT'R\R7'6R, — RT'R\RyV0R,
= 7+ |
Therefore, 62 =1 + Q2 x n.
The vertical variations correspond to variations in the group direction. In our
case, these correspond to variations in €2;. The horizontal variations correspond to

variations in the reduced space, which in our case is the (X, w) space. An arbi-

trary variation in the full configuration space can be split into a vertical part and
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a horizontal part once a connection is chosen. This splitting gives rise to a vertical
equation and a horizontal equation of motion respectively. The vertical equation is

the momentum conservation equation and is derived as follows using the fact
6V9i == Xz'5VQz'71 = XZ-X,-,I(SVQi,Q = ... = RZTRl(Svﬂl.

We compute

t1 t1 1
5V/t0 I(X,w, Q)dt = 5V/t0 <§ZQZTIZ-QZ-—V(X)> dt
t1 n
_ / (anfiavn,) dt
to

=1

11 n
_ / (ZQfIiRiTRl) 5y 2y dt
t

0 i=1

t1
= / a’(n+ Q x n)dt

to

_ / (=a” + (@ x Q) )n(t)dt

to

where we have used dy€2; =1+ Q1 x 1, n(ty) = n(t1) = 0 and integration by parts
in the last step. Here,
n T
a= (Z QiTIiRZ-TR1> =1LQ, +RTR [, + ...+ RTR, 1,9, (4.1.7)
i=1
the total angular momemtum as seen in body-1 frame, and n(¢) is arbitrary. Hence,
setting Oy ftil [ =0 we get
a=a x ;. (4.1.8)
This is the equation for conservation of total angular momentum in inertial space as
seen in body 1 frame.
Now, we calculate the horizontal equation of motion corresponding to the hori-

zontal variation. To do this, we first prove the following useful lemma.
Lemma 4.1.1 Let b € R® and R € SO(3) where {c1, ¢, €3} are the column vectors

of R. Then, tr(Rl;) =b-v where, v =c; X e; + ¢y X e; + ¢35 X e3 is the eigenvector

of R corresponding to eigenvalue 1 when R # 1.
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Proof We have
tr(Rb) = tr(bR)
= tr(ble; ¢, cs))
=tr([bxec bxecy bxcsl)
=e;-(bxe)+e-(bxey)+es-(bxcs)
=b-(cixe +cyxey+c3 Xes).

Now let v = ¢; X e; + ¢3 X ey + ¢3 X e3. Then,

b-(Rv)=(R™)-v
= tr(RRTb)
— tr(RR"bR)

=tr(bR) = tr(Rb) = b-v.

Since b is arbitrary, Rv = v, i.e., v is the eigenvector of R corresponding to eigenvalue

1. [
Next we calculate the horizontal variation of V(X). Using Lemma 4.1.1 and the

fact that trace is a linear operator, we get

n—1
=1
n—1
= o) (ul")"\ (4.1.9)
=1

where u?’ = (A; X e; + E; X e+ T'; X e3) and A;, X;, T; are the column vectors of
X; = R\ R;. Hence, from (4.1.1), we get that u?® is the eigenvector of X; corre-

sponding to eigenvalue 1.
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Next, we calculate §5€2; for i > 1 using (4.1.6). We have Q;; = 2;Q; — w;,

therefore we get

ouQiy1 = —dpw; + (0 X;)Qs + X065

Using this recursively, dz€2; = 0 from (4.1.6) and the identity Y (21 X z5) = (Y21) X

(Y z,) for vectors z1, 2z, and rotation matrix Y, we get

ouQliy1 = —)'\z' +w; X A+ A X (2,8) + 209,
= _-Az' =+ w; X >\z -+ Az X (szz) — fL‘i)‘\i—l +z;,w;_1 X xz’)\i—l +

Tihio1 X (TiTi—1 1) + 252105821
= o D Bty (—Aj Tw; X Aj+ A X (»’Ujﬂj))
7j=1

= .r;_ll ZRZFZRJ'-H (—j\j + w; X )\j + )\j X (.’CJQJ))
7j=1

= ZRa—le—Fl (—).\j + w; X )\j + )\j X (.’BJQ])) . (4110)
j=1
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Now,
t1 ™ tp T .

/ ZQTI 5HQ — / ZQTI ZRTR]_H (—Aj + w; X >‘j + )‘j X (iE]QJ)) dt
to ;=2 to =2

t1 n z 1 .
= / lRZIZQZ)T (—A]‘ + w; X )\j + )‘j X (.TJQ])) dt
to

1=2 j= 1
t1 n z 1
= / RTHRZ-I,Q,)TAJ-
to =2 j= 1
(R;F_HR IQ ) (’UJ]' X >\j + Aj X (.Z']QJ))) dt
t; noi—1
- / ZZAT dt Rl RiI;Y)
to =2 j=1
+ (I RLiSh) x (w; — 2,6) ) dt

5 S (e

to j=1 i=j+1
+ (RJT+1R,IZ91) X (’l.Dj — $]Q]))dt

(4.1.11)

where we have used integration by parts and the fact that A(¢) vanishes at t,%;.

Since by (4.1.4)

t1 t1
5H/ (a2, w, Q)dt = 5H/ ! (ZQTIQ V(X )) dt
to

to

tp, N
= / O L6y — 64V (X))dt
to

=2

we get from (4.1.9), (4.1.10) and (4.1.11)

t t; n—1 n
1 1 d
5H/ l(z, w, Q)dt = / ST (dt (R, RiI, ;)

to 0 j=1 i=j+1

+ (RI RiLiSh) X (w; — 2,6) — oul ) dt.

We set oy til I = 0 and note that this holds for arbitrary A;(¢). Again, using the fact
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that ;.1 = z;Q2; — w; we get the horizontal equations to be for j =1,...,n—1
( > Rl RIQ ) ( > R, RIQ; ) X (Q41) + ou”. (4.1.12)
i=j+1 i=j+1

Since j goes from 1 to n—1, we have n — 1 horizontal vector equations. For j =n—1,

(4.1.12) is
d
L2 = (1) X (Q) + our’ ;. (4.1.13)

Let uP®* = 0. We now show that if

d S S
I]d Q; = (1;Q;) x () + o(uf’ | — u’) (4.1.14)
for j =n,n— .k + 1 where k£ > 1, then (4.1.14) is true for j = k. Let
a]:<z RJTHRIQ)_IQ +R+1(Z RIQ) (4.1.15)
i=j+1 1=j+2
Then we have
da; . ~ ~ .
= 6y - QR (Z R: 19) + R} Z (RO(L) + RiLiS)
=542 1=j+2
(4.1.16)
Using (4.1.12) and (4.1.16), we get
L9y + R, Z R (n (1:€2) +m) = ;) x Q; + ou?”. (4.1.17)
1=j+2
Now we use the assumption that for j =n,n — ,k+1, (4.1.14) is satisfied. This
gives
LSy + R}, Z Ri ( ul®)) = (I;) x @ + oul”. (4.1.18)
i=j+2

Now use the fact that u?’ is the eigenvector of R " R;, i.e., Riy1uf’ = Ryu?®. This
implies that all the terms inside the summation in (4.1.18) cancel except for R; ou?’ ;.

We now get
LSy + R Rjaou?, = (1;Q)) x Q; + oul”. (4.1.19)
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Again, using R, | Rjouf, = uly,, we get
LSy = (1;Q)) x Q; + o(u?® — u??,). (4.1.20)
(4.1.20) is satisfied for j =2,...,n. Using (4.1.20) in the expression for a in (4.1.8),
we get the dynamical equations to be
L, = (L) x Q —oul®

IQQQ = (IQQQ) X QQ + O'('U,Ile — Ugs)

= (4.1.21)
Inflﬂnfl = ([ 1) X Q1 +o(ud’y—ul’ )
L = (I,) X Q, +ou’_,
The following set of vector equations for s = 1,...,n — 1 along with (4.1.21) gives

the complete reduced equations of motion in (7'SO(3))"/SO(3). These equations
correspond to the dynamics of the relative orientations and follow from the following

expression for X;:

X, = (Rj\Ri)
= R \R:R;'Ri — R;\Ri R\ R

Since A;, X;, I'; are the column vectors of X;, we have

d A A
g | A X Fi]:[Ai Y Fi]ﬂi_ﬂi+1[Ai >, I, |- (41.22)
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4.2 Reduced equations of motions for SFE(3) net-
work.

In this section, we show how to derive the equations of motion for n rigid bodies,
each with configuration space SF(3) coupled with a potential that depends upon
their relative orientations and relative positions. The configuration space is SE(3)" =

SE(3) x ...x SE(3) and the phase space is T(SE(3)") with coordinates

(Ry,...,Ru,Ri,...,Ryby, ... by by, ..., by)

The coupling potential is chosen to be

n—1
V= (o1tr(RE Ri) + 0|b; — by [|) (4.2.1)

1

i

with 01,09 € R. The Lagrangian in terms of the angular velocity in body coordinates

; given by R; = Riﬁi and linear velocity in body coordinates given by v; = R, 'p,

1s:
n 1 n—1 n—1
L= —(QFr,Q; + v M;v,;) — oytr R R)-—o b; — b1 || 4.2.2
;2(1 ; ) 1(; i1 i) 2;” all* (4.2.2)

L has SE(3) as its symmetry group with the symmetry action given by

(R,B)- (Ry,...,Ru,R1,..., Ry, by, ... by, by, ... by)

= (RR:,...,RR,,RR,,...,RR,,Rb, +b,...,Rb, +b,Rb,, ..., Rb,)

Let y; = b;11 — b; and X; = R;rllR,- as defined in §4.1. We identify the reduced space

as

[RI: RQ, s 'aRna bla HRI bn: RlﬁlaR2§\225 e Rnﬂna bla ey bn
SE(3)

= (Xl, e ,Xn_l,yl, v ,ynil,Xle_l, e ,Xn_an__ll,yl, e ’ynfl’ Ql,'vl)

= (X17 s 7Xn—17y1: ey Yp_1, Wy, - 'awn—lvyla R 'yn—laﬂlavl)
= (Xa Yy, w, Q, Ql; vl) (423)
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The horizontal and vertical variations corresponding to the identification made in

(4.2.3) are

5V(X7 Yy, ﬁ’: 7’..y: Ql; Ul) = ((X7 Yy, Iﬁ)a ’ ya Ql; Ul)a (07 07 07 07

M+ Q1 X1y, 7y + Q1 XMy + vy X "71)) (4.2.4)

6H(X7y7ﬁ)7y7917v1) = ((X7y7’lb7’y7 91701)7 (S‘Xa 5y7A —w X A: 5y70a0))
(4.2.5)
where 1, (t;) = 0,m5(t;) =0,Aj(t;) =0fori=0,1and j=1,...,n—1 and

~

AX = <3\1X1, " A,HXR,1>
A-—wx A = <§\1—w1 x)\l,...,Xn_l—wn_l X >\n—1)-

Here, ty,t; are the initial and final times respectively of the paths in the variations.
As in §4.1, setting the variations given in (4.2.4) and (4.2.5), we can find the cor-
responding vertical and horizontal equations of motion. Without going through the

calculations, we state the final equations of motion below:

Iznz = (IZQ,) X Qz + (szz) X v; + Ul(ups ’U,ps)

Ti—1 " %ri

Miv; = (Mv;) x Q; + oguly;
where
uli=(A;xe+E; xe+ T xe3). (4.2.6)

A;, X, T; are the column vectors of R\ R;, ujy = u?s = 0 and uf, = —R;'(2b; —

bi+1 — bi—l) for ¢ = 2, NN (e 1, u’}i = —Ri_l(bl - bg) and U;;Jcil = —R;l(bn - bn—l)-



Chapter 5

Stable Synchronization of

Networked Rigid Bodies

In this chapter we present a stabilizing and coordinating control law for a network
of rigid bodies with unstable dynamics. The bodies are models for satellites in free
space following the rigid body Euler equations or models for underwater vehicles
following the Kirchoff’s equations of motion. In the former case, the configuration
space for each individual in the network is the Lie group SO(3) and in the latter
case, it is the Lie group SE(3). The control law we derive is used to synchronize
the dynamics across a network (using coupling potentials) of such bodies and also
to stabilize each individual body (using kinetic shaping). The closed-loop system is
again a Lagrangian system with SO(3) or SE(3) symmetry. This setting permits us
to use energy methods to prove closed-loop stability.

We first design techniques to stabilize the relative equilibria for a single body and
then go on to couple a group of such bodies and prove stability for the whole system.
In Chapter 3, we studied coordinated control of networked systems belonging to the
SMC class of mechanical systems with unstable dynamics. We proved stabilized,
coordinated motion of a network of such systems and illustrated our results with a

network of controlled carts each balancing an inverted pendulum. It was assumed
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that each of the systems has a symmetry group that is Abelian and that there is no
gyroscopic coupling between the symmetry and nonsymmetry configuration variables.
The actuation was in the symmetry direction of the system. We continue with our
theme of stabilization and synchronization and prove results for the case when the
symmetry group is either of the non Abelian groups SO(3) and SE(3). We consider
the SO(3) case in §5.1 and move on to the SE(3) case in §5.2.

5.1 Stable Synchronization of SO(3) vehicles

The free rigid body in space has configuration space the Lie group SO(3) and state
space T'SO(3) where a particular element (R, w) € T'SO(3) denotes the orientation of
the rigid body in inertial space and the angular velocity of the rigid body in inertial
space. The angular velocity of the body in the body frame is denoted by €. In the
language of Lie groups, w is the right translate of the element R € TrSO(3) to the
tangent space at the identity 7;SO(3) denoted by so(3) and € is the left translate of
R to so(3), i.e.,

R=&R, R=RQ. (5.1.1)

Here, for a vector a, the notation a denotes a matrix such that ax = a x x for any
vector x.

Our goal is to couple n such rigid bodies using potentials designed to align their
orientations in inertial space and make all of them point in a particular direction. An
application example would be a network of rigid communicating satellites equipped
with telescopes for interferometry purposes.

In this work, we consider the more challenging problem of coordinating the net-
work so that the rigid bodies are not only synchronized in orientations but each one
is also rotating about its individual (unstable) middle axis. We do this without de-
stroying the Hamiltonian structure of the system as opposed to the treatment in [46].

As mentioned in the chapter introduction, this setting gives us the readily available
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conserved Hamiltonian function for stability analysis.

In §5.1.1, we show how to achieve stability of the relative equilibrium of individual
system corresponding to rotation about middle axis using kinetic shaping. The control
law effectively swaps the middle axis and the short axis, thereby making the open-loop
unstable axis a closed-loop, stable axis.

In §5.1.2, we couple n such systems using artificial potential for synchronization
purposes. The coupling potential depends only upon the relative orientations and is
extremized when the orientations are aligned. An analogous case for point particles
would be to artificially couple them using controls coming from a potential that
depends upon the relative spacing of the particles. Since the closed-loop system is
Lagrangian, stability for a particular relative equilibrium of the system is proved
using the Energy-Momentum method. This relative equilibrium corresponds to the
case when the bodies are aligned and each one is rotating about its short axis.

In §5.1.3, we prove closed-loop stability of the network for the case when the
bodies are aligned and each one is rotating about its middle axis. This is achieved by
combining kinetic shaping in §5.1.1 and potential coupling in §5.1.2.

Aymptotic stability for the network is handled in Chapter 6.

5.1.1 Spin Stabilization of SO(3) Vehicle about its Unstable

Axis

Consider a rigid body with moments of inertia given by I, I, I3 such that I} > I, >
I3. I, I, I3 are called the short, middle and long axis, respectively. Refer to [34] to
see a discussion of the various relative equilibria for this system and their stability.
It is shown that the steady spin about the short axis is stable and about the middle
axis is unstable.

Here, in the spirit of [9], we derive a kinetic shaping control law to stabilize the
steady spin about the middle axis. In [9], the authors use an external control torque

about the long axis and show stability of the steady spin about the middle axis.
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In doing so, they also change the Hamiltonian structure of the system. In [9], the

equations of motion with a single external torque about the long axis are as follows:

IlQl - (IQ - 13)9293
IQQQ = (I3 - 11)9391

IgQg = (Il — IQ)QIQQ +u

where u = —e(I; — I5)2;9Q5 and € > 1. In the same paper, it is shown that the closed-
loop system, though Hamiltonian, no longer evolves on SO(3), but on SO(2, 1) defined
as

SO(2,1) = {P € (R)** | det(P) =1, P Iy P =1,},

where I, ; is a diagonal matrix with entries {1, 1, —1}. In our work, the control laws are
carefully chosen so that the closed-loop system also evolves on SO(3). This is crucial
in our setting since we use coupling potentials in §5.1.2 depending upon the relative
orientations and these potentials are functions on SO(3). Hence, it is important that
the closed-loop system also evolve on SO(3). This constraint is achieved by using
control torques about at least two of the rigid body principle axes.

Let the angular velocity of the rigid body in the body frame be Q = (€, Qy, Q3).
The Lagrangian for the rigid body in terms of body angular velocity coordinates is
L= %(119% + 1,92 + I302%) and the Euler equations of motion with control terms
uk® and uk® about the 2 and 3 axes are

Ly = (L= L)%
LYy = (I3 — I,)Q3Q; + ub® (5.1.2)

IgQg = (Il — 12)9192 + Ulgs .

We want to stabilize the otherwise unstable middle axis rotation € = (0,2, 0) for
constant ). Our motivation here is to choose controls such that the closed-loop
equation is Lagrangian with Lagrangian given by L, = % (I,QF + po[,Q03 + p31303).
We will choose the real constants ps and ps such that poly > p3ls > I;. This way,
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the middle axis of the system without controls is effectively made the short axis of
the closed-loop system.

Consider the following choice of controls:

1
uks = (11(1 — )+ (2 - 1)) Q3 (5.1.3)
P2 P2
ks 1 P2
P3 P3

where the constants ps, p3 are chosen in the following manner:

1
p3 > = >1 (5.1.5)
I
I3
po=(ps— 1) +1. (5.1.6)
2
This gives us p3ls > I; and
I, — I3 = p2_[2 — pg[g > 0. (517)

The closed-loop system can be verified to be

LY = (pody — p3l3) Qs
,02[2(22 = (pglg - 11)9391 (518)
,03I3Q3 = (Il - /12]2)9192 .

This corresponds to a Lagrangian system with the Lagrangian L. given by

DN | =

Also, from (5.1.7) and (5.1.5), it follows that palo > p3l3 > I;. Therefore, for the
closed-loop system, the short axis is what corresponded to the middle axis in the open-
loop system. Thus, we have effectively stabilized the steady middle axis rotation for

the rigid body and we have the following theorem.

Theorem 5.1.1 Consider a rigid body with equations of motion given by (5.1.2). If
the controls are chosen to be those given by (5.1.3) and (5.1.4), then the closed loop
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equations are derived from the Lagrangian (5.1.9). The control law stabilizes the rigid
body rotating about its intermediate axis. The scalar constants ps and ps are given by

(5.1.6) and (5.1.5).

Note that the axes about which we apply controls in (5.1.2) are not unique. The
kinetic shaping will work if we choose any two of the three axes of the rigid body. We
chose the second and third axis in this section only for illustrative purposes. Also,
we can make the original long axis effectively look like a short axis in the closed loop
system using kinetic shaping. This could turn out to be useful, for example, when we
want to make the Hamiltonian a minimum for rotation about the long axis.

The controls u%® and u%® in (5.1.2) do not break the symmetry of the system since
they depend only on €2 and not on the orientation R directly. Hence, the closed-loop
equations of motion make sense as reduced equations for a rigid body with SO(3)
symmetry.

We can at this point introduce dissipation to asymptotically stabilize the solution
given by £(t) = (0,2, 0) for some constant (2. This will correspond to the case when
the rigid body rotating about its unstable axis with a constant angular velocity is
made asymptotically stable. But this does not achieve the goal we have set forth for
ourselves. Our aim is also to make the rigid body orient in a particular direction in
inertial space in addition to having it rotate stably about its middle axis. Since our
controls at this stage still has the orientation symmetry in it, we can only achieve
asymptotic stability in the reduced space. This does not translate to asymptotic
stability in the inertial space. To do this, we will need to break the symmetry in the

control law as we demonstrate in the next chapter.

5.1.2 Coordination of SO(3) Network with Stable Dynamics

In this section, we show how to use an artificial coupling potential to achieve alignment

of n rigid bodies in inertial space and at the same time each individual body rotates
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about it short axis. In Chapter 4, we already saw the derivation of reduced equations

of motion for the following choice of coupling potential:

= otr( Z R! R (5.1.10)

with 0 € R. Note that if R, = R;y1 for 1 =1,...,n— 1, the potential V is at a
minimum if ¢ < 0. For the sake of completeness, we will show that this potential is
at a minimum when R; = R;;; for 0 < 0 for the case of two bodies. The case for n
bodies is an easy extension. The proof will proceed in two steps. First, we will show
that 6V is zero when R; = R, and then we will show that 62V > 0 when R; = R,
and is equal to zero only when dR; = 0 R,.

Step 1
§V = obtr(Ry'R)
§(Ry'Ry))

R,'00,R, — R,"60,R,) where 0; = 6R;R;"

= otr

(

= otr(Ry;'0R, — R;'0RyR;'R))
(R,
(

= otr (501 — 502)R1R )

Therefore, 6V |g,—g, = atr((S/B\l - (5/0\2) =0

Step 2 Using a similar procedure, we can show that
82V = otr(R;'60,00, R, + Ry '560500,R; — 2R; 50,00, R;).

Therefore,

82V | pyer, = 0t1(061001+00200; —25660566,) = —20(56, —5605)" (56, —565). (5.1.11)
Here, we have used the identity that tr(&i)) = —a-b. For 0 < 0, the expression
(5.1.11) is always positive semi-definite and equal to zero only when 660, = 605, i.e.,

when dR; = 6 Ry. Hence, the potential V' is a minimum when Ry = Rj. |
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We would also like to mention that a variation of this potential is also used as a
Morse function to study the topology of SO(3). See [35] for example.
As in Chapter 4, the Lagrangian for the network L, is

n n—1
1
Luet, = Lot =V =) 59{1,-9,- —otr() R\ Ry).

=1 =1

The equation of motion for the i*® body is

2

where

’U,fs = (Az X e; + Ez X ey + Fz X 63), (5113)

A;, %;,T; are the column vectors of R;;'| R; and uf’ = u?® = 0. Here, e; = (1,0,0)7,

e2 = (0,1,0)” and e3 = (0,0,1)7.

Remark 5.1.2 1. Forces coming from a potential between two bodies are equal and
opposite in inertial space according to Newton’s third law. However, here we see
that they are equal and opposite in the body frames as well. This is because the

vector ub’ is the eigenvector of R}, R; as we shall show below in Lemma 4.1.1.

2. If we consider a graph with vertices representing the bodies and edges the po-
tential between them, then the potential we have chosen is “minimal”, i.e., the

graph is connected as illustrated in Figure 3.5.1.

We will show in this section that the relative equilibrium corresponding to

Q. = (9,0,0)
(5.1.14)
Aie Eie Fie ] = [ € €2 €3
where 7 = 1,...,n is stable. This solution corresponds to the case where each body

is rotating about its short axis and the bodies are aligned, i.e., Ry = Ry = ... = R,,.
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Let m; = R;I;Q; be the angular momentum of the i** body in inertial space. The

momentum phase space is 7*(S0(3)") and the momentum map is
J(Ry,..., Ry, 1Ry, .., Ry) = ) (5.1.15)
i=1

The Energy-Momentum Method [33]

The Energy-Momentum method is a technique for proving stability of relative
equilibria. For simple mechanical systems, we have the following setting: A symplectic
manifold P = T*(Q with a symplectic action of a Lie group G on P, an equivariant
momentum map J : P — g* and a G—invariant Hamiltonian H : P — R. If the
Hamiltonian vector at the point z, € P points in the direction of the group orbit
through z., then the point is called a relative equilibrium. It can be shown [33] that
ze is a relative equilibrium if and only if there is a & € g such that z.(t) is a critical

point of the augmented Hamiltonian Hg(z) = H(z) — (J — p, &) where pp = J(z,)-

Definition 5.1.3 Let S C ker DJ(z.) and S be transverse to the G y—orbit within
ker DJ (z.), where Gy ={9 € G |g-pn=p}.

Theorem 5.1.4 The Energy-Momentum Theorem [33]. If 6*H¢(z.) is definite
on the subspace S, then z. s Gy —orbitally stable in J () and G—orbitally stable
i P.

Let us first explain the interpretation of the above theorem for the rigid body case.
For the rigid body, the space P consists of its orientation and angular momentum,
i.e., (R, ) is an element of P where R denotes the orientation and 7 is the angular
momentum of the body in inertial space. The space S is a subset of a constant
momentum surface which is transverse to a G y-orbit within the constant momentum
surface. For a rigid body, Gy, orbit at a point corresponds to infinitesimal rotations
about the p axis. For a rigid body, the conditions in the above theorem are satisfied
for a relative equilibrium where the body is rotating about its short principle axis.

The statement SO(3)—orbitally stable in P means that the rotation of the rigid body
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about its short axis is stable, but there could be drift in its orientation in the inertial
space. Even though the rotation about short axis is Lyapunov stable in reduced
space, what we physically “see” in inertial space is that the rotation about short axis
is Lyapunov stable but the overall orientation of the body could be drifting.

Even though the Energy-Momentum theorem only gives us stability of rigid body
modulo drift in the group direction, for the rigid body, we can conclude a bit more
stability, which is that the rotational drift is such that the axis of rotation stays
“close” to the initial orientation. This is because of the compactness of the group
SO(3) [43]. This conclusion does not hold true in SE(3) as observed in [32]. There
can be drift in the non compact R?® direction in the SE(3) case.

The augmented Hamiltonian in our problem setting is given by
Hé =H—(J—u,k (5.1.16)

where H is the Hamiltonian corresponding to Ly,

n n—1
H = % Z (WZRJZIR;I‘/TZ-) + Utr(z RZT+1RZ-) :
i=1 =1

Here, & is the common angular velocity of the rigid bodies at the equilibrium and
p is the corresponding total angular momentum at the relative equilibrium. Let
Iﬁl = RJ;IR; 1 where I, is the constant moment of inertia matrix of body 7 in its
own frame and Ij; is the moment of inertia of the i body in the inertial (lab) frame.

We will need Lemma 4.1.1 and the following lemma in our calculations.

Lemma 5.1.5 For R € SO(3) and a,b € R®, we have tr(Rab) = a” Rb—(a-b)tr(R).
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Proof Let {e1, ¢, c3} be the columns of R. Then,

tr(R&B) = tr(&i)[cl Co Cg])
=tr(ax(bxec) ax(bxcy) ax(bxcs))

= tr([ d d, dj }) where d; = (a - ¢;)b — (a - b)¢;

— i((a ~¢i)(b-e) — (a-b)(c;- ei))

=a’Rb— (a-b)tr(R)

Let (5/\0Z = dR;RT be the right translate of the variation of §R to the identity and
A = (Ajip1 X e +2;,41 Xea+T 41 X es) where A; 41,341, 41 are the column
vectors of RiR;rll. Then using Lemma 4.1.1, we get the following expression for the
first variation of H:

n

0He = ) (w] R (6R;'mi + Ry 'om)) Z(sm

=1

n—1
+otr (Z SR Ri + R[+115Rz'>
i=1

n

= Y (#/Rd;'(-R; "SRR, 'm; + R, 'om;)) —&- (O om;)

i=1
n—1

+otr (Z(_RH—II(SR’L-HRH}IRZ + RH_II(SRZ))
=1

n

= Z (wiTRiIzll(—(@m + 57ri)> —¢- (Xn: 57;)
i=1

1=1

n—1
+otr (Z(—Rﬁl(@m + RijlﬁRi))
=1

— Z(ﬂ'iTRZ-Il;l((Sm 00; ><71'Z Z(Sm

i=1

n—1
+otr (Z(R;}l(éez — 502+1)R,)>

=1
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Therefore, we get

n—1
0H¢ = Z (w] 1" (0m; — 66; x ;) Z(sm o> (66;—60;.1)-2A; (5.1.17)
=1 i=1

Therefore, for an equilibrium 7; = m;., B; = R;e,

n

5H€|eq = Z(dﬂ'z (Ilez Tie — E) + 50 (( lei 7'('16) X Tie + O'(Q[Z'e — Ql(ifl)e))) (5118)
i=1
where Ay, = A, = 0 and [} = Ilz’-1|eq. Note that 2, = 0 when R; = R;;;.

lei

Therefore, 6 H €|eq = 0 when the following conditions hold,

Il; Tie = S = /\iﬂ'ie

(5.1.19)
Ri=R; fori#j
where J; is an eigenvalue of I_]. An equilibrium given by (5.1.19) corresponds to a
system in which all the bodies have the same orientation and each is rotating about
the same principle axis at the same rate. Note that we can have a system where
each body has the same rotation matrix, but different “physical orientations”. This
is related to the freedom in choosing the matrix K in [25]. This can happen when we
represent the orientation matrices of the bodies in different inertial frames.
The second variation of H ¢ can be calcuated using the same procedure used to

derive (5.1.17). We will also need Lemma 5.1.5 and the result is as follows:
6*Hg = Z (8°K;) + 6°V (5.1.20)
where

K —(57rTI 157r1+2(57r (I 7, —1I,; 7rz)50 +(50T(I i — 70, 7rz)50i (5.1.21)

n—1

PV=0% ((50,~ - 50,-+1)T(RZ~R£L1 - tr(RiRz;l)]13x3) (56, — 50,-+1)) . (5.1.22)

i=1
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Therefore, for identical bodies with body moment of inertia matrices I; = I, =

.. = I, = I, at the relative equilibrium given by (5.1.19), we have
52Ki|eq = 5W?Ilgléﬂi -+ 257!',LT (Ilgl — )\]ngg)ﬁ'eéoi
—007 7 (I—1 — My3) 700, (5.1.23)

52V‘eq = _20'2 5014_1 (59Z — 5014_1)) . (5124)

We will show that the sum of the above two expressions is positive definite re-
stricted to the subspace S C ker DJ such that S is transverse to the G u—orbit within
ker DJ for sufficiently negative 0. Since S C ker DJ, we have ) ., dm; = 0. Using
this information, (5.1.23)-(5.1.24) can be written as

n—1 /n—1 _
I} B )
0°Heleq = > (Z(aﬁn le O+ 287} (I — M) 7. (60, — 60;1)

k=1 \j=k
20 T
= 7(549,- —60,,1)7(50; — 50H1)) (5.1.25)
+omh 1, o, — Z(soT — M) #.00,
where we have substituted dm, = —Z?:_ll d7; in the expression linear in d7r; in
1 1
(5.1.23). Now suppose \; = = — = MXfori=1,...,n, ie., each body is

(L) (Ih

rotating about its short axis (the original equilibrium of interest (5.1.14)).

Lemma 5.1.6 Suppose A, B are constant matrices with A symmetric positive def-
inite. Let vi,vy,v3 be the eigenvalues of BPA™'B. If k < —max{v,n,v3} then

T Az + 22" By — kyTy > 0.

Proof Since A is symmetric positive definite, we can find a symmetric A’ such that
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A = A'A'. Therefore,

2"Az +20"By — ky'y = (Az+A 'By)"(Az+ A 'By)
—(By)"A™'By —ky'y
= (Az+ A'_lBy)T(A':c + A'_lBy)

+y" (—kI - B"A7'B) y

From the above expression we see that if & < —max{v, 1,3}, the only way the

expression can be zero is when & = y = 0. Otherwise it is greater than zero. |

(n—1)°
2

maximum eigenvalue of —7, (Il;1 - A ) I (I l;1 - ) 7., then the first expression

Using the above lemma, we get that if we choose 0 < — v where v is the
in (52H£\eq is positive definite. The second term is positive definite and the third
term is positive semi-definite since X is the smallest eigenvalue of I;'. The null
space of (I,;' — AI) consists of vectors parallel to .. But these vectors are excluded
when we evaluate this on 7.00;. Therefore, the only time 52H£\eq = 0 is when
dm; = 0,00; = 60,41 and 60; || w, for i = 1,...,n. Now if each §0; || 7., then this
means that the infinitesimal rotation of each body is about the 7, axis. Therefore,
using the fact that §J = 0, these infinitesimal rotations correspond to the G/, orbit

within ker DJ. Hence, Hence, 62H €|eq is definite when evaluated on the subspace S.

Theorem 5.1.7 For the n rigid body problem, the relative equilibrium (5.1.14) is
stabilized with the potential shabping control law given by (5.1.13). This equilibrium
corresponds to all n rigid bodies having the same orientation with each one rotating

about its short axis.
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5.1.3 Coordination of SO(3) Network with Unstable Dynam-
ics

In this section, we use kinetic shaping developed in §5.1.1 and potential coupling

used in §5.1.2 to achieve stability of the relative equilibrium corresponding to the

case when the rigid bodes are aligned and each one is rotation about its otherwise

unstable middle axis.

Consider the following controlled dynamics for the ¢th body given by

_(uﬁm - ufls)
LU=(Ti) x Qi+ | —(ul, , — uly)/ps + ulf (5.1.26)

_(Uffl,s — ujy)/ps + ufy

where u!’ is the potential shaping control term defined by (5.1.13). Also, u}’ denotes
the I component of the vector u}® and similarly for u%*. The kinetic shaping control
terms uf, ukS are as given in (5.1.3) and (5.1.4) for the sth body. It can easily be
checked that the closed-loop equations now have the form (5.2.28), but with the

original middle axis now the short axis. Hence, we get the following corollary.

Corollary 5.1.8 The relative equilibrium corresponding to n rigid bodies with the
same orientation and each rotating about its unstable, middle axis, is stabilized for

the controlled dynamics of (5.1.26).

In this section, we have shown how to couple n rigid bodies in SO(3) using po-
tentials to stabilize the solution in which all of them are aligned with each other
and at the same time rotating about their individual middle axis. We will show
how to achieve asymptotic stability of this solution in the next chapter. In the next
section, we will consider n rigid bodies in SE(3) and show how to achieve a stable

synchronization.
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5.2 Stable Synchronization of SFE(3) vehicles

We now consider the case when the rigid bodies are immersed in a fluid with a
potential flow. The bodies, in addition to having an orientation, can also translate
and in this case, the configuration space is the Lie group SE(3). An element in SE(3)
is denoted by (R, b) with R € SO(3) and b € R® with the group action being

(R,b) - (R1,by) = (RRy, Rb; + b). (5.2.1)

Here, R represents the orientation of the body and b the displacement vector of the
body from the origin of an inertial frame. For this action, the inverse of (R, b) is
(R7',—R7'b). A more illustrative notation is written in a matrix form in which the
group action is represented by matrix multiplication as follows:

R b R b RR' Rb +b

= . (5.2.2)
0 1 0 1 0 1

The angular and linear velocities of the body in the inertial space are obtained by
computing the right translate to the tangent space at identity of an element belonging
to the tangent space of SE(3) at a particular point (R, b) as follows:

R b R —R7'b @ b—wb

. = (5.2.3)

0 0 0 1 0 0
Here, w is the angular velocity of the body in inertial space and b — @b is its linear
velocity in inertial space. The velocity components in the body frame are similarly
obtained using the left translate. They are denoted by € and v and calculated as

follows:

0 1 0 0 0 0

R —Rb R b RR R Q
: (5.2.4)
0

v
0
The rigid body SE(3) dynamics have been studied in the literature [29, 30, 31, 32]

and a number of other papers in the context of dynamics of underwater vehicle. In
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[32], the authors show that the relative equilibrium for a rigid body rotating and
translating along its short axis is Lyapunov stable modulo drift in the translational
parameters. They obtain this result using the reduction by stages technique. This
kind of stability is the best we can hope for and indeed in simulations, the authors
observe such drift.

In our work, we would like to asymptotically stabilize this motion for individual
as well as a synchronized network of such bodies and also get rid of the translational
drifts. We will consider bodies whose centre of gravity and centre of buoyancy co-
incide. In [30], it is shown how the dynamics of such a body can be modelled as a

Lie-Poisson system on se(3)*. The kinetic energy of the body is given by

T=_-(Q7IQ+v" Mv). (5.2.5)

DN | =

Here, M is the sum of the mass matrix of the body and the added mass matrix
associated with the fluid and I is the sum of the body inertia matrix plus the added
inertia matrix associated with the potential flow model of the fluid. We will also
assume that the body is a symmetric ellipsoid with uniformly distributed mass, which
means M and I can both be chosen to be diagonal matrices. The equations of motion

of the body in body coordinates are given by Kirchhoff’s equations which are

IO = (IQ) x Q+ (Mv) X v+ u, (5.2.6)

Mo = (Mv)x Q2+ us (5.2.7)

where w; is the control torque and u; is the control force acting on the body in body
coordinates. In the next section we will show how to stabilize the relative equilibrium
solution in which the rigid body is rotating about and translating along its middle

axis.
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5.2.1 Translation and Spin Stabilization of SE(3) vehicle about
its Unstable Axis

In [30], it is shown that for an underwater vehicle with coincident centre of gravity and
centre of buoyancy, the relative equilibrium in which the body is rotating about its
short axis and translating along the short axis is stable. We will use kinetic shaping
to stabilize the relative equilibrium in which the body is rotating about its middle
axis and translating along the middle axis. To do this, we will choose controls which
make the original middle axis effectively look like a short axis in the closed loop. It
appears that for the SE(3) case, we need full actuation forces in the R® direction and
two control torques in the SO(3) direction. As in the SO(3) in §5.1.1, the motivation
is to choose controls such that the closed-loop equation is Lagrangian and the middle
axis for both the mass matrix and the inertia matrix of the system without controls
is effectively made the closed-loop short axis.

In the equations of motion given by (5.2.6) and (5.2.7), we choose the components

of u, and uy as follows:

upp = 0
1 0 1
Uf; = <I3(& — 1) + 11(1 — —)) Qng + (Mg(@ — 1) + M1(1 — —)> V3V1
P2 P2 P2 P2
ks 1 P2 1 P2
U, = Il(__1)+j2(1__) ngg—f— Ml(__1)+M2(1_ —) V12
P3 P3 P3 P3
’U/l;;i = ((,52 — 1)M2UQQ3 -+ (1 — ﬁg)M{;’UgQQ)
0 1
u’}% = ((@ — 1)M3’U391 -+ (]. - —)Mﬂ)lﬂg)
P2 P2
1 _
Ul;g = ((— - 1)M11}1Q2 + (]_ — &)Mgvgﬂl) (528)
P3 P3
where py and pj3 satisfy the equation
,02[2 — p313 = IQ — I3 (529)

and py and p3 satisfy the equation

ﬁgMQ - ,53M3 = M2 - M3. (5210)
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Here, the superscript ks denotes kinetic shaping. The closed-loop equations are

IO = (JQ)xQ+ (Mv) xv

Mv = (Mv)xQ
where I is a diagonal matrix with entries Iy, poIo, p3I3 and M is a diagonal matrix
with entries My, po My, psM3. Therefore, the closed-loop equations correspond to a

rigid body with Lagrangian

L.=- (Q"IQ+v" Mv). (5.2.11)

N | —

Since I > I3 and My > M3, we get poly > psls and pa My > psMs. If we now choose

I
ps > = (5.2.12)
I
and
M,
) — 2.1
p3 > M3’ (5 3)

then we get the following two inequalities

,02_[2 > ,03[3 > I

ﬁQMQ > ﬁgMg > Ml-

The open-loop middle axis for both the mass matrix and inertia matrix is effectively
made the closed-loop short axis using kinetic shaping. We have stabilized the relative
equilibrium when the rigid body is rotating about its middle axis and translating

about the middle axis.

Theorem 5.2.1 The control law u*® and u’}s whose components are given by the set
of equations in (5.2.8) stabilizes the rigid body rotating about its middle azis and at the
same time translating along its middle axis. The scalars ps and ps are chosen using
(5.2.12) and (5.2.13) respectively and the scalars ps and ps are obtained by solving
(5.2.9) and (5.2.10) respectively.
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Our final goal is to couple a network of n vehicles in SE(3) using potentials and
stabilize the solution when each of these is rotating and translating along its middle
axis. We will first solve this problem for the case when each body is rotating about
and translating along its short axis. Such a solution for an individual body is stable
in the reduced space, but in the full phase space, there are drift in the non compact
R? direction as shown in [32]. Before coupling of the network of n vehicles, we first
remove these drifts using additional potential terms in the control law as described

in the next section.

5.2.2 Drift Removal for SE(3) vehicle

Observe that the control equations given by (5.2.8) depend only upon the reduced
variables 2 and v and hence the closed-loop equations still have SFE(3) symmetry.
The drift we observe in the R?® direction are what we “physically see” in the inertial
space. These drifts cannot be removed by controls which still retain the SE(3).
Instead we introduce additional control terms coming from a potential which breaks
the SE(3) symmetry and reduces it to S' x R symmetry corresponding to rotation
about and translation along a particular axis in the inertial space.

The kinetic energy of the body in inertial coordinates is
1 P N
T=3 (wT (I, . leb> w — 2uT Mbw + uTMlu) (5.2.14)
where I, = RIR™!, M; = RMR™! and u = b— &b. The expression for the conjugate
momentum is
Pu = M(u—bw)=Mb (5.2.15)
Po = Lw+bx (M(u—bw))=ILw+bx (Mb). (5.2.16)
Here, p, is the linear momentum of the body and p,, is the angular momentum of
the body about the origin. The Hamiltonian written in terms of momentum variables
is

H= (p'U'TMlilpu + (pw —bx pu)TIlil(pw —bx Pu)) . (5217)

N | =
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To make calculations easier, we assume that the translational direction is the e;

axis. If the vector b has components (b1, by, b3), the potential we introduce is
Vi(R,b) = o1eT Re, + %(bg +B2). (5.2.18)

Here, 0, and o9 are real constants which we choose later. The symmetry group is
now reduced to S! x R with the product group structure, corresponding to rotation

about the e; axis and translation along the e; axis. l.e.,
Va(RR, Rb+b) = Vy(R, b)

whenever Re; = e; and b = ke; for some real number k. The momentum map corre-
sponding to this symmetry group is the projection of linear and angular momentum
in the e; direction. Stability of the system modulo this symmetry group implies that
the drift in the direction transverse to the translational direction e; are removed.

Since S' x R is an Abelian group, we only need to verify that the amended
potential has a definite second variation at the relative equilibrium of interest in the
direction transverse to the group orbit. This is because, for a mechanical system
with an Abelian symmetry group, the potential term in the Routhian is the amended
potential. Since the kinetic energy part is already positive definite and the energy
corresponding to the Routhian is a conserved quantity, stability follows if we can
show that the second variation of the amended potential is also positive definite in
the reduced space. Since for an Abelian group G, Gy = G, this is same as showing
that the second variation of amended potential is positive definite on any complement
to the group orbit direction.

The expression for the amended potential at a particular value of momentum

Dw .
u= is
Dy

1
= —(p, I} 2.1

where I(;; b) is the inverse of the locked inertia tensor at the given configuration.
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The locked inertia tensor is given by

o]
I(R,b) = . (5.2.20)
[ 0 M, J
Therefore,
o 1 _ _
Viu(R,b) = 01e] Rey + ;(bg +03) + B (1L ey + g My ) (5.2.21)

Here, p, is the part of p corresponding to S' symmetry and u, is the part of p
corresponding to R symmetry, i.e, these are the projections of angular and linear
momentum along the e; axis respectively. They are p, = pie; and p, = pgeq. For
a body rotating about its short axis and translating about its short axis aligned with
the e; axis, the second and third components of u, and p, are zero. If 6R = (5/5R,
then
52V, =01€75030Re; + oy ((6bs)? + (3bs)?) + (50Tﬁ,1150 — 667 I, 1,66
+ (50Tﬂ2p250 — 607 1, M 1,50
(5.2.22)
At the relative equilibrium of interest, R = R, is a rotation about the e; axis.
Therefore, R.e; = e;. This also implies R.pt; = py and R.p, = po. We also have
the following at the relative equilibrium:
I'py = RJ'R'py
= RJ 'm,
= I['Rou,
= L' (5.2.23)
Hence, the second variation of the amended potential evaluated at the relative equi-
librium configuration is
Vyle = — o (gbel)Té/Eel + 205 ((6b2)* + (6b3)*) +
— ((2,660)" R, (I; 'I353 — M) R, " f1,60) (5.2.24)
— ((ﬂ260)TRe (Ml_I]I3X3 — I_l) R;1ﬂ260) .
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where My, Mo, M3 and Iy, I, I3 are the diagonal elements of M and I respectively. If
My > My > M3 and I; > I, > I3, then 52Vu|e can be made positive semi-definite
by choosing o; < 0 and g5 > 0. The null space consists of vectors in the transla-
tional direction db; and in the rotational direction 6@ parallel to ey, i.e., the only way
6V le can be zero is when 6by = dbs = 0 and when 6||e;. This motion corresponds
to rotation about the e; axis and translation along the e; axis which is the sym-
metry direction. Therefore, by the theory of stability using amended potential, the
dynamics are stable and we have also managed to remove the drifts in the transverse
translational direction.

The dynamics of the rigid body with the control input that removes drift can be

obtained by calculating the first variation of V; as follows:

5Vd = O'16{5R€1 + 0'2([)2(5[)2 + b35b3)
= 0,750 Re, + 0y (by0by + bsdbs)

= 0'150T(R61 X 61) + 02(b25b2 + bgébg) (5225)

Using (5.2.25), we get the expression for the rigid body dynamics with control terms

as

po = —oi(Rel) X e (5.2.26)
0

Pu = —02| by |- (5.2.27)
b

Theorem 5.2.2 Consider a single rigid body in SE(3) with equations of motion given
by (5.2.26) and (5.2.27). The closed-loop equations are again a Lagrangian system
on SE(3) with potential given by (5.2.18). The closed-loop Lagrangian has S* x R
as the symmetry group and the corresponding relative equilibrium when the body is
rotating about its short axis and translating along the short axis aligned with the e

azis 18 stable.
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The rigid body motion is in fact stabilized when it is rotating about its short axis
and translating along its short axis aligned along any direction in the inertial space.

We chose this axis to be e; in Theorem 5.2.2 only for illustration.

5.2.3 Coordination of SE(3) Network with Stable Dynamics

We now consider the case of n rigid bodies with each having SF(3) as its configuration
space. As mentioned in Chapter 4, the phase space for the n—body system is n copies

of TSE(3) which we denote by T(SE(3) x ... x SE(3)) := T(SE(3)").

-~

n times
In Chapter 4, the reduced equations of motion are derived using the potential

V = Z?:_ll (O'ltl'(R;ﬂ_lRi) + O'Q“bz' - bi+1||2), with 01,09 € R. Note that if Rz = Ri—l—l
and b; = b, for © = 1,...,n — 1, the potential V is at a minimum if oy < 0 and
o9 > 0. These 07 and o9 are the same constants as in the previous section in (5.2.18).

The Lagrangian for the controlled network L, is then

n n—1 n—1
Liet, = Lnes =V = Z %(Q;TIZQZ + UiTMz"Ui) - Ultr(z jof—lRi) — 02 Z ||bz —bin ||2
i=1 i=1 i=1

The equations of motion for the controlled system corresponding to this Lagrangian
Lyes, on the reduced space T(SE(3)")/SE(3) corresponding to the i body are as
derived in (4.2.6)

IZQZ = (IZQZ) X Qz + (szz) X v; + ol(ups ’U,ps)

Ti—1 Yrg

szz = (Mz’UZ) X Qz + O'Q’U,I};

where

uy; = (Aixe +X xe+T; x e) (5.2.28)

and A;, X;, T; are the column vectors of R\, R;, uhy = ufs = 0 and u%; = —R; ' (2b;—

T n

b1 —biq)fori=2,....,n—-1,u}] = —R; '(b; — by) and uly, = —R; Y(b, — b, 1).

1
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We are interested in the relative equilibrium given by

Qie = (Qa 0: 0)
Vie = (Ea Oa 0)
(5.2.29)
Az’e 2]'ie I‘ie ] = [ € €2 €3
b; = b1
where ¢ = 1,...,n. Here, we are looking for solutions where each body is rotating
about its short axis and the bodies are aligned, i.e., Ry = Ry = ... = R,, their

positions are also aligned, i.e., b; = b;;; for all ¢ and all the bodies are translating
along the same vector. That this is indeed a relative equilibrium can be easily checked.
We now study stability properties of the above system.

Let py,; be the angular momentum of the ! body in inertial space and p,; be its
linear momentum in inertial space. The phase space is T*(SFE(3)") and the momen-
tum map is

J = ' (5.2.30)
i=1 \ Pu;

Let My = RM;R ! and I;; = RI;R *. Therefore, H can be written as

n

1 _ _
H = 5 Z (1”11,,111]\4'lZ lpui + (pwz - bz X pui)TIli l(pwi — bZ X puz))
i=1
n—1 n—1
+01tr(z R;‘I:HR,) + 09 Z ||bz — bi+1||2. (5231)
i=1 1=1

Let us assume that the motion is along the e; axis of the inertial frame. Since
H given by (5.2.31) still has SE(3) symmetry, the system will have drifts in the
non compact direction. Just as for the single SE(3) case, we now introduce addi-
tional potentials to reduce the symmetry to S' x R. This will not only remove drifts
but will also allow us to use the amended potential and check for its definiteness

in directions traverse to the group orbit to conclude stability. We introduce these
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potentials carefully so that the relative equilibrium of interest is not destroyed. The

final Hamiltonian looks as follows

1o -
H = 9 Z Pui My, Pu; + (Po; — bi X Pui)" 1 (Pus; — by X pui))

n—1
o
+ortr ZR,H #5 2 Ibe bual o (Raer)er + 6 + 1
For this Hamiltonian, the potential

V = otr ZRZHR + 22 ZHb b |+ o (Rie) e + 2 (b +b%) (5.2.32)

=1 i=1

reduces the symmetry group to S' x R with the product group structure, correspond-
ing to rotation about the e; axis and translation along the e; axis. Note that the
symmetry breaking here is done using the orientation and position R; and b; of the
first body. This is an arbitrary choice and was made for illustration purposes. Hence,
the relative equilibrium given by (5.2.29) is not destroyed by introducing extra po-
tentials. The corresponding momentum map is the total angular momentum about

the e; direction and the total linear momentum along the e; axis and is given by

~ J1€1
J= (5.2.33)
J4€1

where J is given by (5.2.30).

To prove stability of the relative equilibrium (5.2.29), we need to verify that 52VH
is definite on the space transverse to the group orbit. At the relative equilibrium of
interest, Ry = Rp =...= R, = R, and by = by, = ... = b, = b, and R, is rotation
about the e; axis and the second and third components of b, are zero. The expression
for the locked inertia tensor at this configuration is

R )R 0
I(Ry,...,Ry,by, ... by) = (i 1) . (5.2.34)

0 Ro(X, Mi)R;*
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Now,

n—1 n—1
o o -
Vu =ou1tr() BRI Ri)+ 52 D b= b’ +01(Rier) e + 32(1732'*‘1’%3) +{(p, I ')
i=1 =1

(5.2.35)
Let My = Y} , M; and Iy, = ) | I;. The second variation of V}, evaluated at the

relative equilibrium configuration is

62‘/“‘@ = —01 (5/0\161)T5/0\1€1 =+ g9 ((5b12)2 —+ (6b13)2)
- ((ﬂ150)TRe (12_11]3><3 - 12—1) Rg1ﬂ150)
— ((18:00)" Re (M Iz — M5") R; " js,00)

n—1 n—1
—201 Y ((60; — 60;11)" (66; — 60i11)) + 02 _ ||0b; — 6bys ”
=1 =1

Here, My is the (1,1) entry of My and Iy is the (1,1) entry of Ix. If for each body,
M;1 > M;» > M;3 and I;; > I;» > I;3, then the above expression becomes positive
semi-definite if o7 < 0,09 > 0. 52Vu,|e = 0 when evaluated only on the following

vectors:

5b; = 6bi
56, = 6,
501 || €1

0big =0big = 0

These vectors belong to the group orbit space. Hence, 52Vu|e > 0 in directions trans-
verse to the group orbit and we get that the system has a stable relative equilibrium.

The final equations of motion with control terms are

]zﬂz = (Izﬂz) X Qz + (Mz'vz) X v; + 0'1(’U,p5 ups') (5236)

Ti—1 "~ Yrg
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where u”? for i # 0,7 is given by (5.2.28), u?; = —((R1e1) X e1), u?s =0,
ufi=—| b | - R;'(by — by), (5.2.38)

’UJ?: = —RZ_I(QbZ — bi+1 — bi—l) for ¢ = 2, N 1 and ul}; = —Rz_l(bn - bn—l)-

Theorem 5.2.3 For the n rigid body problem with closed-loop equations given by
(5.2.36) and (5.2.37), the relative equilibrium (5.2.29) is stable. This equilibrium
corresponds to all n rigid bodies having the same orientation and position vectors
with each one rotating about its short axis and translating along the same azis aligned

with the ey axis in the inertial frame.

Note that we chose the translation axis to be e; in Theorem 5.2.3 only for illustration.
Since V is defined intrinsically, the result is independent of the coordinate system and
holds true for any axis we choose in the inertial space.

Suppose the potential V' given by (5.2.32) is modified to
n—1 o n—1 o
Z 2 Z 2
V= 0’1131'(1:1 RZ;—IRZ)—FE 2 ||bi—bi+1—di||2+0'1(R1€1)T61+5(b32+b%3) (5239)

where d; is a constant vector for 1 = 1,...,n — 1. This will correspond to the case
when we want the 7" and (7 + 1)™ vehicle to maintain a constant relative spacing
vector given by d; and the 1% vehicle rotates about and translates along the e; axis.
This is the relative velocity we stabilize. This does not imply that there wont be any
collisions starting from an arbitrary initial state. For collision avoidance, we will need
to introduce some more terms in the potential V' which blow up when the interspacing
distance drops below a certain value.

In the SMC setting in Chapter 3, the kinetic energy in the closed-loop system
was made negative definite. Since the open-loop system had a potential which was

maximum, the control gains were chosen to make the closed-loop kinetic energy also



98

maximum so that the closed-loop energy could be used as a Lyapunov function. In
this chapter, the only term in the Lagrangian before adding controls was the kinetic
energy. Hence, we choose to retain the positive definiteness of the kinetic energy and
the control gains were chosen such that the new potential terms were positive semi-
definite. Though the stability results are the same in these two approaches, when
there is physical dissipation like friction in the system, the treatment is more subtle

in the former case. Some of these issues are addressed in [47].

5.2.4 Coordination of SE(3) Network with Unstable Dynam-
ics

We now show how to stabilize the relative equilibrium corresponding to the bodies

oriented alike with same position vector and each body rotating about and translating

along its unstable middle axis. The idea is to use kinetic shaping from §5.2.1 to

stabilize the unstable rotation and potential shaping from §5.2.3 to coordinate the

orientations of the bodies.

Consider the controlled dynamics for the ith body given by

ps ps
Ti—1,1 i)

_(u
LSy = (L) X Qi+ (M) x v+ | —(uls_,, —ulsy)/ps + ubg, [5.2.40)
_(sz)f—l,:s - UIT);;:J,)/P?» + uchng
_(U?E—l,l - uf’?l) + u’}fl
Moy = (Mywg) x Qi+ | (a2, — uhy) /o + %y (5.2.41)
_(U§?—1,3 - u’}§3)/ﬁ3 + Ul}f?,
where w}; and u'; are the potential shaping control terms given by (5.2.36) and

(5.2.37). The kinetic shaping control terms ufs,, u¥s;, uk?), uks,, uk?y are as given in
(5.2.8) for the ith body. It can easily be checked that the closed-loop equations now

have the form (5.2.36) and (5.2.37), but with the original middle axis now the short
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axis. Hence, we get the following corollary.

Corollary 5.2.4 The relative equilibrium corresponding to n rigid bodies with the
same orientation and position vector and each rotating about and translating along
its unstable, middle axis, is stabilized for the controlled dynamics of (5.2.40) and
(5.2.41).



Chapter 6

Asymptotic Synchronization of

Networked Rigid Bodies

In Chapter 5, we derived controls to stabilize the relative equilibrium of a network of
rigid bodies in SO(3) and SE(3). For the SO(3) network case, the stabilized solution
is the case when the rigid bodies are aligned in orientation and each is rotating about
its individual unstable middle axis. In the SF(3) network case, the stabilized solution
is the one in which the bodies have aligned orientations and positions and each one
is rotating about and translating along its middle axis. In this section, we will add
dissipation terms to the control law to make these synchronized solutions asymptoti-
cally stable. We show asymptotic stability of the synchronized SO(3) network in §6.1
and asymptotic stability of SFE(3) network in §6.2.

6.1 Asymptotic Synchronization of Networked SO(3)
Bodies

Our goal in this section is to asymptotically stabilize the solution where the SO(3)
bodies are synchronized, pointing in a particular direction in inertial space and ro-

tating about their short axis. The analogous case when the bodies are rotating about

100
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their middle axis can be obtained by combining results in this section with kinetic
shaping described in §5.1.1. We will assume that the direction about which the rigid
bodies are rotating is the e; axis. The potential we introduced in (5.1.10) to couple
the network has SO(3) symmetry. We will now add an additional term to reduce it

to S!. The final potential we use is:
n—1
V= atr(z RL . R;) + oel Re;. (6.1.1)
i=1

The only symmetry left after introducing this potential is rotation about the e; axis.

The equations of motion for the network are

where
u’=(A; xe+X; xey+T; xe3), i=1,...,n—1, (6.1.3)
A;,3;, T; are the column vectors of R} R; and uf’ = —oR{'((Rie1) x e1), ut® = 0.

diss

The terms u{*** are the disspation terms we will introduce for asymptotic stabilization.

The relative equilibrium to be asymptotically stabilized is

Ri = Ri=R., i#]
Reel = €1 (614)

Q, = w,=ke;, keR

Consider the following function

n

1 T -1
El = 5 ;((wz — kel) RZIZRZ (wz — ]{361)> + V61 (615)
where .
n— 1 n B
Ve, = otr(; Rl \R)+oelRie, — 5 Zl el (R,I;R; Ve;. (6.1.6)

Here, Ve, is the amended potential for the system corresponding to the relative equi-

librium given by (6.1.4). The function E; has the same form as (3.7.1) with ke,
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playing the role of vgr. Hence, we can use Theorem 3.7.1 to calculate the time
derivative of F; as .

%El - ;(w ~ key) - (Riud®) (6.1.7)
The time derivative of E; can also be calculated directly and is illustrated in Appendix
A. Tf we choose
ul™ = kR (w; — key), k>0 (6.1.8)

2

then E; < 0. Since the system is fully actuated, it is also linearly controllable at each
point. To use Theorem 3.7.2, we need to show that F; is a Lyapunov function for the
relative equilibrium solution manifold given by (6.1.4). Since the kinetic energy part
of E; is already positive semi-definite, we need to show that §?Ve, > 0 and is equal
to zero only when the conditions in (6.1.4) are met. Using the same calculations as

done in the first two paragraphs of §5.1.2, we find that when the conditions in (6.1.4)

are met,
n—1
52‘/@1 = —20 Z((SOZ_H — 501)T(501+1 — 501) — 0((501 X el)T((501 X 61)
=1

+ 2(501 X el)T(Ii,1H3X3 — Il,)((50z X 61),
=1

where I; 1 is the moment of inertia corresponding to the short axis of i™"-body. When
o < 0, 6°Ve, > 0 and is equal to zero only when (6.1.4) is satisfied. Hence, E; is
minimum when the conditions in (6.1.4) are satisfied, i.e., it is a Lyapunov function
for the relative equilibrium solution manifold. We can now use Theorem 3.7.2 to

conclude that the solution goes to the set F; = 0. On this set,

w; = ke
R, = R;=R,
R.e; = e.

This corresponds to the synchronized motion where the rigid bodies are aligned with

each other, each one is rotating about the e; axis in the inertial frame. Since R.e; =



103

e, we get

Qz’ = R;lwi = k‘R;lel - kel

Therefore, we get that the rotation is about the short axis, which in turn is aligned
with the e; axis in inertial space. Hence, we get that the solution asymptotically goes

to the one given by (6.1.4) and we have the following theorem.

Theorem 6.1.1 The rigid body SO(3) network with equations of motion given by
(6.1.2) and dissipation chosen as in (6.1.8) has exponentially stable relative equilibria

given by (6.1.4).

Figures 6.1.1 and 6.1.2 illustrate the results of a MATLAB simulation for the
controlled network of three identical SO(3) systems. The inertia matrix parameters
are I, = 8kg — m?, I, = 4kg — m?, Iy = 1kg — m®. The relative equilibrium velocity
is chosen to be w; = ejrad/sec. The rotation part is parametrized using quaternions
given by

q; = [ cos(6;/2) sin(6;/2)q;
where g, denotes the axis of rotation and 6; denotes the angle of rotation for the i

body. The control gains are 0 = 2, kK = 2. The initial conditions are

[ 0.88 0.93 0.10
0.25 0.19 0.01
ql (0) = aq2(0) = aq3(0) = 9
0.40 0.24 0.00
\ 0.05 0.18 0.00
( —0.41 0.41 0.01
, 013 | 049 | —0.80
‘h(O) = aQQ(O) = :Q3(O) =
0.86 —0.56 —0.67
\ 0.79 —0.84 —0.67

Figure 6.1.1 shows plots of €2; as a function of time and Figure 6.1.2 shows the

attitude in terms of quartenions g; as a function of time. Note that in the steady state,
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Figure 6.1.1: The angular velocities €; (rad/s) three SO(3) vehicles as a function of
time.

the last two components of the quaternions are zero which indicates that the bodies
are rotating about the e; axis. Also, since the first component of g; is cos(6;/2), the

time period in Figure 6.1.2 is twice the time period of the body, which is 47 seconds.

6.2 Asymptotic Synchronization of Networked SFE/(3)
Bodies

For the SE(3) network case, our goal is first to asymptotically stabilize the solution
where the bodies are synchronized, rotating about and translating along a particular
direction in inertial space, also aligned with their short axis. The analogous case when
each of the bodies is rotating about its middle axis can be obtained by combining
techniques in this section with kinetic shaping described in §5.1.1. We will assume

that the direction of rotation and translation is the e; axis.
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Figure 6.1.2: The attitudes g; (rad) for three SO(3) vehicles as a function of time.

The equations of motion with dissipation terms are

IZQZ = (Izﬂz) X Qz + (szz) X v; + al(ups ’U,ps) + ufi-ss (621)

Ti—1 " Yrg

szz = (Mz'vz) X Qz + O'Q'U:I}j + U(};SS (622)
where u?; for i # 0,n is given by (5.2.28), u?y; = —R;'((R.e1) X e1), u?s = 0,

0
uwfl = =R | by | — Ri'(br —by), (6.2.3)
bia

U?cf = —Rz_l(sz — bi+1 — bi—l) for ¢ = 2, NN (e 1 and ’U,I}fz = —R;I(bn — bn—l)-
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The relative equilibrium we want to asymptotically stabilize is:

R, = Ryj=R., i#]

Reel = e (624)
b; || €

Qi = wi:klel, kl eR

v; = bz = k‘gel, ko € R.

The following function will be used as a Lyapunov function for the relative equi-

librium manifold:

n

Ey = — Z ( — kieq) -lli(wi —kier) + (b - k231) li l(bz - k2el)>

—I—Vu

where V), is given by (5.2.35). The function E; has the same form as (3.7.1) with
vre being the vector obtained by concatenating kie; and koe;. Hence, we can use
Theorem 3.7.1 or a direcet calculation similar to the SO(3) case which was worked
out in Appendix A to calculate the time derivative of Fy as

d n
%EQ Zz;(w - k161 R ’U,dlss + Z P — k261 R ud‘ss). (625)

If we choose

’U,di-ss = —KJR;I(wi - klel) (626)

T

%ss = —"GRi_l(bi — koey) (6.2.7)

where k > 0, then E, < 0. Since the system is fully actuated, it is also linearly
controllable at each point. By construction, Ej is minimun when conditions in (6.2.4)
are satisfied. Hence, it is a Lyapunov function for the relative equilibrium manifold.

We can now use Theorem 3.7.2 to conclude that the solution exponentially goes to
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the set E5 = 0. On this set, the only solution is

w; = ke
bi = koe;
R, = R;=R.
b; = b,
R.e; = ¢
b, || e

This corresponds to the synchronized motion where the rigid bodies are aligned with
each other, each one is rotating about the e; axis and translating along the same axis.
We also have Q; = R, 'w; = kie; and v; = Rglbi = koe;. Therefore, the rotation
and translation axis of each body is its short axis which is aligned with the e; axis

in the inertial frame. Hence, we get the following theorem.

Theorem 6.2.1 The rigid body SE(3) network with equations of motion given by
(6.2.1) and (6.2.2) and dissipation chosen as in (6.2.6) and (6.2.7) has asymptotically

stable synchronized relative equilibria solutions given by (6.2.4).

Figures 6.2.1 and 6.2.2 illustrate the results of a MATLAB simulation for the
controlled network of three identical SE(3) systems. The inertia and mass matrix
parameters are I, = 6kg — m?, I, = 4kg — m?, I3 = 2kg — m?, M, = 8kg, M, = 5kg

and M3 = 1kg. The relative equilibrium velocities are chosen to be w; = e; and
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Figure 6.2.1: The angular velocities ; (rad/s) and linear velocities v; (m/s) for three

SE(3) vehicles as a function of time.

i)i = e;. The initial conditions are:
[ 0.10
0.00
0.02
\ 0.01

Q1(0) =

[ —0.00
0.54
0.06
\ 0.19

[ 0.06 )

bl(o) = 0.11

\ 0.81

/L%
bi(0) = | 0.1

\ 0.90

’ qQ(O) =

) bQ(O) -

,52(0) =

0.65

\am

1.00
0.00
0.00
0.00

—0.00
0.71
0.21
0.24

[ 081 )

0.26 |,

\ 0.21 )
[ 1.93

039 [,

\ 0.06
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Figure 6.2.2: The attitudes g, (rad) and position b; (m) for three SE(3) vehicles as
a function of time.

and the control gains are 0y = 1,09 = 2,k = 2. Figure 6.2.1 shows plots of €2; and
v; as a function of time and Figure 6.2.1 shows the attitude and position in terms of

quartenions g; and b, respectively as a function of time.



Chapter 7

Conclusions and Future Work

In this chapter, we summarize the main contributions of this thesis work. We also

briefly discuss some directions in which this work can be extended.

7.1 Summary

The primay contribution of this thesis is to foundations and provable strategies for
coordination and control of a class of mechanical systems. These mechanical sys-
tems also have possibly unstable dynamics unlike point mass models. The natural
Lagrangian structure of the individual mechanical system is used to derive an energy-
based control law to achieve the task. This is done so that the controlled dynamics
describe a multi-body, mechanical system. Because of underactuation, after adding
a dissipative term to the control, not all the eigenvalues of the linearized controlled
system lie in the strict left-half plane. Hence, the natural energy of the closed-loop
system plays a crucial role in proving stability. In addition to studying stabilization
of relative equilibria of coupled network of a class of mechanical systems, we have
also shown how to achieve more general synchronized behaviour using energy-based
methods. For example, these solutions turn out to be periodic solutions for a network

of inverted pendulum/cart systems.
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We will compare our coordination results with a technique based on LQR method
in §7.1.1 and give a summary of the results from Chapter 3 through Chapter 6 in
§7.1.2.

7.1.1 Comparison with LQR

We will now discuss how our method compares with the following procedure using
LQR to stabilize individual system and then coordinating them using the state of
one system as a setpoint for another system. We look at the specific example of
n identical inverted pendulum/cart system and illustrate the differences in methods
using simulation.

For the individual linearized inverted pendulum/cart system, the state of the 7'
system is given by the column vector (x; #; 6; QZ)T The notation used here is the
same as used in §3.8 where x; and 6; denote the angle made by pendulum with the
vertical line and cart position of the it" system respectively. The cart mass, pendulum
mass and pendulum length are also chosen to be the same as in §3.8. The linearized

dynamics for an individual system then look as follows:

Xy X
d | Ui
a1 o, 0,
0, 0,
where
0 1 00 0
60.19 0 0 O —-10.57
o 00 1] 0
-3.12 0 0 0 2.27

For the state-space model, the output is chosen to be (z; 6;)7 = C(x; 4 6; 6;)7,
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where C' is the matrix
1 000

0 010

(7.1.1)

The  matrix is chosen to be CTC and R is chosen to be 1. For this choice of @
and R, the LQR feedback gain K is calculated. Therefore, if the cart force for the 7!
system is chosen to be u; = —K(z; @; 6; éi)T, this control law brings each system
asymptotically to the origin.

We now couple the systems using the controls

Uy = —K(.’Ifl .’1'}'1 (01 — 02) 0.1)T

Uy = —K(zp & (0p —0n1) 0n)F

u; = —K(l‘z $, (201 — 91'_1 - 92’—1—1) 0,)T (712)
fori=2,...,n— 1. The control given by (7.1.2) corresponds to the same communi-

cation topology we assumed in §3.8.

5 01

Figure 7.1.1: Simulation of a controlled network of pendulum/cart systems using the
LQR technique. The pendulum angle, cart position and cart velocity are plotted as
a function of time for each of three pendulum/cart systems in the network.

Two simulation plots are given in Figure 7.1.1 and Figure 7.1.2 for the same initial
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Figure 7.1.2: Simulation of a controlled network of pendulum/cart systems using the
control law given in (3.7.2). The pendulum angle, cart position and cart velocity are
plotted as a function of time for each of three pendulum/cart systems in the network.

condition given by

(21(0) &1(0) 61(0) 61(0) 2(0) @2(0) 62(0) 62(0) w35(0) 3(0) 65(0) 65(0) )
=(0.18 0.06 0.24 0.18 -0.17 0.03 0.12 0.11 0.15 —-0.10 0.21 0.10 ).

Figure 7.1.1 is a simulation with the control law for the individual system given
by equation (7.1.2) and Figure 7.1.2 is a simulation with the control law given by
(3.7.2). We see in this example that the LQR method has a faster settling time and
less overshoot as compared to our method.

Now consider an initial condition further from the equilibrium.

(951(0) j?l(o) 91(0) 91(0) $2(0) j?z(o) 92(0) 92(0) $3(0) j?3(0) 93(0) 93(0))
=(1.20 040 1.60 1.20 —1.10 0.20 0.80 0.70 1.00 —0.50 —1.40 0.60 ).

The value of the angles in this initial condition are as high as 1.2 radians. The
simulation plot for the above initial condition is shown in Figure 7.1.3. For this
initial condition, the LQR approach destabilizes the network, whereas our control

law given by (3.7.2) still works fine as shown in Figure 7.1.3.
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I
100 150

I
100 150

I
100 150

Figure 7.1.3: Simulation of a controlled network of pendulum/cart systems using the
control law given in (3.7.2). The pendulum angle, cart position and cart velocity are
plotted as a function of time for each of three pendulum/cart systems in the network.

Thus, this example suggests that in the common region of attraction, LQR has
better performance features. This is consistent with the principle that LQR is tuned
for performance of the linearized dynamics. However, our method, being a nonlinear
energy based control method, has a larger region of attraction. In fact, for the inverted
pendulum/cart system, if the parameter  in §3.8 is chosen large enough, the initial
angle of the pendulum can be chosen to lie as close to the horizontal plane as one
wishes at the expense of having a larger control force. It is intuitively clear that no
matter what control law is chosen, if the initial angle of the pendulum is close to
the horizontal plane, a huge cart force is required to make sure it does not cross the

horizontal plane.

7.1.2 Chapter Summary

We now summarize the main results from Chapter 3 through Chapter 6.
In Chapter 3, we derived control laws to stabilize and coordinate a network of

SMC systems which are a class of underactuated systems with symmetry in the
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kinetic energy and with no gyroscopic forcing. The control law is derived using energy
methods and Lyapunov stability is proven using the Routh reduction criteria. With
dissipation included as a term in the control law, we proved two kinds of asymptotic
stability. The first case consists of driving the network to a synchronized solution
staying on a constant momentum surface that depends upon the initial condition. For
the example of a network of planar pendulum/cart systems, these solutions correspond
to synchronized oscillatory motions of the cart with a common velocity and with each
pendulum also oscillating with the same (tunable) frequency. The second case consists
of driving the network to a prespecified relative equilibrium. Again, for the network
of planar pendulum/cart systems, this corresponds to the carts moving in synchrony,
each along its individual track with a constant velocity and with its pendulum in the
upright position.

Each of these cases was proven using an appropriate Lyapunov function and a
LaSalle Invariance Principle argument. For each of these cases, the eigenvalues of the
linearized system do not lie in the strict left half plane. Hence, the energy functions
are critical in proving nonlinear stability.

In Chapter 4, we showed how to derive reduced equations of motion for the case
of a network of systems with configuration space SO(3)" or SE(3)" coupled using
artificial potentials. The symmetry group is SO(3) in the case of a network on
SO(3)™ and SE(3) in the case of a network on SE(3)". The reduced equations make
it possible to state explicitly the control laws in Chapter 5 and Chapter 6.

In Chapter 5, we proved stability of relative equilibria for a network of systems
in SO(3)™ and SE(3)". For the SO(3)" case, these equilibria correspond to the case
where each body has the same orientation and is rotating with the same constant
angular velocity about its principle axis. For the SE(3)" case, these equilibria corre-
spond to the case where each body has the same orientation and position in inertial
space. Moreover, each body is also rotating about and translating along a particular

direction in inertial space.
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In Chapter 6, we proved asymptotic stability of relative equilibria for which sta-
bility was proved in Chapter 5. Dissipation was designed using appropriate Lyapunov
functions which were minimized on the relative equilibrium manifold. This dissipa-
tion was added to the control law. The results were illustrated with simulations for a
network of three bodies, all in SO(3) or SE(3). The equilibrium angular velocity is
tunable using a control parameter. For both SO(3) and SE(3) cases, the first body
was chosen as a “leader”. In the SO(3) case, the first body was assigned a potential
term which makes it orient along the e; axis in inertial space. In the SE(3) case,
the first body was assigned a potential term to align along the e; axis and translate
along the same axis. The choice of which body is leader is arbitrary. It will be an
interesting future direction to see if this can be extended to achieve more general
tracking maneuvers. One example is where the leader keeps changing its orientation
in inertial frame and the remaining systems in the group asymptotically tracks the

leader.

7.2 Future directions

Some of the directions in which this thesis can be extended are as follows.

Varying Communication Topology In our approach, the communication topol-
ogy was fixed for the whole analysis. It will be interesting to see if this can be relaxed.
We would like to propose the following approach. Corresponding to each connected
communication topology, there exists a coupling potential function which we denote
by Vr; where ¢ indexes the topology. A varying communication topology can be mod-
elled by assigning the potential V = Zle pi(t)Vr; to the closed-loop system. Here k
is the number of connected graphs with n nodes. The functions p; could be chosen
to be discontinuous square-wave functions or their smoothened versions. The closed-
loop Hamiltonian is time dependent in this setting and results from time varying

Lyapunov theory need to be used to analyze stability issues. Some very recent works
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on time-varying communication topologies are [26, 36]. The goal in these papers is

to address network of systems on R".

Parameter dependent Lagrangian In Remark 3.6 after Theorem 3.6.1 we stated
a control law to make the network of SMC systems converge asymptotically to a
prespecified momentum value. Simulations suggest that this can be achieved if the
parameter A is chosen sufficiently small. This seems reasonable since for a large value
of A, the system is driven to a desired momentum value at a “fast” rate which is
achieved by pumping energy into the system. If this is not done carefully, it could
destabilize the network of SMC systems. This problem raises the following question.
Consider a dynamical system whose Lagrangian depends upon a parameter A, i.e.,
L = L(q,q, ). Suppose for each X € [0, €], the system is Lyapunov stable. Is it true
that the system is still Lyapunov stable if A “slowly” evolves in time and goes to a
particular value € € (0,¢) ? This is an interesting parameter dependency problem.
Some of these related problems are addressed in [28, 3] and references therein. The
results in [28] for example deals with the case where the system with fixed parameter
is asymptotic or exponentially stable. Analytical results are then proven for the case

where the parameter is now made to evolve slowly.

Extension of Controlled Lagrangian Another interesting direction is to extend
the method of Controlled Lagrangians (CL) itself for SMC systems. For SMC systems,
CL gives an algorithm to derive a control law such that the closed-loop system is also
Lagrangian. The question is if we could ask for more, i.e., whether there exists a
control law such that the closed-loop system is also mechanical with kinetic energy
that is strictly definite. For example, in the pendulum/cart example, for a given
value of x in (3.8.2), the determinant of the closed-loop mass matrix is negative,
zero or positive depending upon the value of the state of the system. If we could
choose controls along the cart direction such that the closed-loop mass matrix has a

determinant with fixed sign, then we can design a smooth swing up stabilization and
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coordination control law for the pendulum/cart network system. This is because, for
an inverted pendulum/cart system without controls, if there is dissipation the system
asymptotically goes to the state where velocities are zero and the pendulum is aligned
along its stable downward position. This can be considered as the natural swing down
phenomena for the system. For this case, the Hamiltonian of the system can be used
as a Lyapunov function and along with a LaSalle Invariance principle argument, the
conclusion can be obtained. Suppose we could use controls along the cart direction to
make the mass matrix negative definite throughout, then the closed-loop Hamiltonian
can again be used as a Lyapunov function. And after adding dissipation, the inverted
pendulum/cart system will smoothly swing up and asymptotically approach the state

where velocites are zero and pendulum is in its upright position.

7.3 Conclusion

This dissertation described how to achieve coordination and stabilization of a network
of mechanical systems using energy-based methods. The systems considered were
a class of mechanical systems satisfying the Simplified Matching Conditions, free
rigid bodies each in SO(3) and rigid bodies following the Kirchhoft’s equations of
motion, each in SE(3). In this chapter, we compared our results using the example
of an inverted pendulum/cart network with LQR based techniques and illustrated the

differences. Finally, we discussed a few directions in which this work can be extended.



Appendix A

Calculations for E|

We will first write down the equations of motion given by (6.1.2) in inertial coordinates
using the fact that R;2; = w; and R; = &;R;. The equations of motion in the inertial

frame turn out to be

= 0(%_1 - Q[Z) + Riu;ﬁ“ (A()l)

where 2; = R;ul” for i = 1,...,n. Here, u” is given as in (6.1.2) and corresponds to
the controls in the i body frame. Using I; = RiI,-R;1 and m; = [;w;, we can write

the above equation as
]hw, + &lehw, = 0'(2[1'_1 - le) + Riufi“. (AOQ)

Using the expression for E; given by (6.1.5), we can calculate its time derivative

to be

n

Z( —key) Ii(w; + w; x €;) + elT(Ih-&\Ji)el)
=1

—i—Za i —wir1) () + ow] ((Riep) X ey). (A.0.3)

i=1
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Plugging in expression for Ij;w; from (A.0.2) into (A.0.3), we get

El = Z:(((AJZ — kel)T(—&\JﬁIliwi + O'(Q[z',l — le) + Riu;ﬁss -+ Ili(b,-el) + elT(IliGi)el)

+Z —win)" (W) + ow] (Rrier) x er).

Therefore, we have
. n
E, = o ZwiT(Qli_l —A)+o Z —wip1)T () + 0wl ((Rier) x e))
i=1
n
—+ Z (el@lliwi + wiTIh-&},-el — elTIl,-&\J,-el =+ 6?[1,’&3,‘61)

t+oel Z Ay — Z( — ke))" R (A.0.4)

Rearranging the above equation, we have

B = ow!% +oelA + owT ((Rie)) x e1)

+Z( — ke1)"R; u‘”“) (A.0.5)

Using the fact that 2y = —((R1e1) X e1), the first line in (A.0.5) vanishes. Hence, we

get the following expression for Ej :

n

E, = Z((wZ - kel)TRiugi”). (A.0.6)

i=1
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