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Abstract We examine the spatial dynamics of individuals in small schools of banded
killifish (Fundulus diaphanus) that exhibit rhythmic, oscillating speed, typically with
sustained, coordinated, out-of-phase speed oscillations as they move around a shallow
water tank. We show that the relative motion among the fish yields a periodically
time-varying network of social interactions that enriches visually driven social com-
munication. The oscillations lead to the regular making and breaking of occlusions,
which we term “switching.” We show that the rate of convergence to consensus (biolog-
ically, the capacity for individuals in groups to achieve effective coordinated motion)
governed by the switching outperforms static alternatives, and performs as well as
the less practical case of every fish sensing every other fish. We show further that the
oscillations in speed yield oscillations in relative bearing between fish over a range that
includes the angles previously predicted to be optimal for a fish to detect changes in
heading and speed of its neighbors. To investigate systematically, we derive and ana-
lyze a dynamic model of interacting agents that move with oscillatory speed. We show
that coordinated circular motion of the school leads to systematic cycling of spatial
ordering of agents and possibilities for enriched spatial density of measurements of
the external environment. Our results highlight the potential benefits of dynamic com-
munication topologies in collective animal behavior, and suggest new, useful control
laws for the distributed coordination of mobile robotic networks.
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1 Introduction

Animals that move together in schools, flocks, and herds typically rely on social cues to
maintain cohesion and to respond to changes in motion by other group members. How
individuals obtain these social cues, however, is not well understood and depends on
their sensing capabilities. For example, when social communication is dominated by
sensing and sensing is restricted in range or direction, the group’s spatial geometry can
strongly influence information passing and thus group behavior. Many previous studies
of mobile animal groups have attempted to explain observed behavior as resulting
from average measures of group geometry such as average spacing and configuration
(Spooner 1931; van Olst and Hunter 1970; Breder 1976; Partridge et al. 1980; Dill
et al. 1997; Bajec and Heppner 2009). It has been shown from empirical data that such
average measures of spatial distribution can remain steady even as individuals move
continuously relative to one another [e.g., for juvenile blacksmith fish in Parrish and
Turchin (1997)]. Conversely, even if average inter-neighbor distances remain fixed,
each individual’s set of neighbors may be constantly changing.

With static neighborhoods, information is passed from neighbor to neighbor. With
dynamic neighborhoods, however, information may also be passed by individuals car-
rying information between neighborhoods. As a result, using average spatial structures
in groups to understand information passing may be insufficient to explain how well
information passes through these groups.

Models based on self-propelled particle dynamics have been successfully used to
investigate emergence of collective motion from individual steering laws responsive to
near neighbors (Vicsek et al. 1995; Gueron et al. 1996; Czirok et al. 1999; Couzin et al.
2002, 2005; Sumpter et al. 2008; Leonard et al. 2012). In these models, neighborhoods
are dynamic, since although individuals move at a constant speed, they turn as a
function of the relative direction (and/or position) of near neighbors. However, it has
been shown that for schooling fish, such models cannot explain the way information
propagates in groups, whereas sensory networks based explicitly on visual cues much
better explain the mechanism of social communication (Strandburg-Peshkin et al.
2013). It remains a challenge to understand explicitly the role of the relative motion
of individuals on information passing and collective behavior both when speeds are
constant, and in scenarios where speeds fluctuate.

For visual information to pass directly from fish A to fish B, fish B must have
line-of-sight visibility of fish A. Thus, if the fish in a school are distributed with con-
stant relative positions, each fish will have a constant set of visible neighbors. Breder
(1976) proposed that fish may form lattice-like structures in order to mutually satisfy
separation preferences. Dill et al. (1997) proposed that fish may arrange themselves
with preferred relative bearing angles in order to maximize sensitivity to various visual
cues; these optimal bearing angles, predicted to be 35.3◦, 45.0◦, 63.4◦, and 90.0◦, also

123



J Nonlinear Sci (2015) 25:1077–1109 1079

lead to a lattice structure. Lattice structures and other regular patterns create visual
occlusions; a fish in such a distribution will have line of sight to near neighbors, but
these near neighbors will occlude the visibility of further neighbors situated in the
otherwise same line of sight.

In contrast, fish in a school that change their relative positions may have changing
line-of-sight visibility and thus changing sets of visible neighbors as well as changing
relative bearings. In this paper, we study the relative motion among individuals in small
mobile schools of banded killifish (Fundulus diaphanus), which exhibit strikingly
well-coordinated rhythmic, oscillating speeds. In particular, when one fish speeds up
another slows down so that they move closer then farther from one another in a steady,
periodic way. We quantify and evaluate the changing spatial geometry and the effect
on social communication and collective behavior. To do so we analyze trajectories of
individual fish that have been digitally reconstructed from overhead video of two-fish
and three-fish schools, and we develop and apply a novel method based on the Hilbert
transform that detects coordinated oscillations in the data and localizes them in time.

Killifish have available a variety of sensing modalities; in the present study we
focus on social communication through visual cues. We examine how the quantified
periodically changing relative positions remove visual occlusions during a portion
of each oscillation cycle, and we estimate how this changing line-of-sight visibility
implies a periodically time-varying sensing topology, i.e., the graph encoding which
fish senses which other fish in the school switches periodically in time. While visual
information is thought to be the primary sensory modality coordinating schooling in
small freshwater fish (Hanke and Lauder 2006), occlusion would also inhibit other
forms of social communication, such as via the “lateral line” of mechanosensitive
cells that detects water movement (Chagnaud and Coombs 2014).

To quantitatively evaluate the effect of the switching sensing topology on informa-
tion flow in the school, we compute the rate of convergence to consensus as predicted by
consensus dynamics (Tsitsiklis 1984; Jadbabaie et al. 2003; Olfati-Saber and Murray
2003), a common model for how coordination in motion is achieved in animal groups
(Vicsek et al. 1995; Czirok et al. 1999; Couzin et al. 2002, 2005). In the consensus
model each individual modifies its decision variable according to the average of the
value of each of its neighbor’s variable. The rate of convergence to consensus refers to
the rate at which the group converges to a common decision value (direction of travel).

We compare the rate of convergence to consensus associated with the switching
sensing topology, estimated from the three-killifish data, to the rate of convergence to
consensus computed in the case of no switching when the sensing topology remains
fixed at one or the other of the sensing topologies. We draw specifically on work in
Cao et al. (2008), Swain et al. (2008), in which the rate of convergence to consensus
for time-varying sensing topologies was investigated. In Young et al. (2013), a related
approach was used to evaluate performance, as measured by robustness of consensus
to noise, of the social interaction network of starling flocks. The tradeoff between
speed (rate of convergence) and accuracy (robustness to noise) in a decision-making
network as a function of the network topology was studied in Srivastava and Leonard
(2014).

The periodically changing relative positions among the killifish imply periodically
changing relative bearings. This also has consequences for social communication,
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which we examine by comparing the estimated bearing angles to the optimal bearing
angles predicted by Dill et al. (1997).

To enable a systematic examination of enrichment of social communication and col-
lective behavior for a group of agents with coordinated speed oscillations, we derive an
idealized continuous-time dynamic model motivated by the observed killifish behav-
ior. These dynamics model a group of agents with oscillating speeds that use feedback
to coordinate their headings and their speed oscillation phases. We explore straight-
line motion and circular motion, both of which are exhibited in the killifish data. We
show how out-of-phase speed oscillations yield motion patterns with advantages that
include enriched social communication as well as enriched spatial density of measure-
ments of an external environmental field. The model and analysis can be applied to
the study of collective animal behavior and to the design of mobile robotic networks.

The paper is organized as follows. In Sect. 2, we quantify coordinated speed oscil-
lations in the schooling killifish experiments using our novel method for detecting
coordinated oscillations and localizing them in time. In Sect. 3 we examine the chang-
ing spatial configurations and the switching in sensing for the three-fish schools. In
Sect. 4 we evaluate the role of switching in sensing on convergence rate to consensus.
In Sect. 5 we derive the dynamic model of agents with oscillating speed and study
coordinated motion patterns. We discuss results in Sect. 6.

2 Quantification of Coordinated Speed Oscillations

In this section we quantify the remarkable speed oscillations exhibited in the tracked
trajectories of schooling killifish swimming in a shallow water tank. We show that in
the experimental data analyzed, these fish engage in consistent, rhythmic, coordinated
speed oscillations.

We analyze the data collected in the experiments with two-fish and three-fish schools
described in “Appendix 1.” The fish in schools of four or more exhibited very similar
behavior; we do not analyze their behavior here. Banded killifish naturally school in
very shallow water, including the depth employed in our experiments (Krause et al.
2000). Furthermore, since they swim along the bottom of the water body, feeding as
they move, they tend to occupy the lower few cm even in deeper water.

In these experiments, the killifish, which were between 3 and 4 cm long, swam in
2.5-cm-deep water in a 155-cm square tank and were recorded from a video camera
above the tank at 31.2 frames per second. The trajectories of the fish were tracked
from the video yielding the horizontal position of each fish r(t) = (x(t), y(t)) at
the time of every video frame t . There are 15 groups of fish used for the analysis of
speed oscillations in two-fish schools and 11 groups of fish used for the analysis of
speed oscillations and the analysis of configurations of three-fish schools. These data
were sorted into time segments, with a small number of segments being rejected in
the case fish were idle or not visible in the video; see “Appendix 1” for details. The
segmenting and the total length of time of the data analyzed for the different analyses
is summarized in Table 1.

The tracked horizontal position r(t) over time of each fish was used to estimate
the velocity v(t) of each fish at each time t during each segment. From v(t), the
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Table 1 Summary of number of time segments of the video and total time of segments analyzed for two-fish
and three-fish speed oscillations and for three-fish configurations

Analysis
type

School size Number of
groups

Number of
segments

Total time
(min)

Speed oscillations 2 15 130 22.39

Speed oscillations 3 11 63 15.21

Configurations 3 11 246 18.11

speed of the fish is calculated as s(t) = ‖v(t)‖ and its heading as θ(t) = � {v(t)},
where � {v(t)} is the angle that v(t) forms with the x-axis. When speed oscillations
are present, they are oscillations about the nominal speed, s̄(t). The nominal speed is
the “average” speed of the fish; this average slowly varies over time, so we compute
it using a moving-window average as described in “Appendix 2.” In our method for
detecting speed oscillations we also use the speed variation δs(t) of each fish, which
is defined as the speed minus the nominal speed:

δs(t) = s(t) − s̄(t). (1)

2.1 Method for Detecting Coordinated Speed Oscillations

In order to quantitatively detect coordinated speed oscillations from the data with a high
degree of localization both in time and frequency, we developed an algorithm based
on the Hilbert transform. For a thorough discussion of the estimation of instantaneous
phase and, in particular, the Hilbert transform method, see Boashash (1992). Our
algorithm locates subsequences of the speed variation sequence δs(t), as defined in
(1), that fit well to a pure sinusoid and then estimates the corresponding frequency,
amplitude, and phase. We can isolate subsequences during which two or more fish
engage in coordinated speed oscillations: When two or more fish in a subsequence
exhibit sinusoidal speed variation with approximately the same frequency, then we
refer to them as coordinated. The coordination patterns can be characterized by the
relative phasing of the speed oscillations.

Our algorithm leverages properties of the analytic signal of a sequence, which is
defined as the complex quantity with imaginary part equal to the Hilbert transform of
the sequence and real part equal to the original sequence. For example, the analytic
signal, δŝ(t), of the speed variation is

δŝ(t) = δs(t) + √−1H (δs(t)) ,

where H (δs(t)) is the Hilbert transform of δs(t). The analytic signal is estimated
using MATLAB’s hilbert command.

It can be shown for nearly sinusoidal signals that the angular argument of the
analytic signal gives an estimate of instantaneous phase and that the magnitude of
the analytic signal gives an estimate of instantaneous amplitude. For purely sinusoidal
signals, the instantaneous phase grows linearly in time with the constant slope equal to
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Fig. 1 The speed variation (bottom) and instantaneous phase (top) as a function of time for each of the fish
in an example segment of the two-fish data. The dashed curves correspond to the data, and the solid curves
correspond to the fit. The slope of the lines fitted to the instantaneous phase provides an estimate of the
frequency of oscillation. In this time segment the fish are estimated to be oscillating at the same frequency
with a phase difference of approximately 180◦

the frequency. Therefore, we look for subsequences in the data over which the angular
argument of the analytic signal (i.e., the instantaneous phase estimate) fits well to a
line. The slope of the fitted line gives an estimate of the frequency of oscillation.

We use a piecewise linear fitting algorithm to fit the instantaneous phase of the speed
variation for each fish, plotted as a function of time, to a series of line segments. Each
line segment represents a subsequence over which that fish may be oscillating its speed.
The slope of each fitted line segment gives an estimate of the corresponding frequency
of oscillation and the intercept on the instantaneous phase axis gives an estimate of the
phase offset. The variance of the error from the best-fit line is used to measure fit quality,
and a minimum allowable segment time length is enforced. For analysis of individual
fish in the three-fish data, we consider only those subsequences of oscillating speed
for which the average amplitude of oscillation is at least 25 % of the nominal speed.

The method is illustrated in Fig. 1 for an example segment of two-fish data. In
the bottom panel the speed variation of each of the fish is plotted as a function of
time (blue and black dashed lines) and in the top panel the corresponding estimate of
the instantaneous phase is plotted for each fish as a function of time (blue and black
dashed lines). The solid fitted line segments in the top plot are parallel, which implies
that the fish have speed oscillations of approximately the same frequency. The phase
difference of the speed oscillations is estimated to be approximately 180◦. The fitted
(sinusoidal) speed variation of each of the fish is shown as a solid curve in the bottom
plot. The out-of-phase speed oscillations can be observed.
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To identify segments of coordinated speed oscillations, we look for subsequences
over which a pair of fish exhibits speed oscillations with similar frequencies, as in
the case plotted in Fig. 1. The common oscillation frequency for each coordinated
oscillation subsequence is calculated by finding the slope of the least-squares fit line for
the instantaneous phase estimates of both fish simultaneously. The speed oscillations
are taken to be coordinated if the percent difference in frequencies between two fish is
below a maximum threshold. A minimum allowable segment time length is enforced.
To estimate the relative phasing of a pair of fish with coordinated speed oscillations,
we take the difference of the estimated phase offset for each fish.

For the analysis of configurations in the three-fish data (Sect. 3), we isolate segments
over which pairs of fish exhibit strongly out-of-phase speed oscillations using an
alternative approach. This approach identifies a pair of fish with large relative phase
in speed oscillations (i.e., close to out-of-phase oscillations) by directly estimating the
phase of the relative speed variation for the pair of fish i and j : δsi j (t) = δsi (t)−δs j (t).
The speed oscillation detection algorithm based on the Hilbert transform, as described
above, is applied to δsi j (t). The instantaneous phase estimate of δsi j (t) is calculated,
and subsequences of sufficient length for which the instantaneous phase fit sufficiently
well to a line are reported as oscillatory subsequences. The oscillating speeds are then
determined to be sufficiently out of phase if the average estimated amplitude (average
magnitude of the analytic signal) of δsi j (t) is sufficiently large.

2.2 Results on Strongly Coordinated Speed Oscillations

The methods of Sect. 2.1 were applied to both the two-fish and three-fish trajectory
data to identify and quantify speed oscillations. Figures 2b and 3b show sample speed
profiles for two-fish and three-fish schools, respectively. The oscillations are sustained
over the 12 s segment shown, and there is strong coordination of oscillation frequency
and strong anti-synchronization of phases in both the two-fish school and in pairs of
fish in the three-fish school.

In Fig. 2b the phase difference of the oscillations can be observed to be consistently
close to 180◦, i.e., when one fish reaches a peak in speed, the other fish reaches a trough
in speed. This leads to regular oscillations in relative positions of the two fish as can be
observed in Fig. 2a. Figure 2a shows the trajectories of the two fish (moving up and to
the left) in the experimental arena and four snapshots of the fish corresponding to peaks
and troughs in the oscillating distance curve, shown in black in Fig. 2b. At the time
of the earliest snapshot the two fish are side-by-side: The fish in green is accelerating,
while the fish in blue is decelerating and the relative distance is at a trough. At the time
of the second snapshot the fish in green has pulled ahead but is decelerating while the
fish in blue is accelerating and the relative distance is at a peak. The pattern repeats
itself: In the third snapshot the two fish are side-by-side again, the fish in blue having
caught up, and in the fourth snapshot the fish in green is again ahead. We note that
this changing configuration is highly representative of the behavior observed in the
two-fish schooling experiments.

In Fig. 3b the phase difference of the oscillations between the fish in red and each
of the other two fish can be observed to be close to 180◦, consistently in the first two
seconds of the segment. This leads to regular oscillations in relative positions of the
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Fig. 2 Relative position oscillations of a two-fish school. a The trajectories (blue and green curves moving
up and left) of the two fish in the experimental arena over a 12 s segment. Four snapshots of the two fish
(each snapshot shows the fish connected by a dashed black line) are superimposed at times indicated by
dashed, black vertical lines in b. Inset A close-up of the boxed region. In the earliest snapshot the two
fish move side-by-side, in the second snapshot the fish in green is ahead, in the third snapshot the pair is
side-by-side again, and in the fourth snapshot the fish in green is ahead. b The distance between the two
fish (black curve) and the speed of each of the two fish (blue and green curves)

three fish as can be observed in Fig. 3a. Figure 3a shows the trajectories of the three
fish (moving down and to the right) in the experimental arena and four snapshots of
the fish corresponding to peaks and troughs in the oscillating distance curves, shown
in black in Fig. 3b. At the time of the earliest snapshot the fish are in a “V”-shaped
formation: The fish in red is lagging both the fish in green and the fish in blue, but
it is accelerating, while the fish in green and blue are decelerating. The fish in green
and blue stay in phase, and their relative position does not change much. The distance
between the fish in red and both the fish in blue and in green oscillates. In the second
snapshot the fish in red catches up to the other two fish; it is likely that the fish in
green creates an occlusion so there is no line-of-sight visibility between the fish in red
and the fish in blue. The pattern repeats itself: The fish in red lags again in the third
snapshot, breaking the occlusion, but catches up in the fourth snapshot, leading again
to an occlusion.

In Fig. 4 the phase difference of the oscillations between the fish in green and each
of the other two fish can be observed to be close to 180◦, consistently from 2 to 4 s of
the segment. This leads to regular oscillations in relative positions of the three fish as
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Fig. 3 Relative position oscillations of a three-fish school. a The trajectories (blue, green and red curves
moving down and right) of the three fish in the experimental arena over a 12 s segment. Four snapshots of
the three fish (each snapshot shows the fish connected by dashed black lines) are superimposed at times
indicated by dashed, black vertical lines in b. Inset A close-up of the boxed region. In the earliest snapshot
the fish in red lags the other two, in the second snapshot the fish in red catches up, repeating in the third
and fourth snapshots. b The distance between each pair of fish (black curves) and the speed of each fish
(blue, green and red curves)

can be observed in Fig. 4a. Figure 4a shows the trajectories of the three fish as in Fig. 3a
and four snapshots of the fish corresponding to peaks and troughs in the oscillating
distance curves, shown in black in Fig. 4b. At the time of the earliest snapshot the fish
are in a “V”-shaped formation: The fish in green creates an occlusion for line-of-site
visibility between the fish in red and the fish in blue, but the fish in green is accelerating
and both the fish in red and the fish in blue are decelerating. In the second snapshot the
fish in green moves well ahead of the other two fish, breaking the occlusion. The pattern
repeats itself: The fish in green decelerates and creates the occlusion again in the third
snapshot, but moves well ahead in the fourth snapshot, again breaking the occlusion.

The results of the analysis of all of the two-fish and three-fish data used for speed
oscillation analysis are presented in Table 2. The results for the two-fish and three-
fish data show that killifish engage in regular, coordinated, speed oscillations with
significant phase differences between pairs of fish leading to regular relative motion
patterns.

As presented in Table 2, the fish are estimated to be oscillating their speed most
of the time: Individually, they oscillate 92.8 % of the time in the two-fish schools and
83.3 % of the time in the three-fish schools. In the case of the two-fish schools, the
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Fig. 4 Relative position oscillations of a three-fish school. The presentation is as in Fig. 3 except that the
four snapshots are taken later in time. In the earliest snapshot the fish in green creates an occlusion between
the other two fish, in the second snapshot the green fish moves ahead breaking the occlusion, in the third
snapshot the fish in green creates the occlusion again, and in the fourth snapshot the fish in green moves
ahead again

fish are not only oscillating but also oscillating at the same (coordinated) frequency
as much as 76.9 % of the time. It is further noteworthy that the fish across the two-fish
and three-fish schools oscillate their speeds with the same consistent frequency (0.75
Hz) and amplitude (4 cm/s) about the same nominal speed (8 cm/s). From this we can
observe that the oscillations are significant in amplitude, at approximately 50 % of the
nominal speed. Further, since the tail beat frequency of these fish is greater than 1 Hz,
the speed oscillations with frequency 0.75 Hz are clearly distinguished from tail beat.

Because the difference in estimated phases of speed oscillations for a coordinating
pair of fish will be susceptible to noise, we apply a metric called the mean sign product
(MSP), which is less sensitive to amplitude fluctuations and noise in the speed variation
signals. The MSP is the sample covariance of the signs of the speed variations of
fish i and fish j over the sequence of time samples, as derived in “Appendix 3.” To
get a measure of coordination of speed oscillation phases among the fish, the MSP
was calculated for nearest neighbor pairs during coordinated oscillations in both the
two-fish and three-fish schools. As presented in Table 2 the MSP for the two-fish
schools is on average −0.15. This implies that the speed oscillations tend toward
anti-synchronized phasing, consistent with observations from the data (as illustrated
in Fig. 2). The MSP for near neighbors in the three-fish schools is on average 0.0.
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Table 2 Summary of analysis of speed oscillations in two-fish and three-fish schooling data

School size % of time
oscillating

Frequency
(Hz)

Amplitude
(cm/s)

Nominal
(cm/s)

MSP for
pairs

Individuals 2 92.8 0.75 ± 0.24 4.3 ± 1.1 8.0 ± 2.1 N/A

Pairs 2 76.9 0.74 ± 0.16 4.2 ± 0.84 8.1 ± 1.7 −0.15 ± 0.27

Individuals 3 83.3 0.76 ± 0.25 4.1 ± 2.6 8.3 ± 2.7 0.0 ± 0.27

The analysis of pairs refers to the case in which both fish oscillate with the same frequency at the same
time. The MSP is calculated for the three-fish data for segments when near neighbors oscillate with the
same frequency at the same time

This suggests the possibility of a uniform distribution of relative phases in these pairs.
However, observations from the data suggest that it is more likely the result of near
neighbors sometimes being anti-synchronized and sometimes being synchronized.
This is the case in Fig. 3 where the fish in green is synchronized with its near neighbor
in blue and anti-synchronized with its near neighbor in red. The fish in blue and the fish
in red are second neighbors and sustain anti-synchronized oscillations. This type of
relative phasing leads to the periodically changing spatial configuration and switching
sensing topology described in Sect. 3.1, as does the example in Fig. 4 where near
neighbors are anti-sychronized and second neighbors are synchronized.

3 Switching Configurations and Social Communication

In this section we examine the relative motion of the three-fish data and identify the
observed periodically time-varying configurations. We show two striking results on the
cycling about these configurations in terms of social communication. First, we find the
two most common configurations to be aV formation and a diagonal formation, and we
show how the cycling about these common configurations regularly makes and breaks
occlusions of line-of-sight visibility between pairs of fish. Then, we show how the
periodic relative motion facilitates periodic cycling between different relative bearings
that have been predicted by Dill et al. (1997) to be optimal for social communication.

3.1 Measuring Three-Fish Configurations

We define the configurations of three-fish schools in terms of relative bearing from
one fish identified as the central fish. The central fish, with position at time t denoted
rc(t) and direction of motion at time t denoted θc(t), is defined as the fish closest to
the centroid r̄(t) of the school:

r̄(t) = 1

N

N∑

i=1

ri (t).

The relative bearing, βi (t), of fish i with respect to the central fish is estimated as

βi (t) = � {ri (t) − rc(t)} − θc(t), i = 1, 2
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Fig. 5 Relative bearings β1 and β2, of fish 1 and 2, with respect to the central (middle) fish are used to
quantify configurations. The relative bearing to fish i is the angle of the relative position ri − rc (from the
centroid of the central fish to the centroid of fish i) relative to the velocity vc of the central fish. The two
angles are labeled such that β1 > β2, and hence, β1 (β2) is always the angle to the leftmost (rightmost)
neighbor of the central fish. In the figure, β1 > 0 and β2 < 0

and calculated in the range of −180◦ to 180◦. See Fig. 5 for an illustration.
This pair of relative bearings gives a quantitative measurement of the spatial con-

figuration of the school. The identities of the neighbors are ordered so that β1 > β2.
That is, β1 is the relative bearing from the central fish to its leftmost neighbor and β2
is the relative bearing from the central fish to its rightmost neighbor (both with respect
to the direction of motion of the central fish); see Fig. 5.

3.2 Results on Switching Configurations and Social Communication

Figure 6 shows a two-dimensional histogram of the frequency of relative bearings
β1 and β2 for the three-fish groups as defined above in Sect. 3.1. The histogram is
plotted as a heat map ranging from blue, for low histogram counts, to red, for high
histogram counts. The histogram was computed by calculating β1 and β2 at each time
instant as described above and binning the values in 15◦ by 15◦ bins. Red regions in
the histogram correspond to the most common configurations of the three-fish groups.

The regions corresponding to the two most common configurations are circled
in Fig. 6, with arrows connecting these regions of the histogram to illustrations of
the corresponding spatial configurations. There are three fish in each configuration,
and each configuration is drawn at three separate time steps to demonstrate how the
configuration changes as a result of relative motion in each of the two cases. The middle
three-fish configuration in each of the illustrations shows the nominal configuration
corresponding to the histogram peaks. In the nominal configuration in each of the
two cases shown, there is an occlusion such that the leftmost and the rightmost fish
cannot see each other: Their line of sight to each other is blocked by the central fish.
In each case shown, the left and right configurations show changes from the nominal
configuration that result from relative motion due to coordinated speed oscillations
when the two outer (leftmost and rightmost) fish are anti-synchronized with the middle
fish (as in the example shown in Fig. 4). That is, the fish move relative to one another
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Fig. 6 (Top left) Histogram of configurations of groups of three killifish. β1 (β2) is the relative bearing
from the central fish to its leftmost (rightmost) neighbor (see Fig. 5). Results are calculated at each time
step and binned into 15◦ by 15◦ bins, producing a two-dimensional histogram. The histogram is plotted
as a heat map ranging from blue, for low histogram counts, to red, for high histogram counts. Red regions
therefore correspond to the most common configurations. (Bottom right) Representations of the two most
common configurations (middle in each case), with configuration changes (left and right) due to relative
motion resulting from speed oscillations. Arrows indicate which fish are estimated to be sensing which
other fish

as their speeds oscillate and the configurations cycle between the left, nominal, and
right configurations shown. A very similar kind of oscillation in configuration (notably
with the same consequences for sensing topology) occurs when one of the outer fish
is synchronized with the middle fish and the other outer fish is anti-synchronized with
both of these fish (as in the example shown in Fig. 3). The relative motion in all of
these cases contributes to the spread of the peaks in the histogram of Fig. 6 over several
neighboring bins.

The most common case, referred to as the V formation, is the one shown with
nominal configuration given by (β1, β2) ≈ (140◦,−140◦). This corresponds to a
“V”-shaped formation with the central fish at the front of the group. The average
distance between the middle and either outer fish is 7.1 ± 2.7 cm. Relative motion
regularly produces periods of time for which the central fish occludes line-of-sight
visibility between the two outer fish; see Figs. 3 and 4. During one part of the cycle
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(the configuration on the right of the nominal in the illustration), this occlusion is
broken.

The second most common case, referred to as the diagonal formation, is the one
shown with nominal configuration given by (β1, β2) ≈ (35◦,−145◦). This corre-
sponds to an angled line formation with the leftmost fish at the front of the group
and each of the other two fish having its neighbor nominally at a 35◦ relative bear-
ing. Relative motion produces periods of time for which the central fish occludes the
line-of-sight visibility between the two outer fish. During one part of the cycle (the con-
figuration on the left of the nominal in the illustration), this occlusion is broken. Note
that the left/right symmetric formation—i.e., with the rightmost fish at the front—is
not present in the histogram. This could be due to the tendency of the fish to swim in
a counter-clockwise direction around the tank, with the innermost fish (farthest from
the wall) at the front of the group.

It is striking that the periodic relative motion observed facilitates periodic cycling
between different relative bearings that have been predicted by Dill et al. (1997) to be
optimal for social communication. The angles predicted by Dill et al. (1997) provide
the optimal relative bearing (i.e., β1 and β2 in Fig. 5) from a focal fish to a neighbor
fish with respect to the focal fish’s ability to detect changes in the heading or speed
of the neighbor. Dill et al. considered three visual cues: the angular velocity of the
retina angle corresponding to the image of the eye of the neighbor fish, the loom,1

and the time to collision.2 Six optimal relative bearings were calculated by finding the
relative bearing that maximizes the sensitivity of each visual cue (angular velocity,
loom, or time to collision) to each behavioral change (turning or speed change). Four
distinct optimal bearing angles emerge as follows: 35.3◦ (for time to collision with
respect to both speed and heading changes), 45.0◦ (for angular velocity with respect
to a heading change), 63.4◦ (for loom with respect to a speed change), and 90.0◦ (for
angular velocity with respect to a speed change and loom with respect to a heading
change). It was suggested that these values may predict the average relative bearings
observed in animal groups. The results in Fig. 6 show that the speed oscillations of the
killifish cause the relative bearing between fish to oscillate over a range that includes
35.3◦, 45.0◦, and 63.4◦, i.e., three of the four predicted optimal angles.

4 Switching Configurations and Convergence to Consensus

In this section we explore further the analysis in Sect. 3.2 of switching configurations
that make and break visual occlusions and provide a quantitative measure of the role
of the switching on the rate of convergence among the fish to a consensus. We show
remarkably that the switching about the two most common configurations improves
this convergence rate. First we estimate, for the three-fish data, the periodic switching
sensing topology that results from the repeated making and breaking of occlusions. We
then examine consensus dynamics for a group using this switching sensing topology

1 The loom, �, is the time rate of change of the solid angle, α, subtended on the focal fish’s eye by the eye
of the neighbor.
2 The time to collision is equal to 2 α

�
.
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and compute the rate at which these dynamics converge to a consensus. We show that
the rate of convergence to consensus in the case of switching is faster than in the case
of no switching.

4.1 Model of Social Communication

We model social communication of information by means of a time-varying graphG(t)
that encodes the time-varying visual sensing topology, i.e., who is getting visual cues
from whom as a function of time. A graphG(t) is defined by a node set V = {1, . . . , N }
and an edge set E(t) ⊆ V×V . Fish i is identified with node i , and the number of nodes
N is the number of fish in the school. If at time t fish i is getting visual information
from fish j , then (i, j) ∈ E(t), i.e., there is an edge in the graph from node i to node j .
The neighborhood Ni (t) of node i at time t is the subset of V such that j ∈ Ni (t) ⊆ V
if (i, j) ∈ E(t).

To construct the sensing topology for the three-fish groups that exhibit periodically
time-varying occlusions as a result of coordinated speed oscillations, we make the
following conservative assumptions about which fish get visual information from
which: (1) Fish i has fish j as a neighbor only if fish i has line-of-sight visibility of
fish j . (2) Each fish has as many as two neighbors only if one is left and one is right
of its heading direction. When both are visible on the same side, then only the most
recently unoccluded fish is taken as its neighbor. (3) Fish i applies weight 1/|Ni | to the
information it gets from each of its neighbors j ∈ Ni . So, if a fish has two neighbors
it splits its attention equally between the information it gets from each. Given these
assumptions, the Laplacian matrix L(t) associated with G(t) is defined as

Li j (t) =

⎧
⎪⎪⎨

⎪⎪⎩

− 1
|Ni (t)| , i �= j, j ∈ Ni (t)

0, i �= j, j /∈ Ni (t)
1, i = j, |Ni (t)| �= 0
0 i = j, |Ni (t)| = 0.

(2)

Periodically time-varying occlusions imply a periodically time-varying graph
G(t) = G(t + T ) with period T . As will be shown, G(t) estimated from the three-fish
data switches in one period between two constant graphs GA and GB . Let p ∈ [0, 1]
be the duty cycle. Then,

G(t) =
{GA, t ∈ nT + [0, (1 − p)T )

GB, t ∈ nT + [(1 − p)T, T ),
(3)

where n = 	 t
T 
 and without loss of generality we set t = 0 at the beginning of an

interval during whichG(t) = GA. The Laplacian matrix likewise switches periodically
between two constant matrices, i.e., L(t) = LA (L(t) = LB) when G(t) = GA

(G(t) = GB).
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4.2 Model of Consensus Dynamics

Let xi be a scalar decision variable for agent i in a group of N agents. The continuous-
time model of consensus dynamics in which each agent updates its decision variable
as a function of the average value of its neighbors is given by

d

dt
xi =

{ 1
|Ni (t)|

∑
j∈Ni (t)

(
x j (t) − xi (t)

)
, |Ni (t)| �= 0

0, |Ni (t)| = 0
(4)

with initial condition xi (0) = x0i , i = 1, . . . , N .
For a time-varying graph G(t), the dynamics (4) with initial condition xi (0) = x0i

converge to a consensus value xi = x∗, i = 1, . . . , N , for some x∗ if G(t) is uniformly
connected (Moreau 2005). As described in “Appendix 4,” a periodically time-varying
graph G(t) = G(t + T ) is uniformly connected if the union of graphs over a single
period of length T is connected.

Following Cao et al. (2008), Swain et al. (2008), we define the rate of convergence
to consensus, σ , as the supremum over all σ̄ > 0 for which there exists a β > 0 such
that [

N∑

i=1

(
xi (t) − x∗)2

]1/2

≤ βe−σ̄ t (5)

for any set of initial conditions. That is, σ provides an exponential bound on the
rate at which the states approach consensus. If G(t) is not uniformly connected, then
consensus is not achieved and we say that the convergence rate is zero.

It is shown in Swain et al. (2008) that the convergence rate for the periodically
switched graph defined in (3) can be expressed analytically as

σ = − 1

T
logm2, (6)

where m2 is the second largest eigenvalue of the matrix

M = e−(1−p)T L Ae−pT LB . (7)

We can therefore examine the effect of switching between graphs GA and GB with
duty cycle p by computing the convergence rate as a function of p. Note that p = 0
corresponds to using only GA, p = 1 corresponds to using only GB , and p = 1

2
corresponds to switching between the two with equal interval lengths. If LA and LB

are such that the eigenvalues of eLAeLB are the same as the eigenvalues of eLA+LB ,
then we can set T = 1 with no loss of generality when comparing the relative size of
σ for switching versus no switching.

4.3 Results on Switching Configurations and Rate of Convergence to Consensus

The results of Sect. 3.2 show that coordinated speed oscillations in the three-fish
groups generate occlusions that modulate the line-of-sight visibility between fish. We
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(a) (b)

Fig. 7 Switched sensing topologies A (left) and B (right). The graphs (top) are labeled so that node
3 corresponds to the central fish, and nodes 1 and 2 correspond to leftmost and rightmost neighbors,
respectively, i.e., nodes 1 and 2 correspond to the fish from which β1 and β2 in Fig. 6 are calculated,
respectively. The Laplacian is given for each graph (bottom)

estimate the switching sensing topology that results from the changing line-of-sight
visibility and then evaluate the effect of the switching topology on rate of convergence
to consensus.

Given the conservative assumptions on which fish gets visual information from
which other fish, as described in Sect. 4.1, the V formation and the diagonal forma-
tion both produce switching between the same two topologies. This can be seen by
observing the arrows on the configurations in Fig. 6, where an arrow is drawn from
the fish doing the sensing to the fish being sensed.

Topology A, shown on the left in Fig. 7, corresponds to bidirectional sensing
between the center fish and each of the two outer fish and occlusion between the
two outer fish. This topology describes the left and nominal configurations in the
V formation and the right and nominal configurations in the diagonal formation as
illustrated in Fig. 6.

Topology B, shown on the right in Fig. 7, corresponds to unidirectional sensing from
the center fish to each of the two outer fish and bidirectional sensing between the two
outer fish (occlusion broken). This topology describes the right configuration in the V
formation and the left configuration in the diagonal formation as illustrated in Fig. 6.

The corresponding graph Laplacian matrices for topologies A and B, denoted LA

and LB , respectively, are given in Fig. 7. The eigenvalues of eLAeLB are the same as
the eigenvalues of eLA+LB . So for the convergence rate calculations, we let T = 1.

We calculate the convergence rate, σ as defined by (5), for the A and B topologies
and for three values of the duty cycle, p: p = 0, p = 1/2, and p = 1. The duty cycle
p = 0 corresponds to fixed sensing topology A, and duty cycle p = 1 corresponds to
fixed sensing topology B. Duty cycle p = 1/2 corresponds to switching between the
two topologies with equal time spent at each. The value of σ is calculated using (6),
(7), and the graph Laplacian matrices LA and LB .

For p = 0 and p = 1, the convergence rate is σ = 1.0 s−1. For p = 1/2,
the convergence rate is σ = 1.5 s−1. Therefore, the convergence rate is 50 % faster
when the topologies are switching than it is when either topology is used exclusively.
It can also be shown that the convergence rate is greater than 1 for any duty cycle
value p ∈ (0, 1). Hence, there is a benefit to switching between topologies A and
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Fig. 8 Switched sensing topologies A (left) and B (right) in which each fish senses only one other fish.
Six pairs of graphs are shown from top to bottom. The Laplacian is given for each graph

B over fixing the topology at either A or B no matter what the value of the duty
cycle. The convergence rate is maximized for switching when p = 1/2; this maximal
convergence rate for switching is equivalent to the convergence rate in the case of an
all-to-all and fixed sensing topology, i.e., each fish sensing each other fish at all times.

To test the robustness of this result to the assumptions on sensing among the fish,
we compute the convergence rate for six alternative switched sensing topology pairs
A and B shown in Fig. 8. These six sensing topology pairs differ from the pair in Fig. 7
in that each fish senses only one other fish at each time instant.

For all the pairs shown in Fig. 8, the convergence rate is σ = 1.0 s−1 when p = 0.
Similarly, σ = 1.0 s−1 when p = 1, except for the fourth and fifth pairs (from the
top of the figure) in which case σ = 1.5 s−1. For switching with duty cycle p = 1/2,
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the convergence rate is σ = 1.5 s−1 in every case except for the third pair in which
case σ = 1.0 s−1. Thus, switching yields 50 % faster convergence than one or both
static topologies in all cases except for the third case where switching yields the same
convergence as the static cases.

5 Modeling Collective Dynamics with Coordinated Speed Oscillations

In this section, we propose an idealized dynamic model for further examination of the
remarkable coordinated speed oscillations and collective motion patterns observed in
the killifish data and the possibilities for enriched social communication and collective
behavior. We show how the analytical tractability of the model enables a systematic
investigation of a broad range of conditions and parameterizations of behaviors. Sys-
tematic model-based investigation can be used to develop new testable hypotheses
for the fish. The model and analysis also make possible a principled approach to bio-
logically inspired design of distributed feedback strategies for coordination of mobile
robotic networks that benefit from the enriched social communication studied in this
paper.

In the killifish data, the fish are observed to move along approximately straight
lines connected by curves near the corners of the tank. The data show that as the fish
move together around the curves there are changes among which fish are in front and
which are in back. This kind of changing spatial ordering of the fish may provide
social communication advantages for the group along the lines of the making and
breaking of occlusions discussed in Sects. 3 and 4. For example, if we assume that it is
easier for a fish to sense another who is in front rather than in back, then a periodically
time-varying change of spatial ordering means an efficient switching among sensing
topologies that over time give a well-connected network. The model we develop in
this section includes straight-line motion and circular motion of a group with speed
oscillations. We show through analysis how the speed oscillations of a group in circular
motion yield systematic cycling in spatial ordering. The resulting collective motion
patterns also suggest possibilities for enriched spatial density of measurements of an
environmental field that can benefit accuracy in collective estimation (Torney et al.
2009; Zhang and Leonard 2010).

5.1 Continuous-Time Dynamic Model

Our modeling approach follows that of Sepulchre et al. (2007, 2008) with agent-based
dynamics, originally with constant speed, augmented here to allow for periodic speed
variation and coordination of speed phases. At steady state, each agent in the multi-
agent system, represented as a particle, has constant (and possibly zero) turning rate
and time-periodic speed profile. The model features agent-based steering and speed
dynamics that stabilize a large family of collective motion patterns. These patterns real-
ize straight-line motion as well as circular motion of the agents about a common point
with coordination among their headings and speed phases. A steered particle model
has been used in a variety of analytical work in biology and engineering (including
Vicsek et al. 1995; Couzin et al. 2002; Justh and Krishnaprasad 2004).
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We consider a group of N agents and model each agent as a particle of unit mass
moving in the plane R

2. Extending the notation from Sect. 2, we denote for each
agent k = 1, . . . , N at time t , the position as rk(t) = (xk(t), yk(t)), the velocity
as vk(t), the speed as sk(t) = ‖vk(t)‖, and the heading as θk(t) = � {vk(t)}. Then,
vk = (sk cos θk, sk sin θk). The acceleration of agent k is v̇k = (ṡk cos θk, ṡk sin θk) +
(−sk θ̇k sin θk, sk θ̇k cos θk), where the first term corresponds to the component of force
in the direction of motion of the agent and the second term corresponds to the com-
ponent of force in the direction normal to the agent’s velocity.

For ease of notation we identify the real planeR2 with the complex planeC, i.e., the
x-axis (y-axis) on the real plane corresponds to the real (imaginary) axis on the complex
plane. We use bold when we refer to the vector in R

2 and no bold when we refer to
it as an element in C, e.g., rk = (xk(t), yk(t)) ∈ R

2 and rk = xk + iyk ∈ C, where
i = √−1. Further, we use the notation eiθk = cos θk +i sin θk . Then, vk = ṙk = skeiθk

and v̇k = r̈k = ṡkeiθk + sk θ̇kieiθk .
Let each agent have a constant unit nominal speed such that sk(t) = 1+ δsk(t). We

further let the speed variation δsk for each agent k be a 2π -periodic and zero-mean
function of a time-varying speed phase angle φk , such that δsk(φk) = δsk(φk + 2π).

The steering dynamics of agent k are given by θ̇k = ω+uk(t), where ω is a constant
turning rate and uk is a steering control that is zero at steady state. The speed phase
dynamics are given by φ̇k = � + gk, where � is a constant describing the intrinsic
rate of change of the speed phase and gk is a speed phase control that is zero at steady
state. We refer to ω and � as the natural frequencies of heading and speed phase,
respectively.

For conciseness, we specialize to the case of agents with sinusoidal speed oscil-
lations and common amplitude μ ∈ (0, 1) such that δsk = μ cos φk . For details on
the development for general periodic speed oscillations with heterogeneous ampli-
tudes see Swain and Leonard (2009), Swain (2012). The steered particle model with
controlled speed oscillation phases for agent k is then

ṙk = (1 + μ cos φk(t)) e
iθk (t)

θ̇k = ω + uk
φ̇k = � + gk . (8)

We use boldface to represent the ordered vector of the corresponding subscripted
quantity, for example, r = (r1, . . . , rN )T ∈ C

N , and θ = (θ1, . . . , θN ) ∈ T N . For
complex vectors z1, z2 ∈ C

N , we denote z̄1 to be the complex conjugate of z1 and use
the inner product 〈z1, z2〉 = Re

{
zT1 z̄2

}
.

5.2 Steady-State Trajectories

5.2.1 Parallel Motion

Solutions of (8) under the steady-state conditions θ̇k = ω = 0 and φ̇k = � correspond
to each agent k moving along a straight line in the direction θk with sinusoidal speed
and phase φk . Suppose that the agents have coordinated their headings θk to a common
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Fig. 9 Simulation using (8) of steady-state straight-line motion of three agents with speed oscillations with
different phases and common heading. a Agent locations (circles) and velocities (arrows) at three time
instants corresponding to the three vertical dashed lines in b the speed of each particle as a function time.
From Swain et al. (2007)

direction θ (e.g., using the feedback uk defined by (12) below with κc = 0, κθ > 0,
and U given by (14)). Then, the agents will move along parallel straight lines that
resemble the straight-line motion observed in the killifish data. A simulation example
of such a steady-state solution is shown in Fig. 9.

In Swain et al. (2008) we studied these parallel steady-state motions in the case that
each agent has range-limited sensing of neighbors and the changing relative positions
of agents yield a periodically time-varying sensing network. We defined the notion
of an “effective sensing region” as the region that an agent senses over a period
of the speed oscillation. In a structured spatial arrangement we showed how to use
effective sensing regions to find relative speed oscillation phases and frequency � that
maximize the convergence rate of consensus; the analysis is similar to that in Sect. 4.3.
We also used effective sensing regions applied to a random initial spatial distribution
of agents and showed how periodic relative motion improves network connectivity.
Our results in Swain et al. (2008) demonstrate that for a random distribution of agents
with periodically time-varying relative positions, connectivity may be achieved with
a sensing radius lower than that predicted by percolation theory for agents with fixed
relative positions (Quintanilla et al. 2000).

5.2.2 Circular Motion

We next examine circular steady-state solutions when θ̇k = ω �= 0 and φ̇k = �.
Solutions of (8) under these steady-state conditions are given by

rk = ck + R(θk) + μE(φk)e
iθk , (9)

123



1098 J Nonlinear Sci (2015) 25:1077–1109

ṙk(t)

μeiθkE(φk)

θk(t)

rk(t)

R(θk)

ck

O

Locus of R(θk)

Locus of
μeiθkE(φk)

Fig. 10 Decomposition of rk (t) into circular and elliptical components. From Swain et al. (2007)

where ck is a fixed point,

R(θk) = −iω−1eiθk

defines a circle of radius |ω−1|, and

E(φk) = 1

�2 − ω2 (� sin φk + iω cos φk) (10)

defines an ellipse with eccentricity �
ω

and scale
∣∣�2 − ω2

∣∣−1
. The steady-state tra-

jectory of agent k, illustrated in Fig. 10, corresponds to motion around an ellipse that
rotates around a circle of radius |ω−1| centered at ck . When ω �= � the steady-state
orbit remains inside an annulus defined by

|ω−1| − μ∣∣�2 − ω2
∣∣ ≤ |rk(t) − ck | ≤ |ω−1| + μ∣∣�2 − ω2

∣∣ .

If μ = 0, the orbit is a circle of radius |ω−1|. If μ �= 0 then

d

dt
(rk − Rk − ck) = μ

2

(
ei(θk+φk ) + ei(θk−φk )

)
. (11)

In the case that ω = �, there is a singularity. The velocity term μ
2 e

i(θk−φk ) in (11)
becomes a constant leading to an unbounded spiral trajectory. For � > ω, the ellipse
μE(φk) has its semimajor axis tangent to the circle R(θk) for each value of θk and the
orbit has the appearance of a rounded polygon similar to the trajectories of the killifish
as they move around the tank (see Fig. 11a). As in Fig. 11a, b, the orbit approximates

123



J Nonlinear Sci (2015) 25:1077–1109 1099

Fig. 11 Simulation using (8) of steady-state motion of a single agent (black curve) for ω �= 0. The small
black filled circle and arrow indicate the agent position and orientation at one time instant. The green curve
is the locus of the Rk (θk ) circle, and the blue curve is the locus of the μE(φk ) ellipse. The particle moves
around the blue ellipse as the center of the blue ellipse moves around the green circle. In all four cases
μ = 0.9. a A rounded periodic polygon for ω = 1 and � = 4. b An aperiodic trajectory for ω = 1 and
� = π . c A periodic cardioid-type trajectory for ω = 4 and � = 1. d An aperiodic cardioid-type trajectory
for ω = π and � = 1

a polygon with �
ω

sides for �
ω

an integer. When � < ω, the ellipse μE(φk) has its
semimajor axis parallel to the radius vector of the circle R(θk), and the orbit has a
cardioid appearance as in Fig. 11c, d. The ratio �

ω
determines the number of loops the

orbit completes as θk goes through a 2π cycle. Whenever �
ω

�= 1 is rational, the orbit
is closed and periodic (Fig. 11a, c); otherwise, the orbit is aperiodic (Fig. 11b, d).

5.3 Stabilization of Coordinated Motion Patterns

In this section, we complete the model description by defining the steering control
uk and speed phase control gk ; these depend on measurements of neighbors of agent
k. The collective motion patterns that emerge are the stable steady-state solutions,
simply parameterized by the control gains. Let qk(φk(t)) = μE(φk(t)). In the case
ω �= 0, we define the instantaneous center of the trajectory of agent k as ck(t) :=
rk(t) − R(θk(t)) − qk(φk(t))eiθk (t). Then,

ċk = −ukω
−1 (1 + iωqk) e

iθk − gk�
−1 (vk − iωqk) e

iθk ,

and hence, ck(t) is constant when uk = gk = 0 as studied in Sect. 5.2.
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Following the approach used in Sepulchre et al. (2007), we use the gradient of a
scalar potential U (θ) to define steering control laws that stabilize phase patterns of
the headings θk . Likewise, we use the gradient of a scalar potential V (φ) to define
speed phase control laws that stabilize phase patterns of the speed oscillations phases
φk . To include control terms that stabilize the instantaneous centers of each agent to
a common point, we make use of the projector P = IN×N − 1

N 1N1
T
N , where IN×N

is the N × N identity matrix and 1N is the vector of N ones. Then, ‖Pc‖ = 0 is
equivalent to ck = c̄ ∈ C, for all k.

Theorem 1 (Stability of Coordinated Motion Patterns) Consider N steered agents
each with the dynamics (8). Let U (θ) and V (φ) be two twice differentiable phase
potentials. Assume that U : T N → [0,Umax ] for some scalar Umax > 0 such that
〈gradU, 1N 〉 = 0. Assume that V : T N → [0, Vmax ] for some scalar Vmax > 0 such
that 〈grad V, 1N 〉 = 0. Define the steering control

uk = κcω
−1〈Pkc, (1 + iωqk)e

iθk 〉 − κθ

∂U

∂θk
(12)

and the speed phase control

gk = κc�
−1〈Pkc, (vk − iωqk)e

iθk 〉 − κφ

∂V

∂φk
(13)

where κc > 0, κθ , and κφ are real constants. These controls asymptotically stabilize
the group of N agents to a steady-state pattern of heading phases θ in the critical set
of U (θ) when κθ �= 0, to a steady-state pattern of speed oscillation phases φ in the
critical set of V (φ) when κφ �= 0, and to a steady center ck = c̄ = 1

N

∑N
k=1 ck , for

each agent k. Furthermore, the steady-state pattern of θ (respectively φ) corresponds
to a local maximum of U (respectively V ) when κθ > 0 (respectively κφ > 0) and a
local minimum of U (respectively V ) when κθ < 0 (respectively κφ < 0). For κc = 0,
the steady-state pattern corresponds to straight-line motion.

The proof is similar to the proofs in Sepulchre et al. (2007); the detailed proof for the
general periodic speed oscillation case is given in Section 4.3 of Swain (2012). It can
be shown that the control laws (12) and (13) depend only on relative measurements.
Additionally, following the approach in Sepulchre et al. (2008), the stability result
can be extended to the case in which the inter-agent sensing topology is defined by a
possibly time-varying graph that reflects limitations on sensing.

5.4 Examples of Coordinated Motion Patterns

We illustrate for the case that resembles the killifish in which the heading directions are
synchronized and the speed oscillation phases differ. The headings will be synchro-
nized when the speed of the center of mass of the group is maximized. The average
speed of the group is proportional to the magnitude of
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pθ = 1

N

N∑

k=1

eiθk ,

which is equivalent to the complex-order parameter (Kuramoto 1984; Strogatz 2000).
Define the heading phase potential as

U (θ) = N

2
|pθ |2. (14)

By Theorem 1 the speed of the center of mass |pθ | is maximized using uk given by
(12) with κθ > 0.

To stabilize the speed oscillation phases to a pattern in which they are uniformly
distributed around the circle, following Sepulchre et al. (2007), we use κφ < 0 and
minimize the speed oscillation phase potential

V (φ) =
	 N

2 
∑

m=1

∣∣∣∣∣∣
1

mN

N∑

j=1

eimφ j

∣∣∣∣∣∣

2

. (15)

Figure 12 illustrates the coordinated motion pattern for four agents with the dynam-
ics (8), steering control (12), speed phase control (13) with potentials (14) and (15)
and κθ > 0 and κφ < 0. For each agent we use the parameters μ = 0.9, ω = 1, and
� = 4, which are the same as in Fig. 11a where the trajectory most closely resembles
the killifish. Figure 12a illustrates the steady solution, and Fig. 12b shows a simula-
tion. At steady state, the four agents move around an ellipse, with uniform spacing,
while the center of the ellipse moves around a fixed circle. In the snapshot shown
in Fig. 12a, the purple agent is in front, the cyan agent is in the inside of the curve,

Fig. 12 Coordinated motion pattern for N = 4 agents with dynamics (8). Steering control is given by (12),
and speed oscillation phase control is given by (13) with potentials (14) and (15) and κθ > 0, κφ < 0,
μ = 0.9, ω = 1, and � = 4. Trajectories are shown in black. In snapshots of the four agents, the positions
are shown as colored circles. The colored arrows show heading direction with the length of the arrow
inversely proportional to corresponding agent’s instantaneous speed. a Steady-state solution. b Simulated
trajectories from random initial conditions (from Swain et al. 2007). Three snapshots of the four vehicles
are superimposed
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the green agent is in back, and the red agent is on the outside of the curve. It can be
seen that all agents head in the same direction. At the instant shown, the cyan agent is
slowest since it moves on the inside, while the red agent is fastest since it moves on
the outside of the circle. The snapshots in Fig. 12b show how the individuals regularly
change position around the ellipse, i.e., each gets time in the front and in the back of
the group, and on the inside and the outside of the curve. For direction-limited sensing,
this implies a regular switching among sensing topologies with strong connectivity
over a period. Further, in the case that each agent samples an external environmental
field, the rotation of the group about an ellipse that moves around a circle provides
for spatially dense collective measurements and accuracy in collective estimates of
spatial gradients in the field. The collective motion pattern also provides redundancy
of measurements, e.g., if the group is tracking a circular boundary, then every agent
will take measurements on both sides of the boundary.

A comprehensive study of the coordinated motion patterns that can be stabilized
using the dynamics described in this section is provided in Swain (2012). It is also
shown in Swain (2012) how to systematically solve for the agent control laws given a
desired collective motion pattern.

6 Discussion

Our results show quantitatively that the killifish in two-fish and three-fish schools
commonly exhibit sustained coordinated speed oscillations such that pairs of fish are
close to anti-synchronized in phase. The speed oscillations are quantified using a novel
method for locating segments of oscillating speed, where speed is calculated from tra-
jectory data acquired by digitally tracking the fish from overhead video and oscillations
are classified using the Hilbert transform. That the speed oscillations are coordinated
among the fish can be inferred from the correlated periods of oscillation with very
similar frequency among the fish and the consistent oscillation phase difference.

The coordinated oscillating speeds lead to oscillations in relative positions among
fish; at the group level this corresponds to cycling of the spatial configuration. In
both the two-fish and the three-fish schools, the fish are observed to cycle closer and
then farther from their neighbors. We hypothesize that the resulting periodic changes in
school configurations have a positive impact on passing of socially sensed information;
when social sensing depends on relative position or velocity, cyclic relative motion
can be expected to increase the richness of sensed measurements.

We consider social communication through visual sensing, and we examine the peri-
odically time-varying configurations in the three-fish schools. We estimate a switching
sensing topology that describes which fish can see which other fish in the three-fish
schools as occlusions are made and broken periodically in time. We evaluate the
switching sensing topology in a novel way by computing the rate of convergence to
consensus (for a decision variable such as heading direction) in a dynamic system of
decision makers with network structure defined by the switching sensing topology.
For the purposes of comparison we compute the rate of convergence to consensus for
the same consensus dynamics in the case that the network structure is static. Among
static sensing topologies, the maximum rate of convergence to consensus is achieved
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in the all-to-all case, i.e., when each individual senses every other individual. How-
ever, an all-to-all topology is often not possible when sensing depends on the spatial
distribution of the group, and even if possible might be costly in terms of attention.
For lattices and other regular patterns, the visual sensing topology determined by
line-of-site visibility will be limited due to occlusions.

We compute the rate of convergence to consensus in the case that the topology
switches between the two sensing topologies estimated from the three-fish school
data. By this metric, switching outperforms a fixed topology at either of the two
estimated sensing topologies; the speed of convergence is as much as 50 % more than
what could be achieved with one of the fixed topologies, and maximized when the time
is equally split between the two topologies. This maximal convergence rate is equal
to the convergence rate in the case of the static all-to-all topology, but achieved with
limited sensing topologies. We show further that the results are robust to changes in
assumptions on numbers of fish sensed at any given moment. These results suggest the
possibility of an evolutionary advantage to coordinated relative motion in this context.

We find another striking benefit of coordinated relative motion with respect to social
communication by showing that the periodic relative motion of the killifish facilitates
periodic cycling between different relative positions that are individually optimal with
respect to different benefits. The relative positions of the killifish correspond to relative
bearings from a focal fish to a neighbor fish that have been predicted by Dill et al. (1997)
to be optimal with respect to the focal fish’s ability to detect changes in the heading or
speed of a neighbor. It was suggested that these values may predict the average relative
bearings observed in animal groups. We find that the killifish cycle about a range of
relative bearings that includes three of the four optimal angles predicted by Dill et al.
(1997). The three optimal angles exhibited by the killifish are (1) the bearing angle
35.3◦, which maximizes sensitivity to speed and heading changes of the visual cue for
detecting time to collision, (2) the bearing angle 45.0◦, which maximizes sensitivity
to a heading change of the visual cue for detecting angular velocity, and (3) 63.4◦,
which is the bearing angle that maximizes sensitivity to a speed change of the visual
cue for detecting loom.

We have derived an analytically tractable model of a network of agents moving
with oscillating speed and demonstrated its use in systematically studying coordinated
motion patterns along straight lines and around circles. For agents modeled with range-
limited sensing, periodic relative motion yields enhanced effective sensing, enriching
social communication. Further, in circular motion, agents modeled with out-of-phase
sinusoidal speed oscillations will rotate periodically in time around an ellipse that
rotates around the circle. Each agent repeatedly takes a turn being in the front and back
of the group and in the inside and outside of the circle of motion. Thus, communication
is enriched not only for range-limited sensing but also for direction-limited sensing
since each agent switches between seeing and being seen. For the group measuring a
distributed environmental field, the elliptical circulation provides high spatial density
of measurements by the group. For example, it can improve their accuracy in estimating
the gradient of the measured field or tracking a level set or boundary of a resource
patch (Zhang and Leonard 2010). This collective motion also provides redundancy in
measurements, particularly useful in the case of a sensor failure.

123



1104 J Nonlinear Sci (2015) 25:1077–1109

While we have primarily considered the effects of relative motion on the ability of
visual information to pass between fish, relative motion is also linked to the quality
of visual information. For example, optical flow is generated on the retina of the focal
fish when that fish moves relative to its neighbors. Periodicity of relative motion,
induced by coordinated (anti-synchronized) speed oscillations, implies periodicity of
the optical flow, which may improve signal-to-noise ratio with regard to detecting the
position and motion of other fish from visual information that also includes noise from
the environment. Likewise, there may be benefit in lateral line sensing due to unsteady
fluid flow between the fish as a result of the relative motion induced by coordinated
speed oscillations.

Our results show quantitatively ways in which periodically changing group config-
urations can enrich social communication as compared to static configurations. The
techniques we describe are directly applicable to other settings in which coordinated
periodic relative motion is present. For example, they could prove useful to analyze
burst-and-coast swimming in fish schools where it is not clear whether or not bursting
and coasting provides an energetic advantage (Weihs 1974; Fish et al. 1991). The
authors of Fish et al. (1991) propose that any energetic advantage may be incidental to
benefits associated with maintaining position within the school. This may have some
connections to the case of the killifish: The speed oscillations require active decel-
eration which is most likely energetically disadvantageous, but at the same time the
speed oscillations provide a benefit in information passing.

Animal groups that move together exhibit remarkable behavior despite limitations
in the capabilities of individuals. Our results provide new insights and motivate further
study on how the role of relative motion can be used to explain collective behavior in
animal groups and to design collective behavior in engineered groups such as mobile
robotic networks.
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Appendix

Appendix 1: Experiments and Trajectory Data

Groups of two and three killifish, collected from Silver Lake, Sackville, New
Brunswick, Canada, were among the small schools filmed by IDC in September 2000,
while they swam in a 155-cm square tank in shallow water (2.5 cm). The smallest of
the fish were on average 3 cm long, and the largest were on average 4 cm long. The
video was recorded from 190 cm above the tank on a Sony DVCAM at 31.2 frames per
second and was later transferred to DV-format video files. Custom tracking software
(Swain 2011; Swain et al. 2012) was used to extract raw trajectory data from the video
files of the groups of two and three killifish. The output of the tracking software is one
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trajectory time series for each fish in each video. That is, for each fish in each video
with Nt frames we have

r(t) =
[
x(t)
y(t)

]
, t = {0, 1, . . . , Nt − 1}

where (x(t), y(t)) are the coordinates, in meters, of the centroid of the fish relative to
the bottom left corner of the video frame at time tTs , and Ts = 32.1 ms is the time
between video frames.

From these data we calculate positions in meters by multiplying image coordinates
in pixels by a scaling factor, that is, the ratio of the known width of the tank in meters
to the width of its image in pixels. This scaling conversion is sufficient because there
was very little lens distortion and because the camera was mounted such that the image
plane was aligned with the plane of the bottom of the tank (i.e., there was negligible
rotation between the image coordinate system and the tank coordinate system).

A subset of the trajectory time series data is used for the analysis of speed oscillations
(see Sect. 2). To select this subset, a set of candidate data sequences is determined by
rejecting time samples for which either a) one or more fish is not visible in the video
frame or b) the fastest-swimming fish has a speed of less than 4 cm/s (i.e., the fish were
idle). Any of these candidate segments that is less than 2.0 s in duration is rejected. A
subset of the remaining sequences is selected in order to balance the number of time
sample contributions from each experimental group. First, the group with the smallest
total number of candidate time samples is rejected. Sequences were then selected from
each of the remaining groups, one group at a time and in the order in which they were
recorded, until the number of samples for that group exceeds the number of samples
from the second smallest group. This method produces a similar number of samples
from each group. It is applied separately to the two-fish data and the three-fish data.

For the analysis of speed oscillations in two-fish schools, the method provides 15
groups of fish (after the group with the fewest available samples was removed) with
a total of 130 time segments and a total duration of 1343.40 s (22.39 min). The time
contribution per group ranges from 89.94 to 110.51 s with shortest segment 2.08
s, longest segment 40.26 s, and average segment 10.33 s. For the analysis of speed
oscillations in three-fish schools, the method provides 11 groups of fish (after the
group with the fewest available samples is removed) with a total of 63 time segments
and a total duration of 912.63 s (15.21 min). The time contribution per group ranges
from 82.95 to 108.14 s with shortest segment 2.08 s, longest segment 61.31 s, and
average segment 14.49 s.

A subset of the trajectory time series three-fish data is used for analysis of config-
urations (see Sect. 3). This subset is determined in a manner similar to that described
above with the same constraints on visibility and minimum speed. In addition, seg-
ments during which any fish is within three body lengths (12.0 cm) of the edge of the
tank or with duration less than 2.0 s are rejected. Of the remaining segments, only
those during which at least two of the fish engage in coordinated speed oscillations are
kept. These segments are determined according to the algorithm described in Sect. 2.1
for isolating oscillatory segments in a time series using the instantaneous phase of
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the relative speed between a pair of fish. The number of time samples from each
experimental group is balanced using the procedure described above.

For the analysis of configurations in three-fish schools, the method provided 11
groups of fish (after the group with the fewest available samples was removed) with
a total of 246 segments and a total duration of 1086.76 s (18.11 min). The time
contributed per group ranges from 105.83 to 115.03 s with shortest segment 1.12 s,
longest segment 15.45 s, and average segment 4.42 s.

Appendix 2: Velocity Estimation

We describe the method we use to estimate the velocity, v(t), and the nominal speed,
s̄(t), of each fish at time t during each segment of the trajectory data for the two-fish
and three-fish groups.

The velocity, v(t), is estimated by filtering the “raw” velocity v̄(t) computed from
the forward differences in position as

v̄(t) = 1

Ts
(r(t + 1) − r(t)) .

Filtering is achieved by convolving v̄(t) with a truncated sinc kernel that approxi-
mates an ideal low-pass filter in the frequency domain [(see for example Proakis and
Manolakis (1996)]. The filter kernel, K (τ ), is the sequence

K (τ ) = K̄
sin 2πτTs fc

2πτTs fc
, − LK − 1

2
≤ τ ≤ LK − 1

2
(16)

where fc = 2.0 Hz is the cutoff frequency, LK = 201 is an odd integer equal to the

number of samples in the kernel, and K̄ is a constant that satisfies
∑ LK −1

2

τ=− LK −1
2

K (τ ) =
1. The cutoff frequency fc is chosen to eliminate as much noise as possible from the
sample speed sequences without over-smoothing the estimate.

The convolution operation is undefined for the first and last (LK −1)/2 samples of
the raw velocity sequence. To avoid losing these samples, the raw velocity sequence
is extended beyond its original length, Nt . The extended raw velocity is defined as

v̄e(t) =
⎧
⎨

⎩

v̄(−t), − LK−1
2 ≤ t < 0

v̄(t), 0 ≤ t < Nt

v̄(2Nt − t), Nt ≤ t < Nt + LK−1
2 .

(17)

The convolution of the extended raw velocity sequence with the kernel sequence is
taken as the estimate of the velocity:

v(t) =
LK −1

2∑

τ=− LK −1
2

v̄e(τ − t)K (τ ), 0 ≤ t < Nt .
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The speed is s(t) = ‖v(t)‖ and the heading is θ(t) = � {v(t)}. The nominal speed,
s̄(t), is calculated by applying a low-pass filter with bandwidth 0.375 Hz to the raw
velocity and taking the Euclidean norm of the resulting vector. A sinc kernel of the
form (16) is used with fc = 0.375 Hz and LK = 1067 samples. Sequences are
extended as in (17) prior to filtering.

Appendix 3: Metric for Speed Oscillation Phase Difference

Themean sign product (MSP) is derived to provide a measure of coordination of speed
oscillations between a pair of fish that is not so sensitive to amplitude fluctuations and
noise in the speed variation signals. The MSP is computed as a function of the relative
speed variation δsi j for the pair of fish i and j , where δsi j (t) = δsi (t) − δs j (t). We
define

MSP(i, j) = 1

Nt

Nt∑

t=1

sign
{
(δsi (t) − δs̄i )

(
δs j (t) − δs̄ j

)}
, (18)

where δs̄i (δs̄ j ) is the average value of δsi (t) (δs j (t)) over the segment.
When fish i and fish j have speed oscillations that differ in phase by 180◦, then

MSP(i, j) = −1, and we say that their speeds are anti-synchronized. When fish i and
fish j have speed oscillations that differ in phase by 0◦, then MSP(i, j) = 1, and we
say that their speeds are synchronized.

For perfect sinusoids, the MSP varies linearly with the phase difference, �φ, mod-

ulo 360◦, as MSP = 1 − 2
∣∣∣ �φ

180◦
∣∣∣. Noise tends to compress the estimate away from

the ±1 extremes. MSP(i, j) < 0 indicates that the speed oscillations of fish i and fish
j are more anti-synchronized than they are synchronized. Likewise, MSP(i, j) > 0
indicates that the speed oscillations of fish i and fish j are more synchronized than they
are anti-synchronized. MSP(i, j) = 0 corresponds to a phase difference of ±90◦. The
variance of the MSP, calculated across subsegments of equal length, is an indication
of the uniformity of phase differences. If there is no uniformity, then the mean MSP
tends toward zero and the variance tends toward 1/3 (i.e., the variance of a uniform
distribution over the range −1 to 1). If there is a high degree of uniformity in phase
difference, then the variance will be low.

Appendix 4: Uniform Connectedness of a Periodically Time-Varying Graph

Consider a time-varying graph G(t) defined by a node set V = {1, . . . , N } and an
edge set E(t) ⊆ V × V . A node i is said to be connected to node j at time t if there
is a path in G(t) from i to j that respects edge directions, i.e., there is a set of nodes
k1, . . . , kn ∈ V , n ≤ N − 2, such that (i, k1), (k1, k2), . . . , (kn, j) are all in E(t).
The graph G(t) is defined to be connected at time t if there is a node k ∈ V that is
connected to all other nodes at time t . For a time-varying graph G(t) and any time
interval I , we may construct a graph GI , where GI has the same node set, V , as G(t)
and an edge set EI defined such that (i, j) ∈ EI if and only if (i, j) ∈ E(t) for some
t ∈ I . We say that node i is connected over time interval I to node j if there is a path

123



1108 J Nonlinear Sci (2015) 25:1077–1109

from i to j in GI that respects edge directions. A graph G(t) is said to be uniformly
connected if there is a node k ∈ V and a time horizon τ > 0 such that, for all t ≥ 0,
node k is connected to all other nodes over the interval I = [t, t + τ ]. If the graph is
periodically time varying with period T , i.e., G(t) = G(t + T ), then G(t) is uniformly
connected if the graph GI is connected for I = [t, t + T ] for any t ≥ 0.
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