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ABSTRACT | Integrating robotic agents into animal groups

creates significant opportunities for advancing experimental

investigations of collective animal behavior. In the case of fish

schooling, new insights into processes such as collective deci-

sion making and leadership have been made in recent expe-

riments in which live fish were interacting with robotic fish

driven along preplanned paths. We introduce a new cyber–

physical implementation that enables robotic fish to use real-

time feedback to control their motion in response to live fish

and other environmental features. Each robotic fish is magne-

tically connected to, and thus moved by, a wheeled robot

underneath the tank. Real-time image processing of a video

stream from an overhead camera provides measurements of

both the robotic fish and the live fish moving together in the

tank. Feedback responses computed from these measurements

are communicated to the robotic fish using Bluetooth. We show

results of demonstrations and discuss possibilities that our im-

plementation affords for new kinds of behavioral experiments

with fish schools.

KEYWORDS | Collective decision making; cyber–physical sys-

tems (CPSs); feedback control; fish schooling; real-time;

robotics; video processing

I . INTRODUCTION

Fish schools exhibit remarkable collective behavior

that reflects a highly efficient group-level capability to

forage, migrate, and evade predators [1]–[6]. As a group,

fish are observed both to respond quickly to external envi-

ronmental signals of significance and to move together

despite uncertainties and disturbances in the environment

[7]. In order to better know and predict these kinds of

behaviors, it is critical to understand processes associated
with collective decision making and collective motion.

This requires investigating the mechanisms that connect

the choices that individual fish make in response to what

they can sense with the complex behaviors that emerge at

the level of the group. Identification of these mechanisms

can also provide the means to develop principled design

methodologies that enable groups of engineered agents,

e.g., robotic mobile sensor networks, to achieve high
performance in demanding tasks such as environmental

monitoring, search, and exploration [8], [9].

Fish schools are typically leaderless aggregations of

selfish individuals where direct access to stimuli from the

external environment may be limited to a small number of

individuals on the periphery. Fish gain access to informa-

tion through social cues from their neighbors [10], [11].

For example, an individual fish that does not sense a pre-
dator directly may instead sense its neighbor turning fast

and make adjustments to turn with it, thus staying with the

school and avoiding the predator.
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Investigating mechanisms that explain fish schooling
therefore requires an exploration of information passing

and decision making at the level of the individuals. Expe-

riments have been run, for instance, to explore the role of

different sensing modalities in fish [12], the role of school

density on collective response to predation risk [13], and

the relationships between group speed, group polarity, and

mean nearest-neighbor distances [14]. Additional empir-

ical studies of fish schools are described in [15]–[17].
In recent years, researchers have introduced robots

that interact with live animals as a new tool for studying

social behavior in animal groups; for a survey, see [18]. The

objective is to infiltrate the live animal group with robotic

animal replicas that are designed to behave as conspecifics

or heterospecifics. By being able to manipulate the be-

havior of the robotic members of a mixed group of inter-

acting animals and robots, new opportunities are created
for inferring mechanisms of collective behavior from

observations.

In the experiments of [19], robotic cockroaches moved

as conspecifics with live cockroaches in an arena with

shelters. The robots could sense shelters and shelter dark-

ness and discriminate between live and robotic cock-

roaches. Their behavior was programmed according to a

parameterized model of shelter seeking; by manipulating
the parameters the robotic cockroaches were seen to in-

fluence the collective decision making of the mixed robot-

animal group. The results yielded new insights on the role

of social interaction in collective decision making in cock-

roaches and demonstrated the possibility of using robots to

control animal behavior.

Interactive robots have also been used in behavioral

experiments with fish schools. In [20], a pair of remotely
controlled dead fish was used to test cooperation in preda-

tor inspection. In [1], two remotely controlled robotic fish,

moving along guide lines, were used as conspecifics with

live fish to investigate quorum responses in collective

movement decisions. In [2], a computer-controlled robotic

fish was designed to move around a tank as a conspecific

with live fish in order to test hypotheses on mechanisms of

recruitment and leadership in fish schools. The body of the
robotic fish was a replica mounted on a magnetic base that

was controlled by an electromagnet underneath the tank.

By programming the motors of a pulley system that con-

trolled the electromagnet in two dimensions, the robotic

fish was made to follow a specified route at a specified speed.

Aureli et al. [21] have developed a free-swimming fish-

like robot that is only 13 cm long; while this robot is not

meant to function as a conspecific it has been shown to
actively engage a school of fish in a tank.

In this paper, motivated by the works of [1], [2],

and [19], we present a new cyber–physical implementation

of robotic fish with live fish where the robotic fish have

available real-time feedback measurements of their envi-

ronment and can control their own motion in response to

these measurements. By facilitating versatile real-time

feedback control for the robotic fish, our implementation
significantly expands opportunities for manipulating the

behavior of the robotic members of a mixed group of robots

and fish and as a result expands the scope for new be-

havioral experiments with fish schools.

Measurements available to the robotic fish can include,

for example, relative position, heading, and/or speed of

neighbors; this enables a robotic fish to adopt a responsive

behavior modeled after a conspecific. Likewise, real-time
processing of measurements yields features of the school,

such as centroid, boundary, polarity, and momentum; this

enables a robotic fish to adopt a responsive behavior

modeled after a predator.

Like the robotic fish in [2], each of our robotic fish

consists of a replica fish in the tank that is magnetically

coupled with an actuator beneath the tank. However,

instead of being driven by a pulley system, each replica fish
is magnetically connected to a wheeled robot that moves

freely underneath the tank. Feedback measurements are

provided from real-time image processing of a video stream

from a camera overhead the tank. The video stream cap-

tures the behavior of the robotic fish, the live fish, and

anything else in the tank, and it is linked by a FireWire

interface to a computer where real-time tracking is per-

formed. From the tracking data, a range of properties of the
mixed robot-fish group are computed in real time and these

are used as feedback in the control algorithm implemented

on the computer for each of the robotic fish. The resulting

actuation signals, which command robot wheel speeds, are

sent to the robotic fish through Bluetooth channels.

A critical ingredient and contribution of our work is the

design and integration of real-time tracking and compu-

tation of features of the fish school. Existing work on
offline fish tracking includes [14], [22], and [23]. There

has been very recent work on real-time tracking of humans

using laser range finders [24] and real-time tracking of

flies in three dimensions using multiple cameras [25]. The

tracking approach of [25] is similar to ours, although in

[25] multiple computers are used to capture motion in

three dimensions, whereas we only require a single com-

puter for our 2-D setting. Additionally, segmentation is not
a significant issue in [25] since the multiple cameras eli-

minate most occlusions, whereas we need to implement a

real-time segmentation algorithm that can resolve signifi-

cant and frequent occlusions. The segmentation algorithm

we use in real time is similar to the one used offline for

flies in a planar arena in [26].

Our approach to tracking and to computing properties

of fish schools in real time balances accuracy and com-
putational efficiency. Segmenting the images of individual

fish is a particular challenge because conspecifics look

nearly identical and they swim very close to one another.

We successfully perform segmentation in real time using an

expectation–maximization mixture-of-Gaussian (EMMG)

algorithm [27], [28]. For data association, we use the

Hungarian (Munkres) assignment algorithm [29], [30] to
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assign an identity to a blob that minimizes distance from
the previous tracked location to the centroid of the blob in

the current image. Particle filter methods have been used

successfully in offline tracking of multiple objects [22],

[31], [32], but they proved to be insufficient for our real-

time tracking problem. Instead, we use the unscented

Kalman filter (UKF) [33], [34]. The UKF provides state

estimates from which we compute fish school properties.

Fig. 1 shows four snapshots from the overhead video of
our experimental tank with a school of golden shiners

(Notemigonus crysoleucas) and a robotic fish behaving as a

predator. Superimposed on each snapshot are features

identified in real time; the thick blue line identifies the

computed position and orientation of the robotic fish, a

green ellipse (or ellipses) identifies the computed approx-
imate boundary of the school, and a small green circle

identifies the computed centroid of the school. The robotic

predator can be triggered to approach the school as a

function of the time-varying value of these features.

We describe our mixed robot-fish testbed and its com-

ponents in further detail in Section II. In Section III, we

present our approach to real-time tracking and computation

of fish school features. In Section IV, we describe two
example behavioral experiments with fish schools that were

used to demonstrate our real-time feedback-controlled

robotic fish interacting with a live fish school. We conclude

in Section V and discuss possible future experiments with our

testbed.

Fig. 1. Four frames from the overhead video stream of a robotic predator fish with a live school of golden shiners in the testbed with real-time

tracking output overlaid. Frames (a), (b), (c) and (d) are ordered in time with frame (a) the earliest. In each frame, the tracked position and

heading angle of the robotic fish are represented by the thick blue line. The green ellipse(s) represents the approximate boundary of the

live fish school, and the small green circle(s) represents the location of the centroid of the live fish school. In frame (a), two subgroups of

live fish are successfully identified and tracked; the subgroups have joined to make one connected group in frame (b). The robotic predator

approaches and intrudes in frames (c) and (d).
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II . TESTBED FOR INTERACTING LIVE
AND ROBOTIC FISH

A diagram of the mixed robot-fish testbed is shown in

Fig. 2. Live and robotic fish swim together in a shallow,

freshwater tank. Because the live fish move predominantly

in the horizontal plane, the robotic fish are designed for

horizontal motion. Each robotic fish is a model fish in the
tank magnetically connected to, and thus moved by, a

wheeled robot moving freely on a platform underneath the

tank. Two cameras are mounted overhead: one FireWire

camera acquires real-time video and one high-definition

(HD) camera records video for offline analysis after the

experiment. Tracking, school features, and feedback

control laws are computed on a computer workstation;

control inputs are sent from the workstation over Blue-
tooth channels to each wheeled robot.

In this section, we describe the hardware and software

components of the testbed. The real-time tracking is

described in more detail in Section III.

A. Hardware
In this section, we describe the hardware associated

with the arena, the wheeled robots, the model fish, and the
tracking.

1) The Arena: The arena consists of a 4-ft by 5-ft by

12-in-high watertight tank mounted on a wooden base. For

the experiments, the water in the tank is typically 2.5–3 in

high. The tank is constructed using Garolite G10 fiberglass

composite. This material provides superior stiffness and

allows the tank base to be only 1/4 in thick and still resist
significant bowing from the weight of the water. The thin

tank base is important because it ensures the strength of

the magnetic coupling between model fish and wheeled

robot throughout the tank area.

Securing bolts are placed along the periphery of the

tank, fixing it to the support frame. The sides of the tank are

1/8 in thick to keep weight low and 12 in high to prevent

fish from jumping out of the tank. There is a 12-in piece
placed diagonally across each corner to prevent fish from

congregating in the corners. One of these corner pieces has

a small hole drilled through the bottom to allow water into

that corner where there is a drain hole. A drain valve and

attached pump allow the tank to be drained quickly, if

necessary. A view from overhead the tank is shown in

Fig. 3. In the photo, an underwater camera is clamped to

the bottom left corner piece; this is an optional feature.
In addition to providing structural support, the base

supports a platform that is suspended below the tank. This

platform is the surface on which the wheeled robots move

freely. A long access port is cut into one side of the base so

that wheeled robots can be inserted and removed. The

vertical standoff distance between the platform and the

bottom of the tank can be adjusted to accommodate vary-

ing degrees of bowing, robot height, and magnet strength.
The nominal vertical distance is 4 in.

2) Wheeled Robots: Merlin Systems Corp. MiaBot Pro

wheeled robots [35] are used to move the model fish.

These wheeled robots were selected because they can be

controlled wirelessly with Bluetooth, and they have a high

Fig. 2. Diagram of the mixed robot-fish testbed components.
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speed and turning rateVup to 3 m/s and 85 rad/s, re-

spectively. Each robot consists of two wheels mounted on
either side of a 7.5-cm cube containing a motor for each

wheel, batteries, and electronics; see Fig. 4. The wheels

are both parallel to the sides of the robot and their spin axis

runs right through the middle of the cube. The speed of

each wheel can be controlled independently forward and

backward so that the robot can be made to translate (for-

ward and backward) and to turn using speed differentials.

For each motor there is an encoder, which is used onboard
in a feedback loop that controls the wheel speed to a

desired speed input to the robot. Plastic nubs prevent the

robots from rocking forward or backward on their axles.

The wheeled robots are well suited to emulating the

translation and turning movements of fish, although they

cannot simulate body contortions and side drifting. Their

high speed and turning rate make it possible to model

many rapid fish behaviors, including those of a predator
darting to pursue its prey. Achievable accelerations are

also high with practical limits resulting from motor slip,

latency in the closed-loop control, and drag forces acting

on the model fish.

A machined plastic hood is mounted snugly to the top

of each robot as shown in Fig. 4. Each hood has a milled

rectangular slot with a rectangular plastic insert. Magnets

are press-fit into holes that are drilled into the rectangular

insert. A pair of cylindrical rare-earth magnets, 1/2-in

diameter and 1/4-in thick, are separated by 2 in so that they
are centered on the robot and aligned front to back with

the direction of motion. Alternate magnet sizes and

configurations can be accommodated by manufacturing a

new insert. The height of the magnets can also be adjusted

by inserting shims behind the rectangular insert. The two

circular faces of each magnet correspond to its poles; they

are inserted into the hood with opposite poles facing up.

The opposite pole orientation facilitates torque transfer to
the model fish when the robot turns and ensures that the

correct mating orientation is maintained. The wheeled

robot can sometimes lose traction as it pulls the model

fish; however, weights can be added to the hood in order to

increase the robot’s traction.

3) Model Fish: The model fish appearance can be a

critical factor in the success of an experiment, particularly
if the robotic fish is to be treated as a conspecific by live

fish. Different species respond differently to models. For

example, in [1] and [2], it was observed that three-spined

sticklebacks (Gasterosteus aculeatus L.) responded well to

robotic conspecifics when realistic eyes were painted on

the models. Golden shiners have proved to be more

difficult in this regard. One of the golden shiner models in

a series under development is shown in Fig. 5(a). This
golden shiner model was created from a mold of a deceased

golden shiner [also shown in Fig. 5(a)] using a hard plastic;

the plastic allowed realistic painting but prevented good

reproduction of structural features.

The live golden shiners responded, in the demonstra-

tions described below, to a model koi used to simulate a

predator fish. Fig. 5(b) shows an underwater view of the

koi model mounted on its base. The model was created by
casting from a mold of a deceased koi. The molding and

Fig. 4. MiaBot Pro wheeled robot with hood and a pair of cylindrical

rare-earth magnets press-fit into holes in the hood insert.

Fig. 3. A frame from the overhead video stream of a robotic predator

fish chasing the centroid of a live school of golden shiners with

real-time tracking output overlaid. The robotic predator’s measured

and tracked position and heading are each represented by a white dot

and arrow and the restricted area for segmenting the robotic predator

is outlined in red. The position and heading of each individual

segmented live fish are represented by a blue dot and small blue

arrow. The threshold � for segmenting fish is set high, and therefore a

relatively small number of individual fish are segmented. The orange

ellipse represents themoment-basedestimate of the school boundary,

and the green circle represents the position of the school centroid.

Reflections are present from overhead lights in the laboratory during

this demonstration.
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model material are both tin-cured silicone rubber
(MoldMax 30T and 15T, respectively) distributed by

Smooth-On, Inc. [36]. The silicone rubber mold and

model create flexible, high-quality replicas of the fish

shape and texture. Painting silicone rubber requires spe-

cialty paints, and it is difficult to reproduce the markings

on a fish. The model koi is painted black as seen in the

overhead snapshot of Fig. 5(c) of the model moving with a

live golden shiner school.

4) Tracking System Hardware: An Allied Vision Tech-

nologies Guppy F-080 grayscale FireWire camera [37] with

1032 � 778 resolution and a 4.5-mm lens is mounted 3 m

above the tank. The camera is connected to a computer

workstation for tracking, computation, and control. The

workstation uses modern commodity hardware for real-

time tracking, a FireWire port for the camera, and either
built-in Bluetooth or an off-the-shelf USB Bluetooth

adapter for communication with the robotic fish.

The camera is mounted so that the image plane is close
to parallel with the plane of the tank bottom. As a result,

feedback control of the robotic fish from its tracked

position provides satisfactory performance without requir-

ing scaling from robot wheel speeds to speed in image

coordinates. Correction for refraction due to Snell’s law

can be neglected due to the shallow depth of water com-

pared to the distance between the camera and the water.

Future experiments requiring high precision may neces-
sitate calibration of the camera system to obtain real-world

coordinates. Calibration of the HD camera is also neces-

sary for offline analysis so that experimental results can be

reported accurately in real-world units.

B. Software
In this section, we give an overview of design of the

tracking and control software package that we have
developed.

1) The MADTraC Library: The Multi-Agent Dynamic

Tracking and Control (MADTraC) library [38] was devel-

oped in the Dynamical Control Systems Laboratory

(DCSL) at Princeton University, Princeton, NJ, to support

several applications for which a high-performance tracking

and control framework was needed. MADTraC provides a
cross-platform C++ GUI framework and a collection of

helper classes that enable rapid application development.

The framework is quite flexible, focusing on applications

that perform (real-time) tracking on acquired video,

provide live visualization and parameter adjustment

capabilities, and send control commands to an external

device. The video source can be a video file, or one or

multiple USB or FireWire cameras. Almost any tracking
algorithm can be used through inheritance of the base

tracking class. Many of the techniques described in this

paper are provided as modules that can be plugged in to

customize the tracking algorithm. Other features of the

library include parameter persistence (i.e., the values of

parameters are saved between successive runs of the

program), data output formatting, and the ability to save

screen shots and movies directly from within the
application.

2) Communication and Control: Communication between

the workstation and the MiaBot Pro wheeled robot is

established with a virtual serial port over a Bluetooth

channel. Multiple robots are easily handled by opening a

separate port for each robot, up to seven robots. The

number seven is a limitation of the Bluetooth standard and
can be overcome with specialty hardware. Wheel speed

commands are sent to the robots at each time step using

an ASCII string protocol. The robots have onboard

proportional–integral–derivative (PID) feedback control

of wheel speeds using motor encoder feedback. This

inner loop control is sufficiently fast so that robots can

be commanded with desired wheel speeds.

Fig. 5. (a) Deceased golden shiner (bottom) and amodel golden shiner

(top)produced fromamoldof thedeceased shiner using ahardplastic.

(b) Silicone koi predator model mounted on its magnetic base. The

photo is taken from an underwater camera in the tank. (c) Overhead

snapshot of robotic koi predator with live golden shiner school

in the tank.
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Feedback laws that model conspecific or heterospecific
behaviors are applied to produce desired steering and

speed control for the robotic fish. For example, a feedback

law for a conspecific robotic fish will typically require an

update on steering in response to measurements of relative

position, heading, or speed of near-neighbor fish. A feed-

back law for a predator robotic fish will typically require an

update on steering and/or speed in response to changing

features of the live fish school. The desired steering and
speed signals are transformed into robot wheel speed

commands as follows.

Let ðxðtÞ; yðtÞÞ define the position of the robot in the

plane at time t with speed sðtÞ and heading direction �ðtÞ
relative to the x-axis. Let !ðtÞ ¼ d�ðtÞ=dt be the steering

rate. Then, left wheel speed sLðtÞ and right wheel speed

sRðtÞ can be computed from sðtÞ in meters per second and

!ðtÞ in radians per second as

sL

sR

� �
¼ ke

50

1 � L
2

1 L
2

" #
s

!

� �
:

The parameter L ¼ 0.07 m is the robot wheelbase,

ke ¼ 4:0� 10�5 is a scaling factor to convert meters to

wheel encoder counts, and 50 is a scaling factor internal to

the robot’s software.

To illustrate feedback control of the robotic fish,
consider a robotic predator seeking to move from its cur-

rent location to a target location ðx0; y0Þ with no constraint

on the angle of arrival. We prescribe the steering control as

!ðtÞ ¼ �k sin �ðtÞ �  ðtÞð Þ

where k > 0 is a constant gain and  ðtÞ ¼ tan�1ððyðtÞ �
y0Þ=ðxðtÞ � x0ÞÞ is the bearing to the target. The controlled
heading dynamics have a stable solution at synchronization

of heading angle with target bearing �ðtÞ ¼  ðtÞ and an

unstable solution at antisynchronization of heading angle
with target bearing �ðtÞ ¼  ðtÞ þ ð2nþ 1Þ�, n an integer.

We compute the speed control as

sðtÞ ¼
smax; dðtÞ > d�

smax
dðtÞ
d�
; dðtÞ � d�

(

where smax G 3 m/s is the maximum desired speed of

approach, dðtÞ ¼ ððxðtÞ � x0Þ2 þ ðyðtÞ � y0Þ2Þ1=2 is the dis-
tance between the robot and the target, and d� is a thresh-
old distance. The speed control ensures that the robot

moves with a fixed constant speed at sufficiently large

distances from the target and slows linearly with distance

for distances smaller than the threshold.

The above simple control law is sufficient when there
are few constraints. More sophisticated motion planning

and feedback solutions for control of nonholonomic vehi-

cles can easily be substituted.

III . REAL-TIME TRACKING

In this section, we describe our approach and implemen-

tation for real-time tracking that enables robotic fish to
interact responsively with live fish and other features in

the tank environment. In this context, tracking requires

extracting from a video sequence time-varying estimates of

the state of objects that live conspecific or heterospecific

fish would sense on their own.

So that each robotic fish can control its own motion, we

estimate its position and velocity. To provide the robotic

fish with measurements of the relative position, heading,
and/or speed of its neighbors, we estimate the position,

heading, and speed of individual neighbors and subtract

the position, heading, and speed of the robotic fish. We

also extract information about enough of the school so that

we can compute estimates of group-level quantities, such

as the centroid, boundary, polarity, and momentum of the

fish school.

Feedback control of the robotic fish demands a real-
time solution at a frame rate of approximately 10 frames/s.

This rules out some existing approaches that are compu-

tationally costly and motivates us to implement our own

computationally efficient solution. To maximize computa-

tional performance, our solution is implemented in C++

using the OpenCV computer vision library [39] to perform

individual steps wherever possible. Other calculations are

implemented in custom modules, many of which we have
bundled into a separate library (see Section II-B1). Latency

is further minimized by integrating tracking and vehicle

control into the same compiled piece of software. In prac-

tice, we have been able to track tens of fish in real time.

The first step of the tracking problem is segmentation,

which we describe in Section III-A. Segmentation involves

extracting measurements for individual objects from the

image. Data association is the assignment of each of these
measurements to a tracked object, for example, assign-

ment of the center of a blob in the image to the position of

a fish that it represents. In Section III-B, we describe data

association as part of the state estimation step. In the state

estimation step, current measurements are incorporated

with previous measurements and a dynamic model of the

system in order to estimate the state of the tracked ob-

jects; the state of an individual fish includes its position in
the horizontal plane, its heading angle, and its speed.

Fig. 6 illustrates the steps of segmentation and state esti-

mation where the input is the current image and the

output is the estimated current position, heading angle,

and speed of each tracked object. From the estimated

states, properties of fish schools can be computed as dis-

cussed in Section III-C.
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A. Segmentation
Segmenting the images of individual fish in a school is

particularly challenging; conspecifics look nearly identi-

cal, and they swim very close to one another. On the

other hand, the high degree of color contrast between the

fish and the tank makes it relatively easy to distinguish

pixels that belong to the image of a fish from those that

belong to the background. The color uniformity among

fish and the controlled lighting in the laboratory mean that
we do not need a sophisticated color-based segmentation

algorithm [40]. Further, since the number of fish in the

arena is constant, segmentation does not have to account

for fish entering or leaving the scene.

In the first step of segmentation, given the current

image, we use a background subtraction algorithm to iso-

late image pixels that are likely to belong to an object of

interest. In the second step, we use a component labeling
algorithm to group those pixels into discrete connected

components called Bblobs.[ Because of occlusions, a single
blob may sometimes represent multiple objects (e.g., mul-

tiple fish swimming close); thus, we combine the labeling

algorithm with an algorithm that further segments objects

within a multiobject blob. Sorting out the identities of the

objects is the data association step, which we discuss as

part of state estimation in Section III-B.
In the third step, we use image moments to calculate

the centroid location ðxcm; ycmÞ and the orientation angle

�m of each tracked object (e.g., each fish). We assume that

the orientation angle is identical to the heading angle. This

is true by design in the case of the robotic fish. Live fish do

occasionally drift with a velocity component perpendicular

to their orientation, but in a tank with no externally

induced flow this is usually a minimal effect. The centroid

and heading angle of each tracked object as determined by

the segmentation step provide the measurements that are

input to the UKF for state estimation.

Because the live and robotic fish are significantly

darker than the tank, a sign-aware background subtraction

algorithm successfully locates objects of interest in the
scene. Sign-aware background subtraction can be viewed

as a likelihood-ratio test given a background model that has

a spatially varying mean (the background image) and

constant variance (proportional to a threshold �). The

background frame �I is calculated by averaging images of

the arena prior to experiments. Then, at each time step,

the image is subtracted from the background frame. The

differences at time t for all pixels are stored in the dif-
ference frame IDðtÞ with negative values truncated to zero.

IDðtÞ is therefore zero at pixel locations where the image is

brighter than the background. The binary image ITðtÞ is
computed by applying the threshold � to IDðtÞ: ITðtÞ is set
to 0 at pixel locations where IDðtÞ is less than or equal to �
and to 255 otherwise. The value of � is determined em-

pirically and set manually in the software. It can be

adjusted online, although with consistent lighting condi-
tions this is not usually necessary. Using 0 and 255 in the

binary image facilitates the display of results without an

extra scaling step.

The second step in segmentation groups pixels into

blobs and labels each blob. For single objects in unclut-

tered environments, this is typically addressed with algo-

rithms that find and label connected components within

the image. We use an efficient connected-component
labeling algorithm based on the one implemented in

Fig. 6. Schematic of segmentation and state estimation for tracking. There is a UKF for each tracked object. The output of each

UKF provides an estimate of the position, heading angle, and speed of the tracked object.
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OpenCV [39] and first presented by Chang et al. [41]. We
also apply an algorithm to handle occlusions so that we can

further distinguish and label multiple objects that appear

together in a single blob. Fish are relatively consistent in

their appearance from one frame to the next, except for

occasional contortions during startle responses [42], [43].

As a result, the overhead image of a live fish can be mod-

eled effectively as a thin ellipse and this means that we can

resolve occlusions using an EMMG algorithm (see [27] and
[28] for background on expectation–maximization and

mixture models and [44] and [45] for details on imple-

menting the algorithm for a Gaussian mixture model).

EMMG is an iterative algorithm that can be computa-

tionally expensive. However, our implementation is made

efficient by combining the EMMG with the connected-

component labeling algorithm. Area and perimeter thresh-

olds are used to filter the output of the component labeling
algorithm and determine which blobs are likely to contain

more than one object. The number of objects in a blob is

determined based on the blob area and perimeter as com-

pared to the average blob area and perimeter. For those

blobs containing more than one object, the EMMG

algorithm is used to segment individual objects: each mul-

tiobject blob is optimally fitted to a set of Gaussian distri-

butions where there is one distribution for each object.
The parameters of the distributions provide estimates of

the elliptical shape of each of the segmented objects in a

multiobject blob. Likelihoods calculated from these dis-

tributions are used to assign individual pixels to objects. A

pixel can belong to more than one object when there is

overlap of object images and therefore overlap of distri-

butions. Each pixel in the original multiobject blob is

assigned to 1) the object with the highest likelihood of
having produced that pixel; and 2) any object for which the

pixel is located within an ellipse defined by a two standard

deviation level set of the object’s distribution.

Image moments have been widely used in pattern

recognition and computer vision applications [46]; see the

review by Prokop and Reeves [47]. We calculate image

moments for each labeled object and use these moments to

estimate the object’s centroid and orientation. The ðj; lÞth
image moment Mjl of a labeled object O is defined as

Mjl ¼
X
x;y2O

xjyl

where x; y 2 O if the pixel at location ðx; yÞ belongs to the

object O. M00 is the area (number of pixels) and ðxcm;
ycmÞ ¼ ððM10=M00Þ; ðM01=M00ÞÞ is the centroid location of

the object. The orientation of an object can be estimated as

�m ¼
1

2
tan�1

2ðM11 � xcmM01Þ
M20 �M02 � xcmM10 þ ycmM01

:

However, this estimate is only accurate up to a rotation
by �; �m could point in the direction of the head or

the tail.

The direction of the head can be determined using a

third-order projection method that leverages the fact that a

fish’s head is fatter than its tail. Prokop and Reeves [47]

discussed this method in general and DeFroment [48]

suggested applying it to head/tail disambiguation for

fish. When the pixel distribution is projected onto the
direction defined by �m, the sign of the skewness will be

negative if �m corresponds to the head direction and posi-

tive if �m corresponds to the tail direction. In our approach,

we compute a factor �� that is proportional to the skewness

�� ¼ �30 cos3 �m þ 3�21 cos
2 �m sin �m

þ 3�12 cos �m sin
2 �m þ �03 sin3 �m

where

�30 ¼M30 � 3xcmM20 þ 2x2cmM10

�21 ¼M21 � 2xcmM11 � ycmM20 þ 2x2cmM01

�12 ¼M12 � 2ycmM11 � xcmM02 þ 2y2cmM10

�03 ¼M03 � 3ycmM02 þ 2y2cmM01

are the centralized moments. The orientation estimation

can then be adjusted following the rule

�m �
�m þ �; �� > 0
�m; �� � 0.

�

That is, if �� > 0, then the distribution is incorrectly

skewed and therefore the angle should be flipped.

Fig. 7 shows a snapshot of the successful segmentation

of ten live fish where the fish are very close to one another.

The measured heading �m is shown for each fish as a short

arrow. The tracked position of each fish is represented by a

colored dot and the estimated heading angle is represented

by the longer colored arrow; these are the output of the
state estimation described in the next section.

B. State Estimation
We estimate the state of the tracked objects using

UKFs. We assume the dynamics of each tracked object are
independent, and we use a separate UKF for each object.

For each tracked object, the input to the UKF is the

measurement vector z ¼ ðxcm; ycm; �mÞ as computed in the

segmentation scheme described in Section III-A. For each

tracked object, the state is modeled as

xðtÞ ¼ ½xo yo �o so�T
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where ðxo; yoÞ is the modeled centroid location of the

object, �o is the modeled heading angle of the object, and so
is the modeled speed of the object.

The measurement model for each UKF is given by

zðtÞ ¼
1 0 0 0

0 1 0 0

0 0 1 0

0
@

1
AxðtÞ þ HðtÞ (1)

where H is a measurement noise vector. The noise vector is

assumed to be drawn at each time step from a zero-mean

normal distribution with diagonal covariance matrix

R ¼ diagf�2pm; �2pm; �2�mg, where �pm and ��m are the
variance in position and heading measurements, respec-

tively. These variances can be modified online in our

implementation.

The dynamic model for each object state is given by

xðtþ 1Þ ¼ xðtÞ þ

soðtÞ�t cos �oðtÞ
soðtÞ�t sin �oðtÞ

0

0

0
BB@

1
CCAþ ZðtÞ (2)

where �t is the time step and Z is a disturbance vector.

The disturbance vector is assumed to be drawn from a
normal distribution with zero mean and a diagonal covar-

iance matrix Q ¼ diagf�2d; �2d; �2�; �2s g, where �d, ��, and
�s are disturbance variances for position, heading, and

speed, respectively. The disturbance variances can also be

modified online.

Each UKF iteration has two steps: prediction and

update. During the prediction step, the state estimate x̂ is

projected forward in time according to the dynamic mod-
el (2) with Z ¼ 0 to produce the predicted state �x. The
measurement model (1) with H ¼ 0 is used to compute the

predicted measurement �z from the predicted state �x.
During the update step, the state estimate x̂ is updated by

comparing the predicted measurement �z with the actual

measurement z. The estimation of covariance matrices is

used in both prediction and update steps. The output of

each UKF at time t is the updated estimate x̂ðtÞ, which gives
the new estimate of the position, heading, and speed of the

object at time t.
There are two additional processing steps inside the

state estimation scheme that improve the quality of the

estimation. The first addresses the data association prob-

lem, which refers to the problem of determining which

measurement vector should be associated to which state

vector at each time step. This ensures that we track the
same fish in consecutive time steps. Because the number of

real and robotic fish in a given experiment remains fixed

and the EMMG algorithm extracts every individual object

of interest, the association is always one to one. We apply

the efficient Hungarian matching algorithm developed by

Kuhn [29] and expanded by Munkres [30], and we lever-

age the implementation in C [49]. At time t, the algorithm
makes associations between measured objects and tracked
objects so that the sum of distances between the tracked

objects’ estimated positions at time t� 1 and the asso-

ciated measured objects’ centroids at time t is minimized.

This method works well in practice and is computationally

inexpensive for moderate numbers of objects.

We also perform additional processing on the heading

measurement at each time step of the UKF for two im-

portant reasons. The first is that occlusions and other noise
in the image can cause incorrectly oriented measurements

despite application of the algorithm described above for

determining head and tail directions. The second is that,

for continuity, the heading state must evolve over R,

whereas the orientation measurement is always in the

range ½��; ��.
To address the first concern, a position history of each

tracked object is stored for five time steps and the
measurement is aligned with the direction of displacement

between the current and the oldest position as long as the

displacement is sufficiently large (comparable to one half

of a body length). If the displacement is not large enough

or there is insufficient history, the previous state is used

for alignment. The alignment decision is made according

to the following rule:

�m �

�m þ �; cos
�m � �

2

����
���� � �

�m cos
�m � �

2

����
���� > �

8>>>><
>>>>:

Fig. 7. Snapshot of ten live golden shiners with tracking output

overlaid. Each colored dot represents a fish position. Each arrow

represents the corresponding heading angle: the shorter arrow is the

measured heading �m and the longer arrow is the estimated heading �̂.
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where � is the alignment reference angle (e.g., the dis-
placement direction or the previous heading) and � pa-

rameterizes the degree of alignment required. We use

� ¼
ffiffiffi
2
p

=2, since it corresponds to flipping the measure-

ment angle if it is separated from the alignment reference

by more than �=2.
To preserve continuity of the heading angle estimate,

the measurement is again modified following the rule

�m ��̂þ tan�1
sinð�m � �̂Þ
cosð�m � �̂Þ

where �̂ is the current heading estimate from the UKF.

For example, if the current heading estimate is �̂ ¼ �
and the measurement is �m ¼ �3:13 (i.e., the actual

heading has rotated slightly counterclockwise since the

last time step), this algorithm adjusts the measurement
to �m ¼ �3:13þ 2� � 3:15. It is important here to cal-

culate the arctangent using a four-quadrant method; the

implementation uses the C function atan2.

C. Estimating Properties of the School
To compute properties of the fish school, we use the

estimated states of individual fish that are being tracked.

For example, the centroid location of the school is com-

puted by averaging the estimated positions of the tracked

fish. Linear momentum is computed by summing the

estimated velocities of the tracked fish.

In the case that we are not otherwise tracking indi-

vidual fish, we opt for a more efficient approach in which

we approximate school properties using only a subset of
fish and their measured positions and orientations as

provided by the segmentation algorithm. For example, the

centroid location of the school is computed in this case by

averaging the centroid locations of the subset of fish that

have been segmented.

We use thresholds in the segmentation algorithm to

adjust how much of the school to include in the

subsetVthe goal is to strike a good balance between com-
putational speed and accuracy of estimates of school

properties. When fish are not included in the subset, it is

typically because they are too small or because a cluster of

fish appear as one large connected component. Therefore,

the error properties of estimating centroid location or any

of the quantities discussed below are related to the

distribution properties of small fish and clusters within the

school. This is difficult to predict and can vary even within
the same group of fish over the course of an experiment.

Optimistically, we may assume that segmentation errors

are distributed uniformly across the group and therefore

estimation errors are small.

To estimate the polarity of the school, we compute a

measure of synchrony of direction of motion that derives

from the study of coupled oscillator dynamics [50].

Suppose there are N fish and fish i has measured heading
�iðtÞ at time t. The synchrony measure pðtÞ 2 ½0; 1� is
computed as

pðtÞ ¼ 1

N

XN
i¼1

XN
k¼1

cos �iðtÞ � �kðtÞð Þ
 !1=2

: (3)

When p ¼ 1, all the fish are heading in the same direction

and the school is maximally polarized. When p ¼ 0 the fish

are heading in very different directions and the school is

minimally polarized. For example, when fish in a school

are uniformly distributed and moving around a circle, then

p will be close to zero. Similarly, when fish are milling

around and moving in random directions that are uni-

formly distributed, then p will also be close to zero. More
sophisticated calculations can distinguish among these

motion patterns and other features of directionality within

a school [8].

One method we use to estimate the boundary of the

fish school is to compute a bounding ellipse from the spa-

tial covariance matrix

� ¼ �xx �xy
�xy �yy

� �

where

�xx ¼
XN
i¼1
ðxi � xCÞ2 �yy ¼

XN
i¼1
ðyi � yCÞ2

�xy ¼
XN
i¼1
ðxi � xCÞðyi � yCÞ

ðxi; yiÞ is the estimated position of fish i, and ðxC; yCÞ
is the estimated centroid of the school. Then, the bound-

ing ellipse can be approximated as a level set of the

bivariate Gaussian distribution in x and y with cov-

ariance �.
Level sets of this distribution are equivalent to level

sets of the function

fðx; yÞ

¼
�xxðy� yCÞ2 � 2�xyðx� xCÞðy� yCÞ þ �yyðx� xCÞ2

�xx�yy � �2xy

which is proportional to the argument of the exponential

in the distribution. The level sets fðx; yÞ ¼ c are ellipses
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centered at ðxC; yCÞ with major axis rotated from the x-axis
by an angle

	 ¼ 1

2
tan�1

2�xy

�xx � �yy
:

The expression
ffiffiffiffiffiffi

ic
p

gives the semimajor axis for i ¼ 2 and

the semiminor axis for i ¼ 1, where 
2 > 
1 are the

eigenvalues of �. We make the choice

c ¼ 1

2 �2 �xx�yy � �2xy
� 	� 	1

4

:

This yields an ellipse that visually matches well the fish

schools in our tests and demonstrations. For example,

Fig. 1 shows four frames from the overhead video with the

centroid locations and bounding ellipses as calculated by

this method. The ellipse algorithm is computationally

inexpensive, but it has the potential to poorly represent the
boundary of a school with a more complex shape as is the

case in Fig. 3. Viable alternatives include convex hull

computation (for which there are many algorithms

available) and alpha shape algorithms (see [51]).

It is possible to imagine classes of experiments in

which it is important to determine the location of the fish

that is closest to the robotic fish and yet still within the

group, the position on the boundary of the group that is
closest to the robotic fish, the position of the fish in the

front or rear of the group, and so on. These are all com-

putations that can be made with the estimates available

from our tracking routine.

IV. DEMONSTRATIONS

In this section, we describe two demonstrations of our

testbed with feedback-controlled robotic fish that are

designed to interact in real time with a live fish school. The
demonstrations provide just two examples of the many

ways in which the robotic fish can be manipulated to

expand the possibilities for behavioral experiments with

fish schools.

A. School Centroid Chasing
In the first demonstration, a robotic predator fish uses

real-time feedback in order to chase the centroid of a live
fish school. By segmenting out a fraction of the individual

fish and using their positions to estimate the location of the

centroid, the robotic fish can persistently chase the moving

centroid of the school. The feedback control law is as

described in the example of Section II-B2 where the

robotic fish steers to head towards a target and the target is

the time-varying centroid of the school.

This demonstration provides a manipulation of a
robotic heterospecific that cannot be achieved without

real-time tracking and control. The automated real-time

feedback is needed because the live fish move in response

to the robotic predator, which moves continuously in re-

sponse to the live fish. Thus, preplanning the motion of

the robotic fish is not possible because the centroid of the

fish school cannot be known in advance. Similarly, man-

ual control of the robotic fish would likely fail because
the human operator would have difficulty computing

the continuously and possibly fast changing centroid

location.

Fig. 3 shows one frame from the overhead video

stream during a centroid chasing demonstration. The

robotic predator fish is modeled after a koi, as shown in

Fig. 5(b), and it chases the centroid of a school of golden

shiners. In Fig. 3, the tracked position of the robotic
predator fish is shown with a white dot and the tracked

heading by a white arrow. To track the robotic fish

efficiently, an algorithm was used whereby segmentation

for the robotic fish was first restricted to a small square

region of the image about the robotic fish’s last known

position. If no blob was found in this square region, then

segmentation for the robotic fish was done on the full

image. The restricted segmentation area is shown with a
red box in Fig. 3. The threshold � for segmenting live

individual fish was set high to speed up the computation;

the resulting subset of segmented fish contained fewer

than one-fourth of the fish school. Those fish that were

measured are identified in Fig. 3; the measured position of

each fish is shown as a blue dot and the corresponding

measured orientation is shown with a small blue arrow.

The green circle shows the centroid of the measured
subset of fish. In Fig. 3, the robotic fish can be seen to be

heading straight for the centroid of the school.

B. Triggered Dart Towards School
In the second demonstration, a robotic predator fish is

triggered to dart towards a live fish school when the real-

time estimate of the fish school polarity pðtÞ, defined
in (3), is close to zero. For small values of pðtÞ, the school is
likely to be randomly milling around or moving in a circle.

The robotic fish is again the black model koi of Fig. 5(b)

and a school of live golden shiners is under pursuit. The

robotic fish begins in a random position in the tank, and

when pðtÞ is below a threshold, a dart is initiated. To dart,

the robotic fish accelerates quickly towards the current

centroid of the school.
In this demonstration, a relatively low value was used

for the segmentation threshold � . This allowed approxi-

mately 50% of the fish school to be included in the polarity

computation. The value of the attack threshold for pðtÞ was
0.5. Variations of the demonstration are possible where

the trigger depends not only on polarity but also on

position of the school, shape of the school, etc.
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V. CONCLUSION AND FUTURE
DIRECTIONS

In this paper, we describe a new, cyber–physical imple-
mentation of interacting live and robotic fish that extends

the current scope of behavioral experimentation with fish

schools. Central to the implementation, the robotic fish

can be manipulated to behave as conspecifics or hetero-

specifics using real-time feedback control. The real-time

feedback is provided by means of real-time tracking of

individual fish and real-time computation of fish school

properties. Control laws are designed that allow the robo-
tic fish to adopt behaviors that are responsive to the other

fish (live and robotic) and the rest of the environment.

We describe two demonstrations in which a robotic fish

adopts a predatory responsive behavior, and the dynamic

response of the live fish can be measured. In the first

demonstration, the robotic predator continuously chases the

centroid of the live fish school, and in the second demon-

stration, the robotic predator darts towards the centroid of
the live fish school when the school’s polarity is below a

threshold.

There are many other possibilities for new kinds of

investigations with our cyber–physical implementation,

including those in which the robotic fish behave as con-

specifics. Indeed, it has recently been possible to infer the

mechanism of interactions among golden shiners [52]. It

was demonstrated that the position and speed of neighbors
play an important role, but fish do not explicitly match

body orientation. These new insights introduce the possi-

bility of implementing highly realistic interactions with

one, or multiple, replica conspecifics.

Real-time feedback-controlled robotic fish provide an
excellent opportunity for testing specific hypotheses that

are very difficult, or impossible, with conventional experi-

mentation. For example, with robotic fish it is possible to

investigate higher order components of interactions, such

as the influence of acceleration. While in [52], it was de-

monstrated that position, speed, and acceleration are

likely to be important, it was not possible to fully eluci-

date their influence due to intrinsic correlations between
individuals.

Another important avenue of research that can benefit

from our new technology concerns the relationship be-

tween the spatial position adopted by individuals and the

influence they have on the motion characteristics of the

school. A replica fish could be moved to specific positions

within the group and then made to suddenly rotate, or

accelerate, to mimic detection of a predator. The re-
sponse of real fish to such perturbations would be

quantified using the HD tracking data output. Similarly,

the robotic predator could be used to create controlled

perturbations to investigate how individuals in groups,

both individually and collectively, assess and respond to

threats. h
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