
The Role of the Dynamics of Relative

Motion in Information Passing in

Natural and Engineered Collective

Motion

Daniel Swain

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Mechanical and Aerospace Engineering

Adviser: Naomi Leonard

November 2012

c© Copyright by Daniel Swain, 2012.

All rights reserved.

Abstract

The breathtaking motions of natural groups such as bird flocks and fish schools

have been a major inspiration for research in the development of control algorithms

for multi-robot systems. A main thrust of research in this area is to understand

how the interconnections among individual behaviors result in high-performing group

behaviors. In this dissertation, we are concerned with how individuals — either

natural or engineered — move dynamically relative to one another and how this

affects information passing in the group, thereby impacting the performance of the

group when completing tasks.

The work presented in this dissertation is inspired by observations of coordinated

speed oscillations in schools of banded killifish (Fundulus diaphanus). We analyze

trajectory data of schools of two and three killifish and show that their speed oscilla-

tions produce periodic relative motion that modulates line-of-sight visibility between

fish. Using tools from graph theory and dynamical models of consensus decision mak-

ing, we show that this phenomenon can significantly improve group decision-making

performance.

We then turn to engineered systems investigate the ways that relative motion

can enhance mobile sensor networks with respect to group connectivity and decision-

making performance. We also derive control laws, based on killifish-like coordinated

speed oscillations into a rich family of moving formations along circular trajectories.

We present design guidelines for these types of formations and algorithms to compute

what speed oscillation waveform will produce or approximate a formation with a given

shape.

Finally, we present the design of a testbed in which robotic fish interact with a

school of live fish in real time. Each robotic fish consists of a wheeled robot and

a model fish; the model fish is moved about a shallow tank of water via magnetic

coupling to a wheeled robot beneath the tank. A significant part of the design of this

iii

testbed is the real-time computer vision tracking of the robotic fish and the school of

fish. The technology that we have developed for the robotic fish testbed is relevant to

a number of other applications. This testbed provides new opportunities for real-time

feedback-controlled behavioral experiments with fish schools.

iv

Acknowledgements

I am deeply grateful to my advisor, Naomi Leonard, for her guidance through

this experience. I have been exposed to countless fantastic opportunities thanks to

her, and she has always granted me the freedom to pursue the opportunities that I

found most compelling. It’s been a long journey, and it would not have been possible,

nor would it have been nearly as enjoyable, without Naomi’s extraordinary wisdom,

vision, and patience. There were so many times when a dose of her encouragement and

enthusiasm made all the difference in the world. Of course all of the work presented

in this dissertation was done in collaboration with her, and has benefited immensely

because of her involvement.

I am also deeply indebted to Iain Couzin for introducing me to the killifish data

and to the idea of the robotic fish testbed. Without those sparks of inspiration and

his willingness to lend me both time and resources, this would be a very different

and probably much less interesting dissertation. Iain’s energy is infectious, and I am

a smarter and more thoughtful person because of all the times he has made me see

things from a different perspective. I want to thank Iain for being a reader for this

dissertation, and for providing invaluable feedback.

There are many people in the MAE department at Princeton without whom my

education and this dissertation would not have been possible. Everyone in the front

office has been wonderfully friendly and helpful. Jessica O’Leary and Jill Ray de-

serve the deepest possible appreciation not only from myself but from every graduate

student in the MAE department for all of their hard work behind the scenes that

makes our lives livable. The dynamics and controls faculty in our department are

unsurpassed in both the depth and the breadth of their knowledge; so thank you to

Mike Littman, Phil Holmes, Jeremy Kasdin, and Rob Stengel, who have all made a

profound and positive impact on my life. I especially want to thank Clancy Rowley

for being a reader for this dissertation and for all that I learned from him through

v

three semesters of being an MAE 433 AI. Mike Littman and David Radcliff were also

instrumental in making 433 a great experience.

One thing that makes life as a graduate student significantly more enjoyable is

having people to commiserate share the experience with. All of the people who have

been graduate students and post-docs in the Leonard lab have been fantastic col-

leagues, and I’ve been here long enough that if I tried to name them all I’d surely

forget a few, so I’ll just try to name a few who were especially significant. Derek

Paley was a great office-mate and a huge source of inspiration and wisdom. Kendra

Cofield and Tian Shen have also been wonderful friends and office-mates. Ben Nabet,

Ioannis Poulakakis, Luca Scardovi, Fumin Zhang, Carlos Caicedo, and Ming Cao are

all appreciated for their willingness to share their experiences. I am thankful to Andy

Stewart, Darren Pais, George Young, and Paul Reverdy for their contributions to

various experimental endeavors as well as their friendship. I’m grateful for having

had the privilege of working with some fantastic Princeton undergraduates, includ-

ing Leslie Lee, Qian Wan, Rebecca Legett, and Aaron Trippe, and one Swarthmore

undergraduate, Madeleine Abromowitz. I also want to thank the many members of

Iain’s lab group that have provided insight and comraderie over the years. I especially

want to thank Yael Katz for many great conversations and for inspiring me to become

a better programmer.

The trouble with trying to thank your friends is that you might neglect some. At

least I know that I would. So I’m not going to mention any names other than the

ones that I already have (and there are plenty of other names). To anyone who has

been my friend along this journey: Thank you for being there.

I would not be who I am today without my family’s presence and their support.

My parents raised me to have a responsible work ethic, to follow my dreams, and to

never give up. Those are key ingredients for making it through graduate school not

once, but twice. To them and all of my close and extended family: I love you.

vi

Finally, I want to (and need to) thank my wife, Dr. Mallory A. Balmer-Swain,

D.O. She’s been by my side since before I started college. We got married, we moved

to Philadelphia, and she started medical school as I started at Princeton all within

the span of a few weeks, and it doesn’t feel like things have slowed down much since

then. Nor have they gotten any less exciting or any less fulfilling. I couldn’t have

done this without her support, understanding, and encouragement. To my wife: I

love you and appreciate you more than I can say.

I am grateful to have received a National Defense Science Engineering Graduate

(NDSEG) Fellowship from the Air Force Research Laboratory/Air Force Office of

Scientific Research (AFRL/AFOSR). The NDSEG fellowship granted me an even

greater degree of freedom to pursue the research ideas that I found interesting.

This dissertation carries T-3249 in the records of the Department of Mechanical

and Aerospace Engineering, Princeton University.

vii

For my family.

viii

Contents

Abstract . iii

Acknowledgements . v

List of Figures . xiii

1 Introduction 1

1.1 Motivation and Research Questions 3

1.2 Background and Related Work . 5

1.2.1 Mechanisms of Collective Motion 5

1.2.2 Consensus Dynamical Models and Collective Decision-making 9

1.2.3 Engineering Design of Collective Motion for Mobile Sensor Net-

works . 12

1.2.4 Interactive Robotics in Collective Behavior Research 14

1.3 Outline of Dissertation . 15

2 Coordinated Speed Oscillations in Fundulus Diaphanus 19

2.1 Source of the Data . 20

2.2 Data Analysis Methods . 22

2.2.1 Model of Killifish Speed Oscillations 22

2.2.2 Data Filtering and Velocity Estimation 24

2.2.3 Coordinated Speed Oscillation Detection 26

The Hilbert Transform and Instantaneous Phase 27

ix

Detecting the Speed Oscillations of Single Fish 28

Detecting Coordinated Speed Oscillations 30

2.2.4 Measuring the Degree of Synchrony: Mean Sign Product (MSP) 31

2.2.5 Measuring Common Spatial Configurations 32

2.2.6 Visual Information and Sensitivity 34

2.3 Results . 36

2.3.1 Coordinated Oscillation Properties 37

2.3.2 Common Spatial Configurations 43

2.3.3 Relative Bearing Oscillations 45

2.4 Discussion . 46

3 Coordinated Relative Motion and Decision-Making Performance 48

3.1 Background . 50

3.1.1 Graph Theory . 50

3.1.2 Linear Consensus Dynamics Over Graphs 53

3.1.3 Sensing Topologies and Sensing Regions 56

3.2 Group-level Decision-Making Performance With Periodic Relative Mo-

tion . 60

3.2.1 Rate of Convergence to Consensus Over Periodic and Piecewise

Constant Graphs . 61

3.2.2 Decision-Making Performance of Killifish Schools 64

3.3 Impact of Relative Motion on Connectivity 70

3.3.1 Effective Sensing Regions . 70

3.3.2 Improved Connectivity of Random Graphs 72

3.3.3 Optimal Relative Motion Parameters for Group-level Decision-

Making Performance . 76

4 Coordinated Speed Oscillations for Engineered Systems 83

x

4.1 Background . 85

4.1.1 Steered Particle Model . 85

4.1.2 Phase Potentials and Phase Arrangements 88

4.2 Trajectories of Steered Particles with Periodic Speed Profiles 91

4.3 Coordinated Control of Steered Particles with Periodic Speed Profiles 105

4.4 Designing Coordinated Relative Motion 116

4.4.1 Geometry of Coordinated Motion Formations 117

4.4.2 Design of Motion Parameters to Obtain Specific Formations . 123

5 Hybrid Biological and Engineering Collective Motion Testbed 141

5.1 Testbed Description . 143

5.1.1 Hardware . 143

The Experimental Arena . 143

Wheeled Robots . 145

Model Fish . 147

Tracking System Hardware . 148

5.1.2 Software . 149

5.2 Real-Time Tracking . 152

5.2.1 Segmentation . 153

Image Processing . 154

Blobbing . 155

5.2.2 State Estimation . 165

5.2.3 Estimating the Properties of Fish Schools 170

5.3 Experimental Demonstrations . 174

5.3.1 School Centroid Chasing . 174

5.3.2 Triggered Dart Toward School 177

5.4 Extensions . 178

5.4.1 Other Testbeds and Tracking Applications 179

xi

off-line Fish Tracking . 179

Dancer Tracking . 180

MiaBot Pro Testbed . 181

Beluga Underwater Vehicle Testbed 183

5.4.2 The MADTraC C++ Library 189

5.4.3 Inter-process Communication and Web Interfaces 192

6 Conclusion and Future Work 198

6.1 Summary of Contributions . 199

6.2 Ongoing and Future Work . 204

6.2.1 Natural Systems . 204

6.2.2 Engineered Systems . 206

A Relationship Between MSP and Phase Separation (Proof of

Thm. 2.1) 209

B Visual Cues and Their Sensitivities 212

B.1 Angular velocity . 214

B.2 Loom . 215

B.3 Time-to-collision . 218

Bibliography 220

xii

List of Figures

2.1 Example speed profiles of killifish. 20

2.2 Illustration of the definition of relative bearing (2.7). 33

2.3 Relative position oscillation of a two-fish school. 39

2.4 Relative position oscillation of a three-fish school. 40

2.5 Relative position oscillation of a three-fish school (another example). 41

2.6 Histogram of relative bearing pairs showing the most common config-

urations of three-fish killifish schools. 44

3.1 A simple graph and its Laplacian matrix L. 53

3.2 Example template sensing regions. 59

3.3 Switching killifish sensing topology. 66

3.4 A sampling of topology pairs and their rate of convergence to consensus

as a function of duty cycle. 69

3.5 The effective sensing region for two agents undergoing periodic relative

motion resulting from sinusoidal speed profiles. 73

3.6 Simulation results for N = 100 agents distributed uniformly randomly

over a unit square showing the probability that the resulting sensing

topology is connected. 75

3.7 Diagram of the ordered spatial configuration used in Sec. 3.3.3. 77

3.8 The two non-null graphs encountered in the ordered setting described

in Sec. 3.3.3 and Fig. 3.7. 79

xiii

3.9 Convergence rate, σ, as a function of the oscillation frequency, Ω. . . 81

4.1 Illustration of the steered particle model. 86

4.2 Unbounded spiral trajectory. 95

4.3 Illustration of the trajectory decomposition (4.18) for purely sinusoidal

speed (see Lemma 4.4). 99

4.4 Trajectories of steered particles with sinusoidal speed profiles as de-

scribed by (4.13). 106

4.5 Trajectory construction for a periodic speed profile with vk(t) as de-

scribed by (4.21). 107

4.6 Trajectory of a steered particle with the periodic speed profile described

in Fig. 4.5. 108

4.7 Swarm-like formation with no heading or speed phase control. 119

4.8 A formation with distributed trajectory offsets. 120

4.9 A pair of formations of N = 4 agents with similar motion parameters. 121

4.10 Formation of N = 4 agents with the periodic speed profile shown in

Fig. 4.5a. 122

4.11 Range of values for which Design Problem 4.1 has a solution. 127

4.12 Formations designed by solving Design Problem 4.1. 129

4.13 Example formation found by solving Design Problem 4.2. 137

4.14 Five snapshots of four agents moving around the formation found

by solving Design Problem 4.2 with the formation input shown in

Fig. 4.13. 138

4.15 Another example formation found by solving Design Problem 4.2. . . 139

4.16 Five snapshots of four agents moving around the formation found

by solving Design Problem 4.2 with the formation input shown in

Fig. 4.15. 140

xiv

5.1 Diagram of the robotic fish testbed components. 144

5.2 A MiaBot Pro wheeled robot with a pair of cylindrical rare-earth mag-

nets press-fit into holes on a custom-made hood. 146

5.3 Model golden shiner and koi. 148

5.4 Diagram of the segmentation and state estimation steps of tracking. . 153

5.5 Background subtraction and thresholding applied to an image of a fish. 155

5.6 Head orientation estimation and correction using skewness of the dis-

tribution of pixels. 161

5.7 Illustration of the EMMG algorithm. 164

5.8 A video frame captured from the robotic fish testbed’s tracking and

control software, showing a robotic predator fish chasing the centroid

of a live school of golden shiners. 173

5.9 A sequence of video frames of a robotic predator fish approaching a

school of live golden shiners, with overlayed visualization. 175

5.10 Snapshot of ten golden shiners that were tracked off-line from high-

definition overhead video. 180

5.11 Snapshot of output from the tracking of dancers performing human

flocking experiments. 181

5.12 Snapshot of a coordinated control experiment using the MiaBot Pro

robots. 182

5.13 The Beluga testbed and one of the Beluga vehicles. 184

5.14 Diagram of the Beluga testbed system. 185

5.15 Overview of the real-time tracking algorithm used for the Beluga

testbed. 187

5.16 Snapshot of the real-time tracking in the Beluga testbed. 190

5.17 Diagram of the two-tiered server framework used on the Beluga

testbed. 194

xv

5.18 User interfaces built into the web server. 196

xvi

Chapter 1

Introduction

As technology advances, robots become simultaneously less expensive and more capa-

ble. Society therefore progressively looks to the use of robotics to solve a wide range

of problems, ranging from health care to factory work to planetary exploration. Fur-

thermore, it is becoming increasingly feasible to use groups of robots to achieve these

tasks. Because robots must necessarily be designed, constructed, and programmed on

an individual basis, it has become more and more important to find ways to prescribe

individual behaviors for robots that, when deployed as a group, can accomplish their

mission as a group.

While robotics researchers have made significant progress in this field in recent

years, there is a huge space of problems that remain unsolved and applications still

lacking deployable solutions. On the other hand, we can readily observe that natural

groups are capable of performing group-level tasks: from slime molds to wolf packs

to human society, groups of living organisms seem to be innately capable of turning

relatively simple individual behaviors into breathtaking group-level feats. This drives

us, as designers of collective motion in engineered systems, to seek inspiration from

biological collective motion. However, there is still much that is not well understood

about the mechanisms of biological collective motion. Tools and expertise from engi-

1

neering and the physical sciences have recently proven useful in furthering the pursuit

of basic understanding in this field.

Understanding information flow within both biological and engineered groups is

highly important because (arguably) no group of individual agents can achieve any

task without passing some form of information among themselves. This information

passing can be explicit — for example, a team of football players planning their next

play from the huddle — but, in many cases, information passing is implicit. That is,

each member of the group governs their behavior based on the observed states of other

group members and the environment rather than explicitly exchanged messages. This

ability of mobile animal groups to quickly and effectively pass information throughout

the group is especially apparent when witnessing the dramatic maneuvering of a

murmuration of starlings and the split-second direction changes of a school of fish.

Both implicit and explicit information passing are fundamentally linked to the

geometry of the group, via relative positions and the spatial configuration of individual

agents. Distance plays an important role in the quality and availability of information:

the power density of radio signals and sound intensity both obey inverse-square laws,

the ability of the eye to distinguish points decays with the inverse of the distance

from the eye, and the density of a diffusing olfactant decays exponentially with the

square root of distance. Directionality also plays a major role in information passing:

directional antennas, binaural auditory systems, and forward-facing vision all depend

on directionality. Many of these information passing mechanisms require line-of-sight

visibility for information to pass from one agent to another, and when there are more

than two individuals within a group there is a possibility for one individual to block

line-of-sight visibility between the other two. Thus, the spatial configuration of agents

can have a dramatic influence on the ability of information to readily pass through

even very small groups.

2

Because geometry plays such a critical role in information flow within a group

(and therefore the group’s ability to complete tasks), the dynamic movement of in-

dividuals relative to one another must play a critical role in information passing. In

this dissertation, we consider that role in detail. We consider both biological and

engineered groups; specifically, schools of fish and groups of mobile robots. Our goals

are to

• further the fundamental understanding of the mechanisms of collective motion

and decision-making in biological groups,

• contribute to the set of mathematical and technological tools that are available

to study both biological and engineered groups, and

• introduce design methodologies that enhance the capabilities of engineered

groups.

1.1 Motivation and Research Questions

One of our primary motivations to consider relative motion is the observation that

schools of banded killifish (Fundulus diaphanus) engage in coordinated speed oscilla-

tions (see Ch. 2). We observe from previously-recorded overhead video that killifish

strongly modulate their speed and that these oscillations are clearly phase-coordinated

within groups of fish. We seek to extract precise and meaningful quantitative obser-

vations from those videos. That is, we want to know how often do killifish engage in

coordinated speed oscillations, under what conditions does this happen, and what are

the average properties of these oscillations? Answering these questions is the main

theme of Ch. 2 of this dissertation.

One reason that killifish coordinated speed oscillations are remarkable to us is

that they hint at a deeper role that relative motion could play in the functioning of

3

biological groups. The vast majority of previous research that considers the role of

spatial structure in collective motion is focused on attempting to explain evolutionary

benefits in terms of average group geometry such as average spacing and configuration

(see Sec. 1.2.1 for more detailed background information). Killifish coordinated speed

oscillations highlight the fact that mobile animal groups are not statically configured;

in all but the simplest cases, animals in mobile groups are constantly moving relative

to each other. This relative motion affects sensory information, and as individuals

move through the group they may encounter and be influenced by different neigh-

bors. We are therefore motivated to explore the potential benefits of relative motion

for mobile animal groups as well as engineered groups in terms of its effect on infor-

mation passing. In other words, we ask why do killifish engage in coordinated speed

oscillations, how does relative motion affect information passing in mobile groups in

general, and can we apply these results to improve engineered systems? Ch. 3 is

concerned with addressing these questions.

Killifish coordinated speed oscillations also motivate us to design and therefore

model the motion of multiple mobile agents that are engaged in coordinated speed

modulations. We are particularly motivated to discover what kinds of multi-robotic

formations these speed modulations make possible, and what applications might ben-

efit from these kinds of formations. Our model extends previous work on cooperative

control of formations, where individual agents are modeled as steered particles [104].

Our earliest simulations of this model made it clear that coordinated speed oscil-

lations lead to a rich new set of multi-agent formations. In those simulations, we

prescribed the speed oscillations and observed the resulting patterns. We therefore

seek a method to formalize these results and to address the corresponding design

problem; that is, how can we characterize the trajectories of individual agents under-

going periodic speed modulations, can we design control laws to stabilize such agents

4

into cohesive formations, and how can we design the speed modulation of a group of

N agents to achieve a desired formation? We address these questions in Ch. 4.

Finally, we are motivated to design experiments to obtain data that would further

illuminate our understanding of the role of relative motion in animal groups. Specif-

ically, we seek to design a system that will allow us introduce a stimulus to a school

of live fish. Because we are interested in relative motion, we require an experimental

platform that is able to responsively interact with the school. We are also motivated

by recent experiments in which live fish interacted with a robotic fish that was driven

along a pre-planned path [126, 41] (see Sec. 1.2.4 for further background informa-

tion). Therefore, we asked can an experimental testbed be developed in which robotic

fish interact in real-time with a school of live fish, and in what other settings can this

technology be applied? The design of such a testbed is presented in Ch. 5, along with

some additional applications of the underlying technology.

1.2 Background and Related Work

The following is a review of the literature as it relates to the work presented in this

dissertation. We touch on research in the fields of biological collective motion, engi-

neering of cooperative robotics, theoretical analysis of group decision-making models,

real-time computer vision, and ethological robotics. Because we are drawing from the

literature in such diverse fields and because many of these fields have a long and rich

history, this review is inevitably incomplete. We strive to cover the previous works

that are most relevant to our own.

1.2.1 Mechanisms of Collective Motion

Many species of animals have evolved to move together in groups. The reasons that

this happens have been relatively well-studied. Scientists have discovered a range

5

evolutionary benefits of group motion, including energetic advantages due to aero- or

hydro-dynamic coupling, increased chance of surviving an encounter with a predator,

increased chance of locating food sources while foraging, and others. See, for example,

Chapter 2 in the text Living in Groups by Krause and Ruxton [63] for an extensive

review of these benefits.

The mechanisms of collective motion are not yet well-understood. Individual

animals are thought to follow relatively simple “rules” and act on potentially unre-

liable sensory information, yet they demonstrate group-level behavior that is both

highly robust and highly effective. Therefore, researchers are compelled to study the

individual-level mechanisms that lead to collective motion not only from the perspec-

tive of furthering our basic scientific understanding, but also with the hope that these

mechanisms can be beneficially applied to man-made systems.

Collective motion occurs because of the way that individual animals process

and react to sensory information about other animals and their environment.

Spooner [107] published one of the earliest academic studies of fish schooling in 1931,

and in it he posed the following as one of three fundamental questions about the

phenomenon of schooling: “From the special aspect of sense topology, what are the

senses concerned? How refined are these senses?”. Schooling behavior in fish is driven

by a combination of olfactory information, visual information, and information from

the lateral line (a sensory organ distributed along the sides of some fish species that

enables the fish to sense fluctuations in the water pressure) [97, 95]. One of the main

themes of this dissertation is that relative motion can enhance sensory information

and therefore improve the performance of collective motion.

A key component of the study of collective motion is the use of models to analyze

hypotheses and to make testable predictions. Most models of collective motion can be

categorized as one of two types: Eulerian and Lagrangian. Eulerian, or continuum,

models describe a group using a set of partial differential equations that model the

6

spatial and temporal dynamics of the group’s density. These models are useful for

groups formed by large numbers of densely packed individuals; for example large

wildebeest herds [48], bacteria [119], and insect swarms [47].

Lagrangian models are individual-based: the dynamics of each animal are modeled

as a function of the states of the other animals. Group-level observations are made by

evolving the individual dynamics forward in time and then making bulk measurements

of the individual solutions. A large variety of individual-based models of collective

motion exists (see, for example, the review by Parrish and Viscido [93]). Most of

these models are constructed by composing three basic behaviors:

1. attraction towards individuals that are far away (cohesion)

2. repulsion away from individuals that are very close (collision avoidance)

3. alignment with individuals that are at intermediate distances

Okubo was among the first researchers to create models of the dynamic motion of

individual fish in a school. Okubo’s models were inspired by Newtonian dynamics and

included terms for attraction and alignment, but not repulsion [84]. Aoki produced

one of the first computer simulations of collective motion, and included all three

behaviors [2].

One reason for the success of individual-based models is that they lend themselves

well to computer simulation. With the increase in the availability of computing power,

large-scale simulation of collective motion has transitioned from a special interest topic

in the computing community [101] to a standard tool for many biologists. Early and

influential examples of the use of large-scale simulations include work by Viscido,

Parrish, and Grünbaum [124] and Couzin et al. [28]. Today, there are hundreds

of collective motion simulation studies in the literature. In the last few years, the

adoption of the graphical processing unit (GPU) as a tool for highly-parallel numerical

processing has enabled yet another jump in simulation capabilities. Simulations of

7

schools consisting of millions of fish are now possible on a single GPU-enabled desktop

computer [40]. While GPU-powered simulations are becoming more widely used, they

are not yet commonplace because they require specialized hardware and programming

techniques.

In this dissertation, we make use of individual-based models primarily for two

reasons. First, individual-based dynamical motion models provide a natural mathe-

matical language with which to discuss both biological modeling and mobile robotics

applications. For more background on the engineering applications of collective mo-

tion, see Sec. 1.2.3. Second, individual-based models allow us to directly model the

interaction of individual fish with one another, which is a key component of our

analysis of killifish coordinated speed oscillations.

Studying the mechanisms of biological collective motion is challenging. At the

individual level, the animals’ sensory, nervous, and motor systems are all involved,

and their interactions can complicate the problem of deciphering behavior [30]. Even

with good models of individual behavior, it can be a challenge to find meaningful ways

to compare one model to another, or to compare models with data. Generally, this

involves computing some average quantity for the group. Average distance between

fish was a topic of early research [107, 18, 19]. van Olst and Hunter were among

the first to consider the role of angular heading and relative bearing in addition to

spacing in fish schools [122].

The average inter-individual geometry of fish schools provides empirical observa-

tions that can be compared with predicted “preferred” distances and relative bearings.

These comparisons can be used to test evolutionary hypotheses. For example, Breder

proposed that fish schools may be spatially organized into regular lattice structures

to maximize energetic advantages [20]. Partridge, et al. reported average relative

positions in three dimensions for several schooling species of fish and connected these

average relative positions with predictions based on visual sensory capabilities [94].

8

Dill et al. showed that particular values of the relative bearing would optimize the

the ability of individual fish to observe changes in the direction and/or speed of their

neighbors [37]. Average geometry studies have also contributed to the study of bird

flocks (see, for example, [3]). Average quantities have produced useful results, yet

they cannot tell the whole story; Parrish and Turchin show, for example, that av-

erage relative positions can remain steady in empirical data even as individual fish

continuously move relative to one another [92]. In this dissertation, we explicitly

consider the role of relative motion in animal groups.

1.2.2 Consensus Dynamical Models and Collective Decision-

making

In a consensus dynamical model, the group attempts to reach agreement on the value

of some quantity. Each agent is modeled as having an internal representation (e.g.,

an estimate or belief) of the value of a quantity of interest to the group; this value

is called the agent’s decision variable. Over time, each agent dynamically updates

their decision variable as a function of the values of the decision variables of some

subset of the other agents in the group. The agents that influence the kth agent are

called the neighbors of the kth agent. The group is said to reach consensus when all

of the decision variables converge to a common value. See Ch. 3 for a mathematical

formulation.

The family of consensus dynamical models is large and has been used in a variety

of settings. Indeed, Bertsekas and Tsitsiklis introduced the notion of an “agreement

algorithm” in the 1980’s as a way to abstract and analyze distributed computational

algorithms in general. In that work, the decision variable represented the result of

some calculation on a single node of a large computer network, and a variety of

algorithms were considered [121, 120, 9].

9

One of the benefits of using consensus dynamical models is their flexibility to model

a variety of settings: linear, nonlinear, time-invariant, time-varying, continuous-time,

discrete-time, etc. In this dissertation, we make use of dynamical consensus models

in two settings. First, we use a linear consensus dynamical model to study the effects

of relative motion in a school of killifish. Second, we use a nonlinear consensus

dynamical model to derive control laws for the motion of robotic agents. In both

cases, the decision variable represents the direction of motion of each individual in

the group.

Consensus dynamical models have been used in many places throughout the lit-

erature to model group-level decision-making about the group’s direction of motion.

Reynolds [101] introduced an algorithm in 1987 that simulated the motion of a flock

of birds by having each bird update its own velocity at each time step in response to

the average of the velocities of its neighbors. Vicsek et al. [123] used an algorithm

similar to Reynolds’ to investigate the spontaneous synchronization of self-propelled

particles, where each agent dynamically updates the direction of its velocity by aver-

aging the direction of all neighbors within a given distance. Couzin et al. [28] used

simulation studies to investigate the emergence of leadership in mobile animal groups,

showing that the group could correctly make a decision about group direction when

only a small portion of the group was informed about the correct choice, the informed

were not identified, and no explicit communication was modeled.

The use of linear consensus dynamical models is appealing because we can rely

on the large existing toolset for linear dynamical systems. We use a linear consen-

sus dynamical model to study the role of relative motion for information passing in

collective motion. We do this by studying how each agent’s neighbors change as a

function of time and how this affects group-level performance.

The network describing which agents are neighbors of which other agents is called

the communication topology or sensing topology. The primary theoretical tool that

10

we use to model the sensing topology is a graph. Each agent (e.g., animal or robot)

is modeled as a node on the graph and there is an edge from the kth node to the jth

node if the kth agent is influenced by the jth agent.

In robotic systems, it is straightforward to determine the sensing topology because

the communication is either explicit or, if it is implicit, the conditions of communi-

cation are due to programmed behavior. In natural systems, however, the degree of

influence is not well-understood. One of the simplest models is the one employed by

Vicsek et al. [123], in which each individual is influenced by all individuals within a

particular distance. Various modifications to this type of model have been employed,

for example weighting by distance [31]. The “zone model” used by Couzin et al.

[29] is a special case that is similar to the models used by Reynolds [101]. Paley

et al. [91, 87] used zone models for analysis of biological collective motion based on

ideas from cooperative control. Recent research by Ballerini et al. [6] suggests that

interaction in starling flocks may be governed by so-called “topological distance”, i.e.,

each bird has a fixed number of neighbors regardless of distance. A recent simulation

study by Kunz and Hemelrijk [65] models interaction based on line-of-sight visibility,

which is a notion that we use when considering visual information in Ch. 3.

Theoretical analysis of consensus dynamical models on graphs is well-studied. In

the control theory literature, Jadbabaie et al. [53] used algebraic graph theory to ana-

lyze the linearization of the model of Vicsek et al. [123] and proved that synchroniza-

tion occurs if certain assumptions are met. Other important early theoretical studies

of linear consensus dynamical systems include [86, 12, 85]. Moreau [80] contributed

important work towards generalizing the analysis of consensus dynamical systems by

using tools from the analysis of time-varying nonlinear dynamical systems. Graph

theory and consensus dynamical models have become popular and useful tools for

both modeling and designing collective motion.

11

Linear models of consensus in direction produce only local results because the

angle of direction evolves on the circle, which we denote here as S1, not on the real line.

Global models of direction consensus are therefore fundamentally nonlinear and evolve

on a non-Euclidean state space. Consensus on the direction of motion of N agents

evolves over the N -torus, which we denote TN = S1× · · ·×S1 (N times). Consensus

on TN is equivalent to the synchronization of N coupled oscillators. Kuramoto [66]

first studied the synchronization of oscillators in 1984 in the context of “chemical

oscillations” (see also the review by Strogatz [110]). Scardovi et al. [103] provided a

key result by proving global results for nonlinear consensus dynamics on TN . Nabet

et al. [82] and Leonard et al. [71] performed a theoretical analysis of the simulation

studies of Couzin et al. ([28]) where the model was treated with tools from nonlinear

dynamical systems theory.

1.2.3 Engineering Design of Collective Motion for Mobile

Sensor Networks

One of the principal motivators for the study of collective motion in the engineering

field is its application to the design of mobile sensor networks. A motivating example

for us is the work by Leonard et al., in which a group of autonomous underwater

vehicles was deployed in Monterey Bay, California, to collect measurements that were

used to improve oceanographic models [69, 44, 70]. Those experiments were part of

the Autonomous Ocean Sampling Network (AOSN) project [33, 32] and the Adaptive

Sampling and Prediction (ASAP) project [70].

In the AOSN and ASAP networks and in many other sensor networks, the indi-

vidual sensor units are mobile robots with on-board sensor suites. It is typical for

underwater and aerial mobile robots to have strict constraints on vehicle dynamics:

bounded speed, minimum turning radius, nonholonomic constraints, etc. One of the

12

key challenges in designing mobile sensor networks is therefore creating motion control

laws that account for these types of constraints but also achieve the design goal.

Various authors have considered the problem of designing motion control laws for

mobile sensor networks. One approach is to design control laws to adjust the spatial

distribution of the sensors so that they optimally cover some scalar field [27, 67] or

minimize estimation error [73, 35]. Recent work by Caicedo-Nùñez and Leonard [24]

addresses both of these objectives by distributing robots to minimize the objective

analysis (OA) mapping error (see [21]).

Another approach to mobile sensor network motion design is to create moving for-

mations or patterns of sensors. Adaptive formations can be used to enable a network

to climb a gradient in a noisy sampled field as shown in [83] and as demonstrated in

the AOSN field experiments [44]. Formations and patterns have also been used to

track level curves [74, 8, 128]. Patterns were used in the ASAP field experiment by

Leonard et al. [70, 69] to minimize OA mapping error. Other proposed uses of sensor

network motion pattern design include hurricane sampling [36] and surveillance [61].

Zhang et al. have investigated the use of sensor network formations for cooperative

filtering, and show that using moving patterns of vehicles can reduce the total number

of vehicles that are required for effective filtering [130, 131].

In this dissertation, we consider formations that result from periodic speed modu-

lations. We extend previous results by Sepulchre, Paley, and Leonard, who developed

coordinated control laws for circular formations of constant-speed self-propelled par-

ticles (see, for example, [104, 91]). That work was itself inspired by the work of

Justh and Krishnaprasad on formations of self-propelled particles in the context of

unmanned aerial vehicles [56, 55] and by the work of Kuramoto [66] and Strogatz [110]

on coupled oscillator dynamics. Related work includes coordination along general pla-

nar closed curves [129], coordination in the presence of flow fields [89], coordination

13

with limited vehicle-to-vehicle communication [105], coordination on the sphere [90],

and coordination in three dimensions [102].

1.2.4 Interactive Robotics in Collective Behavior Research

Advances in robotics technology are enabling new methodologies in the study of social

animal behavior. A recent survey by Krause et al. [62] outlines these methodologies

and their consequences (see also the earlier prospective by Balch et al. [4]). Robots

that are used in behavioral research are typically programmed to interact with the

experimental specimens, usually by having the robot pose as either a conspecific

or heterospecific organism. Michelsen et al. [78] studied honey bee communication

dances by manipulating a mechanical model of a bee. Ward et al. used a remotely

controlled model fish to investigate quorum decision-making [126]. Faria et al. de-

signed a computer-controlled model fish that was able to move around the arena in

pre-planned routes so that they could study mechanisms of recruitment and leader-

ship in fish schools [41]. Halloy et al. used robotic cockroaches that were able to

responsively interact with live cockroaches to study decision-making in the mixed

robot-animal cockroach group [49]. In Ch. 5, we describe the design and development

of a testbed that enables a robotic fish to interact responsively with a school of live

fish. That is, the robotic fish is able to adjust its behavior in real-time in response to

the other live fish in the tank. The design of our system was inspired by [49, 126, 41].

One of the primary challenges in designing our robotic fish testbed was develop-

ment of the real-time tracking and control software that enables the responsiveness

of the robotic fish to a school of live fish. Off-Line tracking of fish has been done

successfully in the past; see, for example, [124, 79, 23, 57].

Tracking multiple animals presents a significant challenge because the subjects

can be very similar in appearance to one another and because they are often in very

close proximity to one another. Both of these effects make it very difficult to solve

14

the data association problem: the problem of maintaining the identity of individuals

over time. Recent work by Feldmen et al. uses multiple laser range finders to track

multiple humans [43]. Butail et al. have recently developed algorithms to track

mosquitos off-line from video captured in the wild [22]. The authors of [6] point out

the potential benefit in reconstructing the trajectories of individual starlings off-line

using high-resolution stereo photography sequences of very large schools of starlings.

Straw et al. have used multiple cameras and multiple high-powered workstations to

track flies in three dimensions in real-time [109]. The approach of [109] is similar to

ours, though we use a single camera to track fish in a planar arena using commodity

hardware. The use of multiple cameras by [109] also reduces the difficulty of the data

association problem.

Others have succesfully used particle filter methods for off-line tracking of multiple

objects[79, 52, 58]. Particle filtering methods generally perform well if the number

of sampling particles is large. Increasing the number of sampling particles used in a

particle filter incurs additional computational cost. Consequently, we were unable to

achieve satisfactory performance in real-time with particle filtering methods.

The method that we use to solve this problem is similar to one used for off-line

tracking of flies in a planar arena by Branson et al. [17]. We use one unscented

Kalman filter (UKF) to dynamically estimate the state of each fish. The UKF allows

us to model the dynamics of the fish and to apply nonlinear constraints to both the

dynamical model and the measurement model [54, 125].

1.3 Outline of Dissertation

We begin in Ch. 2 by analyzing the trajectories of schools of two and three killifish. We

describe the source of the data in Sec. 2.1 and our data analysis methods in Sec. 2.2.

Sec. 2.2.3 describes our Hilbert transform-based method for detecting coordinated

15

speed oscillations. In Sec. 2.3, we present quantitative results on our analysis of

killifish coordinated speed oscillations. In particular, we describe the properties of

these oscillations (Sec. 2.3.1) and the typical oscillating spatial configurations of the

three-fish schools (Sec. 2.3.2). We also compare our results to those of Dill et al. [37]

(Sec. 2.3.3), who investigate the relationship between relative position and visual

information (see Sec. 2.2.6 for an overview and App. B for details). We provide a

brief discussion of our killifish analysis results in Sec. 2.4 in order to provide context

for subsequent chapters.

In Ch. 3, we investigate the decision-making performance benefits of killifish rela-

tive motion due to coordinated speed oscillations. We provide technical background

on graph theory, linear consensus dynamics, and sensing topologies in Sec. 3.1. In

Sec. 3.2.1, we provide some theoretical results regarding the rate of convergence to

consensus over periodically time-varying graphs. Using the results from Ch. 2, we de-

rive a model of the visual sensing topology of the three-fish killifish school and the way

that the topology changes periodically with time due to the motion of the fish relative

to one another. We use this model and the theoretical results of Sec. 3.2.1 to show in

Sec. 3.2.2 that, under certain assumptions, killifish can experience a performance gain

in speed of consensus dynamics as a result of the oscillations. We investigate other

benefits of relative motion in Sec. 3.3 with respect to the connectivity of the group’s

sensing topology. In particular, we show in Sec. 3.3.2 that coordinated relative motion

can reduce the density of agents required to maintain connectivity when the sensing

radius of each agent is fixed. In Sec. 3.3.3, we compute relative motion parameters

that maximize the rate of convergence to consensus. The results in Sec. 3.3.2 and

Sec. 3.3.3 use effective sensing regions, a theoretical tool that we develop in Sec. 3.3.1.

In Ch. 4, we explore the uses of coordinated speed oscillations for engineered

systems. We employ the theoretical framework developed by the work of Sepulchre

et al. [104], which makes use of a steered particle model and notions from the coupled

16

oscillator literature (see Sec. 4.1 for technical background). We describe the trajectory

solutions in Sec. 4.2 for our model of steered particles with constant turning rates

and time-periodic speed profiles inspired by those we observe in killifish schools. The

trajectories can be described in terms of a circular trajectory (i.e., what we would

observe for a constant-speed particle) and a component that results from the speed

modulation. The component due to speed modulation can be described directly in

terms of the Fourier decomposition of the periodic speed profile. In Sec. 4.3, we derive

coordinated control laws for circular formations of steered particles with periodic

speed profiles. The control laws allow coordination of the trajectory centers (i.e.,

nominal locations), the headings of the agents, and the phase relationship of their

speed oscillations. In Sec. 4.4.1, we catalog some of the formation geometries that

this coordination enables. In Sec. 4.4.2, we present methods to determine what speed

profile is necessary to obtain a desired formation of steered particles with periodic

speed profiles.

We describe the robotic fish testbed in Ch. 5. An overview of the testbed, its

components, and its physical design is given in Sec. 5.1. In Sec. 5.2, we describe the

tracking algorithms that enable the robotic fish to responsively interact with a live

school of fish in real time. That discussion is broken down into two components:

segmentation (Sec. 5.2.1), which is the process by which we extract measurements of

the positions and orientations of individual fish from an image, and state estimation

(Sec. 5.2.2), where we dynamically estimate the trajectories and velocities of fish

over time. We also describe methods for estimating properties of the fish school (e.g.,

centroid, polarization, and boundaries) in Sec. 5.2.3. Descriptions of two experimental

demonstrations of the testbed are given in Sec. 5.3: school centroid chasing, in which

the robotic fish continuously pursues the fish school (Sec. 5.3.1), and a triggered dart

towards the school, in which the robotic fish waits for the fish school to satisfy some

pre-determined condition and then accelerates toward the school (Sec. 5.3.2). The

17

technology that we have developed for this testbed is being used in other projects in

the lab; we describe some of these extensions in Sec. 5.4.

Ch. 6 is the conclusion of this dissertation, in which we re-address the research

questions posed above in Sec. 1.1. We also suggest some directions for future research.

18

Chapter 2

Coordinated Speed Oscillations in

Fundulus Diaphanus

In this chapter, we explore coordinated speed oscillations exhibited by Fundulus di-

aphanus, banded killifish (hereafter: killifish). Examples of these speed oscillations

are shown in Fig. 2.1.

We argue in Ch. 3 that coordinated speed oscillations among individual killifish

can dramatically improve group-level decision-making performance. The focus of this

chapter is to establish the presence of coordinated speed oscillations and to describe

the nature of these oscillations in terms of frequency, amplitude, and the phase re-

lationship between oscillations of neighboring fish. Further, we analyze the most

common spatial configurations of three-fish schools. It is from changes between these

configurations due to speed oscillation, that we derive the changing sensing topolo-

gies that form the basis of our theoretical analysis of group-level decision-making

performance in Ch. 3.

Another potential benefit of coordinated speed oscillations is their effect on the

ability of the fish to see one another and to perceive changes in behavior from this

visual information. Dill et al. [37] derive a set of relative bearings between fish that

19

0 2 4 6 8 10
0

5

10

15

20

25

Time [sec]

S
p

ee
d

 [
cm

/s
ec

]

0 2 4 6 8 10
0

5

10

15

20

25

Time [sec]

S
p

ee
d

 [
cm

/s
ec

]

Figure 2.1: Example speed profiles of killifish in two (top) and three (bottom) fish
schools.

optimize sensitivities to various visual signals; those results are rederived in App. B.

We discuss here how killifish coordinated relative motion allows fish to visit multiple

optimal relative bearings predicted by [37] as well as generate optical flow as they

move relative to one another.

The majority of the work in this chapter is an alternate presentation of work in

preparation for publication [114].

Sec. 2.1 describes the source of the data. Sec. 2.2 describes the methods used to

analyze the data. The results of analysis are presented in Sec. 2.3. Sec. 2.4 includes

some concluding remarks.

2.1 Source of the Data

The data presented here were produced by analyzing video of schools of two and

three killifish. The experiments were conducted and the videos were recorded by Iain

20

Couzin around September 2000. The experimental arena was a 190 cm square tank

filled with water to a depth of a few cm (shallow compared to the length of the fish).

The fish used were 4 ± 0.3 cm in length. 15 groups of two fish and 11 groups of three

fish were filmed. The experiments were recorded on digital video tape at 31.2 frames

per second (FPS). In October 2010, the relevant sections of tape were converted to

dv-format video files and stored on a lab computer hard drive∗.

Custom tracking software based on the real-time tracking software developed as

part of this dissertation and described in Ch. 5 was used to estimate the trajectories

of fish from the video. The camera’s field of view did not completely cover the tank

and therefore there were time segments during which one or more fish were not visible

in the video. These segments were discarded.

A simple scaling factor was used to convert positions of the fish in pixels relative

to the bottom left corner of the video frame to cm relative to the intersection of

the bottom left corner of the video frame with the plane defined by the bottom of

the tank. The camera was mounted in such a way that the image plane was nearly

parallel to the bottom of the tank, and the camera lens produced a very small amount

of radial distortion. Therefore, a scaling factor provides satisfactory accuracy. The

scaling factor, 0.239 cm/pixel, was determined by dividing the known width of the

tank in cm by the measured width of the tank in pixels (measured at several locations

in the image). No camera calibration data was available other than the dimensions

of the tank, therefore a more accurate coordinate conversion was unavailable. The

location and orientation of the camera remained fixed across all experiments, thus

the scaling factor is consistent for all data.

It should be noted that one artifact of the transfer process from tape to file was

time scaling. That is, the frame rate of the video files is incorrectly reported by

∗poincare.princeton.edu/data3/Videos/Killis

21

most software as 25 FPS. The original video was recorded at 31.2 FPS† and the

correct time in seconds can be determined by dividing the frame index by 31.2 FPS.

Correspondingly, the sampling period used below is Ts = 32.1 msec.

2.2 Data Analysis Methods

This section describes the methods used for data analysis of killifish speed oscilla-

tions. The model that we use for killifish speed oscillations is presented in Sec. 2.2.1,

which serves also to establish notation that we will use throughout the remainder of

this chapter. Sec. 2.2.2 describes the methods used to filter trajectory data and to

obtain velocity (and therefore speed and orientation) estimates. Sec. 2.2.3 describes

a Hilbert-transform based algorithm for detecting time segments during which one

or more fish are engaged in (potentially coordinated) speed oscillations. Sec. 2.2.4

describes a metric that we use to measure the degree of synchrony between fish in

killifish speed oscillations. Sec. 2.2.5 describes the method used to measure common

configurations of three-fish schools. Sec. 2.2.6 reviews the results of Dill et al. [37] in

the terminology and notation of this dissertation.

2.2.1 Model of Killifish Speed Oscillations

In this section, a model for killifish speed oscillations is presented. This model is the

basis for our analysis and for the coordinated oscillation detection algorithm presented

in Section 2.2.3.

Let

rk(t) =



xk(t)

yk(t)




†Confirmed by comparing frame numbers to Iain Couzin’s notes about the lengths of the original
experiments.

22

be the position of the kth fish at time t. Its velocity is

vk(t) =



ẋk(t)

ẏk(t)


 ,

its speed is

sk(t) = ‖vk(t)‖ =
√
ẋ2
k(t) + ẏ2

k(t),

and we will refer to its orientation with respect to the x axis as θk(t). Let

eθk(t) =




cos θk(t)

sin θk(t)




be the unit vector pointing in the direction of the fish’s orientation. We make the

simplifying assumption that the fish are swimming in the direction of their orien-

tation, i.e., vk(t) ‖ eθk(t). There was no externally-generated fluid flow inside the

experimental arena and it is clear from the videos that this assumption holds true for

the vast majority of the data.

For brevity, we may drop the subscript and/or time notation when they are not

relevant, e.g., we may write s(t) or simply s to refer generally to a fish’s speed when

index and time are not important.

The speed of a killifish may be modeled as

s(t) = ν(t) + µ(t) cosφ(t). (2.1)

We refer to ν(t) as the nominal speed, µ(t) as the speed amplitude, and φ(t) as the

speed phase. Note that (2.1) is a very general model; indeed, we may set µ(t) = 0 and

model any speed profile with ν(t). However, we are primarily concerned with cases

23

for which ν(t) and µ(t) are nearly constant and cosφ(t) is approximately sinusoidal

in t.

For perfectly sinusoidal speed, ν(t) and µ(t) are constant and the speed phase

grows linearly with time as

φ(t) = Ωt− φ̄, (2.2)

where Ω is the natural frequency of speed oscillation and φ̄ is a constant speed phase

offset.

The speed variation is defined as

δs(t) , s(t)− ν(t) (2.3)

and is an important quantity below. For perfectly sinusoidal speed, the speed varia-

tion fits the model

δs(t) = µ cos
(
Ωt− φ̄

)
.

2.2.2 Data Filtering and Velocity Estimation

In this section, we describe how the trajectory data is filtered to reduce the impact of

noise in our analysis and how velocities of the fish are estimated from the filtered data.

Our approach uses differencing of the position data and low-pass filtering to estimate

the velocity of each fish. The speed and heading are then calculated directly from the

velocity vector. We feel that this approach introduces fewer assumptions about the

behavior of the fish than may be introduced by using other dynamic estimates (for

example, nonlinear Kalman filtering).

A first estimate of the velocity, v̄, is determined by forward differences in position:

v̄[t] =
1

Ts
(r[t+ 1]− r[t]) ,

24

where here we use square bracket notation to indicate discrete time indexing of the

time sequence‡. The first estimate of the velocity is filtered by convolving it with a

truncated sinc kernel. A truncated sinc kernel approximates an ideal low-pass filter

in the frequency domain (see, for example, [98] or any introductory signal processing

text). The truncated sinc kernel, K(τ), is the sequence

K[τ] = K̄
sin 2πτTsfc

2πτTsfc
, −LK − 1

2
≤ τ ≤ LK − 1

2
,

where fc is the filter cutoff frequency in hertz, LK is the length of the kernel and an

odd integer, and

K̄ =




LK−1

2∑

τ=−LK−1

2

sin 2πτTsfc
2πτTsfc




−1

is a constant that normalizes the kernel. The cut-off frequency was empirically chosen

to be fc = 2.0 Hz in order to reduce as much noise as possible without over-smoothing

the velocity. A kernel length of LK = 201 samples was found to produce good results.

The convolution operation is undefined near the beginning and end of a sequence.

To avoid losing samples in these regions, the initial velocity estimate is extended

beyond its original boundaries. The resulting extended velocity sequence, v̄e, is cal-

culated as

v̄e[t] =





v̄[−t], −LK−1
2
≤ t < 0

v̄[t], 0 ≤ t < Nt

v̄[2Nt − t], Nt ≤ t < Nt + LK−1
2

.

That is, the values are mirrored about the beginning and end of the sequence. This

process preserves the slow variations in the signal value while having minimal effect

on short time-scale behaviors. The final velocity estimate, v[t], is the convolution of

‡I.e., x[t] = x(tTs) for a signal x, time index t, and assuming that the sampling is such that
x[0] = x(0).

25

the extended velocity sequence v̄e and the truncated sinc kernel K:

v[t] =

LK−1

2∑

τ=−LK−1

2

v̄e[τ − t]K[τ], 0 ≤ t ≤ Nt.

The speed is estimated as the magnitude of the velocity estimate:

s[t] =
√
v2
x[t] + v2

y [t],

where vx[t] and vy[t] are the x and y components of v[t]. The direction of motion

(equivalently, the orientation of the fish) is the angle that the velocity estimate forms

with the x−axis:

θ[t] = tan−1 vy[t]

vx[t]
.

In the rare occurrence that vy[t] = vx[t] = 0, the last valid value of θ is used, i.e.,

θ[t] = θ[t − t∗] where t∗ > 0 is the smallest value for which either vx[t − t∗] 6= 0 or

vy[t− t∗] 6= 0. We also refer to θ[t] as the heading angle.

The nominal speed, µ, is estimated in exactly the same way as the speed, s, is

estimated, except that the filter cutoff frequency is fc = 0.375 Hz and the kernel

length is LK = 1067 samples. The low cutoff frequency ensures that only the very

slowly time-varying component of the speed is captured.

2.2.3 Coordinated Speed Oscillation Detection

When a fish’s speed is perfectly sinusoidal, its nominal speed, ν, and speed ampli-

tude, µ, are both constant and its speed phase grows linearly with a slope Ω as in

(2.2). This is never exactly true for real data; the fish modulate their speed approxi-

mately sinusoidally with a slowly time-varying nominal speed and amplitude, and the

modulation changes over time in accordance with the transient nature of the fish’s

26

behavior. Therefore, the goal of the speed oscillation detection algorithm is to isolate

segments of time during which the fish’s speed is approximately sinusoidal.

This section describes a Hilbert transform-based algorithm for detecting both

individual and coordinated speed oscillations. The goal of the algorithm is to detect

time segments during which the speed phase of a fish fits well to the phase model

(2.2). Coordinated speed oscillations are detected by finding segments for which two

fish simultaneously fit the phase model with similar frequencies.

We begin by describing the Hilbert transform and how it can be used to estimate

the instantaneous phase of a signal. We then describe how this can be used to detect

speed oscillations for a single fish. It is straightforward to then extend the single-fish

algorithm to detection of coordinated speed oscillations.

The Hilbert Transform and Instantaneous Phase

The Hilbert transform and its application to estimating the instantaneous phase of a

signal is described here to motivate the oscillation detection algorithm below. For a

more thorough discussion of the estimation of instantaneous phase, see [14].

The Hilbert transform of a signal u(t) is denoted H(u)(t) and is defined as the

Cauchy principal value of the integral

1

π

∫ ∞

−∞

u(τ)

(t− τ)
dτ. (2.4)

The complex signal

u∗(t) , u(t) + iH(u)(t)

is called the analytic signal of u(t).

An important property of the Hilbert transform is its effect on pure sinusoids.

Namely, if

u(t) = A cos
(
Ωt− φ̄

)
,

27

where A, Ω, and φ̄ are all constant, then

H(u)(t) = A sin
(
Ωt− φ̄

)
.

That is, the Hilbert transform phase shifts a sinusoid by π
2

radians. Furthermore, the

analytic signal of u(t) is

u∗(t) = Aei(Ωt−φ̄).

If a signal

u(t) = A(t) cosφ(t)

is approximately sinusoidal, i.e., if the amplitude, A(t), is sufficiently band limited

and the phase, φ(t), grows approximately linearly with time, then its analytic signal

is approximately

u∗(t) ≈ A(t)eiφ(t).

It is for this reason that, given a signal u(t), the quantity |u∗(t)| is referred to as

the instantaneous amplitude of u(t) and the quantity ∠u∗(t) is referred to as the

instantaneous phase of u(t).

In practice, the integral (2.4) is not calculated directly. Instead, the discrete

Hilbert transform is used. Matlab implements this via the hilbert command, which

calculates the analytic signal for a given input.

Detecting the Speed Oscillations of Single Fish

The first step of the algorithm is to isolate time segments of interest. We begin by

discarding any time samples for which the fish’s nominal speed, ν, is less than 4.0

cm/sec. Any of the remaining time segments that are less than 3.0 sec long are

discarded. Next, we calculate the analytic signal δs∗ of the speed variation δs (as

28

defined in (2.3)). Estimates of the instantaneous speed phase and amplitude are

obtained from the analytic signal, i.e., ∠δs∗[t] ≈ φ[t] and |δs∗[t]| ≈ µ[t].

A piecewise linear fit is then performed on the instantaneous phase to determine

potential oscillatory segments. The piecewise linear fit algorithm has two steps and

operates as follows. In the first step, the least squares best-fit line is calculated.

The mean of the squared errors between the fit and data (i.e., the variance of the

residuals) is compared to a threshold parameter, TR. If the error is less than TR, the

first step of the piecewise linear fit is finished. Otherwise, the data segment is split

into halves (e.g., the interval [0, Nt) becomes [0, bNt
2
c) and [bNt

2
c + 1, Nt)) and new

fits are calculated for each of the new segments. This process is iterated for each

subsegment until either the resulting subsegments a single time step long or the error

threshold is met. The output of the first step of the piecewise linear fit algorithm is a

set of endpoints defining segments that are either one sample long or meet the error

threshold. In the second step of the piecewise linear fit algorithm, we compare the

sum of errors for adjacent segments with the error obtained if the two segments are

joined into one and re-fit to a common line. If the new fit produces an error less than

TR, then the segments are joined. Otherwise we move on to the next pair of adjacent

segments. This process is repeated until no adjacent segments can be joined without

exceeding the error threshold TR.

The output of the piecewise linear fit algorithm is a sequence of endpoints for

segments during which the instantaneous phase fits well to a line, as well as the slopes

and intercepts of those lines. Equivalently, the output is a collection of segments

during which a fish may be oscillating its speed approximately sinusoidally and the

frequency at which this oscillation is occurring. We further filter these results by

rejecting any segments that are either shorter than a length threshold, TL, or for

which the average value of the oscillation amplitude is less than 25% of the nominal

speed.

29

Detecting Coordinated Speed Oscillations

The single-fish speed oscillation detection algorithm described above is the basis of

the coordinated speed oscillation detection algorithm.

We begin by performing the single-fish algorithm for each fish that is being consid-

ered. The union of the endpoints of the oscillatory segments for both fish creates a new

set of intervals, for which each interval represents a time segment during which both

fish are (potentially) exhibiting speed oscillations. The frequencies of the individual

fish speed oscillations (from the individual fits) are then compared to determine if the

fish are oscillating at approximately the same frequency. The difference in frequency

as a fraction of the average frequency is used as a difference metric, i.e., we compare

the frequencies f1 and f2 for fish 1 and 2 respectively to a threshold Tf and identify

the speed oscillations to be coordinated if

2 |f1 − f2|
f1 + f2

< Tf .

Only intervals that meet this frequency similarity condition and are longer than a

length threshold, TL, are kept; the rest are discarded. For each interval that is kept, we

compute a common frequency estimate for the two fish by simultaneously fitting the

instantaneous phases of both fish. We do this by subtracting from each instantaneous

phase sequence its mean value and then fitting both sequences simultaneously to a

single line. The slope of the simultaneous line fit is taken as the common frequency.

Note that both the single fish speed oscillation detection algorithm and the co-

ordinated speed oscillation detection algorithm have important parameters. Both

algorithms have an error threshold, TR, and a minimum-length threshold TL. The

coordinated algorithm adds a frequency similarity threshold Tf . We cite the threshold

values that were used in the results below. The results of the analysis do depend on

the values of these thresholds to varying degrees for each quantity of interest. The

30

values that were used were chosen by observing the results over a range of reasonable

parameter values and comparing the fits with data for visual agreement for a random

sampling of data sequences.

2.2.4 Measuring the Degree of Synchrony: Mean Sign Prod-

uct (MSP)

The degree to which two fish’s speed oscillations are synchronized (i.e., they have a

phase difference of 0 radians) or anti-synchronized (i.e., they have a phase difference

of π radians) can be estimated from the sample covariance of the signs of the two

speed variations. We call this quantity the mean sign product (MSP) of two speed

variations and, for fish i and fish j, it is calculated as

MSP (δsi, δsj) =
1

Nt

Nt−1∑

t=0

sign {(δsi[t]− δs̄i) (δsj[t]− δs̄j)} , (2.5)

where δs̄i (δs̄j) is the average value of δsi[t] (δsj[t]) over the time interval. Compared

to other estimates of phase difference (for example, the y−intercept from the linear

fit of instantaneous frequency), the MSP provides a direct estimate of synchrony and

its value is insensitive to amplitude fluctuations.

It is useful to examine the relationship between the phase separation of two sinu-

soids at the same freqiency and the value of their MSP.

Theorem 2.1. The MSP for a pair of sinusoids, δs1 and δs2, that share a common

frequency and have a phase separation of |∆φ| ≤ π satisfies

MSP (δs1, δs2) ≈ 1− 2
|∆φ|
π

, (2.6)

A proof of Thm. 2.1 is given in App. A.

31

Thm. 2.1 is an approximation that applies in a simplified case, but from it we can

infer some general relationships between the value of the MSP for two signals and

the degree to which they are synchronized or anti-synchronized. For example, we see

that the MSP is 1 for two perfectly synchronized sinusoids (|∆φ| = 0) and the MSP

is −1 for two perfectly anti-synchronized sinusoids (|∆φ| = π). This result holds for

any pair of signals that consistently have the same sign (synchronization) or opposite

signs (antisynchronization). Time-varying amplitudes do not affect the value of the

MSP as long as the sign of the amplitude is consistent (e.g., µi(t) = µ̄i + δµi(t) where

µ̄i is constant and |δµi(t)| < |µ̄i|).

Because of noise, the relationship (2.6) is only an approximation. Noise causes the

value of the MSP to be greater than -1 for anti-synchronized signals and less than 1

for synchronized signals. Calculating the mean and standard deviation of the MSP for

multiple intervals of equal length gives an indication of the degree of synchronization

between speed oscillations. Negative mean MSP values indicate antisynchronization

and positive mean MSP values indicate synchronization. Speed oscillations with

uniformly distributed random phase separation over the range 0 ≤ |∆φ| ≤ π would

generate a uniform distribution of MSP values in the range −1 ≤ MSP ≤ 1. The

mean of this distribution would be zero and its standard deviation would be 1/3.

2.2.5 Measuring Common Spatial Configurations

The configurations of three-fish schools can be measured in terms of relative bearings

from the central fish. The central fish at any sample instant t is the one closest to

the centroid of the school, which is defined as

r̄[t] =
1

N

N∑

k=1

rk[t]

32

Figure 2.2: Illustration of the definition of relative bearing (2.7). Note that the left-
most neighbor of the central fish is labeled with an index of 1 and the right-most
neighbor of the central fish is labeled with an index of 2, so that β1 ≥ β2.

Below, a subscript c will be used to indicate the central fish. That is, if fish k is the

central fish, then rc = rk is its position and θc = θk is its direction of motion and

orientation. The relative bearing from the central fish to its kth neighbor at sample

instant t is denoted βk[t] and is defined as

βk[t] = ∠ {rk[t]− rc[t]} − θc[t], k = 1, 2. (2.7)

See Fig. 2.2 for an illustration. Relative bearing is always calculated in the range

−π ≤ βk[t] ≤ π.

The pair of relative bearings of the central fish’s neighbors in a three-fish school

gives a quantification of the spatial configuration of the school that is insensitive to

variations in the distance between fish. To avoid ambiguity with respect to left-right

symmetry, the fish are always labeled so that β1 ≥ β2. That is, the central fish’s

left-most neighbor is labeled with an index of 1 and its right-most neighbor is labeled

with an index of 2.

33

2.2.6 Visual Information and Sensitivity

Dill et al. [37] predict that a fish that is swimming in parallel with and behind

another fish may improve its ability to detect changes in the leading fish’s behavior

by positioning itself to maximize sensitivity to visual cues. They consider three

candidate visual cues: the angular velocity of the image of the leader’s eye on the

follower’s retina, the loom of the leader’s eye, and the time-to-collision calculated

from the relative loom of the leader’s eye. We define these quantities precisely below

and (following the derivation in [37]) derive mathematical expressions for them in

App. B. The sensitivities and the related optimally-sensitive relative positions are

calculated from these expressions.

The relative bearing from the focal fish to the leader fish is considered as a proxy

for the angular position of the leader fish on the focal fish’s retina. When the fish are

thin compared to the separation and are similar in length, the relative bearing is a

very good approximation of the retina angle. We label the relative bearing here as β,

and define it as

β , tan−1 y

x
, (2.8)

where (x, y) gives the position of the leader fish relative to the focal fish in a coordinate

frame whose x−axis is aligned with the focal fish’s direction of motion. This is the

same relative bearing that is illustrated for a three-fish school in Fig. 2.2; the central

fish is in this case the focal fish, β1 is the relative bearing to the fish on the left, and

the x−axis is aligned with vc.

The first visual cue that Dill et al. consider is the angular velocity of the retina

angle, i.e.,

B ,
d

dt
β. (2.9)

In Dill et al., the angular velocity is labeled Ω; B is used here to avoid confusion with

the speed oscillation natural frequency. The angular velocity represents the rate of

34

change of the retina angle, i.e., how fast the image moves across the eye. The angular

velocity, B, is therefore related to optical flow along the image plane. When two fish

are swimming in parallel and at the same speed, there is no relative motion and hence

the image does not move on the retina. Therefore, when two fish are swimming in

parallel and at the same speed, we have B = 0.

The second visual cue that Dill et al. consider is the loom, Λ. Loom is defined as

the time rate of change of the solid angle, α, subtended by the leader fish’s eye. We

show in App. B that

α = E
sin (β − θ)

d2
, (2.10)

where E is the (constant) cross-sectional area of the leader fish’s eye, θ = θ1 − θc is

the leader fish’s direction of motion relative to the focal fish’s, and d is the distance

between centers of mass of the two fish. The loom is then defined as

Λ ,
d

dt
α. (2.11)

Loom is a measure of how quickly the size of the image of the leader fish changes

and is therefore related to optical flow into or out of the image plane. Similar to the

angular velocity, when two fish are swimming in parallel and at the same speed, there

is no motion in the image and therefore Λ = 0.

The third visual cue that Dill et al. consider is time-to-collision, τ . Time-to-

collision is the amount of time that it would take the two fish to collide if they were

approaching each other at constant velocity (see [118, p. 179] for a mathematical

formulation of time-to-collision). Time-to-collision is defined as 2 times the inverse

of the relative loom, λ. The relative loom is defined as

λ =
Λ

α

35

and the time-to-collision is defined as

τ =
2

λ
= 2

α

Λ
. (2.12)

Like loom, time-to-collision is related to optical flow into or out of the image plane.

When two fish are swimming in parallel and at the same speed, the time-to-collision

is infinite.

Dill et al. consider the sensitivity of B, Λ, and τ to changes in the leader fish’s

speed sL and/or heading angle, θ. They fix the offset between fish perpendicular to

the direction of motion and calculate values of β that maximize the magnitudes of the

partial derivatives ∂B
∂θ

(sensitivity of angular velocity with respect to heading), ∂B
∂sL

(sensitivity of angular velocity with respect to speed), ∂Λ
∂θ

(sensitivity of loom with

respect to heading), ∂Λ
∂sL

(sensitivity of loom with respect to speed), ∂τ
∂θ

(sensitivity

of time-to-collision with respect to heading), and ∂τ
∂sL

(sensitivity of time-to-collision

with respect to speed). The maximizing relative bearings are shown in Table 2.1.

Relative bearing [degrees] that
maximizes sensitivity with respect to

Signal Heading Speed
Angular Velocity 90.0 45.0

Loom 63.4 90.0
Time-to-collision 35.3 35.3

Table 2.1: Values of the relative bearing, β, that maximize sensitivity with respect
to changes in the leader’s heading (θ) and speed (sL) as in Table 14.1 of [37].

2.3 Results

This section presents the results of the data analysis described above. Results re-

garding the existence and properties of coordinated speed oscillations in killifish are

presented in Sec. 2.3.1. The common spatial configurations are described in Sec. 2.3.2.

36

School % of Time Frequency Amplitude Nominal MSP
Size Oscillating [Hz] [cm/s] [cm/s] for Pairs

Individuals 2 92.8 0.75 ± 0.24 4.3 ± 1.1 8.0 ± 2.1 N/A

Pairs 2 76.9 0.74 ± 0.16 4.2 ± 0.84 8.1 ± 1.7 -0.15 ± 0.27

Individuals 3 83.3 0.76 ± 0.25 4.1 ± 2.6 8.3 ± 2.7 0.0 ± 0.27

Table 2.2: Results of the speed oscillation analysis for two- and three-fish killifish
schools. The analysis of pairs is carried out for time segments during which both
fish are engaged in coordinated speed oscillations. The MSP for three-fish schools is
calculated from segments during which near neighbors were engaged in coordinated
speed oscillations.

The results of Sec. 2.3.1 and Sec. 2.3.2 are discussed in the context of the results of

Dill et al. [37] in Sec. 2.3.3.

2.3.1 Coordinated Oscillation Properties

The coordinated speed oscillation analysis results that we discuss here are summarized

in Table 2.2. These results were produced using the analysis algorithms described in

Sec. 2.2. The phase fitting error threshold was TR = 1.0 rad/sec2, the minimum

segment length threshold was TL = 2.67 sec, and the frequency similarity threshold

was Tf = 0.75.

Individual fish in two-fish schools exhibit speed oscillations 92.8% of the time

and the average oscillation frequency is 0.75 Hz. Coordinated speed oscillations (i.e.,

at the same frequency) are observed in two-fish schools 76.9% of the time and the

average oscillation frequency is 0.74 Hz. Individual fish in three-fish schools exhibit

speed oscillations 83.3% of the time and the average oscillation frequency is 0.76

Hz. The parameters of the oscillations as reported in Table 2.2 are very similar

for two- and three-fish schools and regardless of coordination: the average nominal

speed is approximately 8.1 cm/s and the speed oscillations occur at a frequency of

approximately 0.75 Hz with an amplitude of approximately 4.2 cm/s. The amplitude

of oscillations is consistently approximately 50%.

37

Figs. 2.3, 2.4, and 2.5 illustrate the oscillations in relative position that result from

speed oscillations. In each of these figures, the trajectories of the fish are shown in

the experimental arena (two fish in Fig. 2.3, three fish in Figs. 2.4 and 2.5) along with

overlaid video snapshots at four evenly-spaced time instants. Dashed lines join the

positions of near neighbor fish in each figure, and insets show close-ups of the region

of the arena where the snapshots occur. The bottom half of each figure is a double

y−axis plot that shows the speed of the fish (left-hand y−axis) and the distance

between each pair of fish (right-hand y−axis). The distances are plotted in black and

the speeds are plotted in colors to match the trajectories (e.g., the fish with the blue

trajectory has the blue speed curve). The data segments are the same that were used

to produce the example speed plots in Fig. 2.1, and the same colors are used in that

figure. For convenience, we will refer below to the fish with the blue trajectory in

each figure as the “blue fish”, the fish with green trajectory as the “green fish”, and

the fish with the red trajectory as the “red fish”. Figs. 2.4 and 2.5 are created from

different time instants in the same data segment. Correspondingly, the red, blue, and

green fish Fig. 2.4 are the same as the red, blue, and green fish in Fig. 2.5.

In Fig. 2.3b, we see that the speed oscillations are consistently about 180 degrees

apart in phase. That is, when the blue fish is moving fastest, the green fish is moving

slowest, and vice versa. The distance between the two fish oscillates because their

speeds oscillate and because the speed oscillations are not synchronized. The distance

oscillation is apparent in Fig. 2.3b. The effects of the distance oscillation on the spatial

configuration of the fish can be seen in Fig. 2.3a. At the time of the first snapshot,

the fish are side-by-side and close to one another. By the time of the second snapshot,

the green fish has pulled ahead and the fish are farther apart. The blue fish catches

up with the green fish by the time of the third snapshot. In the fourth snapshot, we

see the cycle beginning to repeat as the green fish pulls forward again.

38

(a)

0 2 4 6 8 10 12
0

5

10

15

20

25

Time [s]

S
p

ee
d

 [
cm

/s
]

0 2 4 6 8 10 12
2

4

6

8

10

12

D
is

ta
n

ce
 [

cm
]

(b)

Figure 2.3: Relative position oscillation of a two-fish school (same data as shown
in Fig. 2.1a). (a) The trajectories (blue and green solid curves) of the two fish in
the experimental arena. The direction of motion is up and left in the image. Four
snapshots of the video are superimposed to show where the fish are at four evenly-
spaced time instants. The dashed lines join the positions of the two fish at each time
instant. The four times are indicated by the vertical dashed lines in (b). The inset is a
close-up of the boxed region. Note that the fish are side-by-side in the first and third
snapshots. In the second and fourth snapshots, the fish on the left (green trajectory)
is ahead. (b) The black curve shows the distance between the two fish. The blue
and green curves show the speeds of the fish with the blue and green trajectories,
respectively.

39

(a)

0 2 4 6 8 10 12
0

20

40

Time [s]

S
p

ee
d

 [
cm

/s
]

0 2 4 6 8 10 12
0

10

20

D
is

ta
n

ce
 [

cm
]

(b)

Figure 2.4: Relative position oscillation of a three-fish school (same data as shown in
Fig. 2.1b). (a) The trajectories (blue, green, and red solid curves) of the three fish
in the experimental arena. The direction of motion is down and right in the image.
Four snapshots of the video are superimposed to show where the fish are at four
evenly-spaced time instants. The dashed lines join the positions of nearest neighbors
at each time instant. The four times are indicated by the vertical dashed lines in
(b). The inset is a close-up of the boxed region. In all four snapshots, the rightmost
two fish (blue and green trajectories) are side-by-side because their speeds are nearly
synchronized. The leftmost fish (red trajectory) alternates between being closer to
(second and fourth snapshots) and farther from (first and third snapshots) the other
two fish. (b) Each black curve is the distance between a pair of fish. The blue, green,
and red curves show the speeds of the fish with the blue, green, and red trajectories,
respectively.

40

(a)

0 2 4 6 8 10 12
0

20

40

Time [s]

S
p

ee
d

 [
cm

/s
]

0 2 4 6 8 10 12
0

10

20

D
is

ta
n

ce
 [

cm
]

(b)

Figure 2.5: Relative position oscillation of a three-fish school (same data as shown in
Fig. 2.1b). The presentation is the same as in Fig. 2.4 except that the four snapshots
are taken later in time. The direction of motion is down and right. In the first and
third snapshots, the middle fish (green trajectory) creates an occlusion between the
two outer fish because it is between them. In the second and third snapshots, the
middle fish pulls ahead and breaks the occlusion.

41

During the time period of the four marked time instants in Fig. 2.4b, the speed os-

cillations of the blue and green fish are approximately synchronized with one another,

while both are approximately anti-synchronized with the red fish. Correspondingly,

we see in Fig. 2.4a that the blue and green fish are consistently about the same

distance from one another. This also corresponds to the lowest distance curve in

Fig. 2.4b, which is relatively consistent in value when compared to the two upper dis-

tances curves. The two upper distance curves exhibit clear oscillation. In Fig. 2.4a,

we see that the blue fish and the green fish are swimming roughly side-by-side. The

red fish, on the other hand, moves regularly with respect to the blue fish and the

green fish. The red fish begins far behind the green fish, gets closer to the other two

by the time of the second snapshot, and falls behind again by the time of the third

snapshot.

Fig. 2.5a shows another set of snapshots from the same trajectory data sequence

that was used to create Fig. 2.4a, but at a different set of time instants. The speed

oscillation phase relationships have changed from what was observed in Fig. 2.4. The

blue fish is no longer synchronized with the green fish. The formation is V-shaped,

with the green fish in the lead. In the first time instant, the green fish is between the

red fish and the blue fish, causing an occlusion between the red fish and the blue fish.

By the the second time instant, the green fish has pulled ahead of the red fish and

blue fish, breaking the occlusion. The blue fish and red fish catch up with the green

fish by the third time instant, and we see the pattern begin again by the time of the

fourth time instant.

We calculated the MSP using (2.5) in order to obtain a measure of the phase re-

lationship between pairs of killifish. For the two-fish schools, we calculated the MSP

for all time segments during which the pair of fish were engaged in coordinated speed

oscillations (i.e., at about the same frequency). The average value of the MSP for

two-fish schools was -0.15 (see Table 2.2), indicating that the speed oscillations tend

42

towards anti-synchronization. This is consistent with our observations, as seen for

example in Fig. 2.1a. The average MSP for near neighbors in three-fish schools is

0.0 (see Table 2.2). This is consistent with near neighbors being sometimes synchro-

nized and sometimes anti-synchronized. In Fig. 2.4, for example, the red fish and

green fish are anti-synchronized near neighbors while the green fish and blue fish are

synchronized near neighbors. In Fig. 2.5b, the phase relationships between the speed

oscillations are less clear, but the variations in the formation shape in Fig. 2.5a are

very clear.

2.3.2 Common Spatial Configurations

The results presented in this section were produced using the analysis algorithms

described in Sec. 2.2. The same threshold parameter values were used here that were

used to produce the results in Sec. 2.3.1.

A 2D histogram of the relative bearings β1 and β2 for the two neighbors of the

central fish in three-fish schools is shown in Fig. 2.6. The values of β1 and β2 were

calculated at each time instant for which the slowest fish had a nominal speed of at

least 4 cm/sec and all fish were at least 12 cm (3 body lengths) away from the edge of

the tank. Intervals less than 2 sec were not considered. Time instances during which

either fish was more than 20 cm from the central fish were discarded. The results are

shown in a histogram using 15 by 15 degree bins. The histogram is plotted as a heat

map; low histogram values appear as blue tiles and high histogram values appear as

red tiles. The most common configurations are therefore represented by clusters of

red and/or orange tiles.

The clusters corresponding to the two most common configurations are circled

in Fig. 2.6 with arrows connecting the clusters to illustrations of the corresponding

configurations. Each illustration has three fish shown in three slightly different con-

figurations. The middle configuration represents the nominal (average) configuration.

43

Figure 2.6: Histogram of relative bearing pairs showing the most common configu-
rations (circled) of three-fish killifish schools. The two most common configurations
are illustrated in the bottom right, along with changes caused by coordinated speed
oscillations.

When the fish oscillate their speeds, they move relative to one other and therefore

the configuration changes. The two outer configurations show the two extrema of

relative motion about the nominal configuration, assuming that the two outer fish

are engaged in anti-synchronized coordinated speed oscillations with the central fish.

The upper circle in Fig. 2.6 shows the most common configuration of the three-

fish schools. The nominal relative bearings for this configuration are (β1, β2) =

(140 degrees,−140 degrees), which corresponds to a v-shaped formation with the

central fish in front (relative to the common direction of motion). Fig. 2.5a shows

a clear example of the v-shaped formation. The second-most common configuration

corresponds to the relative bearing pair (β1, β2) = (35 degrees,−145 degrees), which

44

corresponds to a diagonal line formation with the left-most fish in front (relative to

the common direction of motion). The average distance between the central and

outside fish in the three-fish schools (averaged over all of the data represented by

Fig. 2.6) is 7.1 ± 2.7 cm.

2.3.3 Relative Bearing Oscillations

In Sec. 2.3.1, we have shown that three-fish killifish schools engage in speed oscillations

with average nominal speed ν = 8.3 cm/sec, average amplitude µ = 4.1 cm/sec, and

average frequency Ω = 4.8 rad/sec. From the videos and from two-fish school analysis,

we know that nearest neighbors tend to antisynchronize their speed oscillations. From

Sec. 2.3.2, the average separation between the central and outside fish is 7.1 cm and

the relative bearing from a fish to its forward neighbor is approximately 35 or 40

degrees in the most common configurations of three-fish schools.

Consider a coordinate frame located at the eye of the central fish with its x−axis

oriented along the direction of motion of the central fish (the direction of vc in Fig. 2.2)

and its y−axis perpendicular to the direction of motion and in the plane of motion.

For a pair of fish engaged in coordinated speed oscillations with a phase offset ∆φ,

their x−axis distance oscillates with an amplitude of

2
µ

Ω
sin

∣∣∣∣
∆φ

2

∣∣∣∣ .

For an average relative bearing of β = 37.5 degrees, the average x−axis distance

between the fish is 5.6 cm and the average y−axis distance is 4.3 cm. For anti-

synchronized oscillations, the amplitude of x−axis oscillations is 1.7 cm and therefore

the relative bearing oscillates between tan−1 4.3
5.6
≈ 34.9 degrees and tan−1 7.3

5.6
≈ 52.5

degrees. Therefore, during an average oscillation period, the relative bearing between

killifish cycles from the value that maximizes sensitivity of time-to-collision with re-

45

spect to both heading and speed (35.3 degrees), through the value that maximizes

sensitivity of angular velocity with respect to speed (45.0 degrees), and comes close to

the value that maximizes sensitivity of loom with respect to heading (63.4 degrees).

Furthermore, optical flow is generated both into and across the retina because the

image of the neighbor fish is moving and causing both angular velocity and loom to

oscillate with nonzero amplitude. The amplitudes of these oscillations is strongest

for anti-synchronized speed oscillations and nonzero unless speed oscillations are syn-

chronized.

2.4 Discussion

The results for two-fish schools show that killifish engage in coordinated speed os-

cillations a majority of the time. The “typical” speed oscillation has a frequency of

0.74 Hz (well below the tail beat frequency, which is above 1 Hz) and an amplitude

that is approximately 50% of the nominal speed. Pairs of fish engaged in coordi-

nated speed oscillations tend to anti-synchronize their oscillations (i.e., their phase

separation tends to be close to ±180 degrees).

The results also show that killifish in three-fish schools engage in speed oscillations

a majority of the time, and that the typical speed oscillation of a fish in a three-fish

school is very similar to the typical speed oscillation of a fish in a two-fish school. The

phase coordination tends to change over time, with near neighbors being sometimes

synchronized and sometimes anti-synchronized. In Fig. 2.4, for example, we see an

example of a fish having speed oscillations nearly synchronized with one neighbor and

nearly anti-synchronized with another neighbor. Regardless of speed phase arrange-

ments, the spatial formation of the fish is continuously changing. This is especially

apparent in Fig. 2.5.

46

The two most common spatial configurations for three-fish schools are the v-

shaped formation and the diagonal line formation shown in Fig. 2.6. The relative

bearing between any fish and its nearest neighbors to the front (left or right) tends to

be between 30 and 40 degrees, though this (and the configurations themselves) vary

slightly as the fish move relative to each other due to coordinated speed oscillations.

We show in Sec. 2.3.3 that killifish speed oscillations cause the relative bearing

between fish to oscillate through a range of values that include those predicted by Dill

et al. [37] to maximize sensitivity of various visual cues with respect to heading or

speed changes by the other fish. The results of Dill et al. are derived for a static case;

that is, the fish are assumed to be swimming with the same constant speed. Speed

oscillations violate this assumption. New optimal values of relative bearing could

be calculated using the dynamic rederivation of the results of Dill et al. that we

present in App. B. However, the qualitative result will not change: coordinated speed

oscillations cause relative motion that could result in a benefit in terms of increased

overall sensitivity to various visual cues and therefore improved ability of the fish to

detect and react to changes in the behavior of neighboring fish.

47

Chapter 3

Coordinated Relative Motion and

Decision-Making Performance

In this chapter, we consider the effects of coordinated relative motion on the decision-

making performance of multi-agent systems. This work is mainly motivated by the

killifish observations in Chap. 2, although our goal is to understand underlying mecha-

nisms and concepts that are relevant both for natural and engineered systems. There-

fore, we refer to “agents” rather than specifically to fish, with the intention that an

agent could be a model for a fish, bird, robot, mobile sensor, etc.

In Chap. 2, we presented evidence that schools of killifish engage in coordinated

speed oscillations. We investigated potential benefits that the killifish may experience

due to the resulting coordinated periodic relative motion, mainly with respect to

enhanced quality of visual information (see Sec. 2.3.3). Here, we consider what effects

relative motion may have with respect to the availability of visual information. That

is, as killifish move relative to one another, line-of-sight visibility between distanced

fish is modulated due to the making and breaking of occlusions by intermediate fish.

We show below that this can, in fact, lead to dramatically improved group-level

decision making performance. We also show that periodic relative motion can benefit

48

engineered systems by reducing the communication range necessary for a group to

maintain connectivity and accomplish group-level tasks.

This chapter begins by framing the relevant background material within the cur-

rent discussion. In Sec. 3.1.1, we review some necessary concepts from graph theory so

that we can describe and analyze the communication network by which agents influ-

ence one another as a graph. In Sec. 3.1.2, we provide some background on consensus

dynamics; in particular, we are interested in linear consensus dynamics over graphs

as a model of decision-making in multi-agent systems. In Sec. 3.1.3, we introduce

the notion of a sensing topology as a means to describe how the spatial arrangement

of a group of agents relates to the (time-varying) graph describing which agents can

communicate with (or influence) which other agents.

The results of this chapter are organized into two groups. Results regarding the

rate of convergence to consensus, which is used here as a way to measure decision

making performance, are presented in Sec. 3.2. We provide a means to calculate

the rate of convergence to consensus for piecewise constant and periodically time-

varying systems in Sec. 3.2.1. In Sec. 3.2.2, this result is used along with the analysis

of three-fish schools in Chap. 2 and some assumptions to show that killifish can be

experiencing up to a 50% improvement in decision-making performance.

In Sec. 3.3, results are presented regarding the communication connectivity of

multi-agent systems engaged in coordinated relative motion. In Sec. 3.3.1, we intro-

duce the effective sensing region, which is a tool that we use to analyze connectivity.

In Sec. 3.3.2, we use effective sensing regions to show that coordinated relative mo-

tion reduces the sensor footprint necessary for multi-agent systems to establish and

maintain connectivity. In Sec. 3.3.3, we use both effective sensing regions and the

convergence rate results of Sec. 3.2.1 to investigate the design of motion parameters

for multi-agent systems with respect to decision-making performance.

49

Sec. 3.2 and Sec. 3.3 present two separate discussions about the benefits of pe-

riodic relative motion for decision-making performance. The results of Sec. 3.2 are

mainly concerned with the convergence rates of consensus dynamics over periodically

switching graphs. We focus on one pair of graphs that results from applying some as-

sumptions to the spatial configurations of killifish that we discuss in Chap. 2, though

the results can be leveraged to analyze decision-making performance over arbitrary

periodic graph sequences. The results in Sec. 3.3 are concerned mainly with the con-

nectivity of geometric graphs in which the individual nodes are moving periodically

relative to one another. Both sections are motivated by our observations of killifish.

The results here on effective sensing regions and the rate of convergence to consen-

sus for periodically time-varying graphs was previously published in [113] (which was,

in turn, partly inspired by work on convergence rates by Cao et al. [25]). The results

that relate to killifish decision-making performance are also part of a manuscript that

is in preparation [114].

3.1 Background

3.1.1 Graph Theory

Here we review some graph theoretical notions that are necessary for our discussion

of group-level decision making. The viewpoint and terminology used here is largely

inspired by the work of Sepulchre et al. [105] and Moreau [80], who were concerned

with the behavior of multi-agent systems whose dynamics evolve over time-varying

graphs. For a thorough treatment of graph theory, see [46].

A graph in this context refers specifically to a δ−digraph. A δ−digraph G with N

nodes is defined as the set

G = {V , E , A} ,

50

where V is the node set, E ⊆ V × V is the edge set, and A ∈ RN×N is the adjacency

matrix. The (i, j)th element of the adjacency matrix specifies the weight of the edge,

and must satisfy the conditions

Aij > δ for some δ > 0 ⇐⇒ (i, j) ∈ E

and

Aij = 0⇐⇒ (i, j) /∈ E .

We consider only graphs with no self-edges; that is, (i, i) /∈ E and Aii = 0 for each

i = 1, . . . , N . A graph is undirected if Aij = Aji for all i and j, and directed

otherwise. We generally consider directed graphs here.

A graph with fixed number of nodes, N , is time-varying if its edges and/or edge

weights are time-varying, i.e., E = E(t) and/or A = A(t). We write G(t) to refer to a

time-varying graph at time t or to clarify that a graph is time-varying. If E and A are

constant, we say that the graph is time-invariant. If E and A are piecewise constant,

we say that the graph is piecewise constant. The neighbor set of the kth node at time

t is Nk(t) = {j ∈ V : (k, j) ∈ E(t)}. |Nk(t)| is the cardinality of Nk(t) and therefore

equal to the number of neighbors that node k has at time t.

The connectivity of graphs is important in many contexts. A graph G is strongly

connected if and only if any two distinct nodes can be connected by a path that

respects the edges and edge directions of the graph. That is, given any pair of nodes

i and j, either (i, j) ∈ E or there is a sequence i1, . . . , in for some n ≥ 1 such that

(i, i1), (i1, i2), . . . , and (in, j) are all in E . A graph is weakly connected if and only

if any two distinct nodes can be connected by a path that respects the edges of the

graph but may not necessarily respect edge directions. Node i is connected to node j

if there is a path from i to j that respects the edges and edge directions of the graph.

51

Consider a time-varying graph G(t) = {V , E(t), A(t)} and a non-empty time

interval I. We define the time-invariant graph

ḠI =
{
V , ĒI , ĀI

}
(3.1)

where

ĒI =
⋃

t∈I

E(t)

and

ĀI =
1

|I|

∫

t∈I
A(t)dt,

where |I| is the (non-zero) length of I. We call ḠI the interval graph of G(t) over

the interval I. Node i is connected over the interval I to node j in G(t) if node i

is connected to node j in ḠI . G(t) is uniformly connected (a notion introduced by

Moreau [80]) if there exists a time horizon T > 0 such that, for all t, the interval

graph ḠI is strongly connected over the interval I = [t, t + T]. A graph is periodic

with a period T if G(t + T) = G(t) for all t. A graph that is periodic with period T

and strongly connected over any interval of length T is uniformly connected.

The Laplacian matrix, L(t), of a graph G(t) is an important mathematical object.

The Laplacian matrix is defined, in terms of its elements, as

Lij(t) =




−Aij(t), i 6= j
∑N

k=1Aik(t), i = j
.

The quantity
∑N

k=1Aik(t) is called the out degree of node i at time t. Fig. 3.1 shows

an example of a graph and its corresponding Laplacian matrix. Note that we draw

edge (i, j) from node i to node j with the arrowhead at the j end of the connection

when Lij < 0 (equivalently, (i, j) ∈ E and Aij > 0). In this thesis an edge (i, j)

52

with Aij > 0 represents that agent i senses agent j and applies the weight Aij to the

information it gets from agent j.

1

4

2

3

L =




1 0 0 −1
−1 2 0 −1
−1 0 2 −1
−1 0 −1 2




Figure 3.1: A simple graph (left) and its Laplacian matrix L (right). The edge weights
(not drawn) are all equal to 1. An arrowhead on both ends of an edge between node
i and node j indicate that both (i, j) and (j, i) are in the edge set E .

The spectrum of the Laplacian matrix, L, of a time-invariant graph, G, has im-

portant connections to the topological properties of the graph. By definition, L has

at least one eigenvalue at 0 with a corresponding eigenvector 1N (the vector of all

ones). The eigenvalues λi, i = 1, . . . , N all have Re {λi} ≥ 0 and only one eigenvalue

has Re {λi} = 0 if the graph is strongly connected [85].

3.1.2 Linear Consensus Dynamics Over Graphs

We define linear consensus dynamics here and review relevant results.

53

We consider consensus dynamics here as a model of the process by which a group

of N agents attempt to reach agreement on the value of some decision variable. The

kth agent is modeled as having a consensus variable, xk. Each agent updates the value

of its consensus variable dynamically as it interacts with (possibly a subset of) the

other agents, and the goal is to come to consensus:

lim
t−→∞

xk(t) = x̄, k = 1, . . . , N.

x̄ ∈ R is called the consensus value.

We are focused here on linear consensus dynamics of the form

ẋ(t) = −L(t)x(t), (3.2)

where x =

(
x1 . . . xN

)T
∈ RN and L(t) is the Laplacian matrix for the graph

G(t) that describes the interactions among the N agents. We say that these are

consensus dynamics over the graph because the graph determines which agents in-

fluence which others. When there is no edge from agent k to agent j in the graph,

Akj = Lkj = 0 and hence ẋk does not depend directly on xj.

A special case of (3.2) is averaging consensus, wherein

ẋk =





1

|Nk(t)|
∑

j∈Nk(t)

xj(t)− xk(t), |Nk(t)| 6= 0

0, |Nk(t)| = 0

. (3.3)

That is, the kth agent updates its own consensus variable in the direction of the average

of the differences between its own consensus variable and its neighbors’ variables

(recall that Nk(t) is the neighbor set of the kth agent at time t). Averaging consensus

54

is equivalent to the graph Laplacian matrix being defined as

Lkj(t) =





0, j 6= k, j /∈ Nk(t)

− 1
|Nk(t)| , j 6= k, j ∈ Nk(t)

1, j = k, |Nk(t)| 6= 0

0, j = k, |Nk(t)| = 0

.

It can be shown that, when G(t) is constant and undirected and strongly connected,

the unique consensus value of the averaging consensus dynamics is the average of the

initial values, i.e., x̄ = 1
N

∑N
k=1 xk(0) [86]. In general, the consensus value depends on

the initial conditions and the graph.

When the graph G(t) is time-invariant, the graph Laplacian matrix is time-

invariant as well and the dynamics (3.2) become a linear time-invariant (LTI)

system:

ẋ = −Lx. (3.4)

The LTI consensus dynamics (3.4) are always stable (the eigenvalues of L have non-

negative real part). The number of zero eigenvalues of L determines the number of

stable equilibria of the system; therefore, the system has a single stable equilibrium

manifold x∗ = x̄1N for x̄ ∈ R if the graph G is strongly connected [85]. That is, the

LTI consensus dynamics reach the consensus state, x1 = x2 = . . . = xN = x̄, for all

initial conditions if the graph is strongly connected. Moreau [80] extended this result

to the time-varying case: the linear consensus dynamics (3.2) reach the consensus

state if the graph G(t) is uniformly connected.

We use the rate of convergence to consensus, σ, (following [25, 113]) as a measure

of the performance of a consensus dynamical system.

Definition 3.1. The rate of convergence to consensus, σ, of the linear consensus

dynamics (3.2) is defined as the infimum over all σ̄ > 0 for which there exists a β > 0

55

for any initial conditions x(0) ∈ RN such that

‖x(t)− x̄1N‖ ≤ βe−σ̄t, (3.5)

where x̄ is the consensus value corresponding to the initial conditions, x(0). If conver-

gence is not reached (i.e., if the graph is not strongly connected), we say that σ = 0.

When it is not ambiguous, we will refer to σ simply as the convergence rate.

The convergence rate is determined by L and therefore by the properties of the

graph G. For time-invariant graphs, it is straightforward to show that the convergence

rate is equal to the real part of the second smallest eigenvalue, λ2, of L. For symmetric

graphs, L is symmetric and λ2 ∈ R+ is called the algebraic connectivity or Fiedler

constant (see, e.g., [46, 59]). When the graph is time-varying, the convergence rate

can be difficult to compute. Lower bounds on the convergence rate can be established

using graph theoretic ideas such as the joint spectral radius and scrambling constants

[12, 25]. The main result in Sec. 3.2.1 below is a method to calculate the convergence

rate for periodic and piecewise-constant graphs in terms of the Laplacians of the

individual graphs and their time durations during a cycle.

3.1.3 Sensing Topologies and Sensing Regions

Limited communication in multi-agent systems is modeled here using a graph, G, for

which the kth node represents the kth agent, and an edge from node j to node k (i.e.,

(j, k) ∈ E) means that agent k is influencing agent j. Equivalently, we can say that

agent j can sense node k when there is an edge from node j to node k. Therefore,

the graph G is referred to as the sensing topology of the group. We say that agent

k is a neighbor of agent j (in the context of the sensing topology) if (j, k) ∈ E , or

equivalently k ∈ Nj.

56

We consider here only settings in which there is a single sensing topology for a

group, although it is possible to make use of multiple topology models for a single

group. For example, Paley et al. [87] adapt the zone model of Couzin et al. [29] to

study spatial bistability in collective motion. They explicitly model the effects of long-

range attraction, short-range repulsion, and mid-range alignment using a separate

topology for each behavior.

Limited communication often derives from sensing limitations that can be modeled

geometrically. For example, radio and visual signals degrade with increasing distance.

The way that this phenomenon affects a multi-agent system can be modeled using

a sensing radius ; a fixed distance, ρ, beyond which communication is considered

impossible. Another example is forward-facing vision, which results in a blind angle,

a region to the rear of an agent in which it cannot see other agents. In general, we

may consider a spatial region, Γk, that defines the area about agent k in which it may

have neighbors. That is, if agent j is not in Γk, then agent j cannot be a neighbor of

agent k. We call Γk the sensing region of agent k ([87] uses a similar concept with

the name “perceptual zone”).

There are many situations in which agent j being in agent k’s sensing region

is a necessary and sufficient condition for (j, k) ∈ E (i.e., every agent in Γk is a

neighbor), although this is not always the case. Consider, for example, an agent that

relies on visual information from its neighbors and whose sensing region is defined by a

sensing radius that corresponds to the maximum distance at which visual information

is reliably available. In this case, having another agent within the sensing region is

a necessary condition for that agent to be a neighbor because visual information is

unavailable from agents outside the sensing region. However, being inside the sensing

region is not a sufficient condition for being a neighbor because the view may be

occluded (for example, by a third agent or by a part of the environment). Another

example of when being in the sensing region represents a necessary but not sufficient

57

condition for being a neighbor is when there is an upper limit on the number of

neighbors that the agent can have (for example, due to perceptual limitations). There

is evidence that this is the case for birds within starling flocks [6].

The sensing region Γk for agent k is, in general, a time-varying region of the

fixed physical space because it moves with the agent. We consider here the two-

dimensional case, although there is no reason that this concept cannot be extended

to three dimensions. For convenience, we identify the real and complex planes, i.e.,

rk ∈ C ∼ R2 is the position of the kth agent. The heading direction of the kth agent

is θk ∈ S1, where S1 is the circle. The sensing region for agent k is therefore

Γk(t) = eiθk(t)Γ̃k + rk(t)

,
{
x ∈ C : (x− rk(t)) e−iθk(t) ∈ Γ̃k

}
, (3.6)

where Γ̃k is the template sensing region for agent k. The template sensing region is

the sensing region for agent k defined relative to the position and heading of agent k;

we define the template sensing region for the agent located at the origin with heading

in the zero direction. Then, the sensing region for agent k at time t is found by

translating the template region to rk(t) and rotating it by θk(t). In many cases, the

template sensing regions of all agents in a group are identical. For example, a group

of robots may all have the same sensing radius, ρ, and blind angle, β. In these cases,

we simply write Γ as the common template sensing region and

Γk(t) = eiθk(t)Γ + rk(t).

We assume that Γ, and consequently Γk, is an open set so that connectivity over

intervals of zero length is not possible. Note that the sensing region, Γ, cannot be a

point.

58

Fig. 3.2 shows some common template sensing regions. When a sensing region is

defined by a radius, ρ, we call that radius the sensing radius. When a sensing region

excludes a cone defined by an angle 2β to the rear, we call one half of that angle,

β, the blind angle (i.e., a blind angle of 10 degrees means that neighbors within ±10

degrees directly to the rear cannot be seen; the total angle defining the excluded cone

is 20 degrees).

Re(r)

Im(r)

Γ

O

ρ

Re(r)

Im(r)

Γ
2β

O

Re(r)

Im(r)

2β
ρ

O

Γ

Re(r)

Im(r)

O

rk

ṙk

θk

Γk

Figure 3.2: Example template sensing regions. (Top left) Sensing radius, ρ. (Top
Right) Blind angle, β. (Bottom left) Combination of a sensing radius and blind angle.
(Bottom right) The sensing region for agent k at time t, obtained by translating the
template sensing region to the agent’s position at rk(t) and aligning it with its velocity
at θk(t) = ∠ṙk(t).

59

In Sections 3.2 and 3.3, we use the effective sensing regions for a group of agents

to evaluate the role of periodic relative motion on decision making (Sec. 3.2) and

connectivity (Sec. 3.3). In Sec. 3.3, we consider agents that are randomly placed

within a unit square and have a fixed sensing radius ρ, and investigate the connectivity

of the sensing topology as a function of ρ and the parameters of relative motion. In

the static case (i.e., no relative motion), this defines a random geometric graph [96].

The static case has been studied in the context of sensor networks [5, 100] using

results from graph percolation theory [15, 75]. The focus of these studies was the

phase transition in graph connectivity as the sensing radius increases. For a fixed

number of agents, N , the sensing topology transitions from disconnected to connected

when the sensing radius, ρ, is varied from small values (disconnected) to large values

(connected). This work is done in a probabilistic framework because the positions of

the agents/sensors are random; therefore the goal is to find a critical sensing radius,

ρc, for which the probability of connectedness transitions from low to high. Balister

et al. [5] combined theoretical analysis with Monte Carlo simulations to obtain the

estimated bounds √
1.43

N
< ρc <

√
1.48

N
(3.7)

with probability 0.9999 when agents are placed indepently and uniformly randomly

in a unit square. We use this result in Sec. 3.3 as a baseline for comparison with the

results that we obtain when relative motion is introduced.

3.2 Group-level Decision-Making Performance

With Periodic Relative Motion

In this section, we present results on the rate of convergence to consensus for periodic

and piecewise constant graphs. In Sec. 3.2.1, we present analytical results that facili-

60

tate the calculation of convergence rate in terms of the component Laplacian matrices

and their time durations. In Sec. 3.2.2, we use the results from Sec. 3.2.1 along with

some assumptions about the sensing topologies in the three-fish killifish schools to

show that coordinated speed oscillations can result in a significant improvement to

group-level decision making performance with respect to the rate of convergence to

consensus.

3.2.1 Rate of Convergence to Consensus Over Periodic and

Piecewise Constant Graphs

Consider a graph, G(t), that is piecewise constant and periodic with period T . During

each period, the graph cycles through a set of n component graphs. We label the

ith component graph Gi and its duration ∆ti > 0 (
∑n

i=1 ∆ti = T). Define ti ,
∑i

j=1 ∆ti, i = 1, . . . , n. The graph G(t) can then be described as

G(t) = G
(
τ = t−

⌊
t

T

⌋
T

)
=





G1, 0 ≤ τ < t1

G2, t1 ≤ τ < t2
...

Gn, tn−1 ≤ τ < T

. (3.8)

For notational convenience, we define L0 = IN×N , ∆t0 = 0, t0 = 0, Ln+1 = L1,

∆tn+1 = ∆t1, and tn+1 = t1. The Laplacian matrix of the ith component graph is

labeled Li. We say that the ith graph is active when ti−1 ≤ t−
⌊
t
T

⌋
T < ti.

The following result allows us to calculate the rate of convergence to consensus

for a periodic and piecewise-constant graph in terms of the Laplacian matrices, Li,

of the component graphs, Gi, and their time durations, ∆ti.

Theorem 3.1. Consider the linear consensus dynamics (3.2) where L(t) is the Lapla-

cian matrix of a periodic and piecewise constant graph as described by (3.8). Assume

61

that the interval graph over one period, ḠI=[0,T) as defined by (3.1), is strongly con-

nected. The rate of convergence to consensus, σ, for this system as defined by Def. 3.1

is given by

σ = − 1

T
log |m2|, (3.9)

where m2 is the second largest (by magnitude) eigenvalue of the matrix

M = e−Ln∆tN · · · e−L1∆t1 . (3.10)

When ḠI=[0,T) is not strongly connected, we say that σ = 0.

Proof. Consider a time, t, where qT ≤ t < (q + 1)T and tn̄−1 ≤ t − qT < tn̄ for

integers q � 1 and 1 ≤ n̄ ≤ n. That is, q periods of length T have elapsed and the

n̄th graph is active. The solution to the linear consensus dynamics (3.2) at time t is

given by

x(t) = M1M
qx(0), (3.11)

where M is defined by (3.10) and

M1 = e−Ln̄(t−tn̄−1)e−Ln̄−1∆tn̄−1 · · · e−L1∆t1

accounts for the interval for which t > qT . Because ḠI=[0,T) is strongly connected,

G(t) is uniformly connected, and therefore we have limq→∞M
qx(0) = x̄1N for some

x̄ ∈ R.

M q dominates the asymptotic behavior of (3.11) as q increases and therefore

the magnitude of its second largest eigenvalue, m2, of M (ordered by magnitude)

determines the rate at which ‖M qx(0)− x̄1N‖ −→ 0 as a function of q [25]. Let

L̄ = − 1
T

logM so that we have limq→∞ e
−L̄qT = x̄1N . Therefore, the real part of the

second smallest eigenvalue, λ2, of L̄ (ordered by real parts) determines the rate at

which
∥∥e−L̄tx(0)− x̄1N

∥∥ −→ 0 as a function of t, and Re {λ2} = − 1
T

log |m2|.
62

The following corollary states that the value of the rate of convergence to consensus

is unaffected by time shifts or, equivalently, what time we mark as the beginning of

a period.

Corollary 3.1. Consider the conditions of Thm. 3.1. The value of the convergence

rate, σ, is invariant to a time-shift of the graph. That is, the convergence rate for

G(t − t∗), t∗ ∈ R, is equal to the convergence rate for G(t). Equivalently, the con-

vergence rate is unaffected by a circular shifting of the graph sequence - i.e., the

convergence rate is the same for the graph sequences (G1,G2, . . . ,Gn), (G2, . . . ,Gn,G1),

(Gn,G1, . . . ,Gn−1), etc., so long as the order and the time durations are the same.

Proof. Assume that 0 < t∗ < T and that t∗ = tn̄−1+δt∗, where 0 ≤ δt∗ < ∆tn̄ (i.e., the

n̄th graph of G(t) is active at t = t∗). Because E(t) is periodic, ĒI∗=[t∗,t∗+T) = ĒI=[0,T).

Therefore, if G(t) is uniformly connected then so is G(t− t∗). Hence, Thm. 3.1 applies

with σ∗ = − 1
T

log |m∗2| where m∗2 is the second largest eigenvalue (by magnitude) of

M∗ = e−Ln̄δt
∗
e−Ln̄−1∆tn̄−1 · · · e−L1∆t1e−Ln∆tn · · · e−Ln̄+1∆tn̄+1e−Ln̄(∆tn̄−δt∗)

= M̄MM̄−1

where M is from the original ordering via (3.10) and

M̄ = eLn̄(∆tn̄−δt∗)eLn̄+1∆tn̄+1 · · · eLn−1∆tn−1eLn∆tn .

M and M∗ have the same eigenvalues by similarity, and therefore m∗2 = m2 and

σ∗ = σ.

If G(t) is not uniformly connected, then neither is G(t− t∗) and saying that σ = 0

is congruent with Thm. 3.1.

63

3.2.2 Decision-Making Performance of Killifish Schools

In this section, we consider schools of N = 3 killifish and their periodic sensing

topologies that result from coordinated speed oscillations. The sensing topologies

are derived from the common spatial configurations described in Sec. 2.3.2 and some

assumptions (described below) about how the killifish are influenced by visual infor-

mation. We describe performance in terms of the rate of convergence to consensus

over these periodic sensing topologies. The linear consensus dynamics (3.2) can be

viewed as a linearization of consensus about the direction of motion.

It is impossible to know precisely the sensing topology of a school of fish. We

can measure line-of-sight visibility based on spatial configurations, but there is no

easy way to know to what degree one fish may influence another fish nor how this

influence varies with time. We therefore apply a set of assumptions to the common

spatial configurations described in Sec. 2.3.2 in order to obtain a set of proposed

sensing topologies. Our assumptions are motivated by our interest in the way that

visual information is modulated by relative motion. The assumptions are as follows:

1. Fish k cannot be a neighbor of fish j unless fish j can see fish k.

2. Each fish has at most one neighbor to the left and one neighbor to the right.

When more than one fish is visible to the left (respectively, right), then the

most recently unoccluded fish to the left (respectively, right) is taken as the

neighbor.

3. At any time and for any fish, the influence due to its neighbors is evenly dis-

tributed across all neighbors. Furthermore, the total influence on a given fish

stays constant over time, unless there are no neighbors, in which case the total

influence drops to zero.

The first assumption follows from the assumption that killifish are reacting to vi-

sual information without memory. The second assumption is reasonable if we propose

64

that fish have a limited amount of visual “attention”, and that the newest-available

information warrants the most attention. The third assumption implies that the row

sums of the adjacency matrix, A, are either equal to 1 (if there are any visible neigh-

bors) or 0 (if there are no visible neighbors). Equal weights correspond to the non-zero

values in each row of A being equal to each other. Therefore, the third assumption is

equivalent to assuming that the fish are engaged in averaging consensus, as in (3.3).

Consider the common killifish spatial configurations for three-fish schools shown in

Fig. 2.6. When the fish move relative to one another in an oscillatory manner result-

ing from coordinated speed oscillations, line-of-sight visibility between the two outer

fish is alternately available and occluded. Applying the above assumptions to this

regular occlusion making and breaking yields switching between the two topologies

shown in Fig. 3.3. The resulting graphs and their corresponding Laplacian matrices

are also shown in Fig. 3.3. Note that both common configurations (the v-shaped for-

mation and the diagonal-line formation) from Fig. 2.6 yield the same two component

graphs and therefore the same sensing topology. The spatial configurations shown in

the snapshots in Fig. 2.4 also result in the sensing topology generated by switching

between the two graphs shown in Fig.3.3. We will refer to the two component graphs

below as GA and GB, as labeled in Fig. 3.3.

We now compute the rate of convergence to consensus for the graph G(t) resulting

from the switching sensing topology shown in Fig. 3.3. The convergence rate is

calculated here as a function of a duty cycle parameter, p, 0 ≤ p ≤ 1, that represents

the fraction of a period for which GB is active. Hence, the graph G(t) is described by

G(t) = G
(
τ = t−

⌊
t

T

⌋)
=




GA, 0 ≤ τ < (1− p)T

GB, (1− p)T ≤ τ < T
, (3.12)

Note that when p = 0, G(t) = GA for all t, and when p = 1, G(t) = GB for all t.

65

Figure 3.3: Switching killifish sensing topology resulting form the common configu-
rations described in Sec. 2.3.2 (See Fig. 2.6) and the assumptions described in the
text. (Top and middle) The v-shaped and diagonal-line formations (middle) and their
extrema of relative motion due to coordinated speed oscillations (left and right). The
blue lines indicate neighbor relationships due to the assumptions described above.
(Bottom) The formations above result in the same two component graphs, GA and
GB, shown with their corresponding graph Laplacian matrices LA and LB. The node
labels give their indices in the Laplacian matrices. (c) indicates the central (middle)
fish. The periodically time-varying sensing topology of the killifish school consists of
these two component graphs, with the switches occuring when the spatial configura-
tion of the fish changes due to relative motion thus making and breaking occlusions
between fish.

Both component graphs GA and GB are strongly connected and therefore G(t) is

uniformly connected. Thus, by Thm. 3.1, the rate of convergence to consensus for

66

G(t) is determined by the second largest eigenvalue of

M = e−pTLBe−(1−p)TLA . (3.13)

From the killifish data above, we have that T ≈ 1.3 sec. The value of p depends on

the killifish’ parameters of motion and could vary from experiment to experiment, or

even over the course of a single experiment. Nominally, the value should be around

p ≈ 0.5. Regardless, the results below are calculated as a function of p and we show

that a performance benefit is present for any value of p 6= 0 and p 6= 1 (i.e., when any

switching is present).

The second largest eigenvalue of M in (3.13) with LA and LB from Fig. 3.3 is

m2 =





e−T (p+1), 0 ≤ p < 1
2

eT (p−2), 1
2
≤ p ≤ 1

.

Therefore, the convergence rate is

σ =





p+ 1, 0 ≤ p < 1
2

2− p, 1
2
≤ p ≤ 1

,

and we see that the convergence rate is maximized at a value of σ = 3
2

when p = 1
2

and minimized at p = 0 and p = 1 with a value of σ = 1. That is, the value of the

convergence rate is 50% larger when the graphs are switched with a duty cycle of

p = 1
2

than it is for either component graph alone. In fact, σ > 1 for all values of

p ∈ (0, 1).

Note that the set of assumptions presented above is just one of many possibili-

ties. Other possibilities that we have considered do not result in a decision-making

performance benefit due to periodic relative motion. The second assumption above

is the most critical of the three to obtaining a decision-making performance benefit

67

because it strongly modulates the sensing topology. One alternative assumption is

for fish to have a preference for influence from the nearest visible fish on either side,

or all fish within a fixed sensing radius. Under this assumption, the sensing topology

for the common killifish spatial configurations that we have studied is constant and

represented by the graph GA in Fig. 3.3. Therefore, the sensing topology does not

change under this assumption and there is no decision-making performance benefit

due to periodic relative motion. Similarly, if fish are influenced by all visible neigh-

bors, then the sensing topology becomes an all-to-all graph for both the “A” and

“B” configurations in the v-shaped formations in the top of Fig. 3.3 and for the “B”

configuration in the diagonal-line formations in the middle of Fig. 3.3. The second-

largest eigenvalue of the Laplacian matrix corresponding to the all-to-all topology is

3
2
, and hence the convergence rate is not improved by switching.

To investigate whether the decision-making performance improvement due to

topology switching is an isolated phenomenon or not, we calculated the convergence

rates for a variety of other graph pairs. We found that for many graph pairs, switch-

ing produced a higher convergence rate than either graph alone. Fig. 3.4 shows two

examples for which switching is beneficial and one for which switching is not benefi-

cial. The topmost pair of graphs is over N = 3 nodes and corresponds to a situation

in which the second node periodically switches between being connected to the first

and being connected to the third node. This could correspond to a physical situa-

tion in which a fish (represented by the second node) moves between two other fish

(represented by the first and third nodes) that are too far apart to be influenced by

one another directly. In this case, it is straightforward to see that switching should

improve decision-making performance because neither component graph is strongly

connected but the interval graph is strongly connected. The maximum value of σ

occurs when p = 0.5. This kind of phenomenon may occur in larger groups where

the sensing topologies are more complex. For example, the middle pair of graphs is

68

over N = 4 nodes and shows an example for which GA is strongly connected and GB
is not. Switching improves the convergence rate in this case, though it is not obvious

from the two component graphs. The bottom pair of graphs is an example situation

where switching reduces the convergence rate. The period is T = 1 in all three cases.

1 2 3

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

Duty Cycle

C
o

n
v
e

rg
e

n
c
e

 R
a

te

1 3

2

4

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

Duty Cycle

C
o

n
v
e

rg
e

n
c
e

 R
a

te

1

3

4 2

0 0.2 0.4 0.6 0.8 1

0.5

0.6

0.7

0.8

0.9

1

1.1

Duty Cycle

C
o

n
v
e

rg
e

n
c
e

 R
a

te

Figure 3.4: A sampling of topology pairs and their rate of convergence to consensus
as a function of duty cycle. (Left) The topologies. The A topology is represented by
the solid black edges, the B topology is represented by the dashed blue edges. (Right)
The corresponding convergence rate as functions of the duty cycle p, calculated using
the results of Thm. 3.1 with M as in (3.13). The period is T = 1 in all three cases.

69

3.3 Impact of Relative Motion on Connectivity

This section considers the conditions of connectedness for multi-agent systems en-

gaged in coordinated relative motion, whereas the results of the previous section

focused mainly on the performance of group-level decision making assuming that the

underlying graph is connected. In contrast to the results of Sec. 3.2.2, where we

construct a theoretical sensing topology for a school of killifish based on assumptions

involving line-of-sight visibility, this section considers sensing topologies for multi-

agent systems based on pairwise geometric relationships (for example, a fixed sensing

radius). In both this section and Sec. 3.2, the sensing topologies that we consider can

can be time-varying due to relative motion.

We introduce the effective sensing region in Sec. 3.3.1 and use it as a tool to

analyze connectivity in Sec. 3.3.2. Sec. 3.3.3 uses effective sensing regions as well as

the convergence rate results from above to investigate optimal motion parameters for

decision-making performance.

3.3.1 Effective Sensing Regions

Consider a group of N agents that are engaged in periodic relative motion with period

T . The relative position between agents j and k is rjk(t) , rj(t)−rk(t), and, because

the relative motion is periodic, rjk(t + T) = rjk(t) for all t. The average relative

position of agent j with respect to agent k is

r̄jk ,
1

T

∫ T

0

rjk(τ)dτ.

In this section we assume that any agent, j, that is in agent k’s sensing region,

Γk(t), at time t is a neighbor of agent k at time t. That is,

(k, j) ∈ E(t)⇐⇒ rj ∈ Γk(t), (3.14)

70

where E(t) is the edge set of the graph G(t) representing the group’s sensing topology.

Furthermore, we assume that all agents share a common sensing region template, Γ.

By (3.6), the right-hand side of (3.14) is equivalent to

rjk(t)e
−iθk(t) ∈ Γ. (3.15)

Because rjk = r̄jk + (rjk − r̄jk), (3.15) is equivalent to

r̄jk ∈ Γeiθk(t) − (rjk(t)− r̄jk) . (3.16)

Strong connectivity of the interval graph ḠI=[0,T) =
{
N , ĒI , ĀI

}
is equivalent to

uniform connectivity of G(t). Therefore, with respect to constructing a graph from

which we can investigate uniform connectivity of the sensing topology, we need only

determine if an edge is present at some time during the first period. That is, to

determine if (k, j) ∈ ĒI , we may determine if there is any time t∗ ∈ [0, T) for which

the condition (3.16) is true. We may consider a single time instant because Γ is an

open set and therefore, if (3.16) is true for t = t∗, it is also true for t ∈ (t∗−δt, t∗+δt)

for some δt > 0. Therefore, (k, j) ∈ ĒI if and only if

r̄jk ∈
⋃

t∈I=[0,T)

(
Γeiθk(t) − (rjk(t)− r̄jk)

)
, Γ̄jk.

We call the set Γ̄jk the effective sensing region for the pair (k, j).

We have proven the following.

Theorem 3.2. Consider N agents that are engaged in periodic relative motion with

period T and share a common sensing region template Γ. Their periodically time-

varying sensing topology is uniformly connected if and only if the interval graph

ḠI=[0,T) =
{
N , ĒI , ĀI

}
is strongly connected. Furthermore, the N2 − N (N

2−N
2

if

71

Γ is isotropic) edges of ĒI can be determined by the effective sensing regions as

(k, j) ∈ ĒI ⇐⇒ r̄jk ∈ Γ̄jk.

3.3.2 Improved Connectivity of Random Graphs

In this section and the next, we consider agents with the same finite sensing radius,

ρ, that move along straight lines with periodic speed profiles and the same average

speed and direction of motion. Because only relative positions are relevant, we may

assume that the average speed and heading are both zero. The speed of the kth agent

is modeled as

ṙk = µ cosφk(t)

where µ is a constant amplitude and

φk(t) = Ωt+ φk(0)

is the speed phase with Ω the speed oscillation frequency. The position of the kth

agent is therefore

rk(t) = r̄k +
µ

Ω
sinφk,

where r̄k = rk(0)− µ
Ω

sinφk(0) is the average position.

The position of agent j relative to agent k is

rjk , rj − rk = r̄jk +
µ

Ω
(sinφj − sinφk)

where r̄jk is the average position of j relative to the average position of k. Let

φjk = φj − φk = φj(0) − φk(0) and ϕjk = φj + φk = 2Ωt + φj(0) + φk(0). Applying

72

Re(rjk − r̄jk)

Im(rjk − r̄jk)

Γ̄jk2ρ

4 µ
Ω

∣∣∣sin φjk

2

∣∣∣

Γ

Figure 3.5: The effective sensing region for two agents undergoing periodic relative
motion resulting from sinusoidal speed profiles with amplitude µ and frequency Ω.
The oscillation phase difference between agents is φjk and they share a common
sensing region template that is specified by a disc of radius ρ (i.e., a fixed sensing
radius).

the trigonometric identity sin a− sin b = 2 sin a−b
2

cos a+b
2

yields

rjk − r̄jk = 2
µ

Ω
sin

φjk
2

cos
ϕjk
2
. (3.17)

Therefore, the relative positions oscillate about the average relative position r̄jk with

a frequency Ω and amplitude 2 µ
Ω

∣∣∣sin φjk
2

∣∣∣.

The effective sensing region Γ̄jk between two agents is computed by translating the

sensing region template — a circle of radius ρ — along a line whose length is equal

to the peak-to-peak amplitude of the relative position oscillations. No rotation is

required because the headings are identical. The resulting shape is shown in Fig. 3.5.

Note that only the length of the shape changes from pair to pair, and that this length

is a function of the phase difference φjk.

We used effective sensing regions to perform numerical simulations that evaluate

the connectivity of the sensing topology of a group of N = 100 agents undergoing

periodic relative motion. We use these simulations to compare the connectivity of the

sensing topology with the sensing topology that would be obtained without relative

motion, which is equivalent to a random geometric graph as described in Sec. 3.1.3.

73

The upper bound in (3.7) is used as a baseline for comparison to the random geometric

graph case.

Each agent in our simulation was placed at a uniformly random initial position

within a unit square and the connectivity of the sensing topology was calculated for a

range of conditions. The speed oscillation frequency was Ω = 1 and the amplitude was

µ = 0.3. The sensing radius was varied from ρ = 0.05 to ρ = 0.25 over 50 values. The

initial phases φk(0) were drawn independently from a uniform random distribution

over the range [−α
2
, α

2
], where the phase spread, α, varied from 0 to 2π radians over

50 values. At each of the 2500 grid points (i.e., each combination of the 50 values

of ρ and α each), the simulation was carried out 100 times. For each simulation,

we calculated the graph Laplacian matrix, L̄I , for ḠI=[0, 2π
Ω

) using the effective sensing

regions for each pair of agents. The probability that the sensing topology is connected

for each set of conditions was estimated as the fraction of simulations for which the

second smallest eigenvalue of L̄I was greater than 10−4 in magnitude. The results of

this simulation are shown in Fig. 3.6.

Fig. 3.6 shows a clear increase in the probability that the sensing topology is

connected when periodic relative motion is introduced as compared to the static

case (random geometric graphs). The α = 0 case corresponds to random geometric

graphs (i.e., no relative motion). Zero probability of connectivity is represented by

black tiles in the figure and a probability of one is represented by white tiles. The

solid vertical line represents the critical value ρc =
√

1.48
N
≈ 0.12 estimated in [5] for

random geometric graphs (see (3.7)). For values of ρ above about 0.06, there is a

value of α above which the connectivity improves dramatically. The phase spread

required for connectedness decreases as the sensing radius increases; the probability

of connectedness does not increase significantly for values of ρ much greater than

ρc. For small values of the sensing radius, there is little increase in connectivity for

74

Figure 3.6: Simulation results for N = 100 agents distributed uniformly randomly
over a unit square showing the probability that the resulting sensing topology is
connected. Each agent was engaged in periodic speed oscillations with amplitude
µ = 0.3 and frequency Ω = 1, and had a sensing radius ρ. The sensing radius was
varied from ρ = 0.05 to ρ = 0.25 over 50 values. The initial phase of each speed
oscillation was drawn independently from a uniform random distribution over the
range [−α

2
, α

2
], such that the total phase spread was α. α was varied from 0 to 2π

radians over 50 values. At each grid point, the probability that the resulting graph
was connected was calculated. The values range from 0 (never connected, black) to
1 (always connected, white). The solid vertical line represents the critical sensing

radius ρc =
√

1.48
N
≈ 0.12 from the graph percolation literature [5].

75

values of α above π radians because a phase difference of π radians maximizes the

magnitude of relative motion oscillations.

3.3.3 Optimal Relative Motion Parameters for Group-level

Decision-Making Performance

In this section, we consider a highly-ordered spatial configuration of N = 4 agents

undergoing periodic relative motion. The small number and spatial regularity allow

us to analytically investigate the optimal parameters of relative motion for group-level

decision making. We utilize both the effective sensing regions described above and

the convergence rate result of Thm. 3.1 to derive these results.

As in the previous section, we assume that the agents are undergoing coordinated

speed oscillations so that their relative positions are given by (3.17). Each agent’s

average position is evenly distributed along the real axis with the first agent at the

origin and each subsequent agent’s average position separated from the previous one

by a distance a, i.e., r̄k = (k − 1)a. See Fig. 3.7. The position of agent k is therefore

rk(t) = (k − 1)a+
µ

Ω
sinφk(t), (3.18)

where, as above, φk(t) = Ωt+ φk(0). We assume that

max
{µ

Ω
+
ρ

2
, ρ
}
< a < 2

µ

Ω
+ ρ, (3.19)

which guarantees that

1. constant connectivity of the graph is not possible (a > ρ),

2. each agent can become a neighbor of only one of its neighbors to the left and

to the right (a > µ
Ω

+ ρ
2
), and

76

Figure 3.7: Diagram of the ordered spatial configuration used in Sec. 3.3.3. The posi-
tions of four agents that are engaged in coordinated speed oscillations are distributed
along a line so that their average positions (indicated by the solid vertical lines) are
separated by a distance of a and the first one has average position r̄1 = 0. The
position of the kth agent (indicated by the solid circle at the arrow base) is described
by (3.18). The speed oscillation phases of the first and third agents are synchronized
and the speed oscillation phases of the second and fourth agents are synchronized.
The speed oscillation phase difference between the first and second agents is φ. The
sensing radius of each agent is ρ. The effective sensing region of each agent is shown
with a dashed outline.

3. connectivity is possible (a < 2 µ
Ω

+ ρ).

We are motivated by the killifish results above in Sections 2.3.1 and 2.3.2, where we

see that killifish tend to coordinate their speed oscillations so that near neighbors are

not synchronized. Therefore, we assume that every other agent is synchronized, i.e.,

φ1(0) = φ3(0) and φ2(0) = φ4(0). Without loss of generality, we set φ1(0) = φ3(0) = 0

and φ2(0) = φ4(0) = φ for some 0 ≤ φ ≤ π. We do not assume that φ = π as in the

killifish results; we instead allow φ to vary and show below that φ = π optimizes the

rate of convergence to consensus.

In order to compute the rate of convergence to consensus over the sensing topology

that results from this set up, we need to first determine the associated graphs, their

Laplacians, and the time durations of each graph during a period of oscillation. Using

the effective sensing region (Fig. 3.5), as in the previous section, we see that there is

no connectivity when ∣∣∣∣sin
φ

2

∣∣∣∣ ≤
Ω

2µ
(a− ρ) (3.20)

77

because the amplitude of relative position oscillations is too small. In this case, the

sensing topology graph, G(t), is always the null graph, its Laplacian matrix is the

zero matrix, and the convergence rate is 0. When (3.20) is not true, the graph cycles

through three component graphs: the graph shown in Fig. 3.8a, which has Laplacian

matrix

L1 =




1 −1 0 0

−1 1 0 0

0 0 1 −1

0 0 −1 1



, (3.21)

the null graph, which has Laplacian matrix L2 = 0N×N , and the graph shown in

Fig. 3.8b, which has Laplacian matrix

L3 =




0 0 0 0

0 1 −1 0

0 −1 1 0

0 0 0 0



. (3.22)

All four agents are undergoing periodic relative motion with equal frequency and at

different phases. By construction, the phase difference, φ, between the first and second

agents equals the phase difference between the third and fourth agents. Furthermore,

the phase difference between the second and third agents is 2π − φ. Thus, by (3.18),

the relative positions are given by

r21 = r43 = a+ 2
µ

Ω
sin

φ

2
cos

(
Ωt+

φ

2

)
(3.23)

and

r32 = a+ 2
µ

Ω
sin

2π − φ
2

cos

(
Ωt+

2π − φ
2

)
= a− 2

µ

Ω
sin

φ

2
cos

(
Ωt− φ

2

)
. (3.24)

78

1 2 3 4

(a)

1 2 3 4

(b)

Figure 3.8: The two non-null graphs encountered in the ordered setting described
above (see also Fig. 3.7). (a) The graph with Laplacian matrix L1 in (3.21). (b) The
graph with Laplacian matrix L2 in (3.22).

By symmetry, this implies that ∆t1 = ∆t3 = ∆φ
Ω

, where ∆φ is the measure of the set

{
ϕ ∈ S1 : a+ 2

µ

Ω
sin

φ

2
cosϕ < ρ

}
. (3.25)

Therefore, the durations of the first and third graphs are

∆t1 = ∆t3 =
2

Ω
cos−1

(
Ω (a− ρ)

2µ
sin

φ

2

)
. (3.26)

The remaining portion of the oscillation period is taken up by the null graph, hence

∆t2 = T − 2∆t1. Note that the null graph occurs twice during each oscillation

period, but that the null graph does not explicitly contribute to the computation of

the convergence rate because e−L2∆t2 = IN×N .

Computing the eigenvalues of the matrix M = e−L1∆t1e−L3∆t3 yields

m2 = e−2∆t1
(

cosh2 ∆t1 +
√

cosh4 ∆t1 − 1
)

79

as the second-smallest. Therefore, by Thm. 3.1 the convergence rate is

σ = − Ω

2π
log |m2| =

Ω∆t1
π

log
(

cosh2 ∆t1 +
√

cosh4 ∆t1 − 1
)
. (3.27)

From this, we arrive at the following result.

Theorem 3.3. Consider N = 4 agents undergoing relative motion as per (3.23) and

(3.24) and performing linear consensus dynamics over the group’s periodically chang-

ing sensing topology. For a given frequency Ω, amplitude µ, separation a, and sensing

radius ρ, the rate of convergence to consensus is maximized when the phase separation

is φ = π assuming that the parameters satisfy (3.19). That is, the convergence rate is

maximized when every other agent is antisynchronized with the agent(s) immediately

to its left and/or right.

Proof. We have shown above that the convergence rate, σ, satisfies (3.27) and is

therefore a monotonically increasing function of ∆t1. Therefore, σ is maximized

when ∆t1 is maximized. For fixed Ω, µ, a, and ρ, ∆t1 given by (3.26) is maximized

when φ = π.

Furthermore, note from (3.27) and (3.26) that the convergence rate depends upon

the oscillation frequency in a nontrivial manner. In fact, we have the following.

Theorem 3.4. Under the same assumptions as Thm. 3.3, the rate of convergence

to consensus is maximized for some nontrivial value of the oscillation frequency Ω in

the range a−ρ
2µ
≤ Ω < 2 µ

a−ρ sin ρ
2
.

Proof. We have σ ≥ 0 and

lim
Ω−→0+

σ = 0

from (3.27). From (3.26), ∆t1 = 0 when

Ω = 2
µ

a− ρ sin
φ

2
,

80

and thus σ = 0 by (3.27). Therefore, by continuity, σ > 0 for some value of 0 <

Ω < 2 µ
a−ρ sin φ

2
. The lower bound Ω ≥ a−ρ

2µ
gives the value of Ω below which the

assumption (3.19) fails.

Fig. 3.9 shows the relationship between σ and Ω for a = 1, µ = 0.5, ρ = 0.5, and

φ = π. The vertical dashed red line indicates the value Ω = a−ρ
2µ

, below which the

assumption (3.19) fails. Failure of the assumption (3.19) implies that the amplitude of

relative motion is large enough that agent 1 and agent 4 are occasionally connected

and therefore the graph Laplacians L1, L2, and L3 no longer accurately describe

the sensing topology. For small frequencies, the amount of time between topology

changes is very large because the period is very long, and hence convergence is slow.

Likewise, for large frequencies, the amplitude of relative motion is small and therefore

the portion of a period during which the agents can exchange information (i.e., the

portion of a period during which either the L1 or L3 graph is active) is very short,

and hence the convergence rate is slow. Intermediate values balance these trends and

lead to higher convergence rates.

0 0.5 1 1.5 2
0

0.02

0.04

0.06

0.08

0.1

0.12

Motion Frequency Ω

C
on

ve
rg

en
ce

 R
at

e
σ

Figure 3.9: Convergence rate, σ, as a function of the oscillation frequency, Ω, illustrat-
ing the result of Thm. 3.4 that the convergence rate is maximized for some non-trivial
value of Ω. See the text for other parameter values, which were fixed. The vertical
dashed red line indicates the value Ω = a−ρ

2µ
, below which the assumption (3.19) fails.

81

The setup shown in Fig. 3.7 and the plot in Fig. 3.9 illustrate the need to design

motion parameters for mobile sensor networks that involve agents with limited sensing

radius and periodic relative motion. Patterns like the one shown in Fig. 3.7 can be

constructed to represent a variety of situations, and similar analyses to those presented

above can be performed. Fig. 3.9 illustrates the benefits of carefully designed motion

parameters for situations in which the amplitude of relative motion increases with

the period of motion, which is the case for fixed-amplitude speed or acceleration

oscillations. When the period is long, the amplitude of motion is high and agents

interact for longer periods of time. When the period is shorter, interactions occur

more frequently and thus information spreads across the group more quickly. The

rate of convergence to consensus is hence maximized for some nontrivial value of the

period (equivalently, the frequency) of relative motion.

82

Chapter 4

Coordinated Speed Oscillations for

Engineered Systems

In this chapter, we consider circular formations formed by multiple agents undergoing

coordinated speed oscillations. These formations are motivated by our observations

of killifish motion, which led us to investigate how coordinated speed oscillations

would affect circular motion. The formation motion exhibits regular exchanges of

roles among the individuals, which is highly reminiscent of a variety of animal groups,

including fish schools and bird flocks. However, we focus our discussion here on the use

of this formation motion to meet the requirements of engineered systems. Formations

of agents with periodic speed profiles exhibit properties that could be very useful for

mobile sensor networks. See, for example, Fig. 4.9a, which shows a formation of four

agents with periodic speed profiles. Because the agents maintain their formation as

they move around the larger circle, they can provide redundant measurements in

a small region and they can combine measurements to produce estimates of local

gradients of spatially-varying quantities. In this chapter, we develop control laws

that stabilize a group of autonomous agents that are engaged in coordinated speed

83

oscillations into formations and then explore how the parameters of motion and the

control laws can be designed to achieve specific desired formations.

We begin in Sec. 4.1 by providing some necessary background. In Sec. 4.1.1, we

describe a steered particle model that we use to model the motion of agents moving

on the plane with time-varying speed. In Sec. 4.1.2, we discuss some notions relating

to the control and description of groups of phase angles (i.e., coupled oscillators).

Specifically, we discuss phase arrangements, which provide a means to precisely de-

scribe patterns of phases, and phase potentials, which are a class of functions that are

useful when designing control laws to stabilize particular phase arrangements.

In Sec. 4.2, we present several results that allow us to systematically describe

the open-loop trajectories of steered particles with time-varying speed and constant

turning rates. We construct the solution by first considering constant speed motion

with a constant turning rate, which results in circular motion. The special case of

sinusoidal speed is considered in detail because it provides a natural means to expand

to the general periodic speed case via Fourier decomposition. We also provide results

on the boundedness and periodicity of trajectories of steered particles with time-

varying speeds and constant turning rates.

In Sec. 4.3, we prove stability of a feedback control law that can be used to

stabilize a wide variety of formations of steered particles with time-varying speeds.

In steady-state, the trajectories are described by those that we discuss in Sec. 4.2.

We discuss in Sec. 4.4 how the parameters of motion can be designed to obtain

specific formations. First, in Sec. 4.4.1, we consider what kinds of formations are

achievable by choosing various combinations of control parameters to obtain specific

phase arrangements and spatial distributions. We give focus to formations in which

the headings are synchronized and the speed phases are evenly distributed, because

this results in all agents moving synchronously around a circle while maintaining

a formation whose shape is tied directly to the speed profile. Then, in Sec. 4.4.2,

84

we provide methods to determine what speed profile is necessary to obtain a given

formation shape.

The case of purely sinusoidal speed oscillations first appeared in [117], which

was itself strongly motivated by the work of Sepulchre, Paley, and Leonard [104] on

stabilizing planar circular formations of constant-speed steered particles. In [116],

we extended the results for sinusoidal speed profiles to more general periodic speed

profiles and investigated boundedness of the trajectories. We expand on those results

here and provide means to design specific formations in a systematic way.

4.1 Background

4.1.1 Steered Particle Model

For convenience, we identify the real and complex planes; i.e., R2 ∼ C. We make use

of the inner product

〈z1, z2〉 , Re {z∗1z2}

for complex scalars z1, z2 ∈ C and where z∗1 is the complex conjugate of z1. For

complex vectors z1 and z2 ∈ CN , we use the inner product

〈z1, z2〉 , Re
{
zH1 z2

}

where zH1 is the complex conjugate transpose of z1.

Consider N unit-mass particles moving in the plane. The position of the kth

particle is rk ∈ C. Each particle’s speed is assumed to be nonzero for all time and

hence there is no ambiguity in expressing its velocity in polar coordinates as

ṙk = αke
iθk , (4.1)

85

O

rk

ṙk

eiθk

ieiθk

Re(r)

Im(r)

θk

Figure 4.1: Illustration of the steered particle model. The position of the kth particle
is rk ∈ C ∼ R2 and its velocity is ṙk. The velocity forms an angle θk with the real axis,
and

{
eiθk , ieiθk

}
forms an orthonormal basis for a coordinate frame that is oriented

with the velocity.

where αk = |ṙk| > 0 is the speed and θk ∈ S1 is the heading with respect to the real

axis. The pair
{
eiθk , ieiθk

}
forms a basis for a coordinate frame oriented with particle

k’s velocity. Fig. 4.1 illustrates the geometry of the steered particle model.

We consider here the case in which the speed of the kth particle is time-varying. We

are primarily concerned with speeds that are 2π-periodic functions of some variable

φk ∈ S1, i.e., αk = αk(φk) and αk(φk + 2π) = αk(φk), ∀ φk ∈ S1. We refer to the

mapping αk : S1 −→ R+ as the speed profile for particle k, and refer to φk as the speed

phase of particle k (see also Sec. 2.2.1). The speed phase is, in general, a function of

time: φk = φk(t).

We assume that each particle has steering control

θ̇k = ūk

and speed phase control

φ̇k = ḡk.

86

We also assume that the speed profile is a smooth function of the speed phase and

therefore the speed control, α̇k, can be computed from the speed phase control via

the mapping

α̇k =
∂αk
∂φk

ḡk.

The speed phase and heading dynamics are assumed to contain constant components

Ω and ω, respectively. We therefore write

φ̇k = ḡk = Ω + gk, (4.2)

θ̇k = ūk = ω + uk, (4.3)

and hereafter refer to gk and uk as the speed phase control and heading control,

respectively. Because θk and φk both evolve on the circle, we refer to ω and Ω as their

respective natural frequencies. We also refer to ω as the steering rate and to Ω as the

speed oscillation frequency. Note that in steady-state, gk = 0 and we have φ̇k = Ω

and there is no ambiguity in referring to αk as the speed profile.

Rewriting (4.1) to emphasize the functional dependence on the speed phase gives

ṙk = αk(φk)e
iθk . (4.4)

The velocity (4.4) along with the speed phase dynamics (4.2) and heading dynamics

(4.3) make up the steered particle dynamics that we will use throughout this chapter.

By taking the derivative of (4.4) with respect to time we get

r̈k =
∂αk
∂φk

eiθk ḡk + αk(φk)ie
iθk ūk.

Thus, we can see that ḡk controls the component of acceleration of particle k in

the direction of motion and ūk controls the component of acceleration of particle k

orthogonal to the direction of motion.

87

4.1.2 Phase Potentials and Phase Arrangements

We review here some notions from the study of coupled oscillators. Both the head-

ings and speed phases evolve over the N−torus, TN = {S1 × S1 × · · · × S1} (N

times). Specifically, we discuss phase potentials and phase arrangements. In the

following, we will denote the set of headings as θ =

(
θ1 · · · θN

)T
∈ TN and use

them for illustration. These concepts apply equally, however, to the speed phases,

φ =

(
φ1 · · · φN

)T
∈ TN . All operations on phases below are considered on the

topology of the circle, S1. That is, we identify 0 with 2π so that, for example, θk = θj

means that the phasors are equal, i.e., eiθk = eiθj .

We refer to a description of the relationship amongst phases on TN as a phase

arrangement. The following are three important phase arrangements that we will

refer to below.

• Synchronization: All phases are equal, i.e., θ1 = θ2 = . . . = θN .

• Balanced: The phasor sum is zero, i.e,
∑N

k=1 e
iθk = 0.

• Splay: The phases are evenly distributed around the circle, separated by arcs

of 2π
N

radians.

Note that the splay phase arrangement is a special case of the balanced phase ar-

rangement, and that all three phase arrangements are invariant to a re-indexing of

the phases.

The following class of functions is useful for designing control laws that stabilize

coupled oscillators to particular phase arrangements.

Definition 4.1. (Phase Potentials) Consider the class P of C2 functions on TN

defined such that, for any function U(θ) ∈ P,

1. U : TN → [0, Umax] for some scalar Umax > 0.

2. div U(θ) = 〈∇θU,1N〉 =
∑N

k=1
∂U
∂θk

= 0.

88

An element of P is called a phase potential.

A group of coupled oscillators can be driven to a particular phase arrangement

by designing a phase potential for which the critical sets correspond to the desired

phase arrangement, and then using the gradient of the potential as a control law that

stabilizes the closed-loop dynamics about those critical sets. An important example is

the phase potential defined by the squared magnitude of the complex order parameter

(introduced by Kuramoto [66], see also the review by Strogatz [110]). The complex

order parameter for θ, pθ, is defined as

pθ ,
1

N

N∑

k=1

eiθk , (4.5)

and the corresponding phase potential is

Up(θ) ,
N

2
|pθ|2 . (4.6)

It can be shown that the critical sets of Up correspond to synchronization, for which

Up = N
2

, and balancing, for which Up = 0 [104]. Since 0 < |pθ| < 1, these also define

the maximum and minimum values of Up, thereby satisfying condition 1 of Def. 4.1

with Umax = N
2

. The kth element of the gradient is given by

(∇θUp)k =
∂Up
∂θk

= N

〈
pθ,

∂

∂θk
pθ

〉

= Re

{
i

N∑

j=1

ei(θk−θj)

}
=

N∑

j=1

sin θjk,

where θjk = θj − θk. Therefore, Up is a valid phase potential because

〈∇θUp,1N〉 =
N∑

k=1

N∑

j=1

sin θjk = 0

89

satisfies condition 2 of Def. 4.1. Applying the gradient control

θ̇k = κθ
∂Up
∂θk

= κθ

N∑

j=1

sin θjk,

where κθ is a non-zero scalar constant, has been shown to stabilize the closed-loop

dynamics to the critical points of Up (see, for example, [104]). When κθ > 0, balancing

is stabilized. When κθ < 0, synchronization is stabilized. These dynamics are an

instance of the well-known Kuramoto model [66, 110].

We also use the phase potential

V (θ) =

bN
2
c∑

m=1

∣∣∣∣∣
1

mN

N∑

j=1

eimθj

∣∣∣∣∣

2

(4.7)

below. This phase potential was shown by Sepulchre et al. [104] to have the splay

phase arrangement as its minimizing critical set.

The following results guarantee that a phase arrangement corresponding to the

critical points of a phase potential is rotationally invariant. These results are corol-

laries of Def. 4.1.

Corollary 4.1. Consider a phase potential U(θ) ∈ P. If θ̇k = ω for some ω and for

each k = 1, . . . , N , then

d

dt
U(θ) = 0 (4.8)

and

d

dt

∂U

∂θk
= 0. (4.9)

Proof. From the definition of a phase potential, when θ̇k = ω for each k,

d

dt
U(θ) =

N∑

k=1

∂U

∂θk
θ̇k = 〈∇θU,1N〉ω = 0.

90

Similarly,

d

dt

∂U

∂θk
=

N∑

j=1

∂

∂θj

∂U

∂θk
θ̇j =

∂

∂θk

N∑

j=1

∂U

∂θj
ω = 0,

where we are able to swap the order of partial derivatives because U is C2 by definition.

Corollary 4.2. (Rotational invariance of phase potentials) Consider a phase potential

U(θ). U is rotationally invariant. That is, U(θ∗ + θ̄1N) = U(θ∗) for any θ∗ ∈ TN

and θ̄ ∈ S1.

Proof. Consider the value of U along a trajectory of θ defined by θ = θ∗ + ωt1N for

some ω ∈ R and t ≥ 0. By Corr. 4.1, we have

d

dt
U (θ)

∣∣∣∣
θ=θ∗+ωt1N

=
N∑

k=1

∂U

∂θk
ω = 0.

Therefore, the value of U is constant along such trajectory. In particular this is true

when ωt = θ̄.

4.2 Trajectories of Steered Particles with Periodic

Speed Profiles

We describe here the trajectories of particles evolving under the steered particle model

described in Sec. 4.1.1 with no control inputs, i.e. uk = gk = 0. ω = 0 corresponds to

straight-line motion and is important for translational formations. We focus, however,

on ω 6= 0, which produces circular motion under most conditions (although we will

show that this is not always the case). The subscript notation is maintained so that

the results here may be easily referenced below when multiple particles are involved.

91

The trajectory of a particle moving at constant speed, αk = νk, where νk > 0 is

constant, and with a constant turning rate, ω 6= 0, traces a circle of radius νk |ω|−1.

The following theorem makes this precise.

Theorem 4.1. (Trajectory of a constant-speed steered particle) Consider a steered

particle moving with velocity (4.1) and heading dynamics (4.3), with no steering input

(uk = 0), constant speed αk = νk, and constant turning rate ω 6= 0. The trajectory,

rk(t), of this particle is described by motion around a circle of radius νk |ω|−1 centered

at c̄k = rk(0) + iνk |ω|−1 eiθk(0), where rk(0) and θk(0) are the initial position and

heading, respectively. If ω > 0, the motion is counter-clockwise. If ω < 0, the motion

is clockwise. The trajectory is written as

rk = c̄k +Rk(θk), (4.10)

where Rk(θk) is defined as

Rk(θk) , −i
νk
ω
eiθk(0) +

∫ t

0

νke
iθk(τ)dτ = −iνk

ω
eiθk (4.11)

Proof. Because θ̇k = ω is constant, θk(t) = ωt + θk(0). Integrating the velocity gives

the position:

rk(t) = rk(0) +

∫ t

0

νke
iθk(τ)dτ

= rk(0) +Rk(θk(t))−Rk(θk(0))

= rk(0) + i
νk
ω
eiθk(0) +Rk(θk).

This describes the geometry of a particle moving around a circle of radius νk |ω|−1

with center c̄k = rk(0) − Rk(θk(0)). When ω > 0, θk is increasing and the motion is

counter-clockwise. Likewise, when ω < 0, the motion is clockwise.

92

When Ω 6= 0 and gk = 0 (i.e., there is no speed phase control), the speed profile,

αk(φk(t)), is 2π
Ω
−periodic in time. We decompose the speed profile as

αk(φk(t)) = νk + vk(φk(t)),

where

νk ,
1

2π

∫ 2π

0

αk(φk)dφk

is the nominal or average speed and

vk(φk(t)) , αk(φk(t))− νk (4.12)

is the speed variation. Note that, by definition, the average value of vk(φk(t)) is zero

and vk(φk(t)) > −νk, ∀t. Purely sinusoidal speed is an important example:

αk(φk(t)) = νk + µk cosφk(t) (4.13)

where µk is the amplitude and φk(t) = Ωt+ φk(0).

The following result gives boundedness of the trajectory of a steered particle with

speed profile νk + vk(φk(t)) in terms of the spectrum of vk(φk(t)), and is useful in

deriving general trajectory solutions. This result is specialized below for periodic

trajectories.

Theorem 4.2. (Boundedness of trajectories of variable-speed particles) Consider a

steered particle with constant turning rate ω 6= 0 and speed αk(φk(t)) = νk + vk(t)

where νk is a constant and vk(φk(t)) > −νk. The trajectory, rk(t), of such a particle is

bounded if and only if its speed variation, vk(φk(t)), is bounded and contains no time-

periodic components with frequency equal to the turning rate, ω. That is, |vk| < ∞

93

and ∣∣∣∣
∫ ∞

0

vk(φk(t))e
−stdt

∣∣∣∣
s=iω

<∞. (4.14)

Proof. Consider the trajectory of a steered particle with constant speed equal to νk

and with the same heading, turning rate, and initial position as the variable-speed

particle. By Thm. 4.1, the trajectory of the constant-speed particle is circular and

bounded. Therefore, the trajectory of the variable-speed particle is bounded if its

distance from the constant-speed trajectory is bounded. Let r̄k be the position of the

constant-speed particle. The distance between the two particles at time t is

|rk(t)− r̄k| =
∣∣∣∣
∫ t

0

(
ṙk − νkeiθk

)
dt

∣∣∣∣ =

∣∣∣∣
∫ t

0

vke
iθkdt

∣∣∣∣ .

If vk is unbounded, then it is unbounded periodically, and therefore |rk(t)− rk| is un-

bounded for any t > 2π
Ω

. If vk is bounded, then the integral (and hence the trajectory)

can only grow unbounded in the limit t→∞. Because the turning rate is constant,

θk = ωt+ θk(0), and we have

|rk(t)− r̄k| =
∣∣∣∣
∫ t

0

vke
i(ωt+θk(0))dt+ rk(0)− r̄k(0)

∣∣∣∣ = |Vk(s)|s=−iω

where Vk(s) is the Laplace transform of vk(φk(t)). Because vk(t) is real, |Vk(s)|s=−iω =

|Vk(s)|s=iω. Without loss of generality, we assume that vk(φk(t)) = 0 for t < 0, and

therefore |Vk(s)|s=iω is the magnitude of the Fourier spectrum of vk at the frequency

ω. The magnitude of the Fourier spectrum is finite at ω if and only if vk(φk(t)) has

no periodic components at frequency ω.

Fig. 4.2 shows an example of an unbounded trajectory obtained when the speed

is purely sinusoidal as in (4.13) and the speed oscillation frequency, Ω, is equal to the

turning rate, ω. The result is a spiral trajectory.

94

Figure 4.2: Unbounded spiral trajectory obtained when the speed is purely sinusoidal
as per (4.13) and the speed oscillation frequency, Ω, is equal to the turning rate, ω.
The parameter values are Ω = ω = 1, νk = 1, µk = 0.75. The beginning of the
trajectory is at the bottom left and the end is at the bottom right.

The following results establish general expressions for the trajectory of a steered

particle with time-varying speed in terms of a decomposition similar to (4.10). The

first result characterizes an important quantity, qk, that we use to describe trajecto-

ries.

Lemma 4.1. Consider a steered particle with constant turning rate ω 6= 0 and

speed profile αk(φk(t)) = νk + vk(φk(t)) with φ̇k = Ω and satisfying the conditions

of Thm. 4.2 for boundedness of the trajectory. Define qk : S1 → C as the solution to

Ω
∂qk
∂φk

+ iωqk = vk, (4.15)

with initial condition

qk(φk(0)) = − Vk(s)|s=−iω , (4.16)

where Vk(s) is the Laplace transform of vk(φk(t)). Then qk satisfies

qk(φk(t)) = e−iθk(t)

(
qk(φk(0))eiθk(0) +

∫ t

0

vk(φk(τ))eiθk(τ)dτ

)
, (4.17)

when θ̇k = ω. Additionally, qk(φk(t)) contains no time-periodic components at the

frequency ω; that is,

lim
s→−iω

(s+ iω)Qk(s) = 0,

95

where Qk(s) is the Laplace transform of qk(φk(t)).

Proof. Differentiating (4.17) with respect to t when θ̇k = ω gives

d

dt
qk(φk(t)) = −iωe−iθk

(
qk(φk(0))eiθk(0) +

∫ t

0

vk(φk(τ))eiθk(τ)dτ

)
+ e−iθkvke

iθk

= −iωqk(φk(t)) + vk(φk(t)).

Because φ̇k = Ω, we have

d

dt
qk(φk(t)) = Ω

∂qk
∂φk

= −iωqk + vk.

Taking the Laplace transform of both sides of (4.15) and solving for Qk(s) yields

Qk(s) =
Vk(s) + qk(φk(0))

s+ iω
.

By Thm. 4.2, Vk(−iω) is finite. Therefore,

lim
s→−iω

(s+ iω)Qk(s) = Vk(−iω) + qk(φk(0)) = 0,

by choice of initial conditions (4.16). If qk(φk(t)) contained a periodic component at

the frequency ω due to the natural response e−iωt, then we would have lims→−iω(s+

iω)Qk(s) 6= 0.

The following result shows how we use Thm. 4.1 and Lemma 4.1 to describe the

geometric properties of the trajectory of a steered particle with a time-varying speed

profile.

Theorem 4.3. (Trajectory of a steered particle with time-varying speed) Consider a

steered particle moving with the dynamics (4.1) and (4.3), with initial position rk(0),

initial heading θk(0), qk(φk(0)) determined from vk from (4.16), no steering input

96

(uk = 0) or speed phase input (gk = 0), speed αk(φk(t)) = νk + vk(φk(t)) > 0 where νk

is constant and vk is bounded, and turning rate ω 6= 0. The trajectory of the particle

is

rk = ck +Rk(θk) + qke
iθk , (4.18)

where Rk(θk) is defined by (4.11), qk is defined by Lemma 4.1, and the constant

ck , rk(0)−Rk(θk(0))− qk(φk(0))eiθk(0) ∈ C is defined as the center of the trajectory.

Proof. Consider a second particle with initial position rk(0) and initial heading θk(0).

The second particle has constant speed equal to νk. Let r̄k(t) be the trajectory of the

constant-speed particle, which is given by (4.10). The velocity of the variable-speed

particle relative to the constant-speed particle is

d

dt
(rk − r̄k) = vke

iθk ,

and hence

rk − r̄k = qke
iθk − qk(φk(0))eiθk(0)

by the definition of qk (4.17). The full trajectory is therefore

rk = c̄k +Rk(θk) + qke
iθk − qk(φk(0))eiθk(0)

and is equivalent to (4.18) by setting ck = c̄k − qk(φk(0))eiθk(0).

Writing

rk = ck +Rk(θk) + Re {qk} eiθk + Im {qk} ieiθk (4.19)

motivates the interpretation that qk expresses the motion of the variable-speed particle

relative to a body-centered and velocity-oriented coordinate frame of a constant-speed

particle sharing the same center, turning rate, and nominal speed. Fig. 4.3 shows this

geometry. Determining the properties of qk in terms of vk is therefore an important

97

step towards describing the dynamic geometry of the trajectories of time-varying

speed particles with a constant turning rate.

We focus here on periodic speed profiles, for which we show that there is a direct

correspondence between the frequency content of the speed profile and the geometric

properties of the resulting trajectories. When vk is periodic, qk must also be periodic

and hence the trajectory that qk traces out in the complex plane is a closed curve.

A periodic speed profile can be expressed in terms of its Fourier expansion, hence

we establish the following notation. When the speed profile is time-periodic, then vk

is time-periodic and we may write vk as a cosine Fourier series,

vk(φk) =
∞∑

`=1

µk,` cos (`φk − ϕk,`) , t ≥ 0, (4.20)

where µk,` ≥ 0 and ϕk,` ∈ S1 are constants. It is also sometimes convenient to write

vk as a sine and cosine Fourier series,

vk(φk) =
∞∑

`=1

(ak,` cos `φk + bk,` sin `φk) , t ≥ 0, (4.21)

where ak,` and bk,` are real constants. When all particles share a common speed

profile, we drop the k subscript and write simply µ`, ϕ`, a`, and b`. By trigonometry,

the constants in (4.21) are related to those in (4.20) as ak,` = µk,` cos (ϕk,`) and

bk,` = µk,` sin (ϕk,`). The ` = 0 term is omitted because vk has zero mean by (4.12).

Thm. 4.2 implies the following result for boundedness of trajectories resulting from

periodic speed profiles and constant turning rate.

Corollary 4.3. (Boundedness of trajectories of periodic-speed particles) The trajec-

tory of a steered particle satisfying the conditions of Thm. 4.2 and with time-periodic

speed profile αk(φk(t)) with period 2π
Ω

is bounded if and only if the speed variation

vk(φk(t)) contains no harmonics at the frequency |ω|, equivalently, |Vk(s)|s=iω is fi-

98

ieiθk

ṙk

qkeiθk

rk

eiθk

rk

ck

0

Figure 4.3: Illustration of the trajectory decomposition (4.18) for purely sinusoidal
speed (see Lemma 4.4). ck gives the center of the trajectory, Rk(θk) gives the circular
component, and qk gives the component due to speed modulation, where Re {qk} is
along the direction of motion (eiθk) and Im {qk} is perpendicular to it. For sinusoidal
speed, the locus of qk is an ellipse whose bounds depend on the amplitude µk and the
frequencies ω and Ω.

99

nite, where Vk(s) is the Laplace transform of vk(φk(t)). A sufficient condition for

boundedness is that either Ω > |ω| or there is no integer ` such that `Ω = ω.

Proof. Because vk is periodic, its Fourier spectrum magnitude is finite everywhere

except possibly at integer multiples of the base frequency, Ω. If there is no integer `

for which `Ω = ω (note here that ` could be negative if Ω and ω have opposite signs),

the Fourier spectrum magnitude of vk must be bounded at ±ω and by Thm. 4.2 the

trajectory must be bounded. As a consequence, if Ω > |ω| the trajectory must be

bounded because there can be no integer ` such that `Ω = ω. If Ω < |ω| and there

is an integer ` for which `Ω = ω, the trajectory may still be bounded if vk has no

harmonic component at |`|Ω, i.e. µk,|`| in (4.20) is zero, in which case |Vk(s)|s=±iω is

finite.

See Fig. 4.2 for an example of an unbounded trajectory for which Ω = ω.

We now establish conditions under which a periodic trajectory exists.

Theorem 4.4. (Existence of periodic trajectories) The trajectory of a steered particle

with constant turning rate ω 6= 0 and time-periodic speed profile with period 2π
Ω

is

periodic if and only if there exist integers ` and m for which `Ω = m|ω| and vk has

no harmonic components at the frequency |ω|.

Proof. The trajectory is periodic if and only if there is a T > 0 such that rk(t+ T)−

rk(t) = 0 for all t ≥ 0. Substituting from (4.18) and (4.11), we have

rk(t+ T)− rk(t) =
(
qk(φk(t+ T))− iνk

ω

)
eiθk(t+T) −

(
qk(φk(t))− i

νk
ω

)
eiθk(t).

Therefore the trajectory is periodic if and only if both qk is time-periodic with some

period Tq, e
iθk is periodic with some period TR, and there are integers ` and m such

that `TR = mTq (i.e., the periods share a common multiple). Because qk is the

solution of the linear ordinary differential equation (4.15) driven by vk, which is by

100

assumption time-periodic with a frequency Ω, qk must also be time-periodic with a

frequency Ω. eiθk is time-periodic with a frequency of |ω|. Hence, `TR = ` 2π
|ω| and

mTq = m2π
Ω

and therefore the condition for periodicity is equivalent to the existence

of integers ` and m such that `Ω = m|ω|. The boundedness condition follows from

Corr. 4.3.

It follows from Thm. 4.4 that, if Ω
|ω| is rational, then the resulting trajectory is

periodic. Furthermore, the period is given by T = m2π
Ω

= ` 2π
|ω| where Ω

|ω| = m
`

is

irreducible.

We now give a solution to (4.18) for periodic speed profiles where qk is expressed

in terms of the Fourier series coefficients of vk.

Theorem 4.5. (Trajectory solution for periodic speed profiles) Consider a steered

particle with constant turning rate ω 6= 0 and speed oscillation frequency Ω > 0 such

that the speed profile is time-periodic with period 2π
Ω

and its Fourier series is given by

(4.20). Assume that there is no integer ` such that both `Ω = |ω| and µk,` 6= 0, so

that the trajectory is bounded as per Corr. 4.3. The trajectory of such a particle is

given by (4.18) with

qk(φk(t)) =
∞∑

`=1

µk,`
`Ω sin (`φk(t)− ϕk,`) + iω cos (`φk(t)− ϕk,`)

(`Ω)2 − ω2
(4.22)

Proof. Let vk,` be the `th term of the Fourier series (4.21) and qk,` the solution to

`Ω
∂qk,`
∂φk

+ iωqk,` = vk,` (4.23)

with qk,`(φk(0)) = −Vk,`(−iω), where Vk,`(s) is the Laplace transform of vk,`. By

linearity, qk =
∑∞

`=1 qk,`. From Lemma 4.1, qk,` contains only the solution of (4.23)

101

due to vk,` and hence there exist complex constants Ak,` and Bk,` such that

qk,`(φk(t)) = Ak,` cos `φk(t) +Bk,` sin `φk(t), t ≥ 0.

Plugging into (4.23) and solving for Ak,` and Bk,` in terms of the coefficients ak,` and

bk,` yields

qk,`(φk(t)) =
`Ω (ak,` sin `φk(t)− bk,` cos `φk(t))

(`Ω)2 − ω2

+ i
ω (ak,` cos `φk(t) + bk,` sin `φk(t))

(`Ω)2 − ω2
, (4.24)

which is by trigonometry equivalent to the `th term of (4.22).

Next, we examine the trajectory of a steered particle with purely sinusoidal speed

as a step towards providing a geometric description of the trajectory of a particle

with a general periodic speed profile. We give a description of the sinusoidal-speed

particle’s trajectory as it relates to the corresponding constant-speed particle’s tra-

jectory. The constant-speed particle moves around a circle as described in Thm. 4.1

and the sinusoidal-speed particle moves relative to the constant-speed particle in an

elliptical orbit.

Corollary 4.4. (Trajectory of a steered particle with sinusoidal speed profile) Con-

sider a steered particle with constant turning rate ω 6= 0 and speed profile αk =

νk + µk cosφk where νk and µk are constants and φ̇k = Ω > 0 with Ω 6= |ω|. The

particle’s trajectory is given by

rk = ck +Rk(θk) + qk(φk)e
iθk (4.25)

102

where Rk(θk) is defined by (4.11),

qk(φk) = µk
Ω sinφk + iω cosφk

Ω2 − ω2
, (4.26)

and ck = rk(0)−Rk(θk(0))− qk(φk(0))eiθk(0).

Proof. Follows from Thm. 4.5 by taking a single term of the series (4.22).

From (4.26) we have

(
Re {qk}

Ω

)2

+

(
Im {qk}

ω

)2

=

(
µk

Ω2 − ω2

)2

(4.27)

and therefore the locus of qk in the complex plane is an ellipse with eccentricity

ek =





√
1− Ω2

ω2 , Ω < ω

√
1− ω2

Ω2 , Ω > ω

and distance from the center to the focus

fk =
µk√
|Ω2 − ω2|

.

As φk increases with time, the trajectory moves in a counter-clockwise direction if

ω > 0 and clockwise if ω < 0. The semi-major and semi-minor axes are µk
∣∣ Ω

Ω2−ω2

∣∣

and µk
∣∣ ω

Ω2−ω2

∣∣, with the larger of the two being the semi-major axis. qk is bounded

along the real and imaginary axes as

|Re {qk}| ≤ µk

∣∣∣∣
Ω

Ω2 − ω2

∣∣∣∣ , (4.28)

|Im {qk}| ≤ µk

∣∣∣∣
ω

Ω2 − ω2

∣∣∣∣ . (4.29)

103

Recall, as in (4.19), that qk expresses the position of the particle relative to

a constant-speed equivalent particle whose trajectory is a circle of radius νk|ω|−1.

Re {qk} is the component in the direction of motion and Im {qk} is the component

perpendicular to the direction of motion. Because the velocity is tangential to the

constant-speed circle, Re {qk} is also tangential and Im {qk} points either toward the

center of the circle if ω > 0 or away from it if ω < 0.

The ratio
∣∣Ω
ω

∣∣ plays a key role in determining the shape of the qk trajectory and

therefore the trajectory of the sinusoidal-speed particle. When
∣∣Ω
ω

∣∣ > 1, the semi-

major axis of the qk ellipse is aligned with the real axis and therefore with the direction

of motion of the particle. When
∣∣Ω
ω

∣∣ < 1, the semi-major axis is aligned with the

imaginary axis and therefore perpendicular to the direction of motion. Furthermore,

if
∣∣Ω
ω

∣∣ ∈ Q, then it follows from Thm. 4.4 that the trajectory is periodic. If
∣∣Ω
ω

∣∣ = m ∈

Z+, there are m cycles of the speed phase during each trip around the constant-speed

circle and, particularly for µk near 1, the trajectory of the sinusoidal-speed particle

takes a shape similar to a “rounded out” polygon with m equal-length sides.

Fig. 4.4 shows four example trajectories of steered particles with periodic speed

profiles. In all four trajectories, the nominal speed of the steered particle is νk = 1

and the speed oscillation amplitude is µk = 0.9. In Fig. 4.4a, the turning rate is

ω = 1 and the speed oscillation frequency is Ω = 4. Because
∣∣Ω
ω

∣∣ > 1, the qk ellipse

is elongated in the direction of motion. Because
∣∣Ω
ω

∣∣ = 4 ∈ Q, the trajectory is

periodic and resembles a “rounded-out” square. In Fig. 4.4b, the turning rate is

ω = 1 and the speed oscillation frequency is Ω = π. Here we have
∣∣Ω
ω

∣∣ = π /∈ Q

and the trajectory is aperiodic. In Fig. 4.4c, the turning rate is ω = 4 and the

speed oscillation frequency is Ω = 1. Because
∣∣Ω
ω

∣∣ < 1, the qk ellipse (shown in

blue) is elongated perpendicular to the direction of motion (i.e., towards the center

of the trajectory) and the trajectory has a cartioid-like shape. Because
∣∣Ω
ω

∣∣ = 1
4
∈ Q,

the trajectory is periodic. In Fig. 4.4d, the turning rate is ω = π and the speed

104

oscillation frequency is Ω = 1. As in Fig. 4.4c,
∣∣Ω
ω

∣∣ < 1 and therefore the trajectory

has a cartioid-like shape
∣∣Ω
ω

∣∣ = 1
π
/∈ Q.

The shape of the trajectory of a steered particle with a periodic speed is deter-

mined by the Rk circle and the qk locus. As described in Thm. 4.5, qk =
∑∞

`=1 qk,`,

and each of the qk,` in is identical in form to (4.26). Therefore, qk is the superposition

of ellipses; one ellipse for each term in the Fourier series of vk. The qk,1 ellipse is cen-

tered at the point ck +Rk(θk), which would be the position of a second particle with

the same motion parameters and initial conditions as the original particle but with

constant speed. The qk,2 ellipse is centered at a point on the qk,1 ellipse determined

by the value of φk(t), and so on. Fig. 4.5 shows the construction of the qk locus for

a steered particle with periodic speed profile shown in Fig. 4.5a. The full trajectory

is shown in Fig. 4.6. The turning rate is ω = 0.3π, the speed oscillation frequency

is Ω = π, and the nominal speed is ν = 1. Note that because
∣∣Ω
ω

∣∣ = 10
3
∈ Q, the

trajectory shown in Fig. 4.6 is periodic.

4.3 Coordinated Control of Steered Particles with

Periodic Speed Profiles

We now prove stability of a control law for heading (θk) and speed phase (φk) that

enable the coordination of a group of N steered particles with constant turning rate

and periodically time-varying speed at steady state. Coordination is in terms of the

relative position of trajectory centers (ck) and phase arrangements of the heading and

speed phase. The control law is given first. The proof follows a series of supporting

lemmas.

The control law that we present in Thm. 4.6 allows for almost arbitrary speed

profiles and potentially heterogenous particles if the locations of the trajectory centers

can be communicated between agents. When there is homogeneity of the particles, we

105

(a) (b)

(c) (d)

Figure 4.4: Trajectories (black curves) of steered particles with sinusoidal speed pro-
files as described by (4.13). The green curve is the locus of the Rk(θk) circle, the
arrow indicates the final position and orientation of the particle, and the blue curve
is the locus of the qk(φk) ellipse. In all four cases, νk = 1 and µk = 0.9. (a) A
“rounded-out” periodic polygon resulting from ω = 1 and Ω = 4. (b) An aperiodic
trajectory resulting from ω = 1 and Ω = π. (c) A periodic cartioid-type trajectory
resulting from Ω = 1 and ω = 4. (d) An aperiodic cartioid-type trajectory resulting
from Ω = 1 and ω = π.

106

0 0.5 1 1.5 2
0

1

2

Time
S

p
ee

d
(a)

−0.15 −0.1 −0.05 0 0.05 0.1 0.15
−0.05

0

0.05

Re(q)

Im
(q

)

(b)

−0.16 −0.14 −0.12 −0.1 −0.08 −0.06 −0.04
0.01

0.02

0.03

0.04

Re(q)

Im
(q

)

(c)

Figure 4.5: Trajectory construction for a periodic speed profile with vk(t) as de-
scribed by (4.21). (a) The speed profile, generated from 3 randomly chosen Fourier
components: a1 = −0.3213, a2 = 0.0858, a3 = −0.2322, b1 = 0.0740, b2 = −0.0890,
b3 = 0.4008. The speed oscillation frequency is Ω = π and the nominal speed is
νk = 1. (b) The qk locus (blue curve), which consists of the superposition of the qk,`,
` = 1, 2, 3, ellipses (black curves). The turning rate is ω = 0.3π. For illustration
purposes, the value qk(t

∗) for some time t = t∗ is indicated by the red ’x’. The blue
curve is the locus of qk(t) for all t. (c) Close-up of (b). At time t = t∗, the center of
the qk,2 ellipse is located at qk,1(t∗) (indicated by the red circle). Similarly, the center
of the qk,3 ellipse (indicated by the red triangle) is at qk,1(t∗) + qk,2(t∗). The point
qk(t

∗) (red ’x’) is located at qk,1(t∗) + qk,2(t∗) + qk,3(t∗). The dashed lines connect the
centers of the qk,2 and qk,3 ellipses.

107

Figure 4.6: Trajectory of a steered particle with the periodic speed profile described
in Fig. 4.5. The particle’s trajectory is shown in black, the qk locus at the final time
instant is shown in blue, and the Rk circle is shown in green. The particle’s position
at the final time instant is indicated by the black dot, and the direction of its velocity
is indicated by the black arrow.

108

show that the control laws can be calculated in terms of measured relative quantities

and hence communication requirements may be relaxed or eliminated.

The control terms here vanish as the formation approaches steady state (i.e.,

uk → 0 and gk → 0 as t→∞), and hence the steady state trajectories of individual

agents are as described in Sec. 4.2. Therefore, we use the same notation in this section

as we have above, with three important exceptions that account for the transient part

of the trajectory while keeping the trajectory descriptions consistent with Sec. 4.2 in

steady-state. First, we define R(θk(t)) independent of the value of rk(t) as in (4.11):

R(θk(t)) , −i
νk
ω
eiθk(t).

Second, we take (4.22) as the definition of qk. That is, qk maps the speed phase to

a point in the complex plane, and the shape of the locus of qk is determined by the

Fourier coefficients of the speed variation (4.20). Note that qk still satisfies the ODE

(4.15). Finally, we define the instantanous center of the trajectory, ck(t), as

ck(t) , rk(t)−Rk(θk(t))− qk(φk(t))eiθk(t). (4.30)

In steady state, ck is a constant and can be interpreted as the center of the steady

state trajectory as described above. From here on, when we mention ck, we mean the

instantaneous center of the trajectory as defined by (4.30).

As discussed in Sec. 4.1.2, gradient controls on phase potentials can be used to

stabilize particular phase arrangements. Following [104, 105], to stabilize relative

positions of the trajectory centers we utilize a consensus-like potential, C(c), which

is defined as

C(c) =
1

2
‖Pc− d‖2 ≥ 0, (4.31)

109

where P is the projection matrix defined by P = IN×N − 1
N

1N1TN and d =[
d1 · · · dN

]T
∈ CN is a constant vector of trajectory offsets that satisfies

∑N
k=1 dk = 0. Denoting Pk as the kth row of P and c̄ = 1

N

∑N
k=1 ck, we have

Pkc = ck − c̄

and we can write (4.31) as

C(c) =
1

2

N∑

k=1

‖Pkc− dk‖2 . (4.32)

Because each term of (4.32) is non-negative, the set C =
{
c ∈ CN : C(c) = 0

}
is

equivalent to the set
{
c ∈ CN : ck = c̄+ dk, k = 1, . . . , N

}
. That is, when C(c) = 0,

dk is the offset of ck from the center of mass of all trajectory centers. If dk = 0 for

each k, then C corresponds to all trajectories sharing the same center, c̄.

We can now state the control law.

Theorem 4.6. Consider a group of N steered particles, each with dynamics (4.1),

(4.2), and (4.3), and speed profile

αk = νk + vk(φk) (4.33)

where νk > 0 is constant and vk > −νk has Fourier coefficients as defined by (4.20).

Let d ∈ CN be a constant vector such that
∑N

k=1 dk = 0 and U(θ) and V (φ) be two

phase potentials (see Def. 4.1). The heading control

uk = κcω
−1
〈
Pkc− dk, (νk + iωqk) e

iθk
〉
− κθ

∂U

∂θk
(4.34)

110

and speed phase control

gk = κcΩ
−1
〈
Pkc− dk, (vk − iωqk) eiθk

〉
− κφ

∂V

∂φk
, (4.35)

where qk is defined by (4.22), κc > 0, κθ, and κφ are real constants, stabilize the group

of N particles into formations defined by the following criteria.

1. The headings belong to the phase arrangement corresponding to a critical set of

U(θ) when κθ 6= 0.

2. The speed phases belong to the phase arrangement corresponding to a critical

set of V (φ) when κφ 6= 0.

3. Each trajectory center is constant and given by ck = c̄+dk, where c̄ = 1
N

∑N
k=1 ck.

Furthermore, the phase arrangement for θ (resp. φ) corresponds to a local maximum

of U (resp. V) when κθ > 0 (resp. κφ > 0) and a local minimum when κθ < 0 (resp.

κφ < 0).

Proof of Thm. 4.6 requires several supporting lemmas. The first lemma defines a

candidate Lyapunov function.

Lemma 4.2. Define the function S(r,θ,φ) as

S(r,θ,φ) , κcC(c) + κθU(θ) + κφV (φ) + S0 ≥ 0, (4.36)

where C(c) is defined by (4.31), U(θ) and V (φ) are both phase potentials satisfying

Def. 4.1, κc > 0, κθ and κφ are real constants, and

S0 = min
(θ,φ)∈TN×TN

{κθU(θ) + κφV (φ)}

111

ensures that S ≥ 0. Along solutions of the steered particle dynamics (4.1)-(4.3) with

controls (4.34) and (4.35), we have

Ṡ = −
N∑

k=1

(
u2
k + g2

k

)
≤ 0

and therefore S is non-increasing.

Proof. The time-derivative of S is

Ṡ = κc
d

dt
C(c) + κθ

N∑

k=1

∂U

∂θk
θ̇k + κφ

N∑

k=1

∂V

∂φk
φ̇k (4.37)

We have

d

dt
C(c) = 〈Pc− d, P ċ〉 =

〈
P T (Pc− d) , ċ

〉
= 〈Pc− d, ċ〉 =

N∑

k=1

〈Pkc− dk, ċk〉

(4.38)

because d is constant, P Td = Pd = 0, and P TP = P 2 = P . The kth term of the sum

depends on

ċk = ṙk −
∂Rk(θk)

∂θk
(ω + uk)−

∂qk(φk)

∂φk
(Ω + gk) e

iθk − iqkeiθk (ω + uk) .

Substituting (4.11) and (4.15) gives

ċk = −uk
ω

(νk + iωqk) e
iθk − gk

Ω
(vk − iωqk) eiθk (4.39)

and hence the kth term of (4.38) is

〈Pkc− dk, ċk〉 =

−
〈
Pkc− dk,

uk
ω

(νk + iωqk) e
iθk
〉
−
〈
Pkc− dk,

gk
Ω

(vk − iωqk) eiθk
〉
.

112

From (4.34) and (4.35) we have

〈
Pkc− dk, (νk + iωqk) e

iθk
〉

=
1

κc

(
ωuk + κθω

∂U

∂θk

)

and
〈
Pkc− dk, (vk − iωqk) eiθk

〉
=

1

κc

(
Ωgk + κφΩ

∂V

∂φk

)
,

and thus

d

dt
C(c) =

1

κc

N∑

k=1

(
−u2

k − g2
k − ukκθ

∂U

∂θk
− gkκφ

∂V

∂φk

)
. (4.40)

Therefore, substituting (4.40), (4.2), and (4.3) into (4.37), we have

Ṡ =
N∑

k=1

(
−u2

k − g2
k − ukκθ

∂U

∂θk
− gkκφ

∂V

∂φk

+κθ
∂U

∂θk
(ω + uk) + κφ

∂V

∂φk
(Ω + gk)

)

=
N∑

k=1

(
−u2

k − g2
k

)
+ κθ

N∑

k=1

∂U

∂θk
ω + κφ

N∑

k=1

∂V

∂φk
Ω.

Because U and V are phase potentials,
∑N

k=1
∂U
∂θk
ω =

∑N
k=1

∂V
∂φk

Ω = 0, and therefore

Ṡ = −
N∑

k=1

(
u2
k + g2

k

)
≤ 0. (4.41)

Hence S is non-increasing along the dynamics (4.1)-(4.3) with controls (4.34) and

(4.35).

We also require the existence and compactness of positively invariant sets for S

along solutions of the dynamics (4.1)-(4.3) with controls (4.34) and (4.35).

113

Lemma 4.3. Consider the candidate Lyapunov function S as defined in Lemma 4.2.

For any p > 0, define the set

Wp =
{

(x,θ,φ) ∈ (Image P)× TN × TN | x = Pc− d, S(r′,θ,φ) ≤ p,
}
,

where r′ is the position vector of a set of N particles with headings θ, speed phases φ,

and trajectory center vector c. Then Wp is positively invariant along solutions of the

dynamics (4.1)-(4.3) with controls (4.34) and (4.35). Furthermore, Wp is a compact

subset of

D =
{

(Image P)× TN × TN
}
.

Proof. Positive invariance follows from Lemma 4.2. On Wp, we have κc
2
‖x‖2 ≤

S ≤ p and x = Pc − d = P (c− d) ∈ Image P ; hence x is in the compact set
{

z ∈ (Image P) | ‖z‖2 ≤ 2p
κc

}
. TN × TN is itself a compact set and therefore Wp is a

compact subset of D.

Finally, we establish the following result for invariant sets on Ṡ = 0.

Lemma 4.4. Consider the candidate Lyapunov function S as defined in Lemma 4.2

and the set

Λ =
{

(r,θ,φ) ∈
(
CN × TN × TN

)
| Ṡ (r,θ,φ) ≡ 0

}
.

Invariant sets on Λ are subsets of

M =

{
(r,θ,φ) ∈ Λ | Pc− d = 0 and

∂U

∂θk
=
∂V

∂φk
= 0, ∀k

}
.

Furthermore, ċk = 0, θ̇k = ω, φ̇k = Ω, and Pkc = dk on Λ for each k.

114

Proof. From (4.41), Ṡ ≡ 0 if and only if uk ≡ 0 and gk ≡ 0 for each k and therefore

θ̇k = ω and φ̇k = Ω. The time derivative of the heading control is

d

dt
uk = κcω

−1
〈
Pkc− dk, (νk + iωqk) e

iθkiθ̇k + iωq̇ke
iθk
〉

+ κω−1
〈
Pkċ, (νk + iωqk) e

iθk
〉
− κθ

d

dt

∂U

∂θk
.

On Λ we have ċ = 0 because ċk = 0 for each k by (4.39), θ̇k = ω because uk = 0,

q̇k = Ω ∂q
∂φk

because gk = 0, and from Corr. 4.1 we have

d

dt

∂U

∂θk
=

∂

∂θk

N∑

j=1

∂U

∂θj
ω = 0.

Therefore, on Λ

d

dt
uk = κc

〈
Pkc− dk, i

(
νk + iωqk + Ω

∂qk
∂φk

)
eiθk
〉
.

Substituting (4.15) yields

d

dt
uk = κc

〈
Pkc− dk, i (νk + vk(φk)) e

iθk
〉

= κc 〈Pkc− dk, iṙk〉 .

Since on Λ we have uk ≡ 0, d
dt
uk ≡ 0 and

〈Pkc− dk, iṙk〉 ≡ 0.

Because c is constant and the velocity ṙk is nonzero in magnitude and has a direction

that is evolving with a constant nonzero natural frequency, we must have that Pkc =

dk on Λ. Furthermore, on Λ, because Pkc − dk = uk = gk = 0, by (4.34) and (4.35)

we must have

∂U

∂θk
=
∂V

∂φk
= 0.

115

We can now complete the proof of Thm. 4.6.

Proof. (Of Thm. 4.6) Lemma 4.2 establishes a positive semidefinite Lyapunov func-

tion S(r,θ,φ) with Ṡ ≤ 0 along solutions of the dynamics. From Lemma 4.3,

we have the existence of positively invariant sets Wp that are compact subsets of
{

(Image P)× TN × TN
}

. The dynamics therefore converge to the largest invariant

set Λ on which Ṡ ≡ 0. On Λ and for each k, we have Pkc = dk, θ̇k = ω, φ̇k = Ω,

and ∂U
∂θk

= ∂V
∂φk

= 0 by Lemma 4.4. Therefore, the steered particles described by the

conditions of the theorem converge to a formation in which the trajectory centers are

constant and related to each other by the condition ck =
∑N

j=1 cj + dk. Furthermore,

the headings converge to a critical set of U(θ). Proof that the minima of κθU and

κφV are stable follows the same argument employed by Sepulchre et al. for constant-

speed particles on circular trajectories; roughly, the dynamics of the headings (resp.

speed phases) on Λ can be seen to be stable and we have that Ṡ is non-increasing

in all neighborhoods of Λ (see [104] Theorem 3, as well as [88] Lemma A.2 for a

generalization). When the sign of κθ (resp. κφ) is flipped, the maxima of U (resp. V)

are stabilized.

4.4 Designing Coordinated Relative Motion

Sec. 4.3 provides a control law that stabilize a group of N steered particles with

time-varying speed profiles to a large family of formations. We describe some of the

possibilities in Sec. 4.4.1. Two of the terms that we can design to determine the

formation are the phase potential for the headings, U(θ), and the phase potential

for the speed phases, V (φ). We consider several combinations of phase potentials

in Sec. 4.4.1, including synchronization of the headings and splaying of the speed

phases. We show that this leads to a formation shape that is defined by the locus of

116

qk, which is determined by the speed profile. In Sec. 4.4.2, we then provide methods to

systematically design the speed profiles in order to obtain desired formation shapes.

4.4.1 Geometry of Coordinated Motion Formations

In this section, we discuss how the parameters of motion and the control laws provided

by Thm. 4.6 determine the geometry of a formation of N agents, and we provide a

survey of the types of formations that are available. We are concerned here only with

periodic speed profiles and with bounded trajectories, i.e., ω 6= 0 and the conditions

of Corr. 4.3 are satisfied for each particle. Sec. 4.2 describes the trajectories of sin-

gle steered particles with periodic speed profiles. Our goal here is to describe how

individual trajectories can be coordinated to obtain various formations.

In Sec. 4.2, we showed that the shapes of individual trajectories can be described

as follows. The radius of the circular component of each trajectory, i.e., the radius

of Rk(θk), is determined by the steering rate, ω, and the nominal speed, νk. The

trajectory center offset, dk, describes the relative location of the center of the Rk(θk)

circle for each particle k. The locus of qk describes the trajectory’s path relative to

the Rk(θk) circle. The speed oscillation frequency Ω and the Fourier coefficients of

the speed profile vk determines the shape of the qk locus as described by Thm. 4.5.

The shapes of formations are determined not only by the shapes of the trajectories

of the individual particles, but also by the positions and orientations of trajectories

relative to one another. As described in Thm. 4.6, we have three main mechanisms to

control the coordination of trajectories. The relative positions of trajectory centers

can be controlled by setting the individual dk. The relative headings of the parti-

cles — and therefore their relative positions around the circular components of their

trajectories — can be controlled via the heading phase potential, U(θ), and the sign

of the gain κθ. The relative speed phases of the particles — and therefore their rel-

117

ative positions around their respective qk — can be controlled via the speed phase

potential, V (φ), and the sign of the gain κφ.

Coordination of the centers of the trajectories can be achieved without the phase

potentials U and V . Fig. 4.7 shows a formation of N = 25 steered particles generated

without heading or speed phase control (i.e., U = V = 0) and with d = 0. The

resulting formation is swarm-like; the only coordination is that all of the agents share

the same trajectory center. Each particle alternates between being towards the center

of the formation when its speed is small and being towards the edge of the formation

when its speed is large. Adding speed phase balancing would balance the distribution

of agents with respect to their distances from the center of the formation.

Fig. 4.8 shows a formation in which the speed phases are synchronized and the

headings are in the splay phase arrangement (i.e., U is given by (4.6) and κθ > 0 and

V is given by (4.7) with κφ < 0) and the trajectory offsets are evenly distributed in an

array: dk =
√

2ei
π
4

(1+2k). The individual trajectory shapes are square-like because the

speed oscillation frequency is four times the turning rate, i.e., Ω = 4ω. The trajectory

shapes are oriented identically because the speed phases are synchronized. At one

point during each heading rotation period (i.e., 2π
ω

), the agents are close to each other

in the center of the formation. One half of a period after that, the agents are at the

four corners of the formation (as shown).

Fig. 4.9 shows two formations of N = 4 agents with sinusoidal speed profiles. The

headings are synchronized and the speed phases are in the splay phase arrangement,

therefore they are evenly distributed around the same qk ellipse. That is, the shape

of the qk ellipse — which is the same for all four agents because they share the

same speed profile as a function of the speed phase — determines the shape of the

formation. The agents stay in this formation over time because their headings stay

the same and therefore, from (4.18), their trajectories vary only by their location

along the locus of their (common) qk locus. The speed phase determines the location

118

Figure 4.7: Swarm-like formation with no heading or speed phase control. The thick
black line is the trajectory of the black particle. The initial headings and speed phases
are random. The arrow lengths are related to speed: longer arrows correspond to
higher speed. Parameters: N = 25, ω = 1, Ω = 0.3, ν = 1. Purely sinusoidal speed
with ak,1 = 0.9 and bk,1 = 0 for all k.

119

Figure 4.8: A formation with distributed trajectory offsets: dk =
√

2ei
π
4

(1+2k). The
speed phases are synchronized and the headings are in the splay phase arrangement.
Parameters: N = 4, ω = 1, Ω = 4, ν = 1. Purely sinusoidal speed with ak,1 = 0.9
and bk,1 = 0 for all k.

120

(a) (b)

Figure 4.9: A pair of formations of N = 4 agents with the same purely sinusoidal
motion parameters except that in the left formation (a), ω = 1 and Ω = 4, and
in the right formation (b), Ω = 1 and ω = 4Ω. In both cases, the headings are
synchronized and the speed phases are in the splay phase arrangement. Note that in
both formations, all four agents are on the same qk curve (thicker black curve) and
therefore the shape of qk (which is the same for all four agents) determines the shape
of the formation. νk = 1, ak,1 = 0.9, bk,1 = 0 for all k.

along the qk. In Fig. 4.9a, ω = 1 and Ω = 4ω and the qk ellipse has its semi-major

axis in the direction of motion. In Fig. 4.9b, Ω = 1 and ω = 4Ω and the qk ellipse

has its semi-major axis perpendicular to the direction of motion. Aside from the

natural frequencies, the motion parameters are identical in both formations: νk = 1,

ak,1 = 0.9, bk,1 = 0 for all k.

Fig. 4.10 shows a formation of N = 4 agents with periodic speed profiles, where

the speed profile is the same one shown in Fig. 4.5a (generated with 3 random Fourier

components). The speed oscillation frequency and turning rate are the same ones that

were used for Fig. 4.5b (Ω = π, ω = 0.3π), and therefore the qk locus is the one shown

there. As in Fig. 4.9 above, the headings are synchronized and the speed phases are

in the splay phase arrangement, and therefore the formation shape is defined by the

121

Figure 4.10: Formation of N = 4 agents with the periodic speed profile shown in
Fig. 4.5a. As in Fig. 4.9, the headings are synchronized and the speed phases are
in the splay phase arrangement. Therefore, the qk shape — which is the same as in
Fig. 4.5b — determines the shape of the formation. The shape of the formation is
shown magnified in the center of the figure. Ω = π, ω = 0.3π.

qk shape, with the agents being at different locations according to their φk. The

formation shape is shown magnified in the center of the figure.

122

4.4.2 Design of Motion Parameters to Obtain Specific For-

mations

In this section, we describe a method for systematically designing motion parameters

for obtaining specific formations. In the previous section, we describe how synchro-

nizing the headings of a group of agents that share common motion parameters leads

to a formation whose shape is defined by the shape of the (common) qk locus moving

around a circle with radius determined by the nominal speed, νk, and turning rate,

ω. Here, we consider the inverse problem: given a formation in terms of the qk locus

and the radius of the circular component of the trajectory, how can we determine the

necessary turning rate, nominal speed, speed oscillation frequency, and speed profile?

Consequently, we consider the nominal speeds and speed profiles to all be the same

and hence drop the k subscript, i.e., the nominal speed is ν and the speed profile is

α(φ) = ν + v(φ) (with the speed of the kth agent being α(φk) = ν + v(φk). We also

drop the subscript from qk and write q(φk) to denote the position of agent k on the

(common) q locus. We will also generally consider the nominal speed to be fixed.

This is reasonable for most physical applications, where the nominal speed is likely

to be dictated by operational constraints.

We first consider the sinusoidal speed case because it can be solved analytically

and gives us a method to estimate initial parameters for the general periodic speed

profile case. We will also be able to establish some bounds on the types of formations

that are achievable. The general periodic speed profile case is solved numerically.

For purely sinusoidal speed profiles, the elliptical component of the trajectory has

bounds given by (4.28) and (4.29). These bounds provide a natural way to specify

the elliptical shape of trajectories, and therefore we define the maximum dimensions

123

of the q locus as

A , max
φ∈S1
|Re {q(φ)}| (4.42)

B , max
φ∈S1
|Im {q(φ)}| . (4.43)

We will also define the aspect ratio∗ of the formation as

e ,
A

B
. (4.44)

We state the design problem for the case of a purely sinusoidal speed profile as

follows.

Design Problem 4.1 (Formation Design - Sinusoidal Speed Profile). Consider a

group of N agents under the assumptions of Thm. 4.6, with the added assumption

that each agent shares a common purely sinusoidal speed profile

α(φ) = ν + v(φ) = ν + a1 cosφ+ b1 sinφ. (4.45)

Given the nominal speed, ν, the desired direction of motion, the desired radius of

the circular component of the trajectory, C, and the formation dimensions, A and B

defined by (4.42) and (4.43), determine

1. if the formation is physically achievable, and, if so

2. what combination of turning rate, ω, speed oscillation frequency, Ω, and coeffi-

cients a1 and b1 will achieve it.

∗Aspect ratios are typically defined as the ratio of the longer of two dimensions to the shorter
one and therefore are always greater than or equal to 1. Here we define it strictly as the ratio of A
to B and therefore it can take any positive value.

124

Given the nominal speed, ν, and the radius of the circular component, C, the

magnitude of the turning rate can be solved for from (4.11) as

|ω| = ν

C
. (4.46)

The rotation direction determines the sign of the turning rate as in Thm. 4.1; counter-

clockwise rotation requires ω > 0 and clockwise rotation requires ω < 0.

We are free to choose b1 = 0 and assume a1 > 0 because the size of the elliptical

component depends on µ = a1
1 + b2

1 as in (4.27). Therefore, from (4.28) and (4.29),

we have

A = a1

∣∣∣∣
Ω

Ω2 − ω2

∣∣∣∣

B = a1

∣∣∣∣
ω

Ω2 − ω2

∣∣∣∣

and hence

Ω = e |ω| = A

B
|ω| . (4.47)

We now have

∣∣A2 −B2
∣∣ = a2

1

∣∣∣∣
Ω2

(Ω2 − ω2)2 −
ω2

(Ω2 − ω2)2

∣∣∣∣ =
a2

1

|Ω2 − ω2|

and hence we can solve for a1 as

a1 =
√
|(A2 −B2) (Ω2 − ω2)| = ν

C

√∣∣∣∣(A2 −B2)

(
A2

B2
− 1

)∣∣∣∣. (4.48)

We have answered the second part of Design Problem 4.1. Given A, B, C, and ν,

we can solve for ω using (4.46), Ω using (4.47), and a1 using (4.48).

We must now determine under what conditions a solution exists. First, note that

we cannot have A = B (i.e., q cannot be a circle), because this would imply that

125

ω = Ω and by Corr. 4.3 this would lead to unbounded motion. Consider, however,

the case A = B (1 + ε), 0 < |ε| � 1, for which (4.48) yields

a1 =
ν

C

√√√√
∣∣∣∣∣
(
B2 (1 + ε)2 −B2

)
(
B2 (1 + ε)2

B2
− 1

)∣∣∣∣∣

=
ν

C
B
∣∣2ε+ ε2

∣∣

≈ 2|ε| ν
C
B.

That is, to achieve A ≈ B, the amplitude of speed oscillations must be very small.

In particular, when B and C are of similar magnitudes, we have a1 � ν, i.e., the

speed oscillation amplitude may be below the noise floor of the hardware. In theory,

however, the formation shape, q, may be arbitrarily close to circular.

Our design needs to satisfy the constraint that the speed, α, must always be

positive and therefore we must have a1 < ν. From (4.48), we have

a2
1 =

ν2

C2

∣∣∣∣
(
A2 −B2

)(A2

B2
− 1

)∣∣∣∣ < ν2, (4.49)

or, solving in terms of A, B, and C,

|A2 −B2|
B

< C. (4.50)

Fig. 4.11 shows the range of values of A and B for which (4.50) is true when C = 10.

As the parameters get closer to violating the bound (4.50), the speed oscillation

amplitude becomes closer to 1. This may be problematic for vehicles that have a

lower bound on their speed (flying vehicles, for example). Note also that the size of

the formation can be very large. However, from (4.49) we have

∣∣∣∣
(
A2

C2
− B2

C2

)(
A2

B2
− 1

)∣∣∣∣ < 1

126

Figure 4.11: Range of values (shaded black) for which (4.50) is true, and therefore
Design Problem 4.1 has a solution, when C = 10 over the range 0 < A < 20 and
0 < B < 20. Note that A = B (dashed red line) is also not possible because this
would lead to unbounded motion as per Corr. 4.3.

and we see that for large formations (i.e., A � C and/or B � C), the aspect ratio

must be close to 1 for feasibility. As discussed above, this is theoretically feasible but

it may be difficult to stabilize and maintain large formations in realistic situations

because it requires vanishingly small speed oscillations.

Fig. 4.12 shows four example solutions to Design Problem 4.1. In all four cases, the

nominal speed and radius of the circular component of the trajectory are identical:

ν = 1 and C = 10, respectively. Therefore, the turning rate for all four cases is

127

ω = 0.1 (for counter-clockwise motion). Fig. 4.12a and Fig. 4.12b show solutions for

ellipses with aspect ratios that are inverses of each other. Fig. 4.12c shows an example

where the aspect ratio is close to 1. Note that the resulting value of a1 = 0.0002 is

very small compared to ν = 1.0 and the numerical value of Ω = 0.09967† is very close

to the numerical value of ω = 0.1. The values of A and B in Fig. 4.12d are close to

the feasible limit (4.50) (i.e., the pair (A,B) is close to the edge of the dark region in

Fig. 4.11).

We now consider the general periodic speed case. The solution to this problem

depends on the way that we choose to specify the formation shape (i.e., the “input”).

Here, we will consider the formation shape to be provided, and we would like to

minimize in some sense (which we will describe below) the error between the obtained

formation shape q and the desired formation shape. We allow the desired formation

shape to be prescribed as a sequence of M points q′[m], m = 1, . . . ,M , that lie on or

close to (allowing for error) the desired formation shape. The goal of the processes we

describe below is to find speed oscillation parameters so that the obtained formation

shape, q, approximates the set of points q′.

†Extra digits of precision are added here to emphasize the small numerical differences.

128

(a) (b)

(c) (d)

Figure 4.12: Formations designed by solving Design Problem 4.1. In each case, the
nominal speed is ν = 1 and the radius of the circular component is C = 10 which
results in ω = 0.1. Only the circular component (blue circle) and the q shape (black
curve) are shown; no individual trajectories are shown. (a) A = 1, B = 3, yielding
a1 = 0.267 and Ω = 0.1. (b) A = 3, B = 1, yielding a1 = 0.8 and Ω = 0.3. (c) A = 3,
B = 3.001, yielding a1 = 0.0002 and Ω = 0.09967 (see discussion above). (d) A = 5,
B = 12, yielding a1 = 0.992 and Ω = 0.042.

129

One way to input the set of points q′ that describes the desired formation shape

is to provide a binary image and map the “on” pixels to points in the set q′. This

allows us to draw the desired shape of the formation using a computer program. The

mapping from the image to the point set q′ can be accomplished as follows. Define

the binary image B : {1, . . . , HB}× {1, . . . ,WB} → {0, 1} where HB and WB are the

height and width of the image in pixels, and invertible mappings Y : {1, . . . , HB} → R

and X : {1, . . . ,WB} → R that map pixel locations to real world coordinates. Then

the points q′ can be formed using the following algorithm.

q′ ← {∅} . Initialize q′ as empty

for a = 1→ HB do

for b = 1→ WB do

if B(a, b) = 1 then

q′ ← q′
⋃

(X(b) + iY (a)) . Add this point to q′

end if

end for

end for

The number of points M is equal to the number of “on” pixels in the binary image,

B. The ordering of the pixels does not affect the algorithm described below.

The coordinate mapping used to obtain the results below is a simple shifting and

scaling of the image coordinates to formation coordinates. The centroid, (m̄, n̄) of

the input image is calculated as

m̄ =
1

M

∑

(n,m)

mB(n,m)

and

n̄ =
1

M

∑

(n,m)

nB(n,m).

130

The coordinate mapping is then

X(m) , γ (m− m̄)

and

Y (n) , γ (n− n̄) ,

where γ > 0 is a scaling factor. Using this coordinate mapping ensures that the

centroid of the image maps to the center of the designed formation.

Given the points q′ and the parametric form of q as it relates to the motion pa-

rameters, the problem of finding those parameters reduces to a curve fitting problem.

We provide a simple iterative least-squares solution here that seeks to minimize the

sum of squared distances between each point in q′ and its closest point in the curve

q. Let

ψ ,




a1

b1

...

aN`

bN`




,

where N` is the number of Fourier components in our solution, and let qψ(φ) be

the curve calculated from Thm. 4.5 with the Fourier coefficients ψ. Our goal is to

minimize the cost function

J(ψ) =
1

2

M∑

m=1

‖q′[m]− qψ(φm)‖2
(4.51)

where the mth fitting phase, φm, is the value of φ ∈ S1 that minimizes ‖q′[m]− qψ(φ)‖.

We can now precisely state the design problem for the periodic speed profile case.

As above, we assume that the nominal speed, ν, is fixed by operational constraints.

131

Similarly, we assume that the number of harmonic components, N`, in the speed

profile is fixed.

Design Problem 4.2 (Formation Design - Periodic Speed Profile). Consider a group

of N agents under the assumptions of Thm. 4.6. All agents are assumed to have the

same periodic speed profile, which can be specified in terms of its Fourier coefficients

as

α(φ) = ν + v(φ) = ν +

N∑̀

`=1

(a` cos `φ+ b` sin `φ) , (4.52)

where N` is the number of harmonic components in the speed profile.

Given the nominal speed ν, the desired direction of motion, the desired radius of

the circular component of the trajectory, C, the number of Fourier components in the

speed profile, N`, and the desired formation shape as a set of points, q′, determine

• if the formation is physically achievable, and, if so

• what combination of turning rate, ω, speed oscillation frequency, Ω, and Fourier

coefficients, ψ, minimizes the sum of squared distances cost function (4.51).

Note that the cost function, J(ψ), depends recursively on the parameters ψ via the

fitting phases φm. That is, the distances are computed at values of φ that minimize

the distance to the fitted curve. Therefore, we seek an iterative solution where the

cost at the nth step is calculated based on the phases that minimize the distance to

the (n− 1)th fit; i.e., we define the cost at the nth iteration as

J(ψ[n]) =
1

2

M∑

m=1

∥∥q′[m]− qψ[n](φm)
∥∥2

where each φm is chosen to minimize
∥∥q′[m]− qψ[n−1](φm)

∥∥. For convenience, denote

the Fourier coefficients in the parameter set ψ[n] as a`[n] and b`[n], ` = 1, . . . , N`.

We use the statistics of the sequence q′ to determine the speed oscillation fre-

quency, Ω, and the initial estimate ψ[1]. The input sequence, q′, is assumed to be

132

oriented with θ = 0 and therefore we can estimate the distribution of the q′ points as

an ellipse with semi-major and semi-minor axes A and B, respectively, where

A ,

(
2

M − 1

M∑

m=1

(Re {q′[m]} − Re {q̄′})
) 1

2

(4.53)

B ,

(
2

M − 1

M∑

m=1

(Im {q′[m]} − Im {q̄′})
) 1

2

(4.54)

and

q̄′ ,
1

M

M∑

m=1

q′[m]. (4.55)

As above, the turning rate ω depends only on the radius C and the direction of

motion, hence ω is determined by (4.46). We then take A
B

as the aspect ratio and set

Ω =
A

B
|ω| . (4.56)

Also as above, we are free to choose b1[1] = 0. The initial estimate a1[1] is found by

(4.48) with the A and B calculated from (4.53) and (4.54), respectively.

For the purposes of solving this optimization problem numerically, it is useful to

switch from complex notation for q to vector notation, i.e., q = x + iy ∈ C becomes

q =

(
x y

)T
∈ R2. We then define

Φ`(φ) ,
1

(`Ω)2 − ω2



`Ω sin `φ −`Ω cos `φ

ω cos `φ ω sin `φ




and

ψ`[n] ,



a`[n]

b`[n]


 ,

133

so that the formation shape for the nth iteration is qψ[n](φ) =
∑N`

`=1 qψ[n],`(φ), where

qψ[n],`(φ) = Φ`(φ)ψ`[n].

Then

qψ[n](φ) =

N∑̀

`=1

Φ`(φ)ψ`[n] = Φ(φ)ψ[n],

where

Φ(φ) =

[
Φ1(φ) · · · ΦN`(φ)

]
∈ R2×2N` .

and the cost function becomes

J(ψ[n]) =
N∑

m=1

‖q′[m]− Φ(φm)ψ[n]‖2
= ‖Q′ −Φψ[n]‖2

, (4.57)

where

Q′ =




q′[1]

...

q′[M]



∈ R2M×1 (4.58)

and

Φ =




Φ(φ1)

...

Φ(φM)



∈ R2M×2N` . (4.59)

The cost-minimizing parameters are found by taking the pseudoinverse:

ψ[n] =
(
ΦTΦ

)−1
ΦTQ′. (4.60)

Using these results we arrive at Algorithm 4.1. Algorithm 4.1 uses the initial

parameter estimates ψ[1] determined as described above to find initial fitting phases

φm and solves for new parameters using (4.60). This process is iterated until a

134

maximum number of iterations, nmax, is reached or until the parameters do not change

in magnitude by more than a threshold, tψ.

Algorithm 4.1 Algorithm for solving Design Problem 4.2.

Given the initial parameter estimates, ψ[1], as described above, maximum number
of iterations nmax, and convergence threshold tψ.
n← 2
δψ ←∞
while n ≤ nmax and ‖δψ‖ < tψ do

Find the φm that minimize
∥∥q′[m]− qψ[n−1](φm)

∥∥, m = 1, . . . ,M
Calculate Φ (4.59) and Q′ (4.58)

ψ[n]←
(
ΦTΦ

)−1
ΦTQ′

δψ ← ψ[n]− ψ[n− 1]
n← n+ 1

end while
return ψ[n]

To determine if the formation is feasible, we first check that A 6= B and then

calculate the speed profile from (4.45) and check that v(φ) > −ν for all φ ∈ S1. We

may also deem the formation infeasible if a sufficient fit is not achieved within nmax

iterations.

Figs. 4.13 and 4.15 show example solution to Design Problem 4.2. The input for-

mation shape (gray curve in Fig. 4.13a and Fig. 4.15a) was generated by drawing the

shape in a Paint-like program. The resulting bitmap was then loaded into a Matlab

script that determines the q′ points using the coordinate mappings described above

with γ = 1
120
‡, determines the aspect ratio and the speed oscillation frequency, and

then determines the Fourier coefficients of the speed profile using Algorithm 4.1. The

final speed profiles are shown in Figs. 4.13b and 4.15b. Fig. 4.14 shows five snap-

shots of four agents moving around the formation shown in Fig. 4.13 with their speed

phases in the splay phase configuration. Fig. 4.16 shows the same but for the forma-

tion shown in Fig. 4.15. Note that each agent cycles its position around the formation

as the formation moves around the common circular component (shown in blue) of

‡γ = 1
120 scales one half of the height of a 640× 480 pixel image to 2 formation units.

135

the trajectories. The formation shape obtained in Fig. 4.13 is a good approximation

of the input shape. The fit is not as good in Fig. 4.15, though some features of the

shape are preserved; particularly near the front and back of the formation.

136

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Formation X

F
o

rm
a
ti

o
n

 Y

(a)

0 1 2 3 4 5 6
0.8

0.9

1

1.1

1.2

1.3

Speed Phase

S
p
ee

d

(b)

Figure 4.13: Example formation found by solving Design Problem 4.2. The input
formation shape is the gray curve in the top figure. The green curve is the ellipse
corresponding to the initial parameter estimates. The black curve is the output
formation (see also Fig. 4.14), corresponding to the speed profile shown in the bottom
figure. The radius of the circular component of the trajectory is C = 10. The nominal
speed is ν = 1. The resulting turning rate is ω = 0.1 and the speed oscillation
frequency is Ω = 0.214.

137

Figure 4.14: Five snapshots of four agents moving around the formation found by
solving Design Problem 4.2 with the formation input shown in Fig. 4.13. The snap-
shots correspond to equally distributed times. The speed phases of the four agents
are in the splay phase arrangement. The blue circle is the radius of the circular
component of the trajectory of all of the particles and has a radius of C = 10.

138

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Formation X

F
o

rm
a
ti

o
n

 Y

(a)

0 1 2 3 4 5 6
0

0.5

1

1.5

2

Speed Phase

S
p
ee

d

(b)

Figure 4.15: Another example formation found by solving Design Problem 4.2. The
input formation shape is the gray curve in the top figure. The green curve is the
ellipse corresponding to the initial parameter estimates. The black curve is the output
formation (see also Fig. 4.16), corresponding to the speed profile shown in the bottom
figure. The radius of the circular component of the trajectory is C = 10. The nominal
speed is ν = 1. The resulting turning rate is ω = 0.1 and the speed oscillation
frequency is Ω = 0.214.

139

Figure 4.16: Five snapshots of four agents moving around the formation found by
solving Design Problem 4.2 with the formation input shown in Fig. 4.15. The snap-
shots correspond to equally distributed times. The speed phases of the four agents
are in the splay phase arrangement. The blue circle is the radius of the circular
component of the trajectory of all of the particles and has a radius of C = 10.

140

Chapter 5

Hybrid Biological and Engineering

Collective Motion Testbed

In this chapter, we describe a testbed that was designed to facilitate experiments

in which one or more robotic fish is controlled in real-time to introduce a stimulus

to a live fish school. Each robotic fish consists of a model fish that is magnetically

coupled to a wheeled robot beneath the tank. Real-time computer vision is used to

estimate the states and to estimate properties of the fish school. Control commands

are calculated in response to these estimations and sent wirelessly to the wheeled

robots, whose motion causes the model fish to move in tandem because of the magnetic

coupling. We refer to the wheeled robot and model fish combination as a “robotic

fish”. Depending on experimental needs, the robotic fish can act as a predator fish,

a conspecific, or even a reactive piece of the environment. This flexibility is afforded

by the ability to easily change a) the shape of the model that is magnetically coupled

to the wheeled robot and b) the algorithms that drive the wheeled robots in response

to the state of the fish school. The design and description of the robotic fish testbed

were first published in [115]. Figures in this chapter that first appeared in [115] are

noted in the corresponding captions.

141

We describe the components of the testbed in Sec. 5.1. The hardware compo-

nents are detailed in Sec. 5.1.1, including the arena, wheeled robots, model fish, and

tracking system hardware. We provide an overview of the real-time tracking software

architecture in Sec. 5.1.2.

In Sec. 5.2, we describe the real-time tracking methods that we use to track

the robots and fish from the live video feed. We consider the tracking algorithm

as a two-step iterative process. In the first step, we isolate regions of the image

that are likely to correspond to fish (live or robotic) and extract from these regions

measurements of the positions and orientations of the fish. We refer to this as the

“segmentation” step and described it in Sec. 5.2.1. We refer to the second step as

the “state estimation” step and describe it in Sec. 5.2.2. The state estimation step

involves associating the measurements obtained in the segmentation step with the

correct fish and then applying an unscented Kalman filter (UKF) to refine estimates

of position, orientation, and speed. We also describe in Sec. 5.2.3 methods that are

used to estimate properties of the fish school: for example, centroid location, size,

boundaries, etc.

We discuss two experimental demonstrations of this testbed in Sec. 5.3. First,

in Sec. 5.3.1, we describe an experiment in which the robotic fish continually follows

the centroid of the school. In Sec. 5.3.2, we describe an experiment in which the

robotic fish darts toward the school when triggered by the occurrence of some pre-

programmed condition.

The technology that was developed for this testbed is directly applicable to a

variety of other applications. These other applications have, in turn, motivated im-

provements to the technology used for the robotic fish testbed. We describe some of

the extensions to other applications in Sec. 5.4. Sec. 5.4.1 enumerates some of the

other testbeds that use our real-time tracking technology. In Sec. 5.4.2, we describe

the MADTraC C++ library [112], which was designed to facilitate rapid development

142

of these and other testbeds. In Sec. 5.4.3, we describe software components that were

designed to enable interaction of the tracking and robot control software with other

software platforms, for example, MATLAB-based control algorithms and web-based

multi-user interfaces.

5.1 Testbed Description

We provide here a basic description of the testbed components and provide details of

the hardware in Sec. 5.1.1 and an overview of the software in Sec. 5.1.2.

Fig. 5.1 shows the basic components of the testbed. The experimental arena

consists of a shallow tank mounted on a base. The wheeled robots move about a

platform that is hanging beneath the tank and is part of the base. Each robot is

magnetically coupled to a model fish above it inside the tank. A FireWire camera is

mounted above the tank and captures real-time video. Another camera is optionally

mounted above the tank to record high definition video that can be used for off-line

analysis. Real-time tracking and control calculations are performed on a computer

workstation. Commands for each robot are computed on the workstation and sent to

the robot using a BlueTooth radio, thus closing the control loop.

5.1.1 Hardware

We break the testbed hardware down into four main components here: the experi-

mental arena, the wheeled robots, the model fish, and the tracking system hardware.

The Experimental Arena

The experimental arena consists of the tank and its base. The tank measures 4-foot

by 5-foot by 12-inches high. The water in the tank is typically 2.5 to 3 inches deep.

The high sides of the tank are designed to keep fish from leaping out of the tank.

143

Tracking
Camera

Tracking/Control
Workstation

Tank

Robot and Magnetic Hood

Model Fish and
 Magnetic Base Live Fish

Recording
Camera (HD)

Real-time
Tracking

Feedback Control

Wheel Speed
Calculation

Video
(FireWire)

Positions
Velocities

School Properties

Speed
Steering Rate

Wheel Speeds
(Bluetooth)

Platform
Base

Figure 5.1: Diagram of the robotic fish testbed components. This figure first appeared
in [115].

There are 12-inch diagonal pieces across each corner of the tank that add structural

integrity and prevent fish from congregating in the corners of the tank (see Fig. 5.8).

A small hole is drilled through the base of one diagonal piece to allow water into that

corner, where a drain hole is drilled through the bottom of the tank and a valve and

hose attached below.

The tank is made from Garolite G10 fiberglass composite. This material provides

superior stiffness compared to plexiglass and allows the bottom piece of the tank to be

only 1/4-inch thick. An earlier prototype used 1/4-inch plexiglass and exhibited severe

bowing under the weight of the water in the tank (the tank bowed by several inches

in the middle). Bowing is a significant problem for the testbed because it introduces

variability in the distance — and therefore the coupling strength — between the

wheeled robots and the model fish. With a G10 tank, there is minimal bowing under

water weight and therefore consistent coupling between the wheeled robots and the

model fish. The sides of the tank and the diagonal pieces are all made from 1/8-

inch thick pieces of G10. The pieces of G10 are secured to one another using epoxy,

resulting in a watertight seal.

144

The G10 tank is secured to a wooden base by bolts along the tank’s periphery. The

main purpose of the wooden base is to elevate the tank so that the robots can move

beneath it. A veneered platform is suspended by adjusting bolts within the wooden

base. The veneered platform provides a consistently flat surface for the robots to

move on. Because it is mounted on adjusting bolts, the standoff distance between the

wheeled robots and the model fish can be adjusted to account for various conditions

such as bowing, robot height, and magnet strength. The nominal distance from the

veneered platform to the bottom of the G10 tank is approximately 4 inches.

Wheeled Robots

We use Merlin Systems Corp. MiaBot Pro wheeled robots [77] to move the model

fish. These wheeled robots are designed for robotic soccer. We chose them because

they are wirelessly controlled via Bluetooth and have a high speed and turning rate

(up to 3 m/s and 85 radians/s, respectively). Each robot has two wheels, mounted on

opposite sides of a 7.5-cm cube. Internally, the robot consists of one motor for each

wheel, a battery pack, and electronics. Plastic nubs on the bottom of the robot keep

it from rocking forward or backward on the wheel axis. Fig. 5.2 shows a MiaBot Pro

robot.

The wheels are parallel to the sides of the robot and its spin axis is through the

middle of the cube. The speed of each wheel is controlled independently; commanding

both wheels with the same positive (negative) speed commands causes the robot to

move forward (backward), and commanding different speeds to each wheel causes it

to turn. Each motor has an encoder that the robot uses for on-board proportional-

integral-derivative (PID) feedback control of the wheel speeds. The on-board wheel

speed control is sufficiently fast that we neglect the transient effects associated with

commanding a change in wheel speeds.

145

Figure 5.2: A MiaBot Pro wheeled robot with a pair of cylindrical rare-earth magnets
press-fit into holes on a custom-made hood. This figure first appeared in [115].

The two-wheeled differential drive and high speed and turning rates of the MiaBot

Pro make it well-suited to emulate the translation and turning movements of a fish,

although it cannot reproduce body contortions or side-drifting. The MiaBot Pro is

capable of accelerating rapidly to high speed, although wheel slip, latency in the

closed-loop system, and drag forces acting on the model fish place practical limits on

maximum acceleration and speed.

We mount a custom-machined plastic hood to the top of each robot, as shown

in Fig. 5.2. Each hood has a rectangular slot milled into its top. The milled slot

has a matching rectangular insert. Two holes are drilled through the insert and a

pair of cylindrical rare-earth magnets are press-fit into the holes. The magnets are

1/2-inch in diameter, 1/4-inch thick, separated by 2 inches, and mounted such that

they are centered on the robot and aligned front-to-back with the direction of motion.

Other magnet sizes and configurations can be accommodated by creating a new insert,

and the height of the magnets can be adjusted slightly by inserting shims beneath the

insert. The circular faces of each magnet correspond to its two poles. The magnets are

inserted into the rectangular insert with opposite pole orientations, which facilitates

146

torque transfer to the model fish when the robot turns. This also ensures that the

correct mating orientation is maintained. The wheeled robot can sometimes lose

traction with the veneered surface due to the strong attraction between the magnets

in the hood and the magnets in the tank above. Weights can be added to the hood

to counteract this effect.

Model Fish

The appearance of the model fish can be an important factor in the success of an

experiment. This can be true for predator models and is especially true for conspecific

models. The reaction of the fish to the model is species-dependent. For example,

three-spined sticklebacks (Gasterosteus aculeatus L.) are observed to respond well

to models that have realistically painted eyes [126, 41]. We have thus far had the

opportunity to experiment only with golden shiners (Notemigonus crysoleucas), and

they have proved mostly unresponsive to models. A series of golden shiner models

were developed by casting hard plastic into models created from deceased golden

shiners. One of the golden shiner models is shown in Fig. 5.3a. Live golden shiners

were mostly indifferent to these model golden shiners.

Live golden shiners are slightly more reactive to a model koi (Cyprinus carpio

haematopterus) than they are to a model golden shiner. We created a model koi,

shown in Fig. 5.3b, by casting tin-cured silicone rubber into a mold created from a

deceased koi. The model koi is larger than the live golden shiners we used. When

we used the model koi, we used it in the role of a predator fish. The experimental

demonstrations described below in Sec. 5.3 were performed using the model koi. The

model koi is shown in use in Figs. 5.8 and 5.9.

The molding material we used to create the golden shiner and koi molds is tin-

cured silicone rubber (MoldMax 30T). The model koi was created by casting a differ-

ent formula of silicone rubber (MoldMax 15T) in the mold. The molding and model

147

(a) (b)

Figure 5.3: Model fish. (a) Model golden shiner (top) produced by casting hard
plastic in a mold created from a deceased golden shiner (bottom). The model has
been painted to match the appearance of the deceased fish. (b) Model koi produced
by creating casting silicone in a mold created from a deceased koi (not shown). The
model has been painted black, and is shown mounted on its magnetic base. The
photo shown here was taken using an underwater camera in the tank. This figure
first appeared in [115].

materials are distributed by Smooth-On, Inc. [106]. A limited variety of specialty

paints are available for painting silicone rubber, and therefore the model koi was

painted all in black. Silicone rubber is flexible and is well-suited to recreating fine

details in the model. The model golden shiners were created by casting a standard

hard rubber in a tin-cured silicone rubber mold. Hard plastic does not reproduce fine

details in the model, but does allow for more realistic painting.

Tracking System Hardware

The tracking system consists of a tracking workstation and a FireWire camera

mounted above the tank. The camera is an Allied Vision Technologies Guppy F-080

grayscale FireWire camera [1] with 1032 × 778 resolution and a 4.5 mm focal length

lens. The tracking workstation consists of a single computer with modern commodity

hardware. The only requirement for the computer is that it must have a FireWire

148

port for the camera. If the computer does not have built-in Bluetooth, an off-the-shelf

USB Bluetooth adapter can be used to communicate with the robotic fish.

The camera is mounted 3 m above the tank and aligned so that the image plane

is close to parallel with the plane of the tank bottom. The image plane is oriented

so that its x-axis is parallel to the long edge of the tank. As a result, we achieve

sufficient performance from calculating feedback control for the robotic fish using

image coordinates (as opposed to first converting to real-world coordinates). We do

not correct for refraction due to Snell’s law because the depth of the water is small

compared to the distance between the tank and the camera. Calibration of the HD

camera is necessary for off-line analysis so that experimental results can be reported

accurately in real-world units.

5.1.2 Software

We describe here the software that we have developed for this testbed. The software

is built using the MADTraC (Multi-Agent Dynamic Tracking and Control) C++

library, which is described in further detail in Sec. 5.4.2. MADTraC provides a GUI

framework and several capabilities that are useful for developing software to drive

testbeds like this one. The real-time tracking algorithm is an important component

of the software driving this testbed and is described in detail in Sec. 5.2. In the rest

of the current section, we provide a description of the communications and control

components of the software.

The workstation communicates with the MiaBot Pro wheeled robot through a

virtual serial port over a Bluetooth channel. Communication with multiple robots is

possible by opening a separate port for each robot. The Bluetooth specification sets a

limit of seven devices that can be connected to a single host [13], and therefore up to

seven robots can be used simultaneously. This limit can be overcome with specialty

hardware.

149

The MiaBot Pro platform provides a small grammar of commands that can be

sent to the robot using an ASCII protocol over the virtual serial port [76]. When

controlling the robots for use in this testbed, we use the wheel speed command. The

wheel speed command has the form [=LL,RR], where LL and RR are the left and right

wheel speeds (respectively) in robot-specific units that can vary in value from -2000

to 2000. Positive values correspond to motion in the forward direction of the robot

and negative values correspond to motion in the reverse direction.

We apply feedback laws to the robots that calculate wheel speed commands in

response to the states of the robotic fish and the live fish school. These feedback

laws can be used to model conspecific or heterospecific fish behavior, and generally

involve calculating a desired robot speed and turning rate which is then converted

into wheel speed commands. For example, to apply feedback laws like those discussed

in Ch. 4 that can be viewed as models of schooling behavior, we calculate the speed

and turning rate of the robotic fish as a function of the relative positions and speeds

of the other fish.

To illustrate the control techniques used for this testbed, we consider here a model

of predator behavior in which the robotic fish moves continuously toward the esti-

mated centroid location of the fish school. Let (x(t), y(t)) be the position of the robot

in the plane at time t, and let s(t) and θ(t) denote its speed in cm/s and heading

relative to the x−axis in radians, respectively. Let ω(t) = dθ
dt

be the robot’s steering

rate in radians/s. Then, the wheel speed commands LL and RR are calculated as



LL

RR


 =

ke
50




1 −L
2

1 L
2






s(t)

ω(t)


 ,

where L = 0.07 m is the robot wheelbase, ke = 4.0×10−5 is a scaling factor to convert

meters to wheel encoder counts, and the factor of 50 accounts for the robot’s internal

software’s scaling of encoder units.

150

Now, let (x′(t), y′(t)) be the estimated location of the centroid of a fish school in

the plane. To “attack” the school, we want to drive the robot from (x(t), y(t)) to

(x′(t), y′(t)) while continually updating our estimates of both locations. This can be

accomplished by prescribing the steering control law

ω(t) = −k sin (θ(t)− ψ(t))

where k > 0 is a constant gain and

ψ(t) = tan−1 y(t)− y′(t)
x(t)− x′(t)

is the bearing to the target. The controlled heading dynamics have a stable solution

for which the heading angle and target bearing are synchronized, i.e., θ(t) = ψ(t),

and an unstable solution for which the two angles are antisynchronized, i.e., θ(t) =

ψ(t) + (2n+ 1) π for some integer n. We use a saturating speed control that is

calculated as

s(t) =





smax, d(t) > d∗

smax
d(t)
d∗
, d(t) ≤ d∗

,

where smax < 3 m/s is the maximum desired approach speed,

d(t) =

√
(x(t)− x′(t))2 + (y(t)− y′(t))2

is the distance between the robot and the centroid of the school, and d∗ is a threshold

distance. Using this speed control, the robot moves at a fixed constant speed, smax, at

sufficiently large distances from the school. Once it is within the threshold distance,

d∗, the robot slows linearly with distance as it approaches the school.

The above example is a very simple control law for driving the robot from one

location to another when the angle of approach is unspecified, and has worked well

151

for us — for example, in the experimental demonstrations described in Sec. 5.3 below.

More sophisticated motion planning and control algorithms for nonholonomic vehicles

can be substituted. The software architecture allows for easy implementation of

alternate control schemes.

5.2 Real-Time Tracking

In this section, we describe the algorithms we use to extract estimates of the states

of the robotic fish and individual live fish from live video sequences. We also describe

methods that we use to estimate group-level properties of the fish school. In order to

to be able to control each robotic fish, we must be able to estimate its position and

velocity in real time. This requires a tracking solution that is both computationally

efficient and able to estimate dynamic states from static measurements. Furthermore,

because multiple robotic fish may share similar appearances and because there may

be a large number of real fish moving in the tank, our tracking solution must be able

to handle a great deal of occlusion without sacrificing too much in computational

cost. It is for these reasons that we have implemented our solution in C++ using the

OpenCV computer vision library [16] to perform individual steps whenever possible.

We further reduce latency by integrating tracking and robot communication and

control into the same piece of compiled software.

We break down our discussion of tracking methods into two conceptual steps:

segmentation and state estimation. Segmentation involves locating features of interest

in the image and extracting measurements from them. State estimation involves

incorporating these measurements into a dynamical and statistical model in order to

produce filtered estimates of the dynamic states of individual fish. The process of

assigning measurements to individual tracked fish is a non-trivial problem called data

152

Background

Subtraction

Binary

Image

Connected

Component

Labeling

Current

Image

Centroid and

Orientation

Calculation

EMMG

Data Association
Update

Step

Prediction

Step

Orientation

Correction

Single-Object

Blobs

Multi-Object

Blobs

Unassociated

Measurements:

Centroids and Orientations

Centroids

Orientations

Predicted State Estimate

Estimated position, heading, and speed of each object

Segmentation

State Estimation

Unscented Kalman Filter

(for each object)

Figure 5.4: Diagram of the segmentation and state estimation steps of tracking. This
figure first appeared in [115].

association. We treat data association here as a part of the state estimation step. See

Fig. 5.4 for an overview of the tracking steps.

5.2.1 Segmentation

In this section, we describe the segmentation step of our real-time tracking algorithm.

The input for the segmentation step at time instant t is the current video frame, which

we label I(t). The output of the segmentation step at time instant t is an array of

measurements consisting of centroids and orientations of fish that were found in the

video frame. The segmentation step breaks down into two sub-steps: image processing

and blobbing. First, we describe the image processing sub-step, in which we locate

pixels in the current video frame that are likely to belong to the image of a fish.

Second, we describe the blobbing sub-step, in which we group pixels together that

belong to the image of a single fish and then extract measurements of the location

and orientation of that fish.

153

Image Processing

We will refer to the (i, j)th pixel of an image with subscripts, i.e., the value of the

pixel in row j and column i of I(t) is Ij,i(t)
∗. We will also refer to the (i, j)th pixel as

the pixel at location (i, j). The location (0, 0) is at the top-left corner of the image.

We are concerned here only with grayscale images for which the pixel value increases

with brightness, i.e., if Ij,i(t) > Ij′,i′(t) then the (i, j)th pixel of I(t) is brighter than

the (i′, j′)th pixel of I(t).

There is a high degree of contrast between the appearance of the fish (including

the robotic fish) and the appearance of the tank. Namely, the fish are significantly

darker than the tank. Additionally, the appearance of the tank and its surroundings

remains constant over the course of an experiment. Therefore, we are able use a sim-

ple background subtraction and thresholding algorithm to successfully isolate pixels

that have a high likelihood of belonging to a fish from those that are more likely to

belong to the background (the tank, its fixtures, and its exterior). The first step in

the background subtraction process is to calculate the difference image, D(t), by sub-

tracting I(t) from the background image, B. That is, we calculate D(t) = B − I(t),

where B is the background image and is typically computed by averaging several

images of the empty arena prior to an experiment. Pixels in I(t) that are darker than

the background, B, have smaller values and therefore D(t) > 0 for those pixels. We

then create a threshold image, T (t), by setting any pixels of D(t) that are less than

a threshold value, TB, to zero and the rest to 255:

Tj,i(t) =





0, Dj,i(t) < TB

255, Dj,i(t) ≥ TB

=





0, Bj,i − Ij,i(t) < TB

255, Bj,i − Ij,i(t) ≥ TB

.

∗This ordering of the subscripts is consistent with our notational convention for matrices, which is
itself intended to be consistent with MATLAB’s syntax. That is, M(j, i) is the value of the element
of M in the jth row and ith column.

154

(a) (b) (c)

Figure 5.5: Background subtraction and thresholding applied to an image of a fish.
(a) The original image, I. (b) The difference image, D. The background image, B,
is not shown. (c) The threshold image, T . The threshold was TB = 25.

The threshold value is determined experimentally. For an image that varies over the

range [0, 255], a value of TB = 25 is reasonable. The background image and threshold

should be recalculated if lighting conditions change significantly in the laboratory.

Using the values 0 and 255 in the threshold image allows us to display it directly as a

standard grayscale image, where white pixels are the ones that are likely to belong to

the image of a fish. Note that most image processing libraries (including OpenCV)

provide an image subtraction routine that truncates negative values to zero in the

result. This is acceptable because the threshold, TB, is positive and therefore the

resulting threshold image, T (t), is unaffected by the truncation.

Fig. 5.5 shows an example of these image processing steps applied to an image of

a single fish.

Blobbing

The second sub-step of our segmentation algorithm is to group pixels from the thresh-

old image, T (t), into blobs. A blob is a set of pixels that represents the image of one

fish. This process is complicated by the fact that the images of multiple fish often

overlap because they are swimming close to one another. We solve this problem using

a combination of two methods. First, we label connected components (a notion that

155

we make precise below) in the threshold image, T (t), using an efficient connected

component labeling algorithm. We then use area and perimeter thresholds to de-

termine which connected components are likely to contain a single fish and which

connected components are likely to contain more than one fish. We extract measure-

ments directly from single-fish connected components using a moment-based method

that models the fish’s appearance as an elongated ellipse. We resolve a multi-fish con-

nected component using an expectation-maximization mixture-of-gaussian (EMMG)

algorithm to fit the connected component to n ellipses, where n is the number of fish

whose images are contained in that connected component. This process is described

in detail below. We begin by precisely defining an image connected component. We

then describe how the image of a fish can be modeled as an elongated ellipse using

image moments, and how we use this method to extract measurements of position

and orientation. Finally, we describe the EMMG algorithm for resolving multi-fish

connected components.

Distinct pixels (i, j) and (i′, j′) are said to be 8-connected at time instant t if

|j′ − j| ≤ 1, |i′ − i| ≤ 1, and Tj,i(t) = Tj′,i′(t) > 0. Distinct pixels (i, j) and (i′, j′)

are said to be 4-connected at time instant t if either |j′ − j| = 1 or |i′ − i| = 1

but not both, and Tj,k(t) = Tj′,i′(t) > 0. That is, 8-connected pixels are adjacent

either on a side or diagonally, and 4-connected pixels are adjacent on a side but

not diagonally. A set of pixels that are mutually 8-connected (4-connected) is called

an 8-connected component (4-connected component). We are concerned here with

8-connected components and will refer to them simply as connected components.

We extract connected components from the threshold image, T (t), using an effi-

cient (linear time in the number of pixels scanned) connected component labeling al-

gorithm based on the one implemented in OpenCV [16] and first presented by Chang,

Chen, and Lu [26]. Our implementation provides calculations of the area (num-

ber of pixels) and perimeter (number of pixels on the boundary) of each connected

156

component. We reject connected components whose areas are less than a predeter-

mined threshold. The areas and perimeters of the remaining connected components

are compared to predetermined thresholds to determine how many fish’ images are

represented by each connected component.

We use image moments to approximate the shape of a fish in a single-fish connected

component as an elongated ellipse. Image moments were introduced by Hu in 1962 [51]

and have been widely used in computer vision applications since; see the review by

Prokop and Reeves [99]. Consider a set of n pixels, O = {(x1, y1), . . . , (xn, yn)}. When

O is a connected component that corresponds to the image of a single fish, we say

that O is that fish’s blob.

The (j, l)th image moment, Mj,l, of O is defined as

Mj,l ,
∑

(x,y)∈O

xjyl =
n∑

k=1

xjky
l
k.

The (0, 0)th moment is the number of pixels in O and therefore is equal to its area.

The centroid, (xcm, ycm), of O is

(xcm, ycm) ,

(
M1,0

M0,0

,
M0,1

M0,0

)
. (5.1)

The centroid of a fish is typically closer to the fish’s head than it is to the tail, because

the head is wider than the tail.

The central moments of O are important quantities because they provide a useful

set of shape-invariant quantities [99]. The (j, l)th central moment, µj,l, is defined as

µj,l ,
∑

x,y∈O

(x− xcm)j (y − ycm)l .

157

The shape of O can be approximated as an ellipse centered at (xcm, ycm) and with

semi-major axis




2

(
µ2,0 + µ0,2 +

√
(µ2,0 − µ0,2)2 + 4µ2

11

)

µ0,0




1
2

(5.2)

and semi-minor axis




2

(
µ2,0 + µ0,2 −

√
(µ2,0 − µ0,2)2 + 4µ2

11

)

µ0,0




1
2

. (5.3)

The orientation angle of the semi-major axis of the ellipse is

θm =
1

2
tan−1 2µ1,1

µ2,0 − µ0,2

, (5.4)

where a four-quadrant arctangent must be used (e.g., the function called atan2 in

both Matlab and C). We call this ellipse the moment ellipse of O.

When the set O is the blob of a single fish, we take (xcm, ycm) as a measurement

of the location of that fish. Using θm to measure the orientation of the fish leads to

an ambiguity: does θm point toward the head of the fish or does θm point toward the

tail of the fish (in which case θm +π points toward the head)? This ambiguity results

from the shape-invariance of µ1,1, µ2,0, and µ0,2 with respect to mirroring O about

the ellipse’s axes.

To discriminate between the head and tail directions, we consider the skewness

of the distribution of pixels along the θm direction. The skewness of the probability

distribution of a random variable, X, gives a quantitative measure of its asymmetry

and is defined as

γ , E

[
(X − µX)3

σ3
X

]
,

158

where µX is the mean value of X and σX is the variance of X. When a distribu-

tion has a positive (negative) skewness, it tails towards positive (negative) values.

For example, the distribution histogram shown in Fig. 5.6b has positive skewness

because the distribution tail is longer on the right than on the left. The method we

describe here for using the skewness of the pixel distribution to estimate orientation

is discussed in general by Prokop and Reeves [99]. DeFroment [34] suggested using it

for discriminating the head/tail direction of fish. Let qθm be the unit vector in the

direction θm, i.e.,

qθm =




cos θm

sin θm


 .

Now consider a pixel at location (x, y) and project its position relative to the centroid,

i.e., (x − xcm, y − ycm), into the direction qθm . Let ρ(x, y) be the coordinate of this

projection for the pixel at location (x, y):

ρ(x, y) ,



x− xcm
y − ycm




T

qθm = (x− xcm) cos θm + (y − ycm) sin θm. (5.5)

By construction, the mean value of ρ(x, y) over all (x, y) ∈ O is zero. The skewness

of the values of ρ(x, y) over all (x, y) ∈ O is therefore

γ =
1

n

∑

(x,y)∈O

(
ρ(x, y)

σ(ρ)

)3

, (5.6)

where σ(ρ) is the standard deviation of ρ(x, y) over all (x, y) ∈ O. Because σ(ρ) > 0,

the sign of γ is the same as the sign of

γ̄ =
∑

(x,y)∈O

(ρ(x, y))3 .

159

By substituting (5.5) into this expression, we obtain the following expression for γ̄ in

terms of central moments up to the third order.

γ̄ = µ3,0 cos3 θm + 3µ2,1 cos2 θm sin θm + 3µ1,2 cos θm sin2 θmµ0,3 sin3 θm. (5.7)

Because the centroid of the fish is closer to the head than it is to the tail, the sign

of the skewness — which is equal to the sign of γ̄ — determines whether θm points

toward the head or the tail as follows. Negative skewness implies that the majority of

the pixels in O have ρ3(x, y) < 0 and therefore θm points toward the head. Likewise,

positive skewness implies that θm points toward the tail. We therefore arrive at the

following adjustment rule for determining whether θm or θm + π is the orientation of

the fish.

θm ←−





θm + π, γ̄ > 0

θm, γ̄ ≤ 0
, (5.8)

where γ̄ is calculated using (5.7).

Fig. 5.6 shows the moment ellipse for the blob of the fish shown in Fig. 5.5.

The blob for this fish is the largest connected component in the threshold image in

Fig. 5.5c (there are three small connected components around the tail of the fish).

The θm direction for this blob points toward the tail of the fish. Fig. 5.6b shows the

histogram of the values of ρ(x, y) for the blob; note that the distribution has positive

skewness because it tails to the right more than to the left. The value of γ̄ for this

blob is γ̄ = 1.5 × 107, therefore applying the rule (5.8) correctly results in the head

direction being adjusted to θm + π.

We use an expectation-maximization mixture-of-gaussians (EMMG) algorithm to

resolve connected components that contain multiple fish. EMMG uses an expectation-

maximization technique to fit a sample of points to a mixture-of-gaussians distribution

model. The expectation-maximization (EM) technique for estimating the parameters

160

(a)

−40 −20 0 20 40 60
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

ρ [pixels]

F
re

q
u

en
cy

(b)

Figure 5.6: (a) The largest connected component extracted from the threshold image
in Fig. 5.5c. Its moment ellipse is drawn in red, the centroid is marked with a red
“+”, and the θm direction is indicated by the blue arrow. Note that θm points toward
the tail in this case. (b) Histogram of the values of ρ for the connected component
in (a). The distribution is skewed toward positive values of ρ (i.e., the distribution
tails to the right more than to the left), indicating that the tail is in that direction
and θm should be adjusted as per (5.8).

161

of statistical distributions was formalized by Baum et al. [7] (see also [11] for a de-

scription of EM algorithms and mixture models applied to pattern recognition). A

mixture-of-gaussians model is a natural choice to model the distribution of pixels in

an image of multiple fish because the level sets of normal distributions are ellipses

and, as discussed above, the shape of a fish can be modeled as an elongated ellipse.

The EM technique extends naturally to mixture-of-gaussian models. See [10] and [38]

for general derivations of the EMMG model and discussions of their implementation.

Our implementation follows Example 2 in Section 4 of [38].

The ith distribution in the mixture model has five parameters: its mean, (x′i, y
′
i),

and the three independent values of its symmetric and positive definite covariance

matrix, Σi. The likelihood that the pixel at location (x, y) belongs to the ith of n

distributions is

pi(x, y) ,
1∑n

j=1 p(x, y|j)
p(x, y|i) (5.9)

where

p(x, y|i) , 1

2π|Σi|
e−

1
2
di
TΣ−1

i di , (5.10)

di =



x− x′i
y − y′i


 ,

is the probability of observing a pixel at location (x, y) due to the ith distribution. The

pixel at location (x, y) has a maximum likelihood of belonging to the ith distribution if

pi(x, y) > pj(x, y), j 6= i. As described below, we also use the dimensionless quantity

si(x, y) , dTi Σ−1
i di, (5.11)

which describes how close the point (x, y) is to the ith distribution. Note that the

level sets of the ith normal distribution are equivalent to the level sets of si(x, y).

162

We implemented an EMMG algorithm in C++ that takes as input an image of

a connected component and a count, n, of how many fishes’ images are represented

in that connected component, and produces as output a label for each pixel that

describes to which of the n normal distributions that pixel belongs. The algorithm is

initialized by uniformly arranging normal distributions to completely cover the area

of the connected component. We iterate the EMMG algorithm until either numerical

convergence of the parameters is obtained or a preset maximum number of iterations

is carried out. Typically less than 10 iterations are required. Then, we label each pixel

according to the following rules. The pixel is labeled as belonging to the distribution

for which it has the maximum likelihood. The pixel is also labeled as belonging to

any distribution for which si(x, y) ≤ 4. Note that a pixel can be labeled as belonging

to more than one distribution. That is, a pixel may belong to the image of more than

one fish.

We construct n fish blobs from the n distributions estimated by the EMMG al-

gorithm by assigning each pixel to the ith blob if it is labeled as belonging to the ith

distribution. The centroid and orientation of each fish is then calculated from the

blobs using the moment-based methods described above.

Fig. 5.7 shows an example of the EMMG algorithm applied to an image of a

connected component that was generated by superimposing three overlapping ellipses

(outlined in white). The ellipses generated from the EMMG algorithm are outlined

in green, and closely match the input ellipses. The largest error is in the bottom left

ellipse and this error is most apparent in the region where all three ellipses overlap.

The values of pi(x, y) (as in (5.9)) and p(x, y|i) (as in (5.10)) are shown in Fig. 5.7b

and Fig. 5.7c, respectively. Note that the values of pi(x, y) are high where the ellipses

do not overlap and lower where the ellipses do overlap.

163

X [pixels]

Y
 [

p
ix

el
s]

60 80 100 120 140 160 180 200 220

40

60

80

100

120

140

160

180

200

1

2

3

(a)

50

100

150

200

50

100

150

200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x 10
−3

X [pixels]Y [pixels]

p
(x

,y
|i)

1

2

3

(b)

50

100

150

200

50

100

150

200

0

0.2

0.4

0.6

0.8

1

X [pixels]Y [pixels]

p
i(x

,y
)

1
2

3

(c)

Figure 5.7: Illustration of the EMMG algorithm. (a) Binary image input into the
algorithm and the ellipses generated by the algorithm. The image is shown in inverse
(i.e., black pixels are in the connected component). The input image was generated
by superimposing three ellipses. The input ellipses are outlined in white. The output
ellipses are outlined in green. (b) The values of p(x, y|i) (as in (5.10)) for each
distribution. (c) The values of pi(x, y) (as in (5.9)) for each distribution. In (b) and
(c) one color is used per distribution. In (a), (b), and (c), the distribution numbers
are labeled.

164

5.2.2 State Estimation

We describe here how we use the results of the segmentation process above — a list

of fish centroids and orientations — to estimate the dynamic states of the fish. The

state of the kth tracked fish at time instant t is

x̂k(t) =




x̂k(t)

ŷk(t)

θ̂k(t)

ŝk(t)



,

where (x̂k(t), ŷk(t)) is its estimated position, θ̂k is its estimated orientation, and ŝk(t)

is its estimated speed. We use an unscented Kalman filter (UKF) to estimate these

quantities using the blob measurements and a dynamical model of the motion of the

fish. We assume that the dynamics of each fish are independent and therefore we use

a separate UKF for each fish. In reality, the dynamics of each fish are affected by all

of the other fish and the robotic fish; the assumption of independence serves to both

simplify the implementation and to avoid biasing the state estimates by including

additional assumptions about the interactions between fish.

We begin by establishing notation for the measurement variables and the inputs

to each UKF. Using this notation, we then discuss the problem of data association;

that is, determining which measurement should be assigned to which tracked fish.

Then, we describe the operation of the UKF and the dynamical model that underlies

its operation. Finally, we describe some additional processing steps that must be

undertaken to ensure that the heading angle measurements are correct and in the

right format for the UKF.

The input to the state estimation step is the collection of centroids and orientations

that are calculated during the blobbing step, as described in Sec. 5.2.1. The jth fish’s

165

blob measurements at time step t are labeled as

z̃j(t) =




x̃j(t)

ỹj(t)

θ̃j(t)



,

where (x̃j(t), ỹj(t)) is the blob centroid as calculated in (5.1) and θ̃j(t) is the blob

orientation as calculated by (5.4) and corrected according to (5.8). The input to the

kth UKF at time step t is the measurement vector,

z̄k(t) =




x̄k(t)

ȳk(t)

θ̄k(t)



,

and z̄k(t) = z̃j(t) for some j. The problem of data association is to determine the

mapping between the blob measurement j and the tracked fish k. The ordering of

the blob measurements has no guaranteed ordering and therefore the data association

mapping must be re-evaluated at every time step.

To solve the data association problem, we use the efficient Hungarian assignment

algorithm developed by Kuhn [64] and expanded by Munkres [81]. We leverage an

implementation of this algorithm written in C by Gerkey [45]. For each pair (j, k),

we calculate the squared distance,

d2
j,k(t) = (x̂k(t− 1)− x̃j(t))2 + (ŷk(t− 1)− ỹj(t))2 ,

166

between the previously estimated position of the kth fish† and centroid of the jth blob.

The Hungarian algorithm finds an assignment j′(k) for each k such that
∑

k d
2
j′(k),k(t)

is minimized. The UKF measurement for the kth fish is then z̄k(t) = z̃j′(k)(t).

The UKF iteration at time instant t has two steps: prediction and update. The

predicted state, xk(t), is based on the previously-estimated state and uses the dy-

namical model

xk(t) = x̂k(t− 1) + ∆t




ŝk(t− 1) cos θ̂k(t− 1)

ŝk(t− 1) sin θ̂k(t− 1)

0

0




+ ζk(t), (5.12)

where ∆t = 0.1 s is the time-step length and ζk(t) is a disturbance vector. The

disturbance vector, ζk(t), is assumed to be drawn from a normal distribution with

zero mean and covariance matrix

Q =




σ2
d 0 0 0

0 σ2
d 0 0

0 0 σ2
θ 0

0 0 0 σ2
s



,

where σd, σθ, and σs are disturbance variances for position, heading, and speed,

respectively. The disturbance vectors are assumed to be independent at each time

step and for each fish. The values of σd, σθ, and σs can be modified on-line to tune

tracking performance as needed. In the UKF update step, the state estimate, x̂k(t),

†We have also tried using the UKF’s predicted position of the kth fish, taken from xk(t) as
calculated in (5.12), to calculate the squared distance. The previous position, (x̂k(t− 1), ŷk(t− 1))
gives better results in practice.

167

is updated by comparing the measurement z̄k(t) with the predicted measurement,

zk(t) =




1 0 0 0

0 1 0 0

0 0 1 0




x̂k(t).

The calculations that produce the updated state estimate are described in [54] and

[125]. These calculations are based on the state propagation model (5.12) and a noisy

measurement model, z̃k(t) = zk(t)+ηk(t), where ηk(t) is the measurement noise. We

assume that the measurement noise is drawn from a normal distribution with zero

mean and covariance matrix

R =




σ2
pm 0 0

0 σ2
pm 0

0 0 σ2
θm



,

where σpm and σθm are the variance of the position and heading measurement errors,

respectively. The values of σpm and σθm can be modified on-line to tune tracking

performance as needed. The measurement errors are assumed to be independent at

each time step and for each fish.

The UKF works well with the nonlinear dynamics (5.12) because it uses several

copies of the previous state estimate to calculate the new state estimate using the

full nonlinear dynamics and allows the application of nonlinear constraints (for ex-

ample, the speed may not be negative). The state copies are produced by offsetting

the previous state estimate in symmetric pairs that are distributed according to a

dynamic estimate of the covariance of the state estimation error. Our implementa-

tion uses the original state estimate, two state copies for each element of the state,

two copies for each diagonal element of Q, and two copies for each diagonal element

of R, for a total of 23 copies of the state. The source code of our implementation

168

is available online at http://github.com/leonard-lab/MADTraC/blob/master/MT/

MT_Core/support/UKF.cpp.

We perform two additional processing steps on each measurement before it is used

in a UKF. Despite the correction rule (5.8), there are occasional errors in the blob

orientation measurements with respect to the head/tail direction (i.e., the measured

orientation could be off by π rad). The first processing step addresses these pos-

sible errors. The second processing step addresses the fact that, for continuity, we

require the orientation measurement to evolve over R, whereas the blob orientation

measurement is always in the range [−π, π].

For the first processing step, we keep a history of the estimated position of each fish

for five time steps. If the fish’s displacement over those time steps is at least one half

of a body length, then we use the angle of the displacement, α , tan−1 ŷk(t)−ŷk(t−5)
x̂k(t)−x̂k(t)

,

to align the orientation measurement θ̄k(t). The alignment rule is

θ̄k(t)←−





θ̄k(t) + π,
∣∣∣cos θ̄k(t)−α

2

∣∣∣ ≤ ρ

θ̄k(t),
∣∣∣cos θ̄k(t)−α

2

∣∣∣ > ρ
,

where ρ parameterizes the degree of alignment required. We use ρ =
√

2
2

because it

corresponds to flipping θ̄k(t) if it disagrees with the displacement direction by more

than π
2

radians.

For the second processing step, we modify the value of the orientation measure-

ment, θ̄k(t), so that its value is within π radians of the previous orientation estimate,

θ̂k(t−1), without changing its phasor direction. This is accomplished using the update

rule

θ̄k(t)←− θ̂k(t− 1) + tan−1
sin
(
θ̄k(t)− θ̂k(t− 1)

)

cos
(
θ̄k(t)− θ̂k(t− 1)

) .

As an example, suppose that the previous estimate is θ̂k(t − 1) = π rad and the

measurement is θ̄k(t) = −3.13 radians. In this example, the heading and measurement

169

http://github.com/leonard-lab/MADTraC/blob/master/MT/MT_Core/support/UKF.cpp
http://github.com/leonard-lab/MADTraC/blob/master/MT/MT_Core/support/UKF.cpp

correspond to roughly the same angle but with very different numerical values, which

would cause the UKF to incorrectly estimate the measurement error and produce a

bad update. Following the above update rule, the measurement is correctly updated

to θ̄k(t) = −3.13 + 2π ≈ 3.15 radians. For both processing steps, it is important to

calculate the arctangent using a four-quadrant method. We use the C function atan2

in our implementation.

5.2.3 Estimating the Properties of Fish Schools

We use the estimated states of individual live fish to estimate properties of the fish

school in real-time. We can then use these estimates to calculate commands for

the robotic fish in an experiment. For example, we can estimate the location of the

centroid of the fish school by averaging the positions of the live fish. Similarly, we can

estimate the linear momentum of the school by summing their estimated velocities

(assuming the fish have equal masses).

We have been able to track tens of fish with an overall bandwidth of about 10 Hz

on commodity hardware. The majority of the processing occurs during the segmen-

tation step and the data association portion of the state estimation step. The UKF

calculations consume a relatively small portion of each time step. To track larger

numbers of fish, the overall bandwidth of the system would need to be reduced be-

cause the segmentation would be more difficult and therefore more computationally

expensive, and the number of unscented Kalman filters would need to be increased.

Reducing bandwidth is unacceptable because our ability to stably control the robotic

fish is reduced and because we lose the ability to react to the quickly changing be-

havior of the live fish. We overcome this limitation by estimating the properties of

the fish school from fish that we segment from the image at each time step. That

is, we extract blob estimates of a large portion of the fish in the school using the

methods described in Sec. 5.2.1, but do not necessarily track all of the fish from time

170

step to time step. This reduces the overall computational load because we do not

need to solve the association problem for those fish, nor do we estimate their states

dynamically using one UKF for each fish. We further reduce the computational load

by rejecting multi-fish connected components from this process, thus eliminating the

need to perform the computationally expensive EMMG algorithm for the fish that we

are not tracking. The remaining segmentation steps — background subtraction and

connected component labeling — are relatively computationally inexpensive.

We carry out the segmentation step twice for each video frame; once to measure

the positions and orientations of the fish that we are fully tracking (e.g., the robotic

fish) and once to measure the positions and orientations of a subset of fish that we

will use to estimate properties of the school. Performance of the two segmentations

can be tuned by changing the thresholds on background subtraction (TB above) and

on blob size independently for both segmentations. The size of the subset of fish

that is used to estimate properties of the school is dependent on the values of the

thresholds used in the segmentation algorithm. Fish that are omitted from this subset

are typically either too small or are clustered with other fish. Small fish are difficult

to distinguish from image noise and produce errors in orientation estimates with a

higher frequency, and clustered fish produce large multi-fish connected components

that are omitted. Therefore, the error properties of estimating the school’s centroid

location, linear momentum, or any of the quantities discussed below are dependent

on the distribution properties of small fish and clusters within the school. These

properties are difficult to predict and may vary over the course of an experiment, but

we may optimistically assume that the errors are uniformly distributed across the

school and that therefore the school property estimation errors are small.

To estimate the polarity of the school, we compute the magnitude of the complex

order parameter, |pθ|, as defined in (4.5). In this case, the phase set θ consists of

the measured orientations of all available fish. Recall that the value of |pθ| gives a

171

measure of synchrony, and that |pθ| ∈ [0, 1]. When |pθ| = 1, the school is maximally

polarized and all of the fish are facing the same direction. When |pθ| = 0, the school is

minimally polarized. This can occur, for example, if the fish are uniformly distributed

while moving around a circle, or if the fish are milling around and moving in random

directions that are uniformly distributed. See [91] for further examples of using the

complex order parameter to classify the motion patterns of schooling fish.

We can estimate the boundary of the fish school by computing a bounding ellipse

based on spatial moments. These calculations are identical to the ones described

in Sec. 5.2.1 for estimating the orientation of a fish from its blob, except that here

we use the measured positions of all of the fish to compute spatial moments rather

than using pixel locations to compute image moments. That is, (j, l)th spatial central

moment, µj,l is

µj,l =
Nm∑

k=1

(xk − xc)j (yk − yc)l

where (xk, yk) is the measured position of the kth fish,

(xc, yc) =

(
1

Nm

Nm∑

k=1

xk,
1

Nm

Nm∑

k=1

yk

)
(5.13)

is the location of the centroid of the school, and Nm is the number of fish whose

position and orientation measurements are available. Note that we use the same µj,l

notation here for spatial central moments of the school that we have used above for

image central moments in Sec. 5.2.1; the two concepts are analogous except that here

we consider the positions of fish rather than the positions of pixels. Note also that

µ0,0 = Nm. Using the spatial central moments, the semi-major and semi-minor axes

of the bounding ellipse can then be calculated using (5.2) and (5.3), respectively, and

its orientation can be calculated using (5.4). Fig. 5.8 shows an example of estimating

the bounding ellipse of a school of fish. In this case, the bounding ellipse poorly

represents the shape of the school because the fish are spread far apart and a small

172

Figure 5.8: A video frame captured from the robotic fish testbed’s tracking and control
software, showing a robotic predator fish chasing the centroid of a live school of golden
shiners. The robotic predator fish’s position and orientation are represented by a
white dot and arrow, respectively. The red square is the tracking search window for
the robotic predator fish. The blue dots and small blue arrows indicate the positions
and directions of segmented fish within the school. The background subtraction
threshold, τ , was set relatively high so that a relatively small number of the fish
are segmented, thus increasing the closed-loop speed of the system. The green circle
indicates the estimated centroid location of the school, and the orange ellipse indicates
the moment-based estimation of the bounding ellipse. The white regions in the image
are caused by reflections of overhead lights in the laboratory. An underwater camera
is mounted in the lower-left diagonal of the tank. This figure first appeared in [115].

subset (the ones marked with blue dots) of the fish are used to estimate it. Much

more accurate bounding ellipse calculations are shown in Fig. 5.9.

Clustering techniques can be used to detect splits in the group. One computation-

ally inexpensive method to find clusters is to subsample the image and then perform

173

connected-component labeling on the subsampled image. Fig. 5.9 shows four video

snapshots showing the application of this technique used to identify two separate

groups of fish (Fig. 5.9a) as they merge into a single, larger, group (Figs. 5.9b-5.9d).

The bounding ellipses shown in Figs. 5.9a-5.9c provide good approximations of the

school shapes because the fish are relatively densely spaced and the boundary of the

school is roughly ellipsoidal. Note, however, that in Fig. 5.9d, the robotic fish (la-

beled with a thick blue line in the figure) has impacted the shape of the group and the

bounding ellipse no longer accurately represents the boundary of the school, partic-

ularly near the robotic fish. To handle schools with more complex boundaries, as in

Fig. 5.8 and Fig. 5.9d, we could employ more sophisticated computational geometry

methods that are available for estimating the boundaries of shapes based on a sam-

pling of points. Two viable alternatives include convex hull computation (for which

there are many algorithms available) and alpha shape algorithms (see, for example,

Edelsbrunner [39]).

5.3 Experimental Demonstrations

In this section, we describe two experimental demonstrations that use our testbed to

enable a robotic fish to interact with a live fish school. Both of these experiments

use the robotic fish to mimic a predator fish using the koi model shown in 5.3b. The

same group of about 100 golden shiners was used for both experiments. These are

proof-of-concept demonstrations of what is possible with this testbed.

5.3.1 School Centroid Chasing

In this demonstration, one robotic predator fish uses real-time feedback to continually

follow the centroid of a live fish school. The school centroid is estimated as in (5.13),

using the subset of the school that is segmented at each time step. We use feedback

174

(a) (b)

(c) (d)

Figure 5.9: A sequence of video frames of a robotic predator fish approaching a school
of live golden shiners, with overlayed visualization. The frames are ordered in time
with frame (a) being the earliest. In all four frames, the position and orientation
of the robotic predator fish is indicated by the thick blue line. A subsampling and
clustering algorithm (see text) is being used to detect splits in the group, as shown in
frame (a). The subgroups merge in frame (b) and the robotic predator fish approaches
the group in frame (c). In frame (d), the robotic predator fish has moved into the
school and caused the shape of the school to deform as nearby fish swim away from
it. This figure first appeared in [115].

175

control law described in Sec. 5.1.2 with the target location, (x′(t), y′(t)), set equal to

the school centroid estimate at each time step. That is, the robotic fish is continually

steering to head toward the centroid of the school.

Real-time feedback control of the robotic fish is required for this type of experiment

because the location of the centroid of the school cannot be known ahead of time. As

the robot moves toward the school, the fish react to the robot and the location of the

centroid moves. Using real-time feedback allows the robot to respond quickly to the

fish school during this interaction. A human operator (for example, with a remote

control) could perform this type of experiment, but automation introduces superior

repeatability and responsiveness. Furthermore, the programmed interaction rules can

be accounted for in off-line analysis of the fish school.

Fig. 5.8 shows one video frame that was captured from the tracking and control

software while it was running a demonstration of school centroid chasing. The location

of the robotic fish is marked with a white dot, and its orientation is indicated with a

white arrow. Segmentation of the robotic fish was limited at each time step to a small

window around its last known position; this window is indicated in Fig. 5.8 with a

red rectangle. If the robotic fish was not found in this window, then the segmentation

algorithm was repeated for the entire image. Individual fish were segmented from the

image but their velocities were not estimated (i.e., they were not tracked from frame

to frame); the blue dots and arrows in Fig. 5.8 indicate the positions and orientations

of all of the fish that were found in that image. The background subtraction threshold,

τ , was set relatively high for performance reasons. Consequently, a small portion of

the fish are segmented from the image. The green circle in Fig. 5.8 indicates the

estimated location of the fish school’s centroid, and the orange ellipse is the bounding

ellipse that was estimated using the methods described above. Note that the robotic

fish’s orientation is pointed directly toward the estimated centroid location.

176

5.3.2 Triggered Dart Toward School

In this demonstration, the robotic predator fish begins in a random position within

the tank and waits for a triggering event. When the triggering event occurs, the

robotic fish accelerates quickly toward the estimated location of the school centroid.

For this demonstration, the triggering event was the school’s polarity dropping below

a threshold value. We estimate the polarity by calculating the complex order param-

eter, |pθ|(t), as defined in (4.5) and discussed in Sec. 5.2.3 above. The value of |pθ| is

calculated from the orientations of all fish segmented from the current overhead cam-

era image. The value of the polarity threshold was 0.5. As discussed above, low values

of polarity correspond to milling behavior of the school. Similar to the school centroid

chasing demonstration, we use a relatively low value of the background subtraction

threshold, τ .

Real-time feedback is crucial for repeatability and responsiveness in this type of

experiment. The closed-loop system can wait an indefinite amount of time for the

fish school to be in the right state before triggering an attack, and an attack occurs

immediately after the trigger condition occurs. The triggering event can correspond

to any number of conditions that we can calculate based on the state of the fish school.

For example, an attack could be triggered when the school is in a particular position

and/or when the school has a particular shape. The triggering event can also depend

on dynamic or time-integrated quantities. For example, we could trigger an attack

when the school is moving in a particular direction or when the school has stayed in

a particular location for more than a few seconds. The attack need not be directed

at the centroid of the school; the robotic fish could dart toward the nearest fish or

toward a fish that is separated from the group. Facilitating these various conditions

and behaviors is achieved mainly by changing the control software.

177

5.4 Extensions

In this section, we describe some extensions of the methods described above in this

chapter. Many of these have emerged as natural extensions because they address a

common need to track multiple objects from overhead video. Furthermore, in most

of these extensions the objects to be tracked share a very similar appearance to one

another and can be potentially very close together, leading to many of the same

challenges that were addressed when designing the real-time fish tracking algorithms

for the robotic fish testbed.

We begin in Sec. 5.4.1 by giving a brief description of some of the other applications

using our tracking techniques and a synopsis of the unique challenges associated with

each one. In Sec. 5.4.2, we describe the MADTraC C++ library that we have created

in an effort to facilitate rapid development of these applications by using shared code.

The projects that we describe here have highly symbiotic relationships with one

another. While the robotic fish testbed was the initial inspiration for this work and the

focus of the earliest development efforts, all of these applications have simultaneously

been in active development (to some extent) for the past few years. As a result,

improvements made or bugs discovered while working on one application often lead

to improvements in the other applications — either directly or via improvements to

MADTraC. In Sec. 5.4.3, we describe a system that was designed to enable human-

in-the-loop experiments on the Beluga testbed (described below); in the future, this

system can be directly applied to the robotic fish testbed to enable human-in-the-

loop experiments with fish schools as well as high-level control of the system through

Matlab scripting.

178

5.4.1 Other Testbeds and Tracking Applications

In this section, we briefly describe four other applications of the tracking techniques

described above in this chapter. The first two applications are off-line (i.e., not

real-time) uses of the tracking software to reconstruct trajectory data from overhead

video. The second two applications are real-time robotics testbeds that use overhead

cameras for localization of the robots in a manner that is very similar to the robotic

fish testbed. For each application, we give a brief overview and a synopsis of the

design challenges unique to that application.

off-line Fish Tracking

It is straightforward to disable the robot control and communication modules in the

software that was developed for the robotic fish testbed and use it to reconstruct the

trajectories of fish by tracking them in pre-recorded video. This is the method that

was used to obtain the killifish trajectory data used in Chap. 2. Figs. 2.3-2.5 show

example trajectories for schools of two and three killifish. Fig. 5.10 shows an example

of tracking 10 golden shiners. Note that the two left-most fish are overlapping and

correctly segmented.

Because the tracking is done off-line, the bandwidth of the system (in this case, the

tracking frame rate) is less crucial and therefore we can adjust the tracking parameters

to favor tracking performance at the cost of throughput speed. For example, the

background subtraction threshold, τ , and the minimum connected component size

can both be reduced, which leads to better segmentation but also admits more noise

and therefore requires more computational effort to filter out the noise. Furthermore,

high resolution and high frame-rate video can be used because the images do not need

to be manipulated in real-time. The example tracking output in Fig. 5.10 was created

from high definition video; the image is zoomed in to the immediate area around the

fish.

179

Figure 5.10: Snapshot of ten golden shiners that were tracked off-line from high-
definition overhead video. This is a zoomed-in view of just the portion of the arena
around the fish. Each colored dot represents the estimated position of a fish. Each
arrow represents the heading angle of that fish: the shorter arrow for the measured
orientation and the longer arrow for the heading estimated by the UKF. This figure
first appeared in [115].

Dancer Tracking

A modified version of the fish tracking software was used to track the locations of

dancers from an overhead video. The dancers were participating in a series of “hu-

man flocking” experiments, in which each dancer was instructed to follow a set of

motion rules that are inspired by common models of biological collective motion.

The reconstructed trajectories were used to analyze the communication topology of

the dancers with respect to group leadership. See [72] for further description of the

human flocking experiments and their analysis.

Fig. 5.11 shows a snapshot from the tracking of 13 dancers performing a human

flocking experiment. Each dancer wears a yellow hat in order to improve contrast

from the background. Instead of background subtraction, a color-based segmentation

algorithm was used. A different dynamical model than the one described in Sec. 5.2.2

for fish tracking was used for each dancer’s UKF; in particular, there is no orientation

measurement. The orientation of each dancer was therefore estimated from their

180

Figure 5.11: Snapshot of output from the tracking of dancers performing human
flocking experiments. The estimated position of each dancer is indicated with an
colored dot. The estimated heading of each dancer is indicated with an arrow. The
dancers are deliberately blurred to protect their privacy. This figure first appeared
in [72].

velocity. Thus, the orientations must be taken as approximations because each dancer

is free to turn their head while they move about. More sophisticated techniques would

be required to estimate the true orientations of the dancers.

MiaBot Pro Testbed

The robotic fish testbed can be used as a cooperative mobile robotics testbed with a

small amount of additional effort. By removing the tank (see Fig. 5.1) and modifying

the tracking software to track the MiaBot Pro robots directly, we can perform a

variety of coordinated control experiments.

Fig. 5.12 shows a snapshot of a coordinated control experiment using the MiaBot

Pro robots. This experiment was performed using coordinated control laws that were

inspired by tensegrity structures (see, for example, [68]). The blue lines in Fig. 5.12

181

Figure 5.12: Snapshot of a coordinated control experiment using the MiaBot Pro
robots. The position of each robot is marked by a green circle. The orientation of
each robot is indicated by a red line.

represent the components of the virtual tensegrity structure underlying this control

algorithm. The light blue text near each robot is visual feedback of the positions and

orientations of each robot (the text has become illegible through video conversion

processes). The red number in the upper left is the number of frames that have

elapsed since the beginning of the experiment.

The MiaBot Pro robots have a square profile when viewed from above. Therefore,

their orientations cannot be estimated directly. To overcome this, we place markers

on the tops of the robots. In Fig. 5.12, colored markers are used. Some of the markers

can be seen beneath the green dots that mark the robots’ locations. The practice of

applying a marker to the top of a robot for identification and tracking purposes is

widely used. For example, this practice is used extensively in the RoboCup Small Size

League [42] (this is the robotic soccer league for which the MiaBot Pro robots were

182

originally designed). In the future, we may use black arrow-shaped markers printed

on white paper and glued to the robots. Arrow-shaped markers will work well because

the same moment-based algorithms can be used to estimate orientation that we used

to accurately estimate the orientation of fish. Note that our tracking algorithms can

be used to track individual robots without colored markers or other identifying marks.

Once the identities of the robots are established initially (via initial positions or by

selectively moving each robot in turn), our tracking algorithms are able to accurately

maintain the identities of the robots over time.

Beluga Underwater Vehicle Testbed

The Beluga underwater vehicle testbed was developed at the Dynamical Control Sys-

tems Laboratory (DCSL) at Princeton University to provide a facility for exploring

three-dimensional cooperative control laws in a variety of contexts, including human-

in-the-loop control and decision making. The following is an abridged description of

the system, focusing on how we track and control the Beluga robots using software

that was adapted from what was originally developed for the robotic fish testbed. For

a thorough description of the Beluga testbed, including design and model documen-

tation for the underwater vehicles, see the Ph.D. thesis of Andrew Stewart [108].

The Beluga testbed is built around a water tank that is 20 feet in diameter, 8

feet deep, and holds approximately 20,000 gallons of water. A tank-side computer

sends low-level motor controls to up to four underwater vehicles via cable tethers.

The vehicle platform is named “Beluga” and was designed to have four degrees of

freedom controlled by three actuators: a forward/reverse propeller, a vectoring servo

for the forward/reverse propeller, and a vertical propeller. Each vehicle’s pitch and

yaw are passively stabilized by a keel-hung ballast. Fig. 5.13a shows a view of the

water tank, and Fig. 5.13b shows one of the Beluga vehicles.

183

(a)

(b)

Figure 5.13: (a) A view of the Beluga testbed’s 20,000 gallon water tank. (b) A view
(taken with an underwater camera) of one of the Beluga vehicles. Note the fixed
vertical thruster on the top of the vehicle, the vectored thruster at the rear of the
vehicle, the ballast on the bottom of the vehicle, and the tether cable coming out of
the bottom of the vehicle. Photo credit for (a) and (b): Andrew Stewart.

The tank-side computer that controls the Beluga vehicles computes closed-loop

control commands using estimated positions and orientations of the vehicles. The

positions and orientations are estimated using four overhead cameras and a depth

sensor on each vehicle. Four cameras are required because the wide diameter of

the tank (20 feet) and height of the ceiling (about 9 feet above the water surface)

prohibit a single camera from having a sufficiently wide field of view. Fig. 5.14 shows

a a diagram of the system.

We modified the robotic fish testbed’s software to track the Beluga vehicles across

all four cameras and to compute and send low-level control signals to each vehicle.

184

Overhead Camera
System

Estimator

xi, yi, zi, θi
zi

Vehicle
Controller

Tether

Up to 4 vehicles

ui

zi

Formation
Controller

Network
Layer

Human
Interface

Information
Processing

Tank-side
Tracking and Control

Software

(Possibly Remote)
External Software

Tank

Figure 5.14: Diagram of the Beluga testbed system. (xi, yi, zi) is the position of the
ith vehicle, θi is its orientation in the x − y plane, si is its speed in the x − y plane,
and ui is its control input. The network layer and interface to external software is
described in further detail in Sec. 5.4.3. Note: Vehicles and tank are not to scale.
This diagram was modified from one created by Andrew Stewart and Paul Reverdy.

Using camera calibration data and the depth measurements from the vehicles, we are

able to measure the positions and orientations of the vehicles in real-world coordinates.

Camera calibration is difficult for this system due to refraction at the water’s surface.

We developed an iterative procedure that uses the known locations of several tank

features and the known water depth to calculate calibration parameters for each

camera. Minor modifications to the communications module were required to be able

to send commands to the Beluga vehicles and receive back depth measurements.

The real-time tracking algorithm described above in Sec. 5.2 was modified to cre-

ate the real-time tracking algorithm used for the Beluga testbed. Fig. 5.15 gives an

overview of the algorithm. The basic structure of the algorithm is similar to the one

used for the robotic fish testbed (see Fig. 5.4). We begin by isolating pixels in each of

the four camera frames that are likely to belong to the image of a robot using thresh-

olding in the hue, saturation, and value (HSV) color space. We then use a connected

component labeling algorithm (similar to the one described above in Sec. 5.2.1) to

group pixels together. The positions in world coordinates are converted into image

coordinates using the camera calibration data. From this, we can determine which

185

robots should be visible in which camera frames and use that information for EMMG

resolution (by setting the initial conditions of the algorithm using the previous po-

sitions and orientations), for data association, and to determine the measurement

size for the UKF (see below). The orientation of each robot is estimated using the

same moment-based method describe above for estimating the orientation of fish; the

head/tail discrimination algorithm can be applied directly because the overhead view

of the Beluga is very similar to that of a fish (it is elongated and wider toward the

front of the vehicle).

The state of the UKF used for the ith vehicle is

xi(t) =




xi(t)

yi(t)

zi(t)

θi(t)

żi(t)

si(t)

θ̇i(t)




,

where (xi, yi, zi) is the position, θi is the orientation in the x−y plane, si is the speed

in the x− y plane, żi is the vertical speed, and θ̇i is the turning rate. The dynamical

model used in the UKF was determined through a series of system identification

186

HSV
Thresholding

Camera Frames Connected
Component

Labeling

EMMG Cluster
Resolution

World → Image
Coordinates

In-Frame
Gating

Association
& Measurement

Filtering

Predict Update

Depth Measurements

Control Inputs

Predicted States

Estimated States

Image Processing / Segmentation (x 4 Cameras)

Unscented Kalman Filter
(x 4 Vehicles)

Image → World
Coordinates

Figure 5.15: Overview of the real-time tracking algorithm used for the Beluga testbed.
Thick lines represent collected measurements (i.e., multiple images, multiple vehicles).
The upper box contains steps that are carried out for each of the four cameras. The
lower box contains the UKF steps that are carried out for each vehicle.

187

experiments (see [108]). The UKF measurement input for the ith vehicle is

z̄i(t) =




xi,1

yi,1

θi,1
...

xi,nc

yi,nc

θi,nc

d0 − di




,

where the subscript pair (i, k) indicates the measurement for the ith vehicle from the

kth camera in which the vehicle appears, 1 ≤ nc ≤ 4 is the total number of cameras

in which the vehicle appears, d0 is the water depth, and di is the vehicle’s depth

measurement (d0−di gives a measurement of the vehicle’s height above the tank floor).

The UKF assumes that the measurements are corrupted by zero-mean normally-

distributed noise (very similar to what is described in Sec. 5.2.2) and that the noise

is uncorrelated (i.e., its covariance matrix is a diagonal matrix). The measurement

model is modified for each vehicle at each time step depending on how many cameras

have a view of the vehicle.

Fig. 5.16 shows a screenshot of the software tracking two “dummy” Beluga vehicles

in all four camera frames. Each dummy vehicle consists of a spare Beluga keel tied

to a string. Tracking of the dummy vehicles is identical to tracking of the Beluga

vehicles, except that the depth measurement is set to zero. Each image in Fig. 5.16 is

the view from a single camera with tracking results overlayed. We do not calculate a

merged view of the tank in real-time. The green/white arrows show the positions and

orientations of the two dummy vehicles that are measured from the segmentation step

(i.e., the input to the UKF). The red arrows show the filtered estimates of position

188

and orientation of the two dummy vehicles (i.e., the output of the UKF). Note that

the upper-most dummy vehicle appears to the right of the center of the tank (the

white circle) in the bottom-left image and it appears to the left of the center of the

tank in the bottom-right image. This is due to the geometry of the different cameras

relative to the tank center and the fact that the white circle is on the bottom of the

tank approximately 8 feet below the dummy vehicle, which is on the water’s surface.

There are two dummy vehicles being tracked in Fig. 5.16. Both dummy vehicles

appear in both the bottom-left and bottom-right camera views. The red arrow on

each image of a dummy vehicle is calculated by projecting the estimated position and

orientation of that vehicle back into image coordinates for that camera view using the

camera’s calibration data. There is only one UKF and one estimated position and

orientation for each vehicle at each time instant, though the number of measurement

inputs to the UKF (i.e., the size of z̄i(t)) can change depending on the number of

cameras that have a view of the vehicle. There are small differences between the

filtered estimates (red arrows) and the measurements (green/white arrows). The

differences are due to errors in the measurement output of the segmentation step,

which are contributed to by image noise and errors in the camera calibration data.

5.4.2 The MADTraC C++ Library

The MADTraC (Multi-Agent Dynamic Tracking and Control) C++ library was de-

veloped to aid in the development and management of the large shared code base

that we use in the robotic fish testbed, all of the projects listed above in Sec. 5.4.1,

and a few other projects. MADTraC is designed to provide basic functionality that

is needed for these projects. This functionality includes, for example

• video acquisition from file(s) and/or camera(s),

• visualization of the tracking results,

189

Figure 5.16: Snapshot of the real-time tracking in the Beluga testbed. Four desktop
windows are shown: one window for each of the four cameras, arranged by real-world
quadrants. The two vehicles appear in both the third and fourth (bottom left and
right, respectively) cameras. The arrows indicate the segmentation measurements
(green/white) and filtered estimates (red) of the positions and orientations of the
vehicles. The red rectangle around each vehicle shows the tracking search window for
that vehicle. One filtered estimate of the position and orientation is calculated for
each vehicle using measurements from each camera that has a view of that vehicle.
The locations and orientations of the red arrows are calculated by projecting the
filtered estimates back into image coordinates using the camera calibration data.

190

• serial communications with robots,

• common graphical user interface (GUI) elements,

• data output formatting,

• the ability for the user to modify parameters in real-time,

• persistence of parameters across application sessions,

• the ability to save screen captures (both single frames and movies),

and more. Some of the subprocesses of the tracking algorithms described above are

provided as modules in MADTraC: EMMG, connected component labeling, moment-

based shape estimation, and a very flexible UKF implementation. New real-time

tracking and control applications or off-line tracking applications can be developed

very quickly using these components and the common GUI framework supplied by

MADTraC. Because of this, MADTraC allows developers of new applications to focus

on developing solutions to their own unique tracking and control problems. MADTraC

is available to the public via the MIT license and can be found online at http:

//github.com/leonard-lab/MADTraC/.

MADTraC is written in C++ and makes heavy use of object-oriented program-

ming concepts, particularly inheritance and polymorphism (see any introductory text

on object oriented programming). For example, the basic GUI behavior can be easily

extended by creating a new class that inherits from one of the base MADTraC GUI

classes. Similarly, tracking and control classes that inherit from the MADTraC base

classes are automatically managed by the framework using polymorphism.

MADTraC was designed to be platform-independent to facilitate the wide vari-

ety of platforms present in the research computing ecosystem. One of the ways that

this is accomplished is by utilizing platform-independent third-party libraries. MAD-

TraC depends heavily on two such third-party libraries: OpenCV [16] and wxWid-

191

http://github.com/leonard-lab/MADTraC/
http://github.com/leonard-lab/MADTraC/

gets [127]. OpenCV is used for image processing and matrix operations. wxWidgets

is a cross-platform GUI library that provides native look-and-feel on most systems.

Build configuration is accomplished using CMake [60], a tool that is used to generate

platform-specific build files (e.g., Makefiles, Visual Studio projects, XCode projects,

etc.) from a single configuration script. We have also written wrapper classes that

provide a common interface to some of the low-level functionality such as serial com-

munications and FireWire and USB camera interfaces. MADTraC applications can

be compiled and run entirely with software development tools that are freely available

and free of charge.

Development of MADTraC has stabilized in the last two years while we focus on

applications such as the robotic fish testbed and the Beluga testbed. However, small

changes continue to be made as we discover them while working on new applications.

Furthermore, new features are occasionally “promoted” from applications to MAD-

TraC. For example, the Beluga testbed required a flexible controller infrastructure;

the solution that was developed for that testbed was then abstracted so that we can

provide its functionality as part of MADTraC and therefore use it in other testbeds

like the MiaBot Pro testbed. The inter-process communication module described in

the following section is an example of a module that was developed for the Beluga

testbed but is easily applicable to other MADTraC testbeds.

5.4.3 Inter-process Communication and Web Interfaces

In this section, we briefly describe a network layer that can be used with MADTraC-

based software. The network layer consists of an inter-process communication (IPC)

module that allows connections between the tracking and control software and exter-

nal processes. This module was developed primarily to support the Beluga testbed,

but it is very flexible and can be used in any MADTraC-based software. For example,

it can be used with the robotic fish testbed or the MiaBot Pro testbed.

192

We were motivated to create this module to enable experiments in which multiple

human subjects are able to control multiple Beluga vehicles to collaboratively accom-

plish a given task. Therefore we sought a solution that would allow us to exchange

information between the tracking and control application, which runs on the Beluga

testbed’s tank-side workstation, and potentially several user clients, which could be

located off-site. We accomplish this using the two-tiered server framework shown in

Fig. 5.17. The first tier is an IPC server written in the Ruby programming language

using the rhubarb [111] IPC server library. The second tier is a web server written

in Ruby using the Ruby on Rails web framework. This two-tier design leverages the

flexibility and low computational overhead of direct TCP/IP communication on the

tank-side workstation where low latency is important, and benefits from the increased

security and highly standardized design patterns of HTTP for external clients.

The IPC server essentially acts as a TCP/IP networked buffer with a simple string-

based interface‡. For example, we may open a network connection from the tracking

and control software to the IPC server and, at each time step, send a string of the

form

set position i x y z

to inform the IPC server that the ith robot is at position (x, y, z). Simultaneously, we

establish a network connection from another client§ and then can request the most

recent position of the ith robot from the IPC server by sending a string of the form

get position i

‡The operation of the IPC server is similar, but not identical, to a database management system
known as a “key-value store.”
§From the IPC server’s perspective, the web server and the tracking/control software are both

clients.

193

Tracking & Control
Software

(MADTraC, C++)

Tier 1: IPC Server
(rhubarb, Ruby)

Local Control
(Matlab)

Tier 2: Web Server
(Pod, Ruby on Rails)

Client
(Matlab/Browser)

States
Parameters

Commands
Parameters

Host ComputerTCP/IP
HTTP

REST API

Client
(Matlab/Browser)

Figure 5.17: Diagram of the two-tiered server framework used on the Beluga testbed.
The IPC server acts as a networked buffer with a simple string command protocol.
The web server facilitates external clients, particularly browser-based clients devel-
oped around the server’s REST API.

to which the IPC server sends a reply of the form

x y z

indicating that the position is (x, y, z). Similarly, the client software can send com-

mands to the tracking and control software via the IPC server. For example, to set a

waypoint for the ith robot at position (u, v, w), the client sends the string

set control waypoint i u v w

194

and the tracking and control software can request the most recent control for the ith

robot by sending the string

get control i

to which the IPC server responds

waypoint u v w.

By substituting kinematics for waypoint in the set control string, we can com-

mand the tracking and control software to set the speed, turning rate, and vertical

speed of the ith robot to u, v, and w, respectively. The Beluga project includes a

C++ module that can parse from the IPC server’s string protocol to numeric values

and vice versa. A set of Matlab functions for communicating with the IPC server are

also available.

The second-tier web server was designed to facilitate the development of web

browser-based client software. The web server exchanges positions, commands, and

other parameters with the tracking and control software by establishing a TCP/IP

client connection to the IPC server. Typically, the web server and IPC server are both

running simultaneously on the tank-side workstation. There are two user interfaces

built into the web server: a joystick-like interface for driving vehicles directly, and a

point-and-click interface for setting vehicle waypoints. Fig. 5.18 shows screen shots

of the two user interfaces. These user interfaces were created using HTML to lay out

the graphical elements and JavaScript to program the interactive components. The

user interfaces can be run in any modern web browser that has JavaScript enabled,

including both desktop and mobile (e.g., iPhone, iPad, etc.) browsers.

The web server is not limited to the joystick and waypoint user interfaces

shown in Fig. 5.18. Almost any user interface can be created for the Beluga

platform using HTML and JavaScript, which are standard tools for browser-

195

(a) (b)

Figure 5.18: User interfaces built into the web server. (a) Joystick-like interface: the
user sets the speed and turning rate by moving the black puck around the blue square
and sets the vertical thrust by moving the black slider up and down. (b) Waypoint
interface: the user can set waypoints by dragging the black pucks around the overhead
image of the tank and can set the vertical waypoint by moving the black sliders up
and down. The actual vehicle positions are indicated by the orange pucks/sliders,
and are updated in real-time. The user can directly enter numerical values in either
interface.

196

based applications and therefore have a large amount of learning materials avail-

able. We have implemented a RESTful API¶ on the Beluga web server, which

makes it relatively easy to write client code that accesses the positions and

control parameters of the Beluga vehicles. For example, to query the position

of the first vehicle, we need only make an HTTP GET request to the URL

http://pod.princeton.edu/positions/0 (the vehicle index is zero-based). To set

the waypoint of the third vehicle to the location (1, 2, 0), we make an HTTP POST

request to the url http://pod.princeton.edu/waypoints/2&x=1&y=2&z=0. Typi-

cally, in a browser-based user interface these requests are made in the background

using JavaScript. Then, the JavaScript parses the response from the server and

updates the user interface in some way (for example, in the waypoint user interface,

the orange pucks are moved to the correct location). Using JavaScript in this manner

to make HTTP requests in the background and then update the user interface is

called AJAX (asynchronous JavaScript and XML), and there are many JavaScript

libraries that provide wrapper functions to make this relatively easy to do. We use

the jQuery JavaScript library for this purpose.

Non-browser user interfaces are also possible using this framework. For example,

it is possible to communicate directly with the IPC server from an instance of Matlab

that is running on the tank-side workstation. This makes it possible to implement

high-level control algorithms using Matlab. Furthermore, Matlab provides a set of

functions for making HTTP requests and parsing the responses, therefore it is possible

to write Matlab clients that run on off-site computers.

¶REST stands for representational state transfer and is a common design pattern for web appli-
cations. API stands for application programming interface, and an API that adheres to the REST
design pattern is called a RESTful API.

197

Chapter 6

Conclusion and Future Work

In this dissertation we consider the role of the dynamics of relative motion on in-

formation flow within multi-agent systems. This work is inspired by observations

of coordinated speed oscillations in schools of banded killifish (F. diaphanus). We

present quantitative analysis of these observations in Ch. 2. In Ch. 3, we introduce

analysis tools that enable us to explore the benefits of the type of coordinated relative

motion exhibited by the killifish. The results in Ch. 3 are relevant both to the analysis

of biological collective motion and to the design of engineered systems, particularly

mobile sensor networks. In Ch. 4, we provide systematic methods for the design of

formations of mobile agents in which the agents are engaged in coordinated speed

oscillations. We introduce a testbed in Ch. 5 that facilitates further exploration of

the role of dynamic relative motion by enabling robotic fish to interact in real time

with a school of live fish.

Sec. 6.1 provides a more detailed presentation of the contributions of this disser-

tation by addressing the research questions posed in Ch. 1. In Sec. 6.2, we describe

related work that is ongoing and propose some topics for future research in this area.

198

6.1 Summary of Contributions

We present here a summary of the contributions of this dissertation by way of ad-

dressing the research questions that were posed in Ch. 1.

How often do killifish engage in coordinated speed oscillations, under what conditions

does this happen, and what are the average properties of these oscillations?

In Ch. 2, we introduce an algorithm that uses the Hilbert transform to detect

time segments during which killifish are engaging in speed oscillations by calculating

the instantaneous phase of the speed of each fish. By determining when multiple

fish are oscillating their speeds simultaneously at similar frequencies, we are able to

isolate sequences during which two or more killifish are engaged in coordinated speed

oscillations. We find that the killifish are engaged in coordinated speed oscillations a

majority of the time, and that the oscillations have an average frequency of approx-

imately 0.75 Hz and an average amplitude of approximately one half of the average

speed (see Table 2.2). Coordinated speed oscillations in two-fish schools tend to be

anti-synchronized. The phase relationship between speed oscillations in three-fish

schools is complex: there is always periodic relative motion present and typically at

least one pair of fish exhibits speed oscillations that are anti-synchronized.

We also find that killifish tend to move relative to one another so that the relative

bearing from a fish to its neighbor in the front is approximately 35-40 degrees (see

Fig. 2.6). Furthermore, because the fish are engaged in coordinated speed oscilla-

tions, they continuously move relative to one another and their spatial formations are

correspondingly modulated periodically in time. See Figs. 2.3- 2.5 for examples of

two- and three-fish spatial formations that result from coordinated speed oscillations.

Why do killifish engage in coordinated speed oscillations, how does relative motion

affect information passing in mobile groups in general, and can we apply these results

to improve engineered systems?

199

We show in Ch. 3 that killifish coordinated speed oscillations produce periodically

time-varying sensing topologies. Under certain assumptions about how the sensing

topologies are determined by the positions of the fish relative to one another, we

show that these time-varying sensing topologies result in a significant increase in the

speed at which the group can share information. We show this by computing the rate

of convergence to consensus over the periodically switching graphs representing the

sensing topologies. The rate of convergence to consensus is up to 50% greater with this

switching than it would be without switching. This suggests that speed oscillations,

and periodic relative motion in general, may serve to improve information passing in

mobile animal groups.

We also leverage the tools that we develop in Ch. 3 to study information-passing

benefits resulting from relative motion patterns and sensing conditions that are dif-

ferent from those that we have assumed for the killifish. These tools are especially

useful for engineered systems, such as multi-agent robotic systems, where the com-

munication and feedback mechanisms are known by design. For example, we show

that the sensing radius of an agent that is required to maintain connectivity can be

significantly reduced by introducing periodic relative motion among the agents (see,

for example, Fig. 3.6). We also show how to design the parameters of periodic rela-

tive motion for systems with periodic relative motion in order to maximize decision

making-performance (see Sec. 3.3.3).

In Ch. 4, we show that groups of mobile agents with constant turning rates that

are engaged in coordinated speed oscillations can yield motion patterns in which the

agents regularly cycle around a formation shape as the center of the formation shape

moves around a circle at a constant speed. Each individual agent in this type of motion

pattern periodically cycles its position relative to the center of the circle and the other

agents. That is, as a given individual agent moves around the formation shape, it

cycles through positions closer to the center of the circle than the other agents, at the

200

rear of the group, towards the outside of the circle, and at the front of the group. By

cycling around the formation shape in this way, each agent balances risk (being at

the outside of the circle) with safety (being at the inside of the circle) and leadership

(being at the front of the group) with the ability to infer visual information from the

group (when at the rear of the group). Furthermore, these kinds of formations can

improve mobile sensor network performance by enhancing the spatial distribution of

measurements of each agent and by introducing redundancy. That is, if one or more

agents are removed from the formation, the remaining agents can be redistributed by

dynamically adjusting the distribution of their speed phase arrangement.

How can we characterize the trajectories of individual agents undergoing periodic speed

modulations, can we design control laws to stabilize such agents into cohesive forma-

tions, and how can we design the speed modulation of a group of N agents to achieve

a desired formation?

We develop methods to characterize the trajectories of individual agents under-

going planar motion with constant turning rates and periodic speed modulations in

Sec. 4.2. The trajectory of a speed-modulated particle is described in terms of its

motion relative to a constant-speed virtual particle. The virtual particle has the same

constant turning rate as the speed-modulated particle and its speed is equal to the

average speed of the speed-modulated particle. The two particles have the same ini-

tial heading and the initial position of the virtual particle is chosen so that the centers

of both trajectories are the same. We first show that when the speed modulation is

sinusoidal, the locus of the motion of the speed-modulated particle in a frame that

is body-fixed and oriented with the constant-speed particle defines an ellipse. The

turning rate and the amplitude and frequency of the speed oscillation determine the

semi-major and semi-minor axis lengths of the ellipse. Because the virtual particle

has constant speed, its trajectory is along a circle whose radius is determined by its

speed and turning rate. Therefore, the trajectory of the particle with sinusoidal speed

201

oscillation is a composition of a circular component (due to the average speed) and

an elliptical component (due to the speed oscillation): the particle moves around an

ellipse that is centered about a point along the constant-speed circle and this ellipse

rotates as the particle moves around the circle (see Fig. 4.3). The position of the par-

ticle along the ellipse is determined by its speed phase; as the speed cycles through

2π radians, the particle makes a complete cycle around the ellipse. For more complex

speed profiles, we can construct the trajectory with a similar composition: a circular

component due to the average speed and a series of elliptical components due to the

oscillation’s Fourier components. The superposition of the elliptical components de-

fines a closed curve that the particle moves around once as its speed phase completes

a 2π cycle. We show that there is a direct mapping between the Fourier coefficients

of the speed profile and the shape of this closed curve. We also present results on the

boundedness of trajectories and the existence of periodic trajectories.

We develop control laws in Sec. 4.3 to systematically stabilize a large variety of

planar formations of N individual agents with periodic speed oscillations where all

agents share a common constant turning rate and speed oscillation frequency. In

Sec. 4.4.1 we explore the geometries of the family of formations that can be stabilized

using the control laws in Sec. 4.3 assuming that the speed profile is given. In Sec. 4.4.2,

we explore the design of speed profiles to obtain desired formations. In particular, we

consider the case where it is desired that the agents move around a common circular

trajectory with synchronized headings and splayed speed phases (see, for example,

Fig. 4.14). That is, the agents are distributed at different locations around the same

elliptical trajectory components and therefore the locus of those components describes

the shape of the formation. Following the approach used above for trajectory analysis,

we begin by solving the purely sinusoidal case and then expand to the general periodic

speed profile case. For the sinusoidal speed case, we derive expressions for the turning

rate, speed oscillation frequency, and speed oscillation amplitude that are required

202

to produce a formation ellipse with given dimensions (i.e., the semi-major and semi-

minor axis lengths of the ellipse) when the nominal speed of the agents and the

radius of the circular component of the trajectory is fixed. We also provide bounds

on what formations are achievable. We use the sinusoidal speed case as a basis to

construct an algorithm for determining the motion parameters (including the Fourier

coefficients of the speed profile) to achieve more complex designed trajectories (see,

for example, Figs. 4.14 and 4.16). Our solution to this design problem allows for the

desired formation shape to be drawn by hand using a computer program.

Can an experimental testbed be developed in which robotic fish interact in real-time

with a school of live fish, and in what other settings can this technology be applied?

We describe the design of such a testbed in Ch. 5. In our testbed, one or more

mobile robots moves beneath a tank of shallow water. Each robot moves one model

fish about the tank via magnetic coupling between the robot and the fish. See Fig. 5.1

for a diagram of the testbed. We call each mobile robot/model fish combination a

“robotic fish.” Closed-loop control of the robotic fish is accomplished by sending

wheel speed commands over a Bluetooth radio channel, where the wheel speed com-

mands are calculated in response to real-time estimates of the dynamic states of the

robotic fish and the live fish school. We have developed and implemented computer

vision algorithms (see Sec. 5.2) to calculate these estimates in real-time, and have

demonstrated their use in proof-of-concept experiments (see Sec. 5.3).

We developed this technology in such a way that it can be adapted easily to other

applications. We have used the technology developed for the robotic fish testbed for

off-line fish tracking for experiment analysis, dancer tracking for analysis of human

flocking experiments, a multiple wheeled robot testbed, and a multi-AUV testbed (see

Sec. 5.4). All of these applications share a large amount of C++ source code, which we

have extracted to a library that we call MADTraC and describe in Sec. 5.4.2. We have

also created a framework that allows other pieces of software to communicate with

203

MADTraC applications (see Sec. 5.4.3). This enables, for example, high-level control

of the tracked robots from Matlab and remote user interfaces that communicate

through a web server.

6.2 Ongoing and Future Work

In this section we describe some of the open topics of research related to the work

presented in this dissertation. The discussion is broken down roughly into topics

related to natural systems in Sec. 6.2.1 and engineered systems in Sec. 6.2.2.

6.2.1 Natural Systems

The analyses and results regarding coordinated speed oscillations that we present in

Ch. 2 and Ch. 3 are based on data for schools of two and three fish. More data could

lead to stronger results and further illuminate the mechanisms and benefits of this

behavior. We therefore propose the collection of additional trajectory data for schools

of killifish of varying sizes. We possess a limited amount of additional video of killifish

schools that has not yet been tracked. New experiments could also be performed. It

may also be possible to use a larger arena or a flow channel to collect segments of

longer duration during which the fish are swimming in a straight line. The robotic fish

testbed described in Ch. 5 could be used to enrich the data set. The robotic fish could

be programmed to vary the frequency of its speed oscillations to test for oscillation

cohesion (i.e., monitor whether the other fish change their oscillation frequencies to

match the robotic fish). By changing the speed oscillation phase of the robotic fish,

we could query the preference for anti-synchronization with near neighbors.

Our results regarding decision-making benefits for killifish in Sec. 3.2.2 are based

on specific assumptions about the way that fish influence one another depending on

their relative positions and motion. The assumption that a fish has only one neighbor

204

on either side and that the most recently unoccluded neighbor takes preference (as-

sumption 2 in Sec. 3.2.2) is critical to our results. If, on the other hand, the nearest

fish is always preferred or all visible fish are considered neighbors, then decision-

making performance is not improved by relative motion. The fact that the conditions

of our assumption do lead to a decision-making improvement could suggest that our

assumption (or part of it) is correct. This notion could be pursued further, either to

show that fish are most influenced by their most recently unoccluded neighbor, or to

lead to improved assumptions about the communication topology.

The tracking methods that we describe in Ch. 5 and the analysis tools that we

describe in Ch. 2 can be used to obtain and analyze biological trajectory data for

other settings in addition to fish trajectory analysis. For example, we have already

proven its use for obtaining and analyzing trajectory data for experiments involv-

ing human subjects. As discussed in Ch. 5, our tracking methods allow for a high

throughput rate under severe conditions of occlusion. The state-of-the-art is ad-

vancing quickly, however, and new technologies and computational paradigms ap-

pear frequently. The MADTraC library is designed for flexibility and should be

maintained and updated to incorporate new ideas that can improve tracking perfor-

mance. Additionally, we believe that MADTraC is an ideal platform to share with

the community because it focuses on providing an abstracted software layer that is

geared towards allowing researchers to create customized high-performance tracking

and control solutions. MADTraC can also be integrated with existing tracking soft-

ware in both the biological and engineered settings. MADTraC is available online at

http://github.com/leonard-lab/MADTraC/ under the MIT license.

In this dissertation we focus on the information passing benefits of coordinated

relative motion. Other potential benefits should be investigated. For example, po-

sition within animal aggregations has been linked to evolutionary benefits (see, for

example, [50]). Animals on the inside of the group are safe from predators, while

205

http://github.com/leonard-lab/MADTraC/

animals on the outside of the group may have more opportunities to obtain food.

Speed oscillations could provide a mechanism for animals in groups to modulate their

position within the group, hence balancing these benefits.

6.2.2 Engineered Systems

Our observations and analysis of killifish coordinated speed oscillations have directly

inspired methodologies for the design of multi-agent systems. We believe that further

study of dynamic relative motion will lead to more bio-inspired results for engineered

systems.

We show in Ch. 3 that periodic relative motion can significantly improve decision-

making performance in the context of mobile sensor networks. The results presented

there are focused on small groups and the concepts should scale to larger groups.

The context of that discussion is communication that requires line-of-sight visibility

and hence all-to-all communication is impossible in larger groups. Many engineered

systems use radio communication which does not have this limitation. Nonetheless,

radio communication systems can experience problems when scaling to large mobile

sensor networks and hence designers can benefit from methodologies that reduce

communication demands without sacrificing group performance. We show in Sec. 3.3

that periodic relative motion can reduce the required sensing radius to maintain

group-level connectivity, and we explore design optimization of group-level decision-

making performance. It could be valuable to study under what more general graph-

theoretic conditions does periodic switching of communication topologies improve

the rate of convergence to consensus. It would also be useful to examine the role

of periodically time-varying topologies in terms of other metrics of performance and

robustness, such as accuracy and noise rejection.

The planar motion patterns that we study in Ch. 4 have a circular component that

corresponds to the constant turning rate and average speed of the agents. One useful

206

extension to these motion patterns is to modify the control laws so that the formation

is maintained while the circular component is replaced with a more generic shape.

In this way, mobile sensors in formations such as the ones studied in Ch. 4 could be

controlled to move around, for example, boundaries of oil spills or ocean isotherms.

The spatial distribution of the sensors can enhance measurement performance (see, for

example, [130, 131]). The regular role exchanges that we discuss above in the context

of biological systems may have analogs for engineered systems. Different agents may

be equipped with different sensors and cycling positions along the formation allows

all sensors to visit locations both inside and outside the circular component of the

trajectory (e.g., the boundary, isotherm, etc.). A level of redundancy is also added:

losing a single agent does not correspond to a loss of sensing in a specific region of

the formation. In fact, the control laws can be adjusted to redistribute the agents

around the formation if one agent is lost.

The technology that we have developed for the robotic fish testbed has already

proven useful in other testbeds, as described in Sec. 5.4.1. Our tracking algorithms

work well, although there is still room for improvement. Furthermore, new techniques

and technological advances can be incorporated to improve the performance and ro-

bustness of the system. For example, graphical processing units (GPUs) represent a

significant opportunity to accelerate the speed of image processing algorithms. Im-

provements to the inter-process communication layer described in Sec. 5.4.3 have the

potential to enable a wider variety of experiments using this technology. The architec-

ture of our solution is influenced by the technologies that power web services such as

Twitter and Facebook that are required to scale to handle thousands or even millions

of simultaneous users with very low latency. This technological arena is constantly

evolving with new and disruptive technologies emerging often. Technologies such as

Redis (a highly scalable and fast data storage system) and Node.js (a very low latency

207

and scalable server framework) could be leveraged to improve the performance of our

system.

208

Appendix A

Relationship Between MSP and

Phase Separation (Proof of

Thm. 2.1)

The following is a proof of Thm. 2.1, which states that the MSP for a pair of sinusoids

δs1 and δs2 with a phase separation |∆φ| ≤ π is approximately

MSP (δs1, δs2) ≈ 1− 2
|∆φ|
π

.

Note that |∆φ| ≤ π is unambiguous. For any values not satisfying this condition, we

may equivalently substitute ∆φ ←− (∆φ)mod 2π and/or exchange the labels so that

∆φ ←− 2π − ∆φ. That is, the phase separation |∆φ| is the angular length of the

shortest arc joining the phasor angles of the two sinusoids on the unit circle.

Consider two sinusoidal signals δs1 and δs2 with a common frequency Ω. The

sinusoids are sampled with a sampling period of Ts. For simplicity, assume that the

period of oscillation is exactly equal to m1 samples, where m1 is an integer. That is,

m1Ts = 2π
Ω

. Furthermore, assume that the time interval in question consists of exactly

Nt = m1m2 samples for some integer m2. That is, the data represents an integer

209

number of periods of oscillation. Therefore, the average values of the oscillations are

δs̄1 = δs̄2 = 0.

Let µ1 > 0 be the amplitude of δs1 and µ2 > 0 be the amplitude of δs2. For

simplicity, we assume that the start of sampling is synchronized with the start of

oscillation so that

δs1[t] = µ1 cos ΩTst

and, without loss of generality,

δs2[t] = µ2 cos (ΩTst− |∆φ|) .

This assumption introduces error into our approximation, although this error is min-

imal when Ts is sufficiently large. Therefore, the sinusoids are described by where

µ1 > 0 and µ2 > 0 are constant amplitudes and ∆φ is the phase difference between

the two oscillations.

The MSP for δs1 and δs2, as defined by (2.5), is

MSP(δs1, δs2) =
1

Nt

Nt−1∑

t=0

sign {µ1µ2 cos (ΩTst) cos (ΩTst− |∆φ|)}

=
1

2m1m2

sign {µ1µ2}
m1m2−1∑

t=0

sign {cos (2ΩTst− |∆φ|) + cos |∆φ|}

=
1

2m1

m1−1∑

t=0

sign {cos (2ΩTst− |∆φ|)− cos (π − |∆φ|)}

=
1

m1

[(m1 − m̃)− m̃] ,

where m̃ is the number of samples for which

cos (2ΩTst− |∆φ|) < cos (π − |∆φ|) , 0 ≤ t ≤ m1 − 1.

210

Because m1 is the number of samples in two periods of cos (2ΩTst− |∆φ|), we have

m̃ =

⌊
m1
|∆φ|
π

⌋
,

and therefore

MSP(δs1, δs2) =
1

m1

(
m1 − 2

⌊
m1
|∆φ|
π

⌋)

≈ 1− 2
|∆φ|
π

,

where we have made the approximation
⌊
m1
|∆φ|
π

⌋
≈ m1

|∆φ|
π

. The accuracy of this

approximation increases as Ts increases.

Because we have assumed that m1Ts = 2π
Ω

and Nt = m1m2, there may be addi-

tional errors between the actual value of the MSP and (2.6). These errors are minimal

for sufficiently large sample sizes (large Nt compared to the number of samples in a

period of oscillation) and for sufficiently small sampling periods (small Ts compared

to the period of oscillation).

211

Appendix B

Visual Cues and Their Sensitivities

The following is a rederivation of some of the results of Dill et al. [37]. The set up is

described in Sec. 2.2.6. We are essentially computing expressions for the kinematics

of the image of the leader fish formed on the eye of the focal fish, from which we can

derive the various optical signals of interest and their sensitivities.

For convenience, we establish two dextral coordinate systems, IX and IR. IX is

defined by the set of unit vectors {x̂, ŷ, ẑ} and IR by
{

r̂, β̂, ẑ
}

. The ẑ unit vector in

both frames points perpendicularly out of the plane of motion such that ẑ = x̂× ŷ =

r̂× β̂. The frame IX is aligned with the focal fish’s velocity vF such that

vF = sF x̂, (B.1)

where sF is the scalar speed of the focal fish. IR is defined so that r̂ is always aligned

with the vector rlf joining the eye of the focal fish with the eye of the leader, i.e.

rlf = dr̂ = xx̂ + yŷ,

212

where d is the distance between (line-of-sight visible) eyes, and (x, y) gives the co-

ordinates of rlf in IX . The relative bearing of the leader’s eye is β and hence the

rotation angle in the plane orthogonal to ẑ between IX and IR is β.

Note that IR is a moving frame and therefore we must account for its motion

when taking derivatives with respect to time. Because IR is a rotation of IX about

the ẑ-axis by β, the dynamics of the IR frame are simply given by

d

dt
r̂ = β̇β̂,

d

dt
β̂ = −β̇r̂.

Without loss of generality, we assume that the focal fish has a zero heading. The

leader is assumed to be moving with a speed sL with heading θ. Hence, leader’s

velocity vL can be expressed as

vL = sL cos θx̂ + sL sin θŷ = sL cos (θ − β) r̂ + sL sin (θ − β) β̂. (B.2)

The velocity of the leader’s eye relative to the focal fish’s eye is equal to the relative

velocity

vlf = vL − vF . (B.3)

The polar geometry of the leader’s eye relative to the focal fish’s eye determines

the image of the leader’s eye on the retina of the focal fish, hence we are primar-

ily interested in the polar coordinates (d, β) and their velocities and accelerations.

Therefore, we derive expressions for ḋ and β̇ in terms of the geometry and motion

parameters.

The velocity of the leader relative to the focal fish can be written in polar coordi-

nates as

vlf =
d

dt
rlf = ḋr̂ + dβ̇β̂.

213

Therefore, substituting (B.2) and (B.1) into (B.3), we have

ḋ = vlf · r̂

= sL cos (θ − β)− sF cos β (B.4)

and

β̇ =
1

r
vlf · β̂

=
1

r
(sL sin (θ − β) + sF sin β) . (B.5)

B.1 Angular velocity

The angular velocity of the retina angle is

B = β̇

From (B.5), we have

B =
sL sin (θ − β) + sF sin β

d
.

For initially parallel motion, the offset y is fixed and we are interested in optimal

locations in terms of the bearing β. Using the substitution y = d sin β, we have

B = sin β
sL sin (β − θ) + sF sin β

d sin β

=
sF sin2 β − sL sin β sin (β − θ)

y
,

which matches the expression obtained in [37] (note that our y, sF , and sL are equiv-

alent to x0, vF , and vL in [37], respectively). Note that there is no angular velocity

for parallel motion and common speeds, i.e., B = 0 when θ = 0 and sL = sF .

214

The sensitivity of angular velocity to a change in the leader’s heading is

∂B

∂θ
=
sL sin β cos (β − θ)

y
.

For initially parallel motion, we have

∂B

∂θ

∣∣∣∣
θ=0

=
sL sin 2β

2y
, (B.6)

which matches the result in [37]. The relative bearing β = π
4

maximizes the sensitivity

of angular velocity to a change in the leader’s heading over the range 0 < β ≤ π
2
.

The sensitivity of angular velocity to a change in the leader’s speed is

∂B

∂sL
= −sin β sin (β − θ)

y
.

For initially parallel motion, we have

∂B

∂sL

∣∣∣∣
θ=0

= −sin2 β

y
, (B.7)

again matching the result in [37]. The relative bearing β = π
2

maximizes the magni-

tude of the sensitivity of angular velocity to a change in the leader’s speed over the

range 0 < β ≤ π
2
.

B.2 Loom

Loom is the time rate of change of the solid angle subtended by some object on the

retina. As in [37], the object of interest is eye of the leader fish. The solid angle, α,

215

subtended by the eye surface, S, is

α =

∫∫

S

r · n̂
|r|3 dS

where dS is a differential element of area located at a position r with a normal vector

n̂. In this case, we have r = d cos βx̂ + d sin βŷ and n̂ = sin θx̂− cos θŷ, thus

α =

∫∫

S

1

r2
sin (β − θ) dS.

Considering the area to be sufficiently small such that d and β may be treated as

constants over it, we are left with

α =
sin (β − θ)

d2

∫∫

S

dS = E
sin (β − θ)

d2
, (B.8)

where E is the area of the eye. For simplicity, we will assume that E = 1. This only

affects the scaling of the quantities of interest and not the values of relative bearing

that maximize them.

By the chain rule, the loom is equal to

Λ = α̇ =
∂α

∂d
ḋ+

∂α

∂β
β̇ +

∂α

∂θ
θ̇. (B.9)

The partial derivatives are

∂α

∂d
=

2 sin (θ − β)

d3

∂α

∂β
=

cos (θ − β)

d2

∂α

∂θ
= −cos (θ − β)

d2
.

216

Thus, substituting these expressions into (B.9) along with (B.4) and (B.5), and sub-

stituting y = d sin β, the loom is equal to

Λ =
sin3 β

y3
[3sL sin (θ − β) cos (θ − β) + sF cos (θ − β) sin β − 2sF cos β sin (θ − β)]

− sin2 β cos (θ − β)

y2
θ̇. (B.10)

There is no loom for parallel motion and common speeds, i.e., Λ = 0 when θ = 0 and

sL = sF .

The sensitivity of loom to a change in the leader’s heading is

∂Λ

∂θ
=

sin3 β

y3

[
3sL

(
cos2 (β − θ)− sin2 (θ − β)

)

− sF sin (θ − β) sin β − 2sF cos β cos (θ − β)] +
sin2 β sin (θ − β)

y2
θ̇. (B.11)

For initially parallel motion and common speed, we have

∂Λ

∂θ

∣∣∣∣
θ̇=θ=0
sL=sF

=
sF
y3

sin3 β
(
1− 3 sin2 β

)
, (B.12)

which matches the result in [37]. The relative bearing β = π
2

maximizes the magnitude

of the sensitivity of loom to a change in the leader’s heading over the range 0 < β ≤ π
2
.

The sensitivity of loom to a change in the leader’s speed is

∂Λ

∂sL
=

sin3 β

y3
[3 sin (θ − β) cos (θ − β)] .

For initially parallel motion, we have

∂Λ

∂sL

∣∣∣∣
θ=0

=
−3 sin4 β cos β

y3
. (B.13)

217

The result in [37] has y2 in the denominator. This is assumed to be a typo. The

relative bearing β = 2 tan−1
√

1
2

(
3−
√

5
)

radians or about 63.4 degrees maximizes

the magnitude of the sensitivity of loom to a change in the leader’s speed over the

range 0 < β ≤ π
2
.

B.3 Time-to-collision

Time-to-collision, τ , is defined as two times the inverse of the relative loom, λ. The

relative loom is defined as

λ =
Λ

α

and the time-to-collision as

τ =
2

λ
= 2

α

Λ
.

When the two fish are moving in parallel and at the same speed, there is no loom

on the focal fish’s eye; that is, Λ = 0. Therefore, under the same conditions, the

time-to-collision is infinite. This leads to complications in calculating the sensitivities

of the time-to-collision. The authors of [37] introduce a small purturbation to the

heading of the leader’s velocity, i.e., θ = ∆θ � 1. Using this, they obtain the following

expression for sensitivity of time-to-collision with respect to a change in the leaders

heading.

∂τ

∂θ
= −2y

sF

1

1− 3 sin2 β
(∆θ)−2 ,

where they have neglected higher order terms in (∆θ)−1. Using the same methods,

the authors of [37] obtain

∂τ

∂sL
=

6y

s2
F

sin β cos β
(
1− 3 sin2 β

)2 (∆θ)−2

218

as the sensitivity of time-to-collision with respect to a change in the leader’s speed.

Both sensitivities have in their denominator the term 1−3 sin2 β, which has a root at

β ≈ 35.26 degrees. Therefore, the sensitivities are maximized at the relative bearing

β ≈ 35.26 degrees.

219

References

[1] Allied Vision Technologies. Guppy F-080: FireWire camera. http:

//www.alliedvisiontec.com/us/products/cameras/firewire/guppy/

f-080bc.html, 2011.

[2] I. Aoki. A simulation study on the schooling mechanism in fish. Bull. Jpn. Soc.
Sci. Fish, 48:1081–1088, 1982.

[3] I. Bajec and F. Heppner. Organized flight in birds. Animal Behaviour, 78:777–
789, 2009.

[4] T. Balch, F. Dellaert, A. Feldman, A. Guillory, C. Isbell, Z. Khan, S. Pratt,
A. Stein, and H. Wilde. How multi-robot systems research will accelerate our
understanding of social animal behavior. Proc. of the IEEE, 94:1445–1463,
2006.

[5] P. Balister, B. Bollobas, and M. Walters. Continuum percolation with steps in
the square or the disc. Random Structures and Algorithms, 26:392–403, 2005.

[6] M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina,
V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale, and V. Zdravkovic.
Interaction ruling animal collective behaviour depends on topological rather
than metric distance: Evidence from a field study. Proc. National Academy of
Sciences, 105(4):1232–1237, 2008.

[7] L. E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization technique
occuring in the statistical analysis of probabalistic functions of Markov chains.
Annals of Mathematical Statistics, 41(1):164–171, 1970.

[8] A. L. Bertozzi, M. Kemp, and D. Marthaler. Determining environmental
boundaries: Asynchronous communication and phyiscal scales. In V. Kumar,
N. E. Leonard, and A. Morse, editors, Cooperative Control, A Post-Workshop
Volume: 2003 Block Island Workshop on Cooperative Control, pages 35–42.
Springer-Verlag, New York, 2005.

[9] D. Bertsekas and J. Tsitsiklis. Parallel and Distributed Computation: Numerical
Methods. Prentice-Hall, 1989.

220

http://www.alliedvisiontec.com/us/products/cameras/firewire/guppy/f-080bc.html
http://www.alliedvisiontec.com/us/products/cameras/firewire/guppy/f-080bc.html
http://www.alliedvisiontec.com/us/products/cameras/firewire/guppy/f-080bc.html

[10] J. A. Bilmes. A gentle tutorial of the EM algorithm and its application to
parameter estimation for gaussian mixture and hidden Markov models. Tech-
nical Report TR-97-021, Department of Electrical Engineering and Computer
Science, U.C. Berkeley, Berkeley, CA, April 1998.

[11] C. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, Oxford,
1995.

[12] V.D. Blondel, J.M. Hendrickx, A. Olshevsky, and J.N. Tsitsiklis. Convergence
in multiagent coordination, consensus, and flocking. In Proc. 44th IEEE Conf.
on Decision and Control, December 2005.

[13] Bluetooth Special Interest Group. Specification of the Bluetooth system version
4.0. http://www.bluetooth.org, June 2010.

[14] B. Boashash. Estimating and interpreting the instantaneous frequency of a
signal. I. Fundamentals. Proceedings of the IEEE, 80(4):520 –538, apr 1992.

[15] B. Bollobas and O. Riordan. Percolation. Cambridge University Press, New
York, 2006.

[16] G. Bradski. OpenCV (Open Computer Vision) library. http://opencv.

willowgarage.com/wiki/Welcome, March 2011.

[17] K. Branson, A. A. Robie, J. Bender, P. Perona, and M. Dickinson. High-
throughput ethomics in large groups of drosophila. Nature Methods, 6:451–457,
2009.

[18] C. M. Breder, Jr. Certain effects in the habits of schooling fishes, as based on
the observation of Jenkinsia. American Museum Novitates, (382):1–5, 1929.

[19] C. M. Breder, Jr. Equations descriptive of fish schools and other animal aggre-
gations. Ecology, 35(3):361–370, 1954.

[20] C. M. Breder, Jr. Fish schools as operational structures. Fishery Bulletin,
74(3):471–502, 1976.

[21] F. P. Bretherton, R. E. Davis, and C. B. Fandry. A technique for objective
analysis and design of oceanographic experiments applied to mode-73. Deep
Sea Research and Oceanographic Abstracts, 23(7):559–582, 1976.

[22] S. Butail, N. Manoukis, M. Diallo, J. M. Ribeiro, T. Lehmann, and D. A. Paley.
Reconstructing the flight kinematics of swarming and mating in wild mosquitos.
J. R. Soc. Interface, 2012. In Press.

[23] S. Butail and D. A. Paley. 3D reconstruction of fish schooling kinematics from
underwater video. In Proc. 2010 IEEE Int. Conf. on Robotics and Automation,
2010.

221

http://www.bluetooth.org
http://opencv.willowgarage.com/wiki/Welcome
http://opencv.willowgarage.com/wiki/Welcome

[24] C. H. Caicedo-Nùñez and N. E. Leonard. Symmetric coverage of dynamic map-
ping error for mobile sensor networks. In Proc. 2011 American Control Con-
ference, 2011.

[25] M. Cao, A.S. Morse, and B.D.O. Anderson. Reaching a consensus in a dy-
namically changing environment: Convergence rates, measurement delays, and
asynchronous events. SIAM J. Control Optim., 47(2):601–623, 2008.

[26] F. Chang, C-J. Chen, and C-J. Lu. A linear-time component-labeling algorithm
using contour tracing technique. Computer Vision and Image Understanding,
93(2):206–220, 2004.

[27] J. Cortès, S. Mart̀ınez, T. Karatas, and F. Bullo. Coverage control for mobile
sensing networks. In Proc. 2002 IEEE Conf. on Robotics and Automation, 2002.

[28] I. D. Couzin, J. Krause, N. R. Franks, and S. A. Levin. Effective leadership
and decision-making in animal groups on the move. Nature, 433(7025):513–516,
2005.

[29] I.D. Couzin, J. Krause, R. James, G. Ruxton, and N. Franks. Collective memory
and spatial sorting in animal groups. J. Theor. Biology, (218):1–11, 2002.

[30] N. J. Cowan and E. S. Fortune. The critical role of locomotion mechanics in
decoding sensory systems. J. Neuroscience, 27(5):1123–1128, January 2007.

[31] F. Cucker and S. Smale. Emergent behavior in flocks. IEEE Trans. Automatic
Control, 52(5):852–862, May 2007.

[32] T. B. Curtin and J. G. Bellingham. Autonomous ocean-sampling networks.
IEEE J. Oceanic Engineering, 26(4):421–423, 2001.

[33] T. B. Curtin, J. G. Bellingham, J. Catipovic, and D. Webb. Autonomous
oceanographic sampling networks. Oceanography, 6(3):86–94, 1993.

[34] Adrian de Froment. Personal communication, 2009.

[35] M. A. Demetriou and I. I. Hussein. Estimation of spatially distributed processes
using mobile spatially distributed sensor networks. SIAM J. Control Optim.,
48(1):266–291, 2009.

[36] L. DeVries and D. A. Paley. Multivehicle control in a strong flowfield with appli-
cation to hurricane sampling. J. Guidance, Control, and Dynamics, 35(3):794–
806, 2012.

[37] L. M. Dill, C. S. Holling, and L. H. Palmer. Predicting the three-dimensional
structure of animal aggregations from functional considerations: The role of
information. In J. K. Parrish and W. M. Hamner, editors, Animal Groups in
Three Dimensions, pages 207–224. Cambridge University Press, 1997.

222

[38] I. D. Dinov. Expectation maximization and mixture modeling tutorial. UC Los
Angeles: Statistics online computation resource. http://www.escholarship.

org/uc/item/1rb70972, 2008.

[39] H. Edelsbrunner, D. G. Kirkpatrick, and R. Seidel. On the shape of a set of
points in the plane. IEEE Trans. Information Theory, 29(4):551–559, 1983.

[40] U. Erra, B. Frola, V. Scarano, and I. D. Couzin. An efficient GPU implemen-
tation for large scale individual-based simualtion of collective behavior. Int.
Workshop on High Performance Computational Systems Biology, pages 51–58,
2009.

[41] J. J. Faria, J. R. G. Dyer, R. O. Clèment, I. D. Couzin, N. Holt, A. J. W.
Ward, D. Waters, and J. Krause. A novel method for investigating the collective
behaviour of fish: Introducing ‘Robofish’. Behavioral Ecology and Sociobiology,
64:1211–1218, 2010.

[42] The Robocup Federation. Robocup small size league. http://www.robocup.

org/robocup-soccer/small-size/, 2012.

[43] A. Feldman, M. Hybinette, T. Balch, and R. Cavallaro. The multi-ICP tracker:
An online algorithm for tracking multiple interacting targets. Submitted., 2011.

[44] E. Fiorelli, N. E. Leonard, P. Bhatta, D. Paley, R. Bachmayer, and D. M.
Fratantoni. Multi-AUV control and adaptive sampling in monterey bay. IEEE
J. Oceanic Engineering, 31(4):935–948, 2006.

[45] B. P. Gerkey. C implementation of the Hungarian method. http://robotics.
stanford.edu/~gerkey/tools/hungarian.html, 2008.

[46] C. Godsil and G. F. Royle. Algebraic Graph Theory. Springer, 2001.

[47] D. Grünbaum and A. Okubo. Modelling social animal aggregations. In S. A.
Levin, editor, Frontiers of Theoretical Biology: Lecture Notes in Biomathemat-
ics, volume 100. Springer-Verlag, 1994.

[48] S. Gueron, S. A. Levin, and D. I. Rubenstein. The dynamics of herds: From
individuals to aggregations. J. Theor. Biology, 182:85–98, 1996.

[49] J. Halloy, G. Sempo, G. Caprari, C. Rivault, M. Asadpour, F. Tache, I. Said,
V. Durier, S. Canonge, J. M. Ame, C. Detrain, N. Correll, A. Martinoli, F. Mon-
dada, R. Siegwart, and J. L. Deneubourg. Social integration of robots into
groups of cockroaches to control self-organized choices. Science, 318:1155–1158,
2007.

[50] W. D. Hamilton. Geometry for the selfish herd. J. Theor. Biology, 31:295–311,
1971.

223

http://www.escholarship.org/uc/item/1rb70972
http://www.escholarship.org/uc/item/1rb70972
http://www.robocup.org/robocup-soccer/small-size/
http://www.robocup.org/robocup-soccer/small-size/
http://robotics.stanford.edu/~gerkey/tools/hungarian.html
http://robotics.stanford.edu/~gerkey/tools/hungarian.html

[51] M-K. Hu. Visual pattern recognition by moment invariants. IRE Trans. Infor-
mation Theory, 8(2):179–187, 1962.

[52] M. Isard and J. MacCormick. BraMBLe: A Bayesian multi-blob tracker. In
Proc. IEEE Int. Conf. on Computer Vision, pages 34–41, 2001.

[53] A. Jadbabaie, J. Lin, and A.S. Morse. Coordination of groups of mobile au-
tonomous agents using nearest neighbor rules. IEEE Trans. Automatic Control,
48(6):988–1001, 2003.

[54] S. J. Julier and J. K. Uhlmann. A new extension of the Kalman filter to nonlin-
ear systems. In Proc. of AeroSense: The 11th Int. Symp. on Aerospace/Defense
Sensing, Simulation and Controls, 1997.

[55] E. W. Justh and P. S. Krishnaprasad. Equilibria and steering laws for planar
formations. Systems and Control Letters, 52(1):25–38, 2004.

[56] E.W. Justh and P.S. Krishnaprasad. A simple control law for UAV formation
flying. Technical Report 2002-38, ISR, U. Maryland, 2002.

[57] Y. Katz, C.C. Ioannou, K. Tunstrom, C. Huepe, and I. D. Couzin. Inferring the
structure and dynamics of interactions in schooling fish. Proc. of the National
Academy of Sciences, 2011. In Press.

[58] Z. Khan, T. Balch, and F. Dellaert. An MCMC-based particle filter for tracking
multiple interacting targets. In Proc. European Conf. on Computer Vision,
pages 279–290, 2004.

[59] Y. Kim and M. Mesbahi. On maximizing the second smallest eigenvalue of a
state-dependent graph Laplacian. IEEE Trans. Automatic Control, 51:116–120,
2006.

[60] Kitware, Inc. CMake. http://cmake.org.

[61] D. J. Klein and K. A. Morgansen. Controlled collective motion for trajectory
tracking. In Proc. 2006 American Control Conf., 2006.

[62] J. Krause, A. F. T. Winfield, and J.-L. Deneubourg. Interactive robotics in
experimental biology. Trends in Ecology and Evolution, 26(7):369–375, 2011.

[63] Jens Krause and Graeme Ruxton. Living in Groups. Oxford University Press,
Oxford, 2002.

[64] H. W. Kuhn. The Hungarian method for the assignment problem. Naval Re-
search Logistics Quarterly, 2:83–97, 1955.

[65] H. Kunz and C. K. Hemelrijk. Simulations of the social organization of large
schools of fish whose perception is obstructed. Appl. Anim. Behav. Sci.,
138:142–151, 2012.

224

http://cmake.org

[66] Y. Kuramoto. Chemical oscillations, waves, and turbulence. Springer-Verlag,
1984.

[67] F. Lekien and N. E. Leonard. Nonuniform coverage and cartograms. SIAM J.
Control and Optimization, 48(1):351–372, 2009.

[68] N. E. Leonard, B. Nabet, and D. Pais. Tensegrity models and vehicle formation
shape control. Proc. 2009 NSF Engineering Research and Innovation Conf.,
2009.

[69] N. E. Leonard, D. Paley, F. Lekien, R. Sepulchre, D. M. Fratantoni, and
R. Davis. Collective motion, sensor networks, and ocean sampling. Proc. of
the IEEE, 95(1):48–74, 2007.

[70] N. E. Leonard, D. A. Paley, R. E. Davis, D. M. Fratantoni, F. Lekien, and
F. Zhang. Coordinated control of an underwater glider fleet in an adaptive
ocean sampling field experiment in monterey bay. J. Field Robotics, 27(6):718–
740, 2010.

[71] N. E. Leonard, T. Shen, B. Nabet, L. Scardovi, I. D. Couzin, and S. A. Levin.
Decision versus compromise for animal groups in motion. Proceedings of the
National Academy of Sciences, 109(1):227–232, 2012.

[72] N. E. Leonard, G. F. Young, K. Hochgraf, D. Swain, A. Trippe, W. Chen, and
S. Marshall. In the dance studio: Analysis of human flocking. In Proc. 2012 of
the American Control Conference, 2012.

[73] K. Lynch, I. Schwartz, P. Yang, and R. Freeman. Decentralized environmental
modeling by mobile sensor networks. IEEE Trans. Robotics, 24(3):710–724,
2008.

[74] D. Marthaler and A. L. Bertozzi. Tracking environmental level sets with au-
tonomous vehicles. In S. Butekno, R. Murphey, and P. Pardalos, editors, Recent
Developments in Cooperative Control and Optimization. Kluwer, Norwell, MA,
2003.

[75] R. Meester and R. Roy. Continuum percolation. Cambridge University Press,
Cambridge, 1996.

[76] Merlin Systems Corp. MiaBot Pro user manual. Available from Merlin Robotics.

[77] Merlin Systems Corp. Merlin Robotics. http://www.merlinsystemscorp.co.
uk/index.php/e-shop/merlin-robotics.html, 2011.

[78] A. Michelsen, B. B. Andersen, J. Storm, W. H. Kirchner, and M. Lindauer. How
honeybees perceive communication dances, studied by means of a mechanical
model. Behavioral Ecology and Sociobiology, 30(3–4):143–150, 1992.

225

http://www.merlinsystemscorp.co.uk/index.php/e-shop/merlin-robotics.html
http://www.merlinsystemscorp.co.uk/index.php/e-shop/merlin-robotics.html

[79] E.F. Morais, M. F.M. Campos, F.L.C. Padua, and R.L. Carceroni. Particle
filter-based predictive tracking for robust fish counting. In Proc. XVIII Brazilian
Symp. on Computer Graphics and Image Processing, 2005.

[80] L. Moreau. Stability of multiagent systems with time-dependent communication
links. IEEE Trans. Automatic Control, 50(2):169–182, 2005.

[81] J. Munkres. Algorithms for the assignment and transportation problems. J.
Soc. Indust. Appl. Math., 5(1):32–38, March 1957.

[82] B. Nabet, N. E. Leonard, I. D. Couzin, and S. A. Levin. Dynamics of decision
making in animal group motion. Journal of Nonlinear Science, 19(4):399–435,
2009.

[83] P. Ogren, E. Fiorelli, and N. E. Leonard. Coordinated control of an underwater
glider fleet in an adaptive ocean sampling field experiment in monterey bay.
IEEE Trans. Automatic Control, 49(8):1292–1302, 2004.

[84] A. Okubo. Diffusion and Ecological Problems: Mathematical Models, volume 10
of Biomathematics. Springer-Verlag, 1980.

[85] R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and cooperation in
networked multi-agent systems. Proceedings of the IEEE, 95(1):215–233, 2007.

[86] R. Olfati-Saber and R. M. Murray. Consensus protocols for networks of dynamic
agents. In Proc. 2003 American Control Conference, 2003.

[87] D. Paley, N.E. Leonard, R. Sepulchre, and I.D. Couzin. Spatial models of
bistability in biological collectives. In Proc. 46th IEEE Conf. on Decision and
Control, 2007.

[88] D. A. Paley. Cooperative Control of Collective Motion for Ocean Sampling
with Autonomous Vehicles. PhD thesis, Dept. of Mechanical and Aerospace
Engineering, Princeton University, 2007.

[89] D. A. Paley. Cooperative control of an autonomous sampling network in an
external flow field. In Proc. 47th IEEE Conf. Decision and Control, 2008.

[90] D. A. Paley. Stabilization of collective motion on a sphere. Automatica,
45(1):212–216, 2009.

[91] D. A. Paley, N. E. Leonard, R. Sepulchre, D. Grunbaum, and J. K. Parrish.
Oscillator models and collective motion: Spatial patterns in the dynamics of
engineered and biological networks. IEEE Control Systems Magazine, 27(4):89–
105, August 2007.

[92] J. Parrish and P. Turchin. Individual decisions, traffic rules, and emergent
pattern in schooling fish. In Animal Groups in Three Dimensions, pages 126–
141. Cambridge University Press, 1997.

226

[93] J. K. Parrish and S. V. Viscido. Traffic rules of fish schools: A review of agent-
based approaches. In C. K. Hemelrijk, editor, Self-organisation and Evolution of
Biological and Social Systems, pages 50–80. Cambridge University Press, 2005.

[94] B. L. Partridge, T. Pitcher, J. M. Cullen, and J. Wilson. The three-dimensional
structure of fish schools. Behavioral Ecology and Sociobiology, 6:277–288, 1980.

[95] B. L. Partridge and T. J. Pitcher. The sensory basis for fish schools: relative
role of lateral line and vision. J. Comp. Physiol., 135:315–325, 1980.

[96] M. Penrose. Random Geometric Graphs. Oxford University Press, New York,
2003.

[97] T. Pitcher. Sensory information and the organization of behaviour in a shoaling
cyprinid fish. Animal Behaviour, 27(1):126–149, 1979.

[98] J. G. Proakis and D. G. Manolakis. Digital Signal Processing. Prentice Hall,
3rd edition, 1996.

[99] J. Prokop and A. P. Reeves. A survey of moment-based techniques for unoc-
cluded object representation and recognition. In CVGIP: Graphical Models and
Image Processing, pages 438–460, 1992.

[100] J. Quintanilla, S. Torquato, and R.M. Ziff. Efficient measurement of the percola-
tion threshold for fully penetrable discs. J. Phys. A: Math. Gen., 33:L399–L407,
2000.

[101] C. W. Reynolds. Flocks, herds and schools: A distributed behavioral model.
In SIGGRAPH ’87: Proc. of the 14th Ann. Conf. on Computer Graphics and
Interactive Techniques, pages 25–34, 1987.

[102] L. Scardovi, N. Leonard, and R. Sepulchre. Stabilization of three dimensional
collective motion. Communications in Information and Systems, 8(4):473–500,
2008.

[103] L. Scardovi, A. Sarlette, and R. Sepulchre. Synchronization and balancing on
the N-torus. Systems and Control Letters, 56(5):335–341, 2007.

[104] R. Sepulchre, D.A. Paley, and N.E. Leonard. Stabilization of planar collective
motion: All-to-all communication. IEEE Trans. Automatic Control, 52(5):811–
824, 2007.

[105] R. Sepulchre, D.A. Paley, and N.E. Leonard. Stabilization of planar collec-
tive motion with limited communication. IEEE Trans. Automatic Control,
53(3):706–719, 2008.

[106] SmoothOn, Inc. SmoothOn website. http://www.smooth-on.com, 2011.

[107] G. M. Spooner. Some observations in schooling in fish. J. Mar. Biol. Ass. U.K.,
17:421–448, 1931.

227

http://www.smooth-on.com

[108] A. R. Stewart. Analysis and Prediction of Decision Making with Social Feedback.
PhD thesis, Princeton University, 2012.

[109] A. D. Straw, K. Branson, T. R. Neumann, and M. H. Dickinson. Multi-camera
real-time three-dimensional tracking of multiple flying animals. J. R. Soc. In-
terface, July 2010.

[110] S. H. Strogatz. From Kuramoto to Crawford: exploring the onset of synchro-
nization in populations of coupled oscillators. Physica D, 143:1–20, 2000.

[111] D. T. Swain. rhubarb: A lightweight and extensible IPC server. http://

github.com/dantswain/rhubarb.

[112] D. T. Swain. MADTraC framework source documentation. http://poincare.
princeton.edu/MADTraC/docs/, 2011.

[113] D. T. Swain, M. Cao, and N. E. Leonard. Effective sensing regions and con-
nectivity of agents undergoing periodic relative motions. In Proc. 47th IEEE
Conf. on Decision and Control, 2008.

[114] D. T. Swain, I. D. Couzin, and N. E. Leonard. Coordinated speed oscillations
in fundulus diaphanus enrich information flow. In Preparation, 2012.

[115] D. T. Swain, I. D. Couzin, and N. E. Leonard. Real-time feedback-controlled
robotic fish for behavioral experiments with fish schools. Proc. of the IEEE,
100(1):150–163, 2012.

[116] D. T. Swain and N. E. Leonard. On the trajectories and coordination of steered
particles with time-periodic speed profiles. In Proc. 2009 American Control
Conference, 2009.

[117] D.T. Swain, N.E. Leonard, I.D. Couzin, A. Kao, and R.J. Sepulchre. Alternating
spatial patterns for coordinated group motion. In Proc. 46th IEEE Conf. on
Decision and Control, December 2007.

[118] E. Trucco and A. Verri. Introductory Techniques for 3-D Computer Vision.
Prentice Hall, 1998.

[119] L. Tsimring, H. Levine, I. Aranson, E. Ben-Jacob, I. Cohen, O. Shochet, and
W. N. Reynolds. Aggregation patterns in stressed bacteria. Phys. Rev. Lett.,
75:1859–1862, 1995.

[120] J. Tsitsiklis and D. Bertsekas. Distributed asynchronous deterministic and
stochastic gradient optimization algorithms. IEEE Trans. Automatic Control,
31(9):803–812, 1986.

[121] J. N. Tsitsiklis. Problems in decentralized decision making and computation.
PhD thesis, Dept. of Electrical Engineering and Computer Science, Massachus-
setts Institute of Technology, 1984.

228

http://github.com/dantswain/rhubarb
http://github.com/dantswain/rhubarb
http://poincare.princeton.edu/MADTraC/docs/
http://poincare.princeton.edu/MADTraC/docs/

[122] J. C. van Olst and J. R. Hunter. Some aspects of the organization of fish schools.
J. Fisheries Research Board of Canada, 27:1225–1238, 1970.

[123] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, and A. Tenenbaum.
Novel type of phase transition in a system of self-driven particles. Phys. Rev.
Lett., 75:1226–1229, 1995.

[124] S. V. Viscido, J. K. Parrish, and D. Grünbaum. Individual behavior and emer-
gent properties of fish schools: A comparison of observation and theory. Marine
Ecology Progress Series, 273:239–249, 2004.

[125] E. A. Wan and R. Van Der Merwe. The unscented Kalman filter for nonlinear
estimation. In Adaptive Systems for Signal Processing, Communications, and
Control Symp., pages 153–158, 2000.

[126] A. J. W. Ward, D. J. T. Sumpter, I. D. Couzin, P. J. B. Hart, and J. Krause.
Quorum decision-making facilitates information transfer in fish shoals. Proc.
National Academy of Sciences, 105(19):6948–6953, 2008.

[127] wxWidgets Team. wxWidgets cross-platform GUI library. http://www.

wxwidgets.org/.

[128] F. Zhang, E. Fiorelli, and N. E. Leonard. Exploring scalar fields using multiple
sensor platforms: Tracking level curves. In Proc. 46th IEEE Conf. on Decision
and Control, 2007.

[129] F. Zhang and N. E. Leonard. Coordinated patterns of unit speed particles on
a closed curve. Systems and Control Letters, 56:397–407, 2007.

[130] F. Zhang and N. E. Leonard. Cooperative Kalman filters for cooperative ex-
ploration. In Proc. 2008 American Control Conf., 2008.

[131] F. Zhang and N. E. Leonard. Cooperative filters and control for cooperative
exploration. IEEE Trans. Automatic Control, 55(3):650–663, 2010.

229

http://www.wxwidgets.org/
http://www.wxwidgets.org/

	Abstract
	Acknowledgements
	Contents
	List of Figures
	1 Introduction
	1.1 Motivation and Research Questions
	1.2 Background and Related Work
	1.2.1 Mechanisms of Collective Motion
	1.2.2 Consensus Dynamical Models and Collective Decision-making
	1.2.3 Engineering Design of Collective Motion for Mobile Sensor Networks
	1.2.4 Interactive Robotics in Collective Behavior Research

	1.3 Outline of Dissertation

	2 Coordinated Speed Oscillations in Fundulus Diaphanus
	2.1 Source of the Data
	2.2 Data Analysis Methods
	2.2.1 Model of Killifish Speed Oscillations
	2.2.2 Data Filtering and Velocity Estimation
	2.2.3 Coordinated Speed Oscillation Detection
	The Hilbert Transform and Instantaneous Phase
	Detecting the Speed Oscillations of Single Fish
	Detecting Coordinated Speed Oscillations

	2.2.4 Measuring the Degree of Synchrony: Mean Sign Product (MSP)
	2.2.5 Measuring Common Spatial Configurations
	2.2.6 Visual Information and Sensitivity

	2.3 Results
	2.3.1 Coordinated Oscillation Properties
	2.3.2 Common Spatial Configurations
	2.3.3 Relative Bearing Oscillations

	2.4 Discussion

	3 Coordinated Relative Motion and Decision-Making Performance
	3.1 Background
	3.1.1 Graph Theory
	3.1.2 Linear Consensus Dynamics Over Graphs
	3.1.3 Sensing Topologies and Sensing Regions

	3.2 Group-level Decision-Making Performance With Periodic Relative Motion
	3.2.1 Rate of Convergence to Consensus Over Periodic and Piecewise Constant Graphs
	3.2.2 Decision-Making Performance of Killifish Schools

	3.3 Impact of Relative Motion on Connectivity
	3.3.1 Effective Sensing Regions
	3.3.2 Improved Connectivity of Random Graphs
	3.3.3 Optimal Relative Motion Parameters for Group-level Decision-Making Performance

	4 Coordinated Speed Oscillations for Engineered Systems
	4.1 Background
	4.1.1 Steered Particle Model
	4.1.2 Phase Potentials and Phase Arrangements

	4.2 Trajectories of Steered Particles with Periodic Speed Profiles
	4.3 Coordinated Control of Steered Particles with Periodic Speed Profiles
	4.4 Designing Coordinated Relative Motion
	4.4.1 Geometry of Coordinated Motion Formations
	4.4.2 Design of Motion Parameters to Obtain Specific Formations

	5 Hybrid Biological and Engineering Collective Motion Testbed
	5.1 Testbed Description
	5.1.1 Hardware
	The Experimental Arena
	Wheeled Robots
	Model Fish
	Tracking System Hardware

	5.1.2 Software

	5.2 Real-Time Tracking
	5.2.1 Segmentation
	Image Processing
	Blobbing

	5.2.2 State Estimation
	5.2.3 Estimating the Properties of Fish Schools

	5.3 Experimental Demonstrations
	5.3.1 School Centroid Chasing
	5.3.2 Triggered Dart Toward School

	5.4 Extensions
	5.4.1 Other Testbeds and Tracking Applications
	off-line Fish Tracking
	Dancer Tracking
	MiaBot Pro Testbed
	Beluga Underwater Vehicle Testbed

	5.4.2 The MADTraC C++ Library
	5.4.3 Inter-process Communication and Web Interfaces

	6 Conclusion and Future Work
	6.1 Summary of Contributions
	6.2 Ongoing and Future Work
	6.2.1 Natural Systems
	6.2.2 Engineered Systems

	A Relationship Between MSP and Phase Separation (Proof of Thm. 2.1)
	B Visual Cues and Their Sensitivities
	B.1 Angular velocity
	B.2 Loom
	B.3 Time-to-collision

	Bibliography

