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Abstract— Motivated by recent observations of fish schools,
we study coordinated group motion for individuals with os-
cillatory speed. Neighbors that have speed oscillations with
common frequency, amplitude and average but different phases,
move together in alternating spatial patterns, taking turns being
towards the front, sides and back of the group. We propose a
model and control laws to investigate the connections between
these spatial dynamics, communication when sensing is range
or direction limited, and convergence of coordinated group
motions.

I. INTRODUCTION

Observations of animals that move efficiently as a group

provide inspiration for design of coordinating control laws

for multi-agent robotic systems. At the same time, modeling

and analysis tools from systems and control theory provide

possible means to better understand dynamics and robustness

of natural group behaviors and how they emerge from rules

at the level of individuals. Previous works include [1], [2],

[3] and references therein.

In this paper we consider recent observations by Couzin

and Kao of schooling fish that exhibit oscillatory acceleration

and speed [4]. Preliminary data analysis suggests that the

average, frequency and magnitude of the speed oscillations

are similar across the group and individuals phase lock their

relative speed oscillations. For example, it was observed in

very small schools that neighboring fish often move together

with anti-synchronized speeds; i.e., while one is speeding

up, the other is slowing down. Fig. 1 shows sample data

of the speeds of two fish swimming together. These obser-

vations are remarkable. They suggest possible mechanisms

for information passing and collective motion in biological

groups as well as new ways to synthesize coordinated motion

for engineered collectives with advantageous communication

and convergence properties.

For example, consider a group of individuals moving

forward together at sinusoidal speed with common average,

frequency and amplitude. Assume further that the speed

oscillations are out of phase as in Fig. 2. Now suppose that

each individual aligns itself with its neighbors by sensing and

responding to the relative orientation of its neighbors. In the

D.T. Swain and N.E. Leonard are with the Mechanical and Aerospace
Engineering Department, Princeton University, Princeton, NJ 08544 USA,
{dswain}{naomi}@princeton.edu

I.D. Couzin is with the Department of Ecology and Evolu-
tionary Biology, Princeton University, Princeton, NJ 08544 USA,
icouzin@princeton.edu

A. Kao is with the Physics Department, Harvard University, 17 Oxford
St., Cambridge, MA 02138 USA, kao@fas.harvard.edu

R.J. Sepulchre is with the Department of Electrical Engineering and
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Fig. 1. Speed data for two fish swimming together in a tank. The data
were produced from digitized video footage.

case that it has a blind spot behind itself, an individual can

only respond to neighbors that are beside or ahead of it. If all

individuals move with common speed, then individuals that

start toward the back will stay in the back and have little or

no influence on the group. However, with oscillatory speeds

that are not synchronized, for a range of initial conditions, the

individuals will alternate their positioning so that each has a

chance to make relative forward progress to see and be seen

at least periodically, see Fig. 2(a). In other words, the graph

that describes the sensing topology among individuals may

be directed under common speed conditions but becomes

undirected over regular periods for out-of-phase, oscillatory

speed conditions.

As a second illustration, consider a group of individuals

making a turn or even moving together in a circle. Suppose

the individuals start close together. If the individuals move

at the same speed then individuals with larger radius of

curvature will fall behind those with smaller radius of cur-

vature. This may be a relevant behavior that adjusts relative

positioning in a group. However, if the individuals move with

oscillatory speed with phases that are not synchronized, then

individuals can alternate their relative positioning and radius

of curvature so that each is periodically in the front, on the

outside, in the back and on the inside of the turning group

and the group stays together, see Fig. 6. In this case too, the

alternating spatial pattern enables increased communication

when sensing is range or direction limited.

These illustrations reveal direct connections between the

spatial dynamics, changing communication topology and

convergence of group motions. Modeling and analysis of

feedback control laws based on the proposed strategies can

provide, for example, regions of attraction in phase space for

stable coordinated group motions.

In this paper we introduce oscillatory speed into a planar
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particle model of a group of individuals. We propose and

prove control laws that phase lock relative speed oscillations,

building on the stabilization methodology of [5], [6]. The

model is presented in Section II. In Section III we propose

and prove stabilizing control laws for turning and circular

patterns and explore the influence of model parameters on the

resulting alternating spatial pattern. The role of oscillatory

speed in the case of limited communication is explored in

Section IV.

II. PARTICLE MODEL

We consider a group of N individuals and model each as

a particle with unit mass. In this paper we restrict motion

to the plane and identify R
2 with C. For k = 1, . . . , N , let

rk ∈ C denote the position of particle k and fk ∈ C the

total external force on particle k. Let αk = |ṙk| be the speed

of particle k and for αk 6= 0, let θk ∈ S1 be the direction

of motion of particle k relative to an inertial frame. We can

express the velocity of particle k as

ṙk = αke
iθk

and the dynamics of particle k as

r̈k =
(

α̇k + αkθ̇ki
)

eiθk (1)

for k = 1, . . . , N . The first term on the right of (1) is

the component of force in the direction of motion and the

second term is the component of force normal to velocity. We

decompose the control into two corresponding components:

θ̇k = uk

α̇k = vk.

A. Constant Speed

Several authors have studied stabilization of collective

motion in the case that vk = 0 and αk = α for k = 1, . . . , N ;

see for example [7], [5]. In this case, where constant unit

speed for each particle is assumed, the dynamics simplify to

ṙk = eiθk (2)

θ̇k = uk. (3)

If uk depends only on θ = (θ1, . . . , θN ) and not on r =
(r1, . . . , rN ), then the oscillator dynamics (3) are decoupled.

Following [8], [9] the complex order parameter for a set

of phase angles ψ = {ψ1, . . . , ψN} ∈ TN , is defined as

pψ =
1

N

N
∑

k=1

eiψk . (4)

Its magnitude |pψ| gives a measure of synchronization. When

|pψ| = 1 the phases are synchronized, i.e., ψk = ψj for all

j, k. When pψ = 0 the phases are balanced. The phases are

in a symmetric balanced configuration called the splay state

when they are evenly distributed around the unit circle.

The gradient of the phase potential

U1(ψ) =
N

2
|pψ|

2 (5)

yields the coupled oscillator dynamics

ψ̇k = ζ −K
∂U1

∂ψk
= ζ −K

〈

pψ, ie
iψk

〉

(6)

= ζ −
K

N

N
∑

j=1

sinψjk,

where ψjk = ψj − ψk and the inner product is defined

by 〈z1,z2〉 = Re
{

z̄T1 z2

}

for z1,z2 ∈ C
N . This is the

Kuramoto model in the case of identical natural frequencies

ζ [8], [9]. When K > 0, the set of balanced solutions is

stabilized. When K < 0, the synchronized state is stabilized.

In [5] the authors consider both the phase and spatial

dynamics of the particle model and design control laws

uk = uk(θ, r) to stabilize coordinated patterns in relative

phase and relative position for the particle model (2)-(3).

The control laws derive from a superposition of phase

potentials and spacing potentials for stabilization of parallel

and circular motions of the particle group. In the case of

circular motion, the particles are stabilized to move around

the same circle with either synchronized or balanced phasing.

A control law is derived from potentials dependent on integer

multiples of phase angles and stabilizes circular motion of

particles with phasing in symmetric patterns. For example,

the phases can be stabilized to the splay state so that the

particles are uniformly distributed as they rotate around a

circle.

In [6], the authors generalize the stabilization of collective

motion to a particle group with limited communication. A

graph and the corresponding Laplacian matrix represent the

communication topology. The phase and spacing potentials

are generalized by defining them in terms of a Laplacian-

dependent quadratic form. In the case of fixed topology

(constant Laplacian) and undirected graph (every commu-

nication link is bi-directional), stabilization follows under

certain connectedness conditions. In the case of time-varying

and directed graphs, stabilization is proven only with the

addition of consensus dynamics and the communicating of

the consensus variables.

B. Oscillating Speed

We introduce to the particle model a sinusoidal variation

about a common nominal speed, taken here to be unit speed.

We assume that there is a feedback loop on each control

input vk so that particle speed is controlled tightly to the

desired speed; accordingly, we design αk(t) instead of vk.

We introduce a new input gk which controls the phase of

the speed oscillation. Consider the speed profile for k =
1, . . . , N

αk(t) = 1 + µ cosφk(t), (7)

where constant µ ∈ (0, 1) is the amplitude of the oscillations

and φk(t) is an instantaneous phase angle. The particle model

becomes

ṙk = (1 + µ cosφk(t)) e
iθk(t)

θ̇k = uk (8)

φ̇k = gk.
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We are interested in choices of gk such that at steady-

state φ̇k = Ω where Ω ∈ R is a constant and αk(t) =
1 + µ cos (Ωt+ φ0) for some φ0 ∈ S1.

For the headings θ = {θ1, . . . , θN} and speed phases

φ = {φ1, . . . , φN}, we define synchronization parameters

pθ and pφ and potentials U1(θ) and U1(φ) as per (4) and

(5), respectively. Gradient dynamics corresponding to these

potentials are

θ̇k = uk = ω −Kθ

∂U1(θ)

∂θk

φ̇k = gk = Ω −Kφ

∂U1(φ)

∂φk

with scalar constants ω, Kθ, and Kφ. Here uk depends only

on relative headings θjk and gk depends only on relative

speed phases φjk. The stability results are straightforward;

for example, if Kθ > 0 and Kφ < 0, the headings

synchronize and the speed phases balance.

Fig. 2 shows simulation results for the particle model

(8) with common constant heading θk = θ0, θ̇k = 0 and

sinusoidal oscillations φ̇k = Ω for k = 1, 2, 3. The initial

speed phase angles for the three particles are chosen to be

out of phase. The particles move in straight parallel lines and

the relative position of the particles alternates as a result of

the out-of-phase locked speed oscillations.
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Fig. 2. Particle model simulation results with speed oscillations and
constant heading. (a) Particle locations and velocities at three time instants
corresponding to the three vertical dashed lines in (b) the speed of each
particle as a function time.

III. CIRCULAR PATTERNS WITH SPEED

OSCILLATION

In this section we design control laws to stabilize circular

motion with alternating positioning of the particle group

for the particle dynamics (8). We first examine steady-state

solutions and the influence of the parameters µ, ω,Ω. The

stabilization results follow.

A. Steady-State, Alternating, Circular Motion Patterns

Solutions of (8) under the steady-state conditions θ̇k =
ω and φ̇k = Ω, k = 1, . . . , N , are described by the

decomposition

rk = ck +R(θk) + µeiθkE(φk), (9)

where

R(θk) = −iω−1eiθk

defines a circle of radius |ω−1| and

E(φk) =
1

Ω2 − ω2
(Ω sinφk + iω cosφk) (10)

defines an ellipse with eccentricity Ω
ω

and scale
∣

∣Ω2 − ω2
∣

∣

−1
.

As illustrated in Fig. 3, the steady-state trajectory of particle

k corresponds to motion around an ellipse that rotates around

a circle of radius |ω−1| centered at ck. When ω 6= Ω the

steady-state orbit remains inside an annulus defined by

|ω−1| −
µ

|Ω2 − ω2|
≤ |rk(t) − ck| ≤ |ω−1| +

µ

|Ω2 − ω2|
.

ṙk(t)

µeiθkE(φk)

θk(t)

rk(t)

R(θk)

ck

O

Locus of R(θk)

Locus of
µeiθkE(φk)

Fig. 3. Decomposition of rk(t) into circular and elliptical components.

We now consider the influence of relative values of ω, Ω,

and µ on the circular motion pattern. If µ = 0, we recover

the case with no speed oscillations and obtain closed orbits

on circles of radius |ω−1| as in Fig. 4(a). In the case that

ω = Ω, there is a singularity (see (10)). This manifests as a

constant velocity term and hence spiral trajectories that do

not remain bounded. This is illustrated in Fig. 4(b).

For Ω > ω, the µE(φk) ellipse has its semi-major axis

tangent to the R(θk) circle for each value of θk and the

orbits have the appearance of rounded-out polygons as in

Figs. 4(c) and 4(d). In fact, if Ω
ω

is an integer, the orbits

approximate a polygon with Ω
ω

sides (Fig. 4(c)).

For Ω < ω, the µE(φk) ellipse has its semi-major axis

parallel to the radius vector of the R(θk) circle for each

value of θk and the orbits have a cardioid appearance as in

Figs. 4(e) and 4(f). In this case the ratio Ω
ω

determines the

number of loops the orbit completes as θk goes through a

2π cycle.

We also observe that the orbit is closed and periodic

whenever Ω
ω

6= 1 is rational (Figs. 4(c) and 4(e)), and that

the orbits are aperiodic otherwise (Figs. 4(d) and 4(f)).

B. Stabilization of Circular Motion Patterns

We now turn to the stabilization of a collection of N

particles moving according to the dynamics (8). Our goal

is to find control laws for the steering control uk and

speed phase control gk that stabilize the particle trajectories
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(a) (b)

(c) (d)
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Fig. 4. Steady state solutions of (8) for an arbitrary particle. (a) Circular
orbit when µ = 0; (b) Spiral trajectory for Ω = ω; (c) Closed hexagonal
orbit when Ω = 6ω; (d) Non-closed orbit when Ω = πω; (e) Closed
cardioid orbit when 2Ω = ω; (f) Non-closed orbit when eΩ = ω.

to steady-state orbits such as those described by (9) with

θ̇k = ω 6= 0, φ̇k = Ω and ck = c0 for some c0 ∈ C

and k = 1, . . . , N . In our first result we address this goal

without imposing prescribed phase locking patterns on the

relative headings θjk and relative speed phases φjk.

Inspired by [5], we define

sk = −iωck = eiθk − iωrk + iωµeiθkE(φk) (11)

and the corresponding vector s = {s1, . . . , sn} ∈ C
N . The

algebraic condition

Ps = 0, P = IN −
1

N
11

T (12)

corresponds to the desired condition that ck = c0 for some c0
and for all k = 1, . . . , N . This condition, along with θ̇k = ω

and φ̇k = Ω, describes our desired steady-state.

Theorem 1: For the speed-oscillating particle model (8)

with steering control and phase controls

uk = ω − κ
〈

Pks, ie
iθk

〉

, κ ∈ R
+ (13)

gk =
Ω

ω
uk, (14)

respectively, all solutions converge to patterns defined by

motion about a circle of common center and radius |ω−1|
with superimposed motion due to the speed oscillations as

defined by (9).

Proof: Following the strategy of [5], we choose a

candidate Lyapunov function

S(r,θ,φ) =
1

2
‖Ps‖2

(15)

(recall that r, θ, and φ are vectors of the rk, θk, and φk
variables, respectively), which has time-derivative

Ṡ = 〈Ps, P ṡ〉 =

N
∑

k=1

〈Pks, ṡk〉 , (16)

where Pk is the kth row of P and we have taken advantage

of the fact that P 2 = P is a projector.

With controls (13) and (14), it follows that along solutions

of (8) we have

Ṡ = −
N

∑

k=1

(1 + µ cosφk)κ
〈

Pks, ie
iθk

〉2
≤ 0. (17)

Since (17) is nonincreasing, solutions converge to the largest

invariant set Λ on Ṡ = 0, corresponding to the condition
〈

Pks, ie
iθk

〉

= 0 (18)

for each k = 1, . . . , N . Plugging (18) into (13) gives θ̇k =
uk = ω for all k. By (14) this implies that φ̇k = gk = Ω for

all k. Also, since θ̇k = ω 6= 0 for all k, (18) is only satisfied

if Ps = 0. Together these conditions imply convergence to

the desired steady-state.

Remark. By (11) and the form of (6), the control law (13)

can be rewritten as

uk = κ
∂U1(θ)

∂θk
+ ω

(

1 + κ
〈

r̃k, e
iθk

〉)

+ µκω
〈

ẽk, e
iθk

〉

,

(19)

where

r̃k = Pkr = rk −
1

N

N
∑

j=1

rj

is the relative position of rk from the group center of mass

and

ẽk = Pke = eiθkE(φk) −
1

N

N
∑

j=1

eiθjE(φj),

where e =
{

eiθ1E(φ1), . . . , e
iθNE(φN )

}

. Furthermore,

〈

ẽk, e
iθk

〉

= Re {E(φk)} −
1

N

N
∑

j=1

〈

E(φj), e
iθkj

〉

,

in which the term Re {E(φk)} is proportional to the com-

ponent of acceleration in the particle k direction of motion.

Similarly, 1
N

∑N
j=1

〈

E(φj), e
iθkj

〉

can be interpreted as be-

ing proportional to the average component of the group’s

acceleration (assuming that it is in steady-state) projected

also into the particle k direction of motion. The term
∂U1(θ)
∂θk

is a function only of relative headings, see (6). Hence, the
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control law (19) can be computed from relative physical

quantities. When µ = 0, this control is identical to that

produced in [5].

Fig. 5 shows results of simulations in which (13) is used

to stabilize collective motion of patterns similar to those in

Fig. 4. In this case, we set eΩ = ω and particles converge

to patterns similar to Fig. 4(f), where the trajectories share

a common center. We note that Fig. 5 bears a striking

resemblance to the “random” circulation of a fish shoal about

a common center [10]. Indeed the steady-state motion reflects

a behavior in which individuals cycle between periods of

higher velocity (when cosφk is near +1) and periods of lower

velocity (when cosφk is near -1). In maintaining a constant

angular frequency ω, this behavior in turn produces cycles

between particle motion close to the outside perimeter of the

annulus (large |rk − c0|) and particle motion near the inside

perimeter of the annulus (small |rk − c0|).

Fig. 5. Simulation results using the steering control (13) with speed phasing
control (14). Solid circles show positions, arrow directions indicate heading
and arrow lengths indicate speed. N = 25, µ = 0.5, eΩ = ω.

C. Stabilization of Circular Motion Patterns with Prescribed

Relative Phases

To stabilize circular motion patterns with prescribed rel-

ative heading angles and relative speed phases we augment

the steering control (13) and speed phasing control (14) with

gradients of potentials of the form derived in [5]. Our goal

is to stabilize the group so that it moves as a cluster around

a circle with alternating positioning of the particles in the

cluster. To cluster the group we synchronize the headings

θk. To enforce alternating positions we balance the speed

phases φk. As a particular example here we stabilize the

speed phases φk to the splay state. The modified control

laws are

uk = ω
(

1 + κ
〈

r̃k, e
iθk

〉)

+ µκω
〈

ẽk, e
iθk

〉

−
∂ (Uθ(θ) − κU1(θ))

∂θk
(20)

gk =
Ω

ω
uk −

∂ (Uφ(φ) − U1(φ))

∂φk
, (21)

where Uθ(θ) = KθU1(θ) synchronizes the heading angles

θk for Kθ < 0 and

Uφ(φ) =

⌊N
2
⌋

∑

m=1

Kφ,m

∣

∣

∣

∣

∣

∣

1

mN

N
∑

j=1

eimθj

∣

∣

∣

∣

∣

∣

2

, (22)

where ⌊N2 ⌋ is the largest integer smaller than or equal to
N
2 , stabilizes the splay state of φ when Kφ,m > 0, m =
1, . . . , ⌊N2 ⌋. Proof of stabilization for these controlled dy-

namics will appear in a forthcoming paper.

Fig. 6 shows simulation results when Ω = 4ω, Kθ < 0,

and Kφ,m > 0, m = 1, . . . , ⌊N2 ⌋. Since Kθ < 0, the

heading angles θk synchronize and all of the individual

particles converge to the same ellipse which moves around

the same circle. Additionally, since Kφ,m > 0, the speed

phases stabilize to the splay state and the particles are evenly

distributed around the ellipse defined by µE(φ). The shape

and size of the ellipse are controlled by parameters µ, ω, and

Ω.

Fig. 6. Simulation results using the steering control (20) with speed phase
control (21). Solid circles show positions, arrow directions indicate heading
and arrow lengths indicate speed. N = 4, µ = 0.9, Ω = 4ω. Three
snapshots of the same cluster are shown.

IV. SPEED PHASE STABILIZATION WITH

LIMITED COMMUNICATION

In the case that individuals in the group have limited

communication that is time-invariant and undirected, we can

use the Laplacian-dependent spacing and phase potentials

of [6] to generalize the stabilization results of Section III.

Here we are interested in the advantages of alternating spatial

patterns when communication is range or direction limited

as motivated in the introduction (e.g., fish with rear blind

spots). In this case the communication is time-varying and

directed, but the alternating positioning makes improved

communication over regular time intervals possible.

To make a preliminary investigation we focus only on the

coupled speed phase dynamics. To do this we fix the rest of

the dynamics so that the particles move on the steady-state

pattern and allow only the speed phases φk to be controlled
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with feedback and limited communication. Accordingly, we

consider the modified model

ṙk = (1 + µ cosφk) e
iθk + µḡke

iθk
∂E

∂φk

θ̇k = uk = ω (23)

φ̇k = gk = Ω + ḡk

with initial conditions chosen so that rk(0) = R(θk(0)) +
µeiθk(0)E(φk(0)) and θk(0) = θj(0) for all k, j. This

corresponds to all particles moving about the same ellipse

which rotates around a circle as in the simulation example

of Fig. 6. The additional µḡke
iθk ∂E

∂φk
term in (23) keeps

particles on the ellipse for arbitrary control law gk = Ω+ ḡk,

so that control law ḡk can be designed to stabilize prescribed

relative speed phases.

Let each particle be represented by a node on a graph

G(t) with edge set E(t) defining communication links such

that (k, j) ∈ E(t) if particle k can sense particle j at time

t. The neighbor set Nk(t) of particle k contains all j such

that (k, j) ∈ E(t) at time t and |Nk(t)| is its cardinality.

We also require a notion of graph connectedness over time

periods. A graph is said to be uniformly connected if there

exists a node i and a time T > 0 such that for all t node i

is connected to all other nodes across the intervals [t, t+ T ]
(see [6]).

Theorem 2: Consider the model (23) with the initial con-

ditions specified above and sensing for each particle limited

by a rear blindspot angle β < π as shown in Fig. 7. The

speed phase control

gk = Ω +
Kφ

|Nk(t)|

∑

j∈Nk(t)

sinφjk (24)

for some Kφ < 0 and |Kφ| < |Ω|, exponentially stabilizes

the synchronized state of φk = φj , for all k, j and φ̇k = Ω.

Proof: The control (24) specifies Laplacian consensus

dynamics on φ ∈ TN . By [11] the synchronized state is

exponentially stable when Kφ < 0 if the communication

graph is uniformly connected.

Since |Kφ| < |Ω|, we have |φ̇k| ≥ |Ω|−|Kφ| > 0 for all t.

Hence, each particle will make a complete cycle around the

E(φk) ellipse at least once every T = 2π
|Ω|−|Kφ|

time units.

By (23), the E(φk) are constrained to be identical and when

any particle is at the rear it can sense every other particle on

the ellipse. Therefore, the graph is uniformly connected for

any node i and some T ∈
[

2π
|Ω|+|Kφ|

, 2π
|Ω|−|Kφ|

]

and the φ

converge to a synchronized steady-state with φ̇k = Ω.

Theorem 2 yields synchronization of speed phases. How-

ever, it may be more desirable to balance them or even

stabilize them to the splay state so that particles do not

collide but rather distribute themselves uniformly within their

cluster. Following [12] and [6] we can stabilize balanced

patterns such as the splay state for a directed, time-varying

graph by using a dynamic consensus algorithm in which a

consensus variable is shared amongst communicating indi-

viduals. Simulation results for this case are shown in Fig. 7.

Fig. 7. Simulation of a formation with limited communication defined by a
rear blind spot angle of β = 2π/3. The oscillating speed phases converge
to a balanced phase arrangement, as prescribed. Dashed lines connecting
particles represent sensing links. Note that the particle in the rear can sense
all of the other particles.

V. CONCLUSION

Motivated by observations of fish schooling, we study

collective motion of individuals with oscillatory speed. The

relative positions of individuals in a group will cycle when

individual speeds are oscillatory and out-of-phase locked.

This leads to alternating spatial patterns, which yield a

rich family of group motions and increased communication

when sensing is distance or direction limited. In particular,

each individual will alternately be at the front of the group

where it can be sensed by others and in the rear of the

group where it can sense others. In the case of turning

motion, each individual will also cycle between the inside

and the outside of the turn (see Fig. 5). The results in this

paper provide a new avenue for connecting group dynamics

with changing communication topology and convergence of

collective motion patterns.
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