
Emergent collective decision-making:

control, model and behavior

Tian Shen

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Mechanical and Aerospace Engineering

Adviser: Naomi E. Leonard

January 2015



c© Copyright by Tian Shen, 2015.

All rights reserved.



Abstract

In this dissertation we study dynamics of collective decision-making in social groups

with time-varying interactions and heterogeneously informed individuals. First we

analyze a continuous-time dynamical systems model motivated by animal collective

motion with heterogeneously informed subpopulations, to examine the role of in-

formed and uninformed individuals in collective decision-making with dynamic social

interactions. We find through formal analysis that adding uninformed individuals

increases the likelihood of a collective decision. In particular, increasing the popula-

tion of uninformed individuals decreases the critical preference direction difference for

stable decision and increases the parameter space for which the region of attraction

for a stable decision is large.

Secondly, we propose a mathematical model for human shared decision-making

with continuous-time feedback and where individuals have little information about

the true preferences and incentives of other group members. We study the equilibria of

the model through bifurcation analysis to understand how the model would predict

decisions based on the critical threshold parameters that represent an individual’s

tradeoff between social and environmental influence.

Thirdly, we analyze data of pairs of human subjects performing an experimental

shared tracking task using our second proposed model in order to understand behav-

ior and the decision-making process. In this tracking experiment, a pair of players

share the control over a virtual object and perform a tracking task while they are

given possibly differing stimulus, represented by differing reference paths. Differing

reference paths induce possibly conflicting preferences of the players. A player is said

to have a “hard” preference when only one reference path is given. A player is said to

have a “soft” preference when two reference paths on opposite sides are given to the

player and one is wider and easier to track inducing a preference for the player for

that track. We focus on the case in which one player has a hard preference which is
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in conflict with the soft preference of the other player. Statistical analysis of the start

and end status of the decision behaviors alone is not sufficient to explain why the

players reach certain shared decisions. With this as motivation, we investigate the

evolution of the decision-making with our model to find explanations for the decision-

making process. We fit the model to data and show that it reproduces a wide range of

human behaviors surprisingly well. This suggests that the model may have captured

the mechanisms behind some of the behaviors observed in the experiment.

Finally, we take a different perspective and study game-theoretic behavior in the

above-mentioned shared tracking task as a repeated coordination game with incom-

plete information. We show that for our game formulation the majority of the players

are able to converge to playing Nash equilibrium strategies in the final rounds of the

repeated game. Lastly we show through simulations that the mean field evolution of

strategies resemble characteristics of replicator dynamics, suggesting that the under-

lying individual based strategic responses may be myopic. Even though individuals

may not know what game is being played, the population as a whole could learn to

play the Nash equilibrium strategies in time.

Decisions form the basis of control and problems involving deciding collectively

between alternatives appear in many engineering applications as well. Understanding

how multi-agent groups make decisions provides insight for designing robust decen-

tralized control laws for many engineering applications, from mobile sensor networks

for environmental monitoring to collective construction robots. With this dissertation

we hope to provide additional methodology and mathematical models for understand-

ing the behavior and control of collective decision-making in multi-agent systems.
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Chapter 1

Introduction

Social organisms such as fish schools, bird flocks, and honeybees have amazing capa-

bilities for rapidly deciding collectively among many alternatives and yet still main-

taining group cohesion. For example, ants make collective decisions through “stig-

mergy” about where to go for foraging [68], homing pigeons decide collectively about

which route to take [6], honeybees decide collectively about where to build a new

home [56, 67], and migratory birds decide collectively for actual departure in the

wild [16]. Animals move collectively in groups in their daily activities for benefits

such as increased survival probability and enhanced foraging efficiency among other

benefits[55, 11, 42]. Often such social activities include groups of huge sizes such that

collective motion is largely an emergent and self-organized phenomenon due to the

limited sensing capabilities of individuals within such huge groups. Self-organization

refers to the fact that emergent collective behaviors arise from local interactions of

individuals with their nearby neighbors and local environmental information, without

the influence of a known leader, or centralized external signals [11]. Animal groups

that make decisions together can be huge but they react to their ecological environ-

ment very quickly. Many efforts have been carried out to understand the mechanisms
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that lead to such high capabilities at the group level despite that individually they

may be relatively simple organisms [55, 63].

Mathematical modeling has proven to be helpful in revealing the underlying prin-

ciples of collective behaviors (for a review, see [20]). In fact, early insights on princi-

ples of collective motion came from analysis and simulation of a mathematical model

from particle physics [2]. By studying the model it was revealed that collective level

phenomenon can arise from individual interactions. Another principle, later discov-

ered also through computational modeling, is that for the same individual interaction

rules, the group level behavior can have multiple stable modes. Such multi-stability

allows collective behaviors to serve different functions while individuals interact ac-

cording to the same general rules. It is now well known that social animals are capable

of switching between different behavior patterns quickly and efficiently [20]. These

transitions are often understood as being due to changing behavioral parameters and

environmental factors.

It can prove useful to understand how and why animals can change collective states

or make collective decisions quickly and efficiently in a self-organized way without the

danger of a major group fragmentation. Answering such questions not only helps in

understanding the nature of collective behaviors and complex biological phenomena

that arise out of simple interactions, it also helps in addressing many problems in

engineering fields, such as designing collective control laws for mobile sensor networks

for environmental monitoring, as well as problems in wildlife habitat management

[54, 28].

Following [58], we define “collective decision-making” as a process by which a

group of individuals use social and environmental information to achieve group level

coordination without explicit signaling and prescribed leadership. In this disserta-

tion, decision-making involves choosing between two alternatives in a relatively short

amount of time, although in the broader context, it can mean choosing between many
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different alternatives over longer temporal and spatial scales. The way we define what

a “decision” is differs from chapter to chapter. In Chapter 3, a “collective decision”

means that the majority of the group will move in a direction that favors an in-

formed opinion. In Chapters 3 and 4, where the main focus is on a two-person shared

decision-making problem, a “collective decision” is equivalent to the mean of the two

individual decisions.

By social interaction, we mean that individuals can sense the state of the others.

We will assume that such interaction is undirected, meaning that all pairwise sensing

is bi-directional and symmetric. Complex signaling is certainly a form of social inter-

action in the fields of animal behavior; it is excluded from the scope of this dissertation

where the focus is generally on mathematical models for decision-making based on

sensing interactions. Social interactions play a crucial role in collective deicision mak-

ing across different scales from bacteria [58] to humans [22]. Social interaction is a key

principle underlying a diverse range of collective behaviors providing a mechanism for

information transfer through the group [16]. But not all collective decisions arise out

of social interaction. Some striking collective patterns and highly polarized motions

can arise when non-social agents respond in a seemingly coordinated fashion to some

environmental influence or stimulus such as phototrophic bacteria swimming in light

gradients [64]. In such processes, social interaction plays no role [58] suggesting the

importance of environmental influence.

It is generally believed that social organisms with high collective decision-making

capability trade off dynamically between environmental influence and social informa-

tion [58, 19]. An individual can trade off between responding to environmental versus

social influences by increasing or decreasing its sensing range with which it accepts

or declines more social information. Or it can also choose to forget about its envi-

ronmental information in order to adapt to social interactions. Mathematically, such

a tradeoff can be modeled with agent-based particle dynamics and can be studied
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using methods that range from numerical simulation models that incorporate many

realistic but “hard” to analyze factors [21, 19] to continuous-time models that are

reduced to include the key mechanisms making the problem analytically tractable

[51, 41].

The balance that individuals make between environmental versus social informa-

tion is often heterogenous across the group. To quantitatively understand how an

individual’s balance between social and environmental influences affects the group

level behavior is one of the recurring themes of this dissertation, from models on

animal motion to human behaviors.

For groups that consists of uninformed individuals who have no direct access to the

environmental information, but only contribute to the collective coordination by social

interactions, what roles do the uninformed individuals play? This is the first question

that we address in this dissertation. In Chapter 2 we analyze a continuous-time

model for collective social decision-making dynamics of a group traveling in the plane,

consisting of two informed subgroups with different directional preferences, and one

uninformed subgroup with no preference [41]. We show the parameter conditions for

stability of collective decision-making, and derive the critical value of the magnitude of

conflict that serves as a threshold for a collective decision as opposed to a compromise.

The results agree qualitatively with the results of the numerical study based on the

more complex discrete-time model of [19]. We demonstrate that we can use the

continuous-time model to explore the subtle but important role of the uninformed

individuals in collective decision-making. In particular, we quantify the sensitivity of

the collective decision-making to the population size of the uninformed individuals,

showing that increasing numbers of uninformed individuals increases the likelihood

that the group will make a collective decision. This work builds on the dissertation

of Benjamin Nabet [50].
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Mathematical modeling of human decision-making has gained increasing inter-

est as more evidence emerges showing that collective behavior among human crowds

tends to display similar principles and tendencies as seen in animal groups [40, 36].

Traditionally human behaviors are generally observed in experimental settings and

analyzed using sophisticated statistical methods. Single person decision-making dy-

namics has been successfully studied using drift-diffusion models [7]. Interactive hu-

man decision-making where there are two or more alternatives have started to gain

interest from modelers only relatively recently [52, 5, 40].

In this dissertation we develop a mathematical model for human shared decision-

making as a step toward understanding human behavior in collective decision-making

in groups. In particular, in Chapter 3 we propose an agent-based dynamical systems

model of human behavior in a situation where individuals in a group have to coor-

dinate their decisions only with the feedback of their combined actions and in the

presence of conflicting individual preferences. Our model can produce a rich variety

of trajectories, which can be interpreted as human behaviors given different balances

on social versus environmental influence. In particular, in the two-agent case, we

show that the bifurcation of decision parameters can be used as a way to predict

and explain decision outcomes. We find that the model can display bistability of

decision outcomes (i.e., two stable decision outcomes for the same parameter values)

for certain decision parameter ranges, but only displays a single stable solution for

other parameter ranges. When the system has two stable equilibria, it is sensitive to

initial conditions and noise and we will show that in this case the initial condition can

play an important role in deciding the decision outcome. In regions of the parameter

space where there is only one stable equilibrium, the decision outcome is always the

same regardless of the initial conditions suggesting a robustness of decision outcome

for certain parameter values. Bistability is ubiquitous in biological systems, and has
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been shown to be a key phenomenon in decision-making processes at the cellular level

[1].

We consider our model parameters as having two aspects. One is the computa-

tional aspect, which means that we can produce a variety of trajectories by altering

the parameters. The other is the psychological aspect, meaning that the parameters

can be interpreted in terms of explanations of behaviors. We can fit the model pa-

rameters to the data and use this to make an interpretation of the psychology of the

interactions and behaviors of the individuals.

In Chapter 4, we perform a model validation on the data of pairs of human

subjects performing a shared tracking experiment by Groten and Feth et.al. [26]. In

this tracking experiment, a pair of players share the control over a virtual object which

moves according to the mean of the players inputs, and perform a tracking task while

they are given possibly differing stimulus, represented by differing reference paths.

Differing reference paths induce possibly conflicting preferences of the players. A

player is said to have a “hard” preference when only one reference path is given.

A player is said to have a “soft” preference when two reference paths on opposite

sides are given to the player and one is wider and easier to track, inducing a player

preference for that track. In Chapter 4, we focus on the case in which one player has

a hard preference which is in conflict with the soft preference of the other player, a

type of decision scenario which we refer to as “Hard-Soft Conflict”. We study this

decision scenario because the greatest variety of decision behaviors are seen in this

conflict case in the data.

The model is fitted to all data sets available for the Hard-Soft Conflict decision

scenario type, which corresponds to all cases when one of the players has a hard

preference and the other has a conflicting soft preference. There are a total of 244

sets of data and each data set consists of 5000 ms of trajectories for both players.

We show that our proposed model from Chapter 3 can reproduce a wide range of
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human behaviors surprisingly well, suggesting that the model may have captured the

mechanisms behind some of the behaviors observed in the experiment. Statistical

analysis suggest that the player with a soft preference starts out more often than the

player with a hard preference, but does not win the decision more often. We explain

in terms of model parameters the transient processes of decision-making between the

two human subjects performing the tracking task.

An advantage of our model is that it can describe in relatively simple form the

decision-making behaviors in a large group of individuals, where no one can guess

the intention of the rest of the group. While our analysis focuses on two-person

interactions, the model can be extrapolated to larger dimensional systems with many

more participating decision makers.

In Chapter 5 we take a different approach to studying decision-making from a

game-theoretic perspective. First we formulate the shared tracking problem of Chap-

ter 4 as a normal form repeated game. We show that the majority of equilibrium

strategies of the two players in the experimental data correspond to Nash equilibrium

strategies. This indicates that in the given experiment players are able to eventually

converge onto the Nash equilibrium strategies despite the fact that they do not know

the reward structures of their opponent. We then show that the mean field (i.e.,

population level) evolution of strategies of the two players in the data resembles that

of a two-population three-strategy replicator dynamics. Such dynamics is typical of

interactions between biological populations where players play their myopic strate-

gies, which means that players only consider their current individual reward and not

the future rewards.

In Chapter 6 we summarize our contributions and state future work.

Decisions form the basis of control and problems involving deciding collectively

between alternatives appear in many engineering applications as well. Understanding

how multi-agent groups make decisions provides insight for designing robust decen-
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tralized control laws for many engineering applications, from mobile sensor networks

for environmental monitoring to collective construction robots. For example, when

a group of autonomous vehicles is searching for a target together they must decide

which alternative is true, or they must decide which direction to follow when they

confront an obstacle. Our investigation on human behaviors provides incentives for

collaboration and compromise when it can be most helpful. This approach also sug-

gests that we can back out certain human behavioral characteristics from interactive

tasks and holds promise for using what we learn towards human-robot interaction

system designs.
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Chapter 2

Role of uninformed individuals in

animal collective planar motion 1

2.1 Background

In this chapter we investigate the role of the number of uninformed individuals and

the individual sensing ranges on collective directional decision-making of a heteroge-

neously informed population of agents in motion together.

The analysis presented here was part of a bigger research project on modeling and

understanding of mechanisms of decision-making in a population of self-steered indi-

viduals consisting of two informed sub-populations with conflicting preferences and

a remaining uninformed sub-population with no preference [41]. The bigger research

project, for which Leonard, Nabet, Couzin, Levin and Scardovi laid the foundations

and did previous work [51, 41, 50], aimed to develop and rigorously analyze a biologi-

cally plausible yet analytically tractable model of animal group motion and collective

decision-making with dynamically changing interaction topology. The overall goal

1This chapter is essentially the paper [41] verbatim except for Section 2.1.1. I am not the lead
author of the paper but I did make important contributions to the analysis. So I include the paper
as it appeared.

9



was to provide mechanisms that explain global behavior of animal groups as a func-

tion of individual level responses to the environment and local social interactions.

My contribution was to formally investigate the role of key parameters in affecting

the collective decision outcome. The results of the research project give new insights

for collective decision-making and information transfer mechanisms and provide in-

spiration for developing future experiments, more refined modeling work, as well as

engineering design for real world applications. The model used in this work also has

informed the modeling work for the shared decision-making dynamics investigated in

Chapters 3 and 4 of this dissertation.

The text and figures in this chapter (except for this and the preceding paragraphs)

are for the most part taken verbatim from [41] (for which I am second author), and

in some cases re-stated and complemented with additional proofs. In particular, my

three proofs on conditions for stability that do not appear in [41] are presented in

this dissertation chapter as appendix information. The foundation of my analysis and

other results reported in this chapter (and also seen in [41]) derives from the previous

work of Nabet, Leonard, Couzin and Levin [51] and Nabet’s PhD dissertation [50].

In particular, the model in this chapter was defined by Leonard, Nabet and Scardovi

in consultation with Couzin and Levin. Leonard and Nabet also formulated the fast

and slow dynamics for this model and formally proved the time-scale separation and

parametric conditions for stability of the majority of manifolds and equilibria of in-

terest. Leonard and Scardovi proposed the qualitative critical condition for collective

decision versus compromise. I contributed to the remaining proofs for parametric

conditions for stability of manifolds and/or equilibria, as well as analysis of alge-

braic conditions that determine the role of uninformed individuals in terms of the

region of parameter space where the collective group decision is uniquely stable. I

also contributed to the interpretations, which were developed in collaboration with
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Leonard, Nabet, Scardovi, Couzin and Levin. For completeness, all results from [41]

are presented in this chapter.

The research has been motivated by the discrete-time model of [19], which inves-

tigated, through computation, mechanisms of information transfer, decision-making

and emergent leadership in animal groups moving in the plane. In [19], it is shown

that even without signaling or identification of the informed individuals, a group can

make a collective decision with two informed subgroups of equal population (one sub-

group per preference alternative) and a larger subgroup of uninformed individuals. A

collective decision to move in one of the two preferred directions is made with high

probability as long as the magnitude of the preference conflict, i.e., the difference

in preferred directions, is sufficiently large. For small conflict, the group follows the

mean of the two preferred directions. When there is only one subgroup of informed

individuals, as the total group size increases, the proportion of the informed individu-

als needed to successfully lead the group to a collective decision decreases, suggesting

that increasing the number of uninformed individuals does not hinder the emergence

of leadership in the group, but instead enhances the efficiency of information transfer.

It is not tested in [19] whether or not the size of the uninformed subgroup plays a

similar role in the case of two informed subgroups with conflicting preferences. How-

ever simulations in [50] indicate that increasing the population size of uninformed

individuals (i.e. decreasing the proportion of informed individuals in the population)

lowers the threshold on magnitude of conflict for group decision to emerge, making

it “easier” for a collective decision to be made.

Results on collective motion in groups of interacting individuals have been studied

predominantly with numerical methods [19, 21, 27, 40, 39, 18]. Parameterized compu-

tational studies such as in [19] are highly suggestive, but because their discrete-time

models contain many degrees of freedom, it is difficult to identify the influences of

particular mechanisms.
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Motivated by the simulations of [19], Nabet, Leonard, Couzin, and Levin de-

veloped a continuous-time model in [51] of animal groups in planar motion, with

simplifying assumptions of two informed sub-populations and no uninformed indi-

viduals. In [51] it is further assumed that the social interactions between the group

members is all-to-all interaction for all times. Each agent is modeled as a particle

moving in the plane at constant speed with steering rate dependent on inter-particle

measurements and deviation from a preferred direction. They showed that the model

exhibits fast and slow time scales, as observed in the simulations of [19], and there-

fore, from a large-scale particle model, the model in [51] can be formally reduced

to a planar model using time-scale separation from nonlinear systems theory. The

time scale separation is proven and the slow dynamics analyzed. In particular, in the

fast dynamics, individuals within the same subgroups (i.e. with the same directional

preference) reach consensus, and in the slow dynamics, the two different subgroups’

mean direction (now synchronized across the subgroups) evolves. The stable solutions

for the slow dynamics correspond to compromise by the two subgroups of conflicting

preferences. While the model of [51] is analytically tractable and exhibits time-scale

characteristics of the discrete-time model by [19], the results of only being able to

make a compromise but not a group decision for one of the two preferences suggest

that the model of [51] has not fully captured the outcomes as predicted in [19].

Motivated by the discrepancies between the predictions of the continuous-time

model of two informed sub-populations with all-to-all interaction in [51], and the dis-

crete time model of dynamic interactions and three sub-populations (one uninformed

subgroup) of [19], Leonard, Nabet and Scardovi [50] further proposed a refinement

by relaxing two simplifying assumptions. First, they allowed the model to have a

third subpopulation of uninformed individuals without directional preferences. Sec-

ond, they restricted inter-agent interaction to be based on how close two agents are in

terms of travel direction. By doing so, they could define an interaction topology that

12



is dynamically changing and state-dependent. Following the same procedure of time

scale separation, Leonard and Nabet identified eight important manifolds of the slow

dynamics that correspond to interesting group level behavior, and proved conditions

on stability for the majority of those manifolds (see [50, 41] for details). Similar to

the previous model [51], in the fast time-scale, alignment is established within each

subgroup of agents with the same preference (or lack of preference), while in the slow

time-scale, the reduced-order model describes the mean motion of each of the two

informed subgroups and the uninformed subgroup.

The refined model as well as the derived conditions for stability of slow manifolds

by Leonard and Nabet are the foundation of my analysis [50]. The model equations

are reviewed below (taken from [41] verbatim with minor adjustments) and all results

involving my contribution in [41] are presented in this chapter (taken verbatim from

[41] with minor adjustments).

2.1.1 Dynamics of animal collective motion in the plane 2

Let N be the total number of individuals in a population; each individual is modelled

as a particle moving in the plane at constant speed vc. The direction of motion of

individual j at time t is denoted by the angle θj(t). Then, the planar velocity of j at

time t is the vector vj = (vc cos θj(t), vc sin θj(t)). (Throughout this thesis, we will be

denoting vectors and matrices using bold math symbols.)

Every individual is associated with one of three subgroups: the N1 individuals

in subgroup 1 have a preference to move in the direction defined by the angle θ̄1,

the N2 individuals in subgroup 2 have a preference to move in the direction defined

by the angle θ̄2 and the N3 individuals in subgroup 3 have no preference. The total

population is N , with N = N1 +N2 +N3.

2This section is from [41] verbatim.
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Then, the rate-of-change of direction of motion is defined for each individual in

subgroup 1 as

dθj
dt

= sin(θ̄1 − θj(t)) +
K1

N

N∑
l=1

ajl(t) sin(θl(t)− θj(t)), (2.1)

in subgroup 2 as

dθj
dt

= sin(θ̄2 − θj(t)) +
K1

N

N∑
l=1

ajl(t) sin(θl(t)− θj(t)), (2.2)

and in subgroup 3 as

dθj
dt

=
K1

N

N∑
l=1

ajl(t) sin(θl(t)− θj(t)) . (2.3)

The constant parameter K1 > 0 weights the attention paid to other individuals versus

the attention paid to the preferred direction. The dynamic variable 0 ≤ ajl(t) ≤ 1

defines the weight individual j puts on the information it gets from individual l at time

t. A value ajl = 0 implies that j cannot sense l. Social interaction (coupling) weights

ajl(t) are modeled as evolving in time according to saturated integrator dynamics that

depend on how “close” individuals are from one another, where closeness is defined

in terms of relative heading:

dηjl
dt

= K2(ρjl(t)− r),

ajl(t) =
1

1 + e−ηjl(t)
.

(2.4)

In the model of Eq. 2.4, ηjl = ηlj is an integrated variable, the constant parameter

K2 > 0 quantifies the speed at which the interaction gains evolve, ρjl = | cos(1
2
(θj −

θl))| gives a measure of synchrony of direction of motion of l and j, and 0 ≤ r ≤ 1 is a

chosen fixed threshold representing an individual’s sensing range. It holds that ρjl = 1

if l and j move in the same direction and ρjl = 0 if they move in opposite directions.

14



If ρjl > r, then j and l are close enough to sense each other so ηjl increases and ajl

eventually converges to the maximum interaction strength of 1. If ρjl < r, then j and

l are not close enough to sense each other so ηjl decreases and ajl eventually converges

to 0. Eq. 2.4 is equivalent to

dajl
dt

= K2(1− ajl(t))ajl(t)(ρjl(t)− r). (2.5)

As it can be seen from the equation, equilibrium solutions correspond to ajl(t) = 0

and ajl(t) = 1. The state space for the model of Eqs. 2.1 - 2.3 and 2.5 is compact

since each θj is an angle and each ajl is a real number in the interval [0, 1].

2.1.2 Reduced model and invariant manifolds 3

Leonard and Nabet have shown in [50] that the above model exhibits fast and slow

time-scale behavior even for moderate values of gains K1 and K2. In particular, they

have shown that for an initially aggregated group, the fast dynamics correspond to

the individuals in each subgroup quickly becoming tightly coupled with one another

(corresponding coupling weights ajl(t) = 1 for j and l in subgroup k (for each k =

1, 2, 3) ), and the direction of motion θj(t) for j in subgroup k converges to a common

angle, which is the subgroup mean direction of motion. As we will use the subgroup

mean direction of motion in the following analysis, we denote it by Ψk(t) for each

subgroup k. In addition, for each pair of subgroups, the coupling weights between

the subgroup members quickly approach a common value 0 or 1. Thus, after the

fast transient, individuals in each subgroup move together in the same direction and

the coupling between subgroups becomes constant; the slow dynamics describe the

evolution of the mean direction of each of the three possibly interacting subgroups.

Leonard and Nabet have shown in [50] and [41] that the time-scale separation and

3This section is also from [41] verbatim.
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the fast and slow time-scale dynamics in the case that ε = max
(

1
K1
, 1
K2

)
<< 1 can

be derived using singular perturbation theory [37].

Consequently, they have shown through the formal reduction that the fast dy-

namics have a number of isolated solutions [50]. For the analysis in this chapter, only

isolated solutions that correspond to synchronized speeds within the subgroups and

all-to-all interactions within the subgroups (i.e. ajl = 1, for both j and l in subgroup k

for k = 1, 2, 3) are considered. These solutions correspond to those that emerge from

groups that are initially aggregated and correspond to every individual j in subgroup

k heading in the same direction Ψk. It follows that for these solutions, every coupling

weight ajl between an individual j in subgroup 1 and an individual l in subgroup 2

takes the same value A12. Likewise, ajl = A13 for j in subgroup 1 and l in subgroup

3 and ajl = A23 for j in subgroup 2 and l in subgroup 3. Each of A12, A13 and A23

can take the value 0 or 1; so there are a total of eight such solutions.

Each of these eight solutions defines an invariant manifold: each invariant man-

ifold is defined such that if the dynamics start with synchronized subgroups and

interconnections between subgroups defined by constants A12, A13, A23 each having

value of 0 or 1, then they remain so for all time.

The eight manifolds can be defined as follows. Manifold M101 is defined by

(A12, A13, A23) = (1, 0, 1) and manifold M110 by (A12, A13, A23) = (1, 1, 0). M101

describes the case in which the two informed subgroups 1 and 2 are coupled but the

uninformed subgroup 3 is coupled only with informed subgroup 2;M110 describes the

symmetric case in which subgroups 1 and 2 are coupled and subgroup 3 is coupled only

with subgroup 1. Manifold M000, defined by (A12, A13, A23) = (0, 0, 0), corresponds

to decoupled subgroups. ManifoldM010 is defined by (A12, A13, A23) = (0, 1, 0) where

the coupling is between informed subgroup 1 and the uninformed subgroup 3 as shown

on the left in Fig. 2.1. ManifoldM001, defined by (A12, A13, A23) = (0, 0, 1), describes

the case symmetric toM010, where the coupling is between informed subgroup 2 and
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the uninformed subgroup 3 as shown on the right in Fig. 2.1. ManifoldM100, defined

by (A12, A13, A23) = (1, 0, 0), corresponds to coupling only between the two informed

subgroups 1 and 2. Manifold M011, defined by (A12, A13, A23) = (0, 1, 1), describes

the case in which the uninformed subgroup 3 is coupled with each informed subgroup

1 and 2, but the two informed subgroups are not coupled with each other. Manifold

M111, defined by (A12, A13, A23) = (1, 1, 1), corresponds to coupling among all three

subgroups.

Figure 2.1: Coupling in manifolds M010 (left) and M001 (right) among subgroups 1,
2 and 3 as indicated by arrows.

The slow dynamics on each of the eight manifolds are defined by the rate-of-change

of the mean direction of motion for each of the three subgroups:

dΨ1

dt
= sin(θ̄1 −Ψ1(t)) +

K1

N
(A12N2 sin(Ψ2(t)−Ψ1(t))

+ A13N3 sin(Ψ3(t)−Ψ1(t)))

dΨ2

dt
= sin(θ̄2 −Ψ2(t)) +

K1

N
(A12N1 sin(Ψ1(t)−Ψ2(t))

+ A23N3 sin(Ψ3(t)−Ψ2(t)))

dΨ3

dt
=

K1

N
(A13N1 sin(Ψ1(t)−Ψ3(t))

+A23N2 sin(Ψ2(t)−Ψ3(t))). (2.6)

Each of the eight invariant manifolds is defined to be stable if solutions corre-

sponding to initial conditions near the manifold approach the manifold with time; in

this case the full dynamical solution is well approximated by the stable solution of the
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slow dynamics of Eq. 2.6. Conditions were determined under which each of the eight

manifolds is stable by computing the stability of the boundary layer dynamics (fast

dynamics) evaluated at the stable solution(s) of the slow dynamics [37]. Without loss

of generality, θ̄1 = 0 and 0 ≤ θ̄2 ≤ π was chosen; thus, the difference in preferred

directions θ̄2− θ̄1 is equal to θ̄2. For the majority of the analysis, we focus on the case

in which the two informed subgroups have equal population size, i.e., N1 = N2.

2.2 Role of uninformed population on stability of

collective decision 4

Formal analysis in [50] shows that manifoldsM101 andM110 (where the uninformed

subgroup couples with only one of the coupled informed subgroups) are always un-

stable, but there are conditions such that the remaining six manifolds are stable. The

manifoldsM010 andM001 (where the uninformed subgroup couples with only one of

the uncoupled informed subgroups) are both stable if and only if

∣∣∣∣cos

(
θ̄2

2

)∣∣∣∣− r < 0,

i.e., if and only if the difference in preferred direction θ̄2 > θ̄c, where the critical

difference in preference direction θ̄c is given by

θ̄c = cos−1(2r2 − 1). (2.7)

On the other hand, manifold M111 (where all subgroups are coupled) is stable if

θ̄2 < θ̄c, i.e., if ∣∣∣∣cos

(
θ̄2

2

)∣∣∣∣− r > 0.

4This section is from [41] verbatim. I contributed to proving, analyzing, and interpreting the
remaining stability conditions.
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The dependency of the stability of the manifolds on the critical angle θ̄c can be

interpreted as follows. Given a value of sensing range parameter r, for sufficiently

large difference θ̄2 between the two preferred directions, the two informed subgroups

will be pulled enough in their preferred directions such that they will lose direct con-

nection with each other. Depending on initial conditions the uninformed subgroup

may become connected with one or the other of the two informed subgroups corre-

sponding to the interconnections onM010 orM001 of Fig. 2.1. On the other hand, for

sufficiently small difference θ̄2 between the two preferred directions, the two informed

subgroups can stay connected with each other and with the uninformed subgroup

corresponding to the fully connected case of M111.

The stable solution of the slow dynamics Eq. 2.6 on the manifoldM010 corresponds

to all of the informed individuals in subgroup 1 and all of the uninformed individuals

(subgroup 3) moving steadily in the preferred direction θ̄1; the informed individuals in

subgroup 2 are disconnected from the greater aggregation and move off by themselves

in their preferred direction θ̄2. This solution is classified as (most of) the group

making a decision for preference 1. Likewise, the stable solution on the manifold

M001 corresponds to all of the informed individuals in subgroup 2 and all of the

uninformed individuals (subgroup 3) moving steadily in the preferred direction θ̄2;

the informed individuals in subgroup 1 are disconnected from the greater aggregation

and move off by themselves in their preferred direction θ̄1. This solution is classified

as (most of) the group making a decision for preference 2.

Fig. 2.3 shows a simulation of N = 30 individuals obeying the dynamics of

Eqs. 2.1-2.4 with N1 = N2 = 5 and N3 = 20. Here r = 0.9, which corresponds

to θ̄c = 52◦. Further, θ̄2 = 90◦ which is greater than θ̄c so that M010 and M001 are

both stable. Indeed, for the initial conditions illustrated on the plot of Fig. 2.2, the

solution converges to a group decision for preference 1 as in the slow dynamics on

M010.
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Figure 2.2: The initial direction of motion θj(0) for each j = 1, . . . , N is displayed
on the unit circle. The θj(0) are evenly collective between −78.5◦ and −58.5◦ for the
N1 = 5 individuals in subgroup 1 (blue dots), between 71.5◦ and 91.5◦ for the N2 = 5
individuals in subgroup 2 (red dots), and between −53.5◦ and 66.5◦ for the N3 = 20
individuals in subgroup 3 (black dots). All initial values of interaction gains alj(0)
are taken from a uniform distribution with mean 0.2 and standard deviation 0.1.

Figure 2.3: Simulation of dynamics of Eqs. 2.1-2.4 with N = 30 individuals, r = 0.9,
and θ̄1 = 0◦ and θ̄2 = 90◦ as shown with black arrows on the top of the cylinder.
The solution for each individual is shown evolving on the surface of the cylinder;
the azimuth describes the angle θj and the vertical axis describes time t. For this
example, θ̄2 > θ̄c = 52◦ and it can be observed that a decision is made for preference
1.
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Depending on parameters, the slow dynamics Eq. 2.6 on the manifoldM111, cor-

responding to the fully connected case, can have up to two stable solutions. In the

first stable solution each of the two informed subgroups compromises between its pre-

ferred directions and the mean of the two preferred directions, while the uninformed

subgroup travels in the mean of the two preferred directions. Fig. 2.4 shows a simu-

lation of N = 30 individuals obeying the dynamics of Eqs. 2.1-2.4 with N1 = N2 = 5

and N3 = 20. Here r = 0.6, which corresponds to θ̄c = 106◦. As in the previous

example, θ̄2 = 90◦, but now this is less than θ̄c so that M010 and M001 are unstable

and M111 is stable. Indeed, for the initial conditions of Fig. 2.4 (the same as in Fig.

2.3), the solution converges to the compromise as in the first stable solution of the

slow dynamics on M111. If N3 > 2N1, i.e., for a sufficiently large population of un-

informed individuals, M111 is only attractive near the first stable solution if θ̄2 < θ̄c.

The proof for the sufficient condition for M111 to be unstable is shown in Appendix

A as Lemma A.1.1.

Figure 2.4: Simulation of dynamics of Eqs. 2.1-2.4 with N = 30 individuals, r = 0.6,
and θ̄1 = 0◦ and θ̄2 = 90◦. For this example, θ̄2 < θ̄c = 106◦ and it can be observed
that no decision is made. Instead, the agents collect in subgroups that compromise.

The second stable solution of Eq. 2.6 on the manifoldM111 is symmetric to the first

stable solution: the uninformed subgroup moves in the direction 180◦ from the mean
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of the two preferred directions and each informed subgroup compromises between this

direction and its preferred direction. This is a somewhat pathological solution that

is very far from a group decision. However, this second solution does not exist in the

presence of a sufficiently large population of uninformed individuals, notably in the

case that (
N3

2N1

)2/3

> 1−
(

2N1K1

N sin(θ̄2/2)

)2/3

. (2.8)

Inequality Eq. 2.8, which derives from the stability analysis (see [50], Chapter 6

page 143), is always satisfied for N3 > 2N1 or for sufficiently large strength of social

interactions given by K1 ≥ 2. Thus, under the condition N3 > 2N1,M111 is unstable

precisely whenM010 andM001 are stable. Fig. 2.5 illustrates stability of decisions (on

M010 and M001) versus compromise (on M111) as a function of preference difference

θ̄2.
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Figure 2.5: Stability of decisions (on M010 and M001) versus compromise (on M111)
illustrated on plot of direction of uninformed subgroup Ψ3 as a function of preference
difference θ̄2. Here r = .707 and so θ̄2c = π/2. A solid line denotes a stable solution
and a dashed line denotes an unstable solution.

Fig. 2.6 (top left) plots r as a function of θ̄2 given by Eq. 2.7; this defines the

critical condition for stability of a collective decision for preference 1 as defined by

the solution on M010 and for preference 2 as defined by the solution on M001. The
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shaded region illustrates the parameter space corresponding to stability of a collective

decision. The decision is unstable in the parameter space defined by the white region,

which corresponds to the stability of a compromise. Given a fixed value of r, the

curve provides a lower bound θ̄c on the preference difference θ̄2 for which a decision

is stable.
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Figure 2.6: Curves in the space of parameters θ̄2 and r that determine the stability
of manifolds M010 and M001, and, thus, the stability of a collective decision. In all
plots, K1 = 2 and N1 = N2 = 5. Top left: Light grey parameter space corresponds
to stability ofM010 andM001, independent of N3. Top right: N3 = 11. Bottom left:
N3 = 50. Bottom right: N3 = 500. Dark grey parameter space corresponds to M010

andM001 being the only stable manifolds among the eight invariant manifolds stud-
ied. The dark grey parameter space increases with increasing number of uninformed
individuals N3.

Now suppose that a number of uninformed individuals are added to the aggre-

gation, i.e., the density is increased. For any individual to retain roughly the same

number of neighbors after the addition of individuals as before, it can decrease its

sensing range. A decrease in sensing range corresponds to an increase in r. As seen

in Fig. 2.6, an increase in r corresponds to a decrease in the lower bound θ̄c, i.e., with

increased numbers of uninformed individuals, a collective decision is stable for lower

values of preference difference θ̄2.
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For some range of parameter values for whichM010 (i.e. collective decision for θ̄1)

and M001 (i.e. collective decision for θ̄2) are stable, it is possible that M000, M100

and/or M011 are also stable. This means that even if M010 and M001 are stable,

for some initial conditions the solution may converge to the stable solutions ofM000,

M100 and/or M011, none of which correspond to a collective decision for preference

1 or 2. In fact, the only stable solution on M000 corresponds to the three subgroups

moving apart (i.e. the group splits). M100 can have up to two stable solutions and

M011 can have one stable solution; all of these correspond to compromise solutions.

Therefore, we examine the conditions for stability of M000, M100 and M011 in order

to isolate the parameter space in whichM010 andM001 are the only stable manifolds

among the eight under investigation.

The condition θ̄2 > θ̄c is necessary for stability ofM000. However,M000 is unstable

as long as the initial mean heading of the uninformed individuals is greater than −θ̄2

and less than 2θ̄2, i.e., as long as the uninformed individuals are not headed in a

direction that is dramatically different from the mean of the two preferred directions.

The latter is not so likely for initially aggregated individuals. Further, the likelihood

of M000 being stable shrinks as θ̄2 grows (see [50] Chapter 6 page 140 for proof).

M100 (coupled informed subgroups) is also unstable if the initial mean heading

of the uninformed is not dramatically different from the mean of the two preferred

directions [50]. Otherwise, if θ̄2 < θ̄c, M100 is stable about its first stable solution.

The second stable solution ofM100 does not exist if K1 < 2N/N1 and is not attracting

if

r >
√

1− d2, d =
N sin(θ̄2/2)

2N1K1

. (2.9)

For the proof of the condition for non-existence and the condition for instability of

the second solution of M100, refer to Lemma A.2.1 in Appendix A.

The condition θ̄2 > θ̄c is a necessary condition for stability of M011 (uninformed

coupled to uncoupled informed subgroups). However, M011 is unstable if either of
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the following is satisfied ([50] Chapter 6 page 142):

r <
1√

1 + ν2
or r >

√
1

2
+

1

2
√

1 + ν2
(2.10)

where

ν =
N sin(θ̄2/2)

N3K1 +N cos(θ̄2/2)
.

We show in Appendix A (Lemma A.3.1) that M011 can be stable in the range of

parameters for which M010 and M001 are also stable.

Table 2.1 summarizes the possible coexistence of stable manifolds for different

parameter ranges, assuming N3 > 2N1. For the initial conditions we consider, M000

andM100 will be unstable, in which case, whenM111 is stable, it is exclusively stable

among the eight manifolds. Further, the parameter values that yield the exclusive

stability ofM010 andM001 among the eight invariant manifolds are those that satisfy

Eq. 2.10; these are shown as dark grey regions in the parameter space plots of Fig.

2.6.

Table 2.1: Possible combinations of stable (S) and unstable (U) manifolds given
N3 > 2N1

M101 M110 M000 M010 M001 M100 M011 M111

U U S S S U U U
U U S S S U S U
U U S S S S U U
U U S S S S S U
U U U U U S U S

In the remaining three plots in Fig. 2.6, the green curve plots r as a function of θ̄2

in case of equality in the first condition of Eq. 2.10, and the orange curve plots r as

a function of θ̄2 in case of equality in the second condition of Eq. 2.10. In each of the

plots, N1 = N2 = 5 and K1 = 2. The number of uninformed individuals N3 ranges

from N3 = 11 (top right) to N3 = 50 (bottom left) to N3 = 500 (bottom right).

The plots show the dark grey region expanding with increasing N3, i.e., the region
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of parameter space that ensures unique stability of the collective decision for one or

the other preference expands with increasing number of uninformed individuals. An

increase in strength of social interaction K1 also increases this parameter space, since

K1 is multiplied to N3 in the condition.

2.3 Randomness and asymmetric informed popu-

lations

The model studied above is defined as having deterministic dynamics and retains

dynamically changing, local social interactions. However, it neglects some of the

details of the zonal-based interaction rules of [19]. Nonetheless, it provides the same

fundamental result in the case N1 = N2 without requiring any additional modeling

terms such as a forgetting factor on information that is not reinforced [51]. Here

we show with simulations of the model with uniform noise that the model produces

similar results, suggesting that the analytical results are robust.

Fig. 2.7 shows two simulations of the dynamics of Eqs. 2.1-2.4 with the same

initial conditions and parameter values as for the simulations shown in Figs. 2.3 and

2.4, but with randomness added. For each j, we let wj be an independent random

variable drawn from a uniform distribution with mean 0 and standard deviation 0.5.

Eqs. 2.1- 2.3 are modified to include a random term as follows:

dθj
dt

= sin
(
θ̄1 − θj

)
+
K1

N

N∑
l=1

ajl sin (θl − θj) + wj, j in subgroup 1

dθj
dt

= sin
(
θ̄2 − θj

)
+
K1

N

N∑
l=1

ajl sin (θl − θj) + wj, j in subgroup 2

dθj
dt

=
K1

N

N∑
l=1

ajl sin (θl − θj) + wj, j in subgroup 3.

(2.11)
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Fig. 2.7 exhibits the same net behavior as in the case with no randomness, i.e., for

r = 0.9 a decision is made for preference 1 and for r = 0.6 there is a compromise

solution. The use of uniform noise is a conservative choice for examining robustness

since as compared to Gaussian noise it gives a higher probability of large random

deviations. The noise corrupted model Eq. 2.11 is integrated in MATLAB by first

partitioning the time interval into time steps of 0.01 and then use ode113 in the time

duration of 0.01 to integrate the system recursively. This method is consistent with

the Euler-Maruyama method for integrating stochastic differential equations.

Figure 2.7: Simulation of dynamics of Eqs. 2.1-2.4 modified by additive randomness
as given by Eq. 2.11. The left plot corresponds to r = 0.9 and the right plot to
r = 0.6. The solution for each individual is shown evolving on the surface of the
cylinder; the azimuth describes the angle θj and the vertical axis describes time t.
Blue corresponds to subgroup 1, red to subgroup 2 and black to subgroup 3. Initial
conditions and parameter values are the same as in Figs. 2.2 and 2.3.

Furthermore, in the case of asymmetric uninformed individuals N1 6= N2, the

model yields the same necessary and sufficient conditions for stability of a decision.

In the case of a decision, simulations show a dominating region of attraction for

the decision to move in the preferred direction of the majority informed subgroup,

consistent with [19].

Fig. 2.8 shows simulations of the dynamics of Eqs. 2.1-2.4 with the same initial

conditions and parameter values as for the simulations shown in Figs. 2.3 and 2.4,
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but for an asymmetry in the sizes of the informed subgroups. Here we let N1 = 4

and N2 = 6. In the left plot of Fig. 2.8, as in Fig. 2.3, r = 0.9 and a decision is made.

In the right plot of Fig. 2.8, as in Fig. 2.4, r = 0.6 and a compromise is made. While

in the simulation of Fig. 2.3, the solution is attracted to the manifold M010 where a

decision for preference 1 is made, in the left simulation of Fig. 2.8 with N2 > N1, the

solution is attracted to the manifoldM001 where a decision for preference 2 is made.

Figure 2.8: Simulation of dynamics of Eqs. 2.1-2.4 with informed subgroup sizes
N1 = 4 and N2 = 6. Initial conditions and all other parameters are the same as in
Figs. 2.3 and 2.4. The left plot corresponds to r = 0.9 and the decision is made for
preference 2. The left plot corresponds to r = 0.6 and a compromise is made between
the two preferred directions and slightly closer to preference 2.

In the following chapters, we will use the insights we gained from analyzing the

model for animal decision-making in group motion and propose a model for human

social decision-making in collective settings where individuals hold possibly conflicting

preferences. The mechanisms of balancing between social and environmental influence

will prove to be essential for the human social decision model as well. However, a

difference in social interaction will be assumed when applying the mechanism to

human behavior. In this chapter we have shown formal evidence on the role of the

uninformed population in improving collective decision making, and in the following
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chapter, we will examine more closely, with our new model, how parameters that

reflect individual decision thresholds affect the collective decision outcome.
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Chapter 3

Dynamics of collective

decision-making between two

alternatives

3.1 Background

Consider a real life social coordination situation in which people interact in order to

reach a certain private or group goal that is important for each of the individuals. For

example, commuters in a traffic network choose routes to take to work. Each com-

muter’s choice affects congestion on the roads in the network and ultimately affects

the choices of other commuters. Every commuter wants to save time and/or travel the

shortest distance possible. Single commuters probably don’t know the goals of other

commuters or have little control over the overall traffic. From experience, we know

that collective decision trends in these kinds of situations emerge through decisions

by individuals at the local level without a central control telling each single commuter

what to do. It is not clear, though, what kind of individual decision rules give rise to

the group level coordination and if there are better ways than what happens “natu-
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rally”. In order to answer questions like this, one would like to have a quantitative

procedure that can describe and maybe even predict how coordination emerges out of

individual decisions. While mechanisms of animal group decision-making have been

proposed and validated for various decision-making scenarios, mathematical models

and experimental validation for human continuous-time decision-making in multi-

alternative choice situations have only started to gain attention recently.

In this dissertation we make contributions towards understanding social coordi-

nation of humans in complex decision situations with a focus on choosing among

multiple possibilities. Over the next two chapters we develop a model for human

social decision-making and shared control in the case when agents with different pref-

erences for goals have to reach a group level decision in continuous-time with feedback

of only their mean action. Our objective is to propose an effective model for human

social decision-making that can converge to a collective decision even in situations

where individuals have little information about the true preferences and incentives of

other group members. This is much in the spirit of, and indeed motivated by, the

collective animal behavior and model studied in Chapter 2.

As in the model of Chapter 2, we incorporate both social influences and self-

interested goals in the model. We show how the model can help us gain insights into

the mechanisms and psychology of behaviors. Using the model we show that differ-

ent collective behaviors corresponding to the decisions favoring different preferences

in the group can arise out of different ranges of parameters that represent human

individual tendencies, notably the resistance or willingness to forgo a preference in

order to coordinate. The fact that we can link parameters to decision outcomes at

the collective level allows us to predict what outcome would arise given an interaction

between individuals with different tendencies as defined by the parameters. Then in

Chapter 4 we use the model to explain real human data in controlled experimental
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settings suggesting possible behavioral mechanisms. The results in these two chapters

also appear in [59].

Before we describe the model, we start with a broader motivation than the afore-

mentioned traffic control example. Consider a group of decision-making agents (hu-

mans, or humans and computers) simultaneously deciding the motion of an object

in order to perform a coordination task within a given time limit. The object to be

controlled can be a single vehicle moving in some terrain, or a representation of the

moving center of mass of a group of vehicles, each controlled by a different decision

maker. For example, suppose in the latter case that each vehicle is a mobile sensor

platform moving in the ocean and the vehicles are to move together as a sensor ar-

ray for environmental monitoring. Suppose also that each decision maker may hold

different information about the environment that cannot be communicated to others

during the task. The differences in information may induce conflicting directional

preferences for the controlled object’s motion. Possible reasons for the restriction of

information exchange could be that communication channels between decision mak-

ers are not available, have temporarily experienced some system failure, or simply

are too costly to be used. To reach an overall desirable group-level decision in the

presence of conflicting individual directional preferences requires a dynamic process

of coordination among the individuals in the group. Fig. 3.1 illustrates an example of

shared decision-making in the application of vehicle teleoperation. Fig. 3.2 illustrates

an example where the two operators’ judgements about the environment are different,

and therefore conflicting individual decisions are made that may cause their combined

decision to reach a deadlock.

Deciding collectively among alternatives is also ubiquitous in nature and in human

daily life. For example, migratory flocks must decide when to take off, and humans

must decide which route to take to work. The decision variable can be a timing, or

a route choice, or an opinion. For tasks like these, individuals are affected by other
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Figure 3.1: Coordinated shared decision-making in vehicle teleoperation. Two or
more human and/or computer programs work at non-collocated control stations gen-
erating commands via input devices and receiving feedback from displays (see panel
B). The remote vehicle, which executes the combination of all input commands is
equipped with sensors but has limited autonomy (see panel A). The operators and
the vehicle are separated by some barrier (environment, distance, etc.), and infor-
mation between them is exchanged via some communication channel. The operators
at the control station share the decisions over the vehicle motion but cannot com-
municate with one another i.e., they cannot exchange what they know about the
environment or what feedback they get from the vehicle. Operators are only linked
through their combined decisions as can be seen from the vehicle’s motion.

A B

Figure 3.2: Conflict of interest due to different views about the environment. Two
operators (a human-human or human-computer dyad) are coordinating and sharing
a decision about which route the vehicle should take to avoid running into the for-
est and possibly colliding with trees. Different information about the environment
observed by the operators, combined with good judgement result in the illustrated
two conflicting views of the environment and directional preference. A) Both routes
are accessible, but the left one is straight and wider. B) The left route is dangerous.
Only the right one is accessible.

decision makers, and not just by the external environment. In order to predict and

facilitate collective decisions in such social situations, we seek to quantify underlying

mechanisms that help explain the coordination process. In particular, when humans
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interact with robots in human-robot applications, the quantified mechanisms could

be used to enable the robots to better anticipate human actions and coordination

efficiency between human and robotic systems might improve. On the other hand,

quantifying human behaviors can help us further design experiments for investigating

more complex behaviors in human interactions. If we can identify different human

tendencies as personalities through parameterized modeling, we can then simulate a

certain personality with robots and observe and study how human subjects respond.

With understanding human social behavior in complex scenarios such as coop-

eration and problem solving as a future goal, we focus here on quantifying human

decision-making behaviors and hypothesizing testable decision rules for simple alter-

native choice tasks in social interactive settings where no complex communication is

allowed. In particular, we look at situations where a group of individuals have to

choose collectively (i.e. through shared control) between two alternatives and do so in

fixed time. Each individual has a scalar, real-valued decision state that evolves con-

tinuously in time. The decisions that we consider are equilibrium states of a dynamic

process that requires the coordination through continuous-time feedback of the joint

(mean) decision state.

We adopt a unified approach combining both agent-based modeling and experi-

mental validation to understand collective decision-making behaviors in humans with

different preferences. First, we propose an ordinary differential equation model that

effectively captures the decision-making processes for each of the individuals in a

shared decision-making task. The formalism of nonlinear deterministic coupled ordi-

nary differential equations is simple enough to allow us to clearly distinguish different

factors that influence the decisions, yet it can incorporate key features that lead to

complex behaviors, such as conflicting individual preferences and dynamic social in-

teractions. Second, the model is suitable for being fitted to experimental data of

human behaviors. By interpreting the parameter values of human data fitted to our
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mathematical model, we develop an understanding of the processes of decision-making

from a psychological perspective. This perspective is one that we are unable to derive

based on data analysis alone. That is, the model serves a critical purpose.

Decision-making among alternatives by a single person without interactions with

others has been extensively studied in various fields, from neuroscience [25, 7], to

psychology [32, 17], to engineering [57]. Human decision-making in an interactive

setting where the decision outcome is not influenced by just one individual but by the

interactions and inputs of many decision makers has garnered more attention of late.

Modeling and especially model validation work on human collective decision-making

are even more recent, while most previous works have a single focus on experiments

or modeling.

From the cognitive sciences, computational models confirmed by empirical obser-

vations have been proposed on human perception and action control in individual

decision-making [45, 29, 57, 62, 12].

In [57], Reverdy, Srivastava and Leonard presented a formal algorithmic model of

single human decision-making behavior when choosing among multiple options with

uncertain rewards. They examined heuristics that humans use in exploit-explore tasks

(formally as multi-armed bandit problem) from a Bayesian perspective and used it to

analyze and interpret empirical data from human decision-making experiment where

the goal of the participants was to collect the maximum number of total points when

making decisions about navigating a cursor in a 10x10 virtual spatial grid. The

reward points associated with the location for which the participants had decided

to move the cursor to was defined by a reward landscape embedded in the grid but

unknown to the participants. Reverdy, Srivastava and Leonard demonstrated that the

observed performance in terms of regret in rewards were captured by their proposed

algorithm with model parameters representing prior quality, belief about the reward

and decision noise [57]. The findings of [57] provide a formal method for assessing
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human performances in explore-exploit tasks of single human decision maker in real

time.

In an earlier work by Stewart, Cao, Nedic, Tomlin and Leonard [62], a stochastic

decision-making model has been studied and fit to human behavioral data from groups

of humans performing a two-alternative forced choice task while receiving feedback on

the choices of others in the group. They derived analytically the steady-state proba-

bility distributions for decision and performance of decision makers as a function of

parameters such as the strength and path of social feedback [62]. Their analytical

prediction produced the same trends as with empirically validated model of earlier

work of Nedic et al. [52] and also from their experimental data. Preceding the work of

combining modeling and data fitting of [62], Cao, Stewart and Leonard presented two

models on human decision-making in two-alternative forced-choice tasks in [12], and

proved convergence to behavior that was strongly supported by psychology experi-

ments (for reference see [12]). The model of [12] provided further simulation study

on an application problem but was not fit to real human data.

In a recent study, Bassett et al. [5] built a discrete-time model of decision-making

for agents making binary decisions when given information from multiple sources.

The goal was to study information transmission and decision dynamics for a group

of socially connected individuals. Given external information and social connections,

the decision state of an agent in the group was modeled to evolve according to a deter-

ministic averaging rule, consistent with models of opinion formation [33]. When the

decision state reached a certain individual-dependend decision threshold, the agent

was assumed to make a certain action out of a binary set of available actions. The

simulations of [5] highlighted the importance of local interactions among agents in

predicting collective decision-making behavior of the group as a whole. The model

was not validated on experimental data, but Carlson et al. [15] reported an exper-

iment based on the aforementioned work to identify the factors that influence the
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decisions about whether or not to evacuate in case of a natural disaster. Consistent

with Bassett et al. [5], Carlson et al. [15] assumed that individuals were given many

kinds of different external information.

The studies above show how unifying modeling with experimental data can be

more helpful than traditional methods of analyzing experimental data only. In the

studies of [62] and [12] specifically, the model helps to prove analytical results and

make testable predictions.

From a social neuroscience perspective, Bosse et al. [8] have studied collective

decision-making that involves adaptation of one’s mental state, such as belief, emo-

tions and intentions, in social interactions with others. In particular, the authors

presented an agent-based computational model based on neural mechanisms revealed

by recent developments in social neuroscience to explain the process that enables indi-

vidual intentions to converge to an emerging consensus and simultaneously to achieve

shared individual beliefs and emotions. They then applied their agent-based compu-

tational model to a case study of a real-life panic-driven evacuation incident during

a public gathering. They showed that by including the contagion of mental states of

the agents, the model resulted in better reproduction of the reported observations of

people’s evacuation trajectories than without including the mental states. As with

[5], the model in [8] assumed that the key mechanisms of updating of decision states

involved threshold dynamics, and that the thresholds represent individual tendencies.

However, the model proposed contained too many sub-processes and parameters to

be analytically tractable.
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3.2 Collective decision-making with continuous-

time feedback

While experimental work is crucial in observing and understanding human behaviors,

there are many unique advantages to studying human behaviors using mathematical

models and validation of such models by fitting the model to empirical data. The

primary reason is that behavioral data can be hard to understand. For human ac-

tions that change in time, it can be difficult to back out the features of such dynamic

processes using statistical measures alone. Formulating and fitting dynamical mod-

els can help us identify important parameters and mechanisms that are otherwise

not possible to single out. If the model can accurately reflect some behavior of the

real-world problem of interest, then one can gain an improved understanding of the

problem by analyzing the mathematical model. Additionally, one can use the model

to predict behavior and to derive testable hypotheses. Further experiments can be

used to refine the model.

We propose an agent-based dynamical system model to understand human behav-

iors in the above-mentioned situation where individuals in a group have to coordinate

their decisions only with the feedback of their combined actions and in the presence

of conflicting individual preferences. The proposed model is inspired by mechanisms

proposed in various prevous studies on single- and multi-agent decision-making of

humans and animal groups. In particular, our modeling approach is influenced by

empirical observations and computational and analytical models on animal collective

motion and multi-agent self-organization [41, 19]. It is related to previous modeling

and/or model validation work in the general framework of agent-based collective de-

cision dynamics in the presence of external influences that are potentially conflicting.

Several modeling studies have proposed mechanisms that typically comprise the bal-

ancing between social interactions and external influences [41, 19, 46, 24, 23, 18, 5, 15].
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However our model has two features not present in the current animal motion or

human coordination literature. First, we allow the individuals to make a conditional

tradeoff between two possibly different preferences. Consider again the vehicle tele-

operation example in Fig. 3.2. While the individual has an induced preference (for

example, a road that is preferred over the other), when facing two available options,

she may ignore her induced preference gradually if the vehicle is already closer to an

alternative option.

Second, traditional flocking and opinion formation models have assumed that

the interaction dynamics between agents are of homophilious nature, meaning that

the closer two agents get, the stronger their influence on each other [44, 33]. We

use the contrary assumption on social interaction, namely heterophilious interactions

[49]. Heterophilious interactions imply that individuals in a social network experience

weaker influence by those who are nearby spatially or holding a similar decision

variable (e.g. opinion), and experience stronger influence by those who are far away

or holding a different decision variable. Motsch and Tadmor [49] showed through

analysis that heterophilious interactions better enhance group cohesion as compared

to the traditionally assumed homophilious interactions. We adopt heterophilious

interaction dynamics in our model because it is consistent with empirical evidence

showing that in a social setting, people tend to copy others’ behaviors when there is

a larger individual difference, and tend to differ in behavior when there is a smaller

individual difference [48].

We consider our model parameters as having two key aspects. One is the compu-

tational aspect, which means that we can produce a variety of trajectories by altering

the parameters. The other is the psychological aspect, meaning that the parameters

can be interpreted as suggestions for explanations of behaviors such as quantifying

mood or personality traits. Therefore we can fit the model parameters to the data and
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gain some insights into the psychology associated with the interactions and behaviors

of the individuals.

Throughout the dissertation, we say that a decision has reached deadlock for the

group if the decision has converged to a state in which every individual in the group

insists on a different opinion or two or more intransigent opposing parties have formed.

In our setting, deadlock is the worst case since the decision then will not favor anyone’s

preference and will result in lost time at the very least. If the decision to be made is

about which route to take to avoid collision with an obstacle, then deadlock can lead

to a real problem such as illustrated in Fig. 3.2.

Now we formally introduce the model. Let N be the size of a group of decision-

making individuals interacting socially as they share control over the group mean

state. The state of each individual is its real-valued decision variable. Although the

state can represent an abstract opinion, we will refer to it as a scalar position in

keeping with our concrete example of shared control over the motion of a vehicle

or vehicles. The position of individual i, for i = 1, ..., N , at time t is denoted by

xi(t) ∈ R. We define the mean position of all individuals at time t as x̄(t):

x̄(t) =
1

N

N∑
i=1

xi(t). (3.1)

In general, xi(t) is a decision variable of the player i that can represent anything to be

decided on. For this reason, we consider the decision to be evolving in one dimension,

even though in real application problem a decision can evolve in higher dimension

(such as in our example of motion control, where motion is in the plane). When the

decision is about motion in higher dimensions, we assume that the decision of motion

in all but one dimension stay in consensus across all individuals and therefore are not

part of the decision process. In the motion control example, the decision is in the

horizontal direction.
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We consider the case in which there are two alternative options at -1 and 1, such

that if x̄ converges in time to -1 then the group has decided for one option and if it

converges to 1 then it has decided for the other alternative. If x̄ converges to 0, then

it is in deadlock. We initialize all agents at xi(0) = 0 so that the mean is not biased

towards either alternative from the beginning.

When a decision maker i is the only decision maker in the group, two possible

environmental factors that can contribute to the decision-making process include the

decision maker i’s preference, denoted by pi ∈ {−1, 1}, and the proximity of the closer

option, denoted by ci ∈ {−1, 1}. For example, for the decision maker in panel A of

Fig. 3.2, pi is the reference path that is straight and wider, while ci is the reference

path that is closer.

We quantify the relative weighting of the two options pi and ci by a sigmoidal

preference weight function, denoted by αi ∈ [0, 1]. If x̄ is far from pi, where distance

is determined by a preference threshold parameter δi ∈ R+, namely, if |pi − x̄| > δi,

then αi > 0.5, and ci is the dominating stimulus. By stimulus, we mean that it affects

the player as a self-interested goal. If however, x̄ is close to pi, namely, if |pi− x̄| < δi,

αi < 0.5 and the preference pi is the dominating stimulus.

Now assume that instead of just one, there are two or more decision-making

individuals, each with a continuous-time feedback measurement of x̄. We model a

second influence in decision-making based on social interaction. We assume that

individuals interact in a heterophilious fashion, implying an individual tends to be

more influenced by the mean decision variable x̄ when it is far away from its own and

less so when it is closer. The idea here is that an individual will take greatest notice

of the others in a shared decision-making setting when the decision of the others

diverges from her own.

For each individual i, the strength of the social interaction, relative to the strength

of the stimulus, is determined by another sigmoidal weight function, βi ∈ [0, 1]. The

41



value of βi depends on how far xi is from x̄, where distance is compared to a social

threshold parameter θi ∈ R+. The farther xi is from x̄, namely, if |xi − x̄| > θi, then

βi > 0.5, resulting in a greater tendency to follow the mean.

To account for situations where the time when an individual starts her decision-

making differs from others in the group, we introduce the starting time of an individual

i, ti. The value of ti can be defined in absolute time, or it can be measured against a

common time marker (defined as time at 0). A time marker, for instance, can be the

time when a stimulus is a certain distance away from the group. Thus, individuals

in the group may start their own decision-making at different times relative to one

another. Plausible reasons for different starting times include differing reaction times,

deliberation times or possible distractions during the task. There are obvious benefits

to starting early, such as being able to signal a preference or to dominate the group

for some time before other individuals start to respond. In general, the bigger the

group gets, the smaller the influence an individual’s decision can have on the group

mean. We allow an extra time constant parameter τ to account for the overall speed

of decision-making for a given decision. Any decision process, whether it is about

deciding which side to go to when meeting in the hallway or deciding when to take

off for migration, has a temporal scale and having a time constant can help normalize

the remaining parameters. In our model, we consider the case when every individual

in the group has the same τ .

The model is written for player i as the first order differential equation:

τ ẋi = H(t, ti)[αi(ci − x̄) + (1− αi)(pi − x̄) + βi(x̄− xi)]. (3.2)

H(t, ti) is a box function indicating the duration of the decision process. The value

of H is 1 when ti ≤ t ≤ tf , and 0 elsewhere. The final time tf is the same for all

individuals. The preference weight function αi and social interaction weight function
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βi are defined as

αi =
1

1 + e−Bi(|pi−x̄|−δi)
, (3.3)

βi =
1

1 + e−Ri(|x̄−xi|−θi)
. (3.4)

Parameters Bi and Ri control the steepness of these sigmoidal weight functions. The

greater Bi and Ri, the closer the weight functions αi and βi approximate step func-

tions, resulting in a tendency to have “abrupt” changes in the weights as states xi(t)

and x̄(t) evolve.

We study the case in which there are two decision-makers. In particular, we

consider the case when the two individuals have opposite preferences. We will use

the term “players” to refer to the two decision makers. The two-person case is also

representative of a scenario where two parties have formed within a large group and

the members of the two parties share the same key features.

In Fig. 3.3 a situation is presented of two individuals jointly controlling the hori-

zontal position of an object represented as a solid black ball moving on a screen. The

ball moves at a steady rate in the vertical direction so the vertical direction can be

identified with time. The horizontal position of the ball at time t is given by x̄(t).

The decision makers jointly control the horizontal position x̄(t) to track one or the

other of the two vertical bars centered at -1 or 1 (shown in grey). We refer to the

vertical bars as reference paths. Each player can see the same mean position x̄ but

each may see different kinds of tracks.

In Fig. 3.3 the upper plot presents the trajectory and visual feedback of player

i who has only one reference path to track; this reference path necessarily is the

preference pi. The lower plot presents the visual feedback of player j who sees a

reference path at both -1 and 1. However, one reference path (at 1) is thicker than
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Figure 3.3: Key model components and feedback used by two players i and j. The
horizontal axis is position which is the decision state. The vertical axis is time.
Motion and decision dynamics start at xi = 0, and t = ti for player i and xj = 0 and
t = tj for player j.

the other. Because the thicker path is easier to track it is representative of the

preferred alternative for player j. Time is plotted on the vertical axis pointing from

bottom to top, so that the vertical motion is upward. The reasons for the time axis to

be plotted vertically is mainly for being consistent with the experimental set up and

presentation of data for Chapter 4. We use the terms “left” and “right” to describe

directionality in the decision-making dimension.

Fig. 3.3 illustrates a decision-making dynamic. The decision-making trajectory of

player i, xi(t) for t ∈ [ti, tf ] is shown in red and of player j, xj(t) for t ∈ [ti, tf ] is
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shown in blue. The average trajectory x̄(t) is shown in black. Initially, each player

controls the ball by moving her respective position towards her own preference as

shown in the upper plot in red and in the lower plot in blue. Upon observing that the

mean does not follow her intended action, player j can infer that player i may have a

conflicting preference. Player j then “compromises” by giving up her preference and

moving to follow the reference path that is already closer to the mean.

The feedback quantities that each player uses in her decision-making are indicated

by colored arrows in Fig. 3.3. An orange arrow represents the distance between the

mean x̄ and the preference at time t. Each player compares this distance with her

preference threshold δ to decide whether this preference influence is still important.

When the distance exceeds the preference threshold, e.g. |x̄ − pi| > δi for player i,

the preference weight αi will be greater than 0.5 and close to 1, depending on the

steepness of the weighting function. From Eq. 3.2 we can see that when αi > 0.5

the influence from the preference will be less important than the influence from the

option ci. The option ci is the reference path that is closer to x̄ (ball). At time t,

this is determined by looking at the green arrow, which is the distance between the

mean and the alternative reference path. If the distance indicated by the green arrow

is less than the orange arrow, the alternative reference path is the closer path.

We note that the closer reference path can be the same as the preference. Espe-

cially for player i in the upper plot who sees only one signal, there is no alternative

reference path, which is equivalent to assuming ci = pi for all time. The resulting

dynamics for this player are equivalent to having αi = 0.

A purple arrow represents the distance at time t between the mean x̄ and the indi-

vidual’s own position xi. Each player compares this distance with her social threshold

θ to decide whether the mean decision (i.e. the decision of the other player) is impor-

tant relative to her own preference. If the distance exceeds the social threshold, e.g.

|x̄− xi| > θi for player i, the social weight βi will be greater than 0.5. From Eq. 3.2
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we see that when βi > 0.5 the influence from the social term, which implies reducing

the difference between one’s own position and that of the mean, will become compar-

atively important. One simplification of the model is that there is no additional gain

in front of the social term, implying that given limited range of motion, the social

interaction influence cannot be significantly greater than the preference influence.

3.3 Two-person shared decision-making with con-

flicting preferences.

We specialize the model of Eq. 3.2 to the setup illustrated in Fig. 3.3. Suppose that

one of the two players has two available options but has a “soft” preference for one

of those options (like player j in Fig. 3.3). We refer to this player as “Player S” or

the “S Player”. Suppose that the other player has only one option, which necessarily

is preferred. We refer to this player, who has a “hard” preference, as “Player H” or

the “H Player” as illustrated in Fig. 3.3.

We also assume that the soft and hard preferences are alternative options (on

opposite sides of the origin) resulting in a conflict of preference between the two play-

ers. The locations of the preferences at 1 and -1 are generalizable to any locations

symmetric about the origin. For convenience, the model state is called xH for Player

H, and xS for Player S. The associated parameters for each of the players with either

soft or hard preference will be labeled with the same subscripts. We will investigate

closely this case and we will refer to it as the “Hard-Soft Conflict” decision scenario

type. It will be seen later in Chapter 4 that human behaviors from empirical observa-

tions that the most variability in decision outcomes and unpredictable behaviors can

be seen in this conflict scenario. We will also see that the “Hard-Soft Conflict” model

can capture all possible decision outcomes in the experiment and the corresponding
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transient behaviors with fewer parameters than the full model of Eq. 3.2. We refer

to the full model with opposing preferences as the “Soft-Soft Conflict” model.

In the case of Hard-Soft Conflict, because Player H has only one option, the model

equations can be rewritten as

τ ẋH = H(t, tH)[αH(cH − x̄) + (1− αH)(pH − x̄) + βH(x̄− xH)]

τ ẋS = H(t, tS)[αS(cS − x̄) + (1− αS)(pS − x̄) + βS(x̄− xS)],

(3.5)

where we make the following definitions:

x̄ =
xH + xS

2

αH =
1

1 + e−BH(|pH−x̄|−δH)

αS =
1

1 + e−BS(|pS−x̄|−δS)

βH =
1

1 + e−RH(|x̄−xH |−θH)

βS =
1

1 + e−RS(|x̄−xS |−θS)
.

(3.6)

For simplicity, we assume pH = 1 and pS = −1. Initial positions are near the origin,

so that both players are initially equally far away from their preference. We also

assume that for each player, regardless of the preference type, the default alternative

path ci is the instantaneous closer path, denoted by c. The instantaneous closer path

c is a state-dependent function:

c =


1 if x̄ > 0

0 if x̄ = 0

−1 if x̄ < 0
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The alternative path ci, in general, can be any path that the player considers, in-

cluding a non-existent path (possibly opposite to the preferred path) that the player

cannot see but may assume it exists for the other player.

When the player has a soft preference, cS = c. When the player has a hard

preference, as we illustrated before, cH = pH . The resulting dynamics for her is

the same as when αH = 0 is assumed, meaning that Player H cannot follow any

alternative other than her preference.

We do, however, allow for the case when Player H does consider an alternative

cH = −pH for example. In this case the model for Player H uses αH 6= 0, and thus a

model like Player S. Such a case is possible if Player H chooses to track a reference

path that does not appear to be available for herself but which she surmises is the

preference of the other player. For the remainder of the chapter we will use the

assignment αH = 0 versus αH 6= 0 to distinguish the cases when Player H plays as

if only the available reference path is considered (corresponding to αH = 0), versus

as if the inferred preference of the other player is also considered (corresponding to

αH 6= 0).

3.4 Bifurcation in parameters δS and θS

In this section we compute equilibria and bifurcations of the model of Eqs. 3.5 to

investigate how the decision outcomes depend on the decision threshold parameters.

In particular, we look at the decision outcomes as the steady-state solutions of the

system Eqs. 3.5 under parameter variations. We let the social threshold parameters

for the two players, θS, and θH , and the preference threshold parameter for Player S,

δS, be bifurcation parameters, and we compute the bifurcation plots. For the methods

for generating the bifurcation plots, see Appendix B.
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In Fig. 3.4A, a two-parameter bifurcation plot is shown in the plane of θS and δS,

both of which are associated with Player S. The plot shows the number of steady-

state solutions of the system for different values of the parameters θS and δS in the

range that is plotted. Fixed parameter values used are pH = 1, pS = −1, RH = 20,

RS = 20, BS = 20, and θH = 1.2. We substitute the discontinuous description of c

with a continuous but steep sigmoid function that saturates at −1 and 1:

c =
2

1 + e−100x̄
− 1. (3.7)

From Fig. 3.4A, it can be seen that for high values of the preference threshold of

Player S (δS > 2), i.e., the threshold to giving up on the preference is higher, there is

only one (stable) solution for all values of θS. For intermediate to low values, δS < 2,

depending on the values of θS, the system can have one (stable) or three steady-state

solutions, two of which are stable, and are separated by an unstable solution. When

the system exhibits two stable solution for a given set of parameters, it is called

bistability. In the region of the parameter space where bistability occurs, the decision

outcome can be one of the two stable solutions. When the system has two stable

equilibria, it is sensitive to initial conditions and noise. We suggest that in this case

the initial condition plays a deciding role in the decision outcome. In regions of the

parameter space where there is only one stable equilibrium, the decision outcome is

always the same regardless of the initial conditions.

Fig. 3.4B shows the one-parameter bifurcation plot with θS, the social threshold

of Player S as the bifurcation parameter. The steady-state solutions of the mean

decision variable x̄, interpreted as the equilibrium decisions of the system, are shown

as a function of the bifurcation parameter θS and for four different values of the

preference threshold δS of Player S.
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Figure 3.4: Bifurcation plots of the Hard-Soft Conflict model. The numerical com-
putation was based on the Hard-Soft Conflict model (αH = 0), with parameters
RH = 20, RS = 20, BS = 20, and θH = 1.2. The hard preference is located at 1,
and the soft preference is located at −1. A). Two parameter bifurcation plot in the
plane of δS and θS. There are a total of three different regions, as labeled in the
figure. Two of the regions have one equilibrium, and are separated by a region with
three equilibria. In the two single-equilibrium regions, the equilibrium is a nodal or
spiral sink. In the three equilibria region, there are two sinks separated by a saddle
point. Lines represent bifurcation points separating regions where there are different
numbers of equilibria. B). The bifurcation as θS changes for different sections of δS
values (labeled as δiS and with a blue line segment in A indicating the regions it can
cross).

For high values of δS (δS = 2.5), as shown in the top plot of Fig. 3.4B, the system

will stabilize at one decision for all values of θS. In particular, when θS < θH , the

decision is around 0, which means deadlock. When θS > θH , i.e., when the threshold
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for dominance of the social signal is greater for Player S than for Player H, the decision

gradually moves towards the soft preference as θS increases.

For intermediate values of δS, as shown in the three other plots of Fig. 3.4B,

interesting bistability of decisions occur. In the second plot of Fig. 3.4B, when

δS = 1.8, for θS < θH , there are three steady-state solutions. They are the stable

decision for the hard preference, the stable decision for some decision around 0 (almost

deadlock), and the unstable decision for somewhere near the hard preference. As θS

increases to θS > θH , i.e., Player S becomes less influenced by the social term, the

two decisions near the H preference disappear, and just one solution remains stable

which tends towards the S preference as θS increases.

In the third plot of Fig. 3.4B, when δS = 1.6, for all values of θS, there are always

three steady-state solutions. The hard preference decision is always a stable solution,

and so is the other stable solution that approaches the soft preference as θS grows.

Finally, in the fourth plot of Fig. 3.4B, when δS takes a relatively low value

of 1.4, for θS < θH , there is just one stable solution for the hard preference. For

θS > θH , again both the hard preference decision, and the one that approaches the

soft preference as θS grows, are stable.

As can be seen in the bifurcation plots, the critical bifurcation point for θS is

θSc = 1.2, which is equal to the fixed value of θH . In general, for all values of δS, the

soft preference decision is only stable when θS > θH . This means that regardless of

how strongly Player S considers her preference (i.e. whether she gives up her preference

easily or not), her preference can only be reached when she is relatively less “willing”

to follow the mean (i.e., to be less “social”). On the other hand, as δS increases, the

range of θS for which the hard preference decision is stable diminishes. This means

that as Player S becomes more intransigent about her preference, Player H has to

become relatively less social and tolerate larger differences between the mean and her

own position in order to “win” the decision.
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Fig. 3.5 shows the influence of θH on the bifurcation plots in θS. As θH increases,

the range of values of θS for which two stable solutions occur diminish for all values

of δS, while the range for which the hard preference decision is stable increases. This

means that as Player H becomes less sensitive to the social signal, the more likely it is

that her preference will be the solution. Fig. 3.6 shows the influence of the parameters

RH , RS and BS on the bifurcation of equilibrium. As seen, these parameters do not

change the qualitative nature of the system, but they do change the sensitivity of

the equilibria to the bifurcation parameter. Nullclines of the systems are plotted and

compared for different values of the parameters in Fig. B.1 (see Appendix B).
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Figure 3.5: Bifurcation in parameter θS, for various values of θH and δS. As θH
increases, the bifurcation point for θS also increases, and the ranges of values of θS for
which bistability exists shrinks. Furthermore, for higher values of θH , the equilibrium
values for θS < θH tend to approach pH = 1. As δS increases, ranges of θS for which
bistability exists also decreases. When δS are θH are both of higher values, then there
is always one equilibrium, and it is 1 for θS < θH and -1 for θS > θH . When δS is of
intermediate to lower value (< 1.8), for all θH and θS, the equilibrium at 1 is always
stable, and the equilibrium at -1 can only be stable when θS > θH .
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Based on the bifurcations we can predict, for our model dynamics, which decision

outcome is made for which values of the preference and social thresholds of the players.

The interplay between the relative social thresholds and preference thresholds of the

players is critical in determining the decision outcomes. For a preference to win, i.e.,

to become the steady state solution for the group mean decision variable, the player

with that preference needs to have both a sufficiently high preference threshold δ and

a sufficiently high social threshold θ relative to the other player. Having a higher

threshold for just one factor does not guarantee winning a decision. In some cases,

both the hard and soft preferences are stable solutions, and which preference will

win depends then on the initial condition of the mean. A slight change in initial

condition can result in different decision outcomes. For a decision scenario where the
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mean always starts around 0, this means that the starting times of the individuals

will play an important role in determining the decisions to be made. The bifurcation

plots also suggest that for the same initial conditions, a slight change in relative social

thresholds can result in a big difference in the decision outcome.

The model analysis suggests that Player H needs to tolerate a greater deviation

from the mean as compared to Player S (i.e. being less “social” than the other) in

order to win a decision when Player S does not “compromise” on her preference. If,

however, Player H maintains a “close” distance to the mean and is more “social” than

Player S, she can win if Player S is flexible (e.g. δS < 1.4). Otherwise when Player S

is both relatively less “social” θS > θH , and relatively “intransigent” δS > 2, then it

is less likely for Player H to win the decision.

We note that the bifurcation plots imply behaviors when the dynamics have

reached equilibrium. To look at the transient, we need to study the individual be-

haviors in time. In the next chapter, we will study how real humans play the above

mentioned tracking task by examining their tracking trajectories and transient be-

haviors using the model and the parameters.
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Chapter 4

Human behavior in experimental

shared tracking task

In this chapter, we examine human behaviors from a shared tracking experiment by

Groten and Feth et.al. [26] using the parameterized model developed in the previ-

ous chapter. Understanding the behavioral data using mathematical modeling is a

novel approach that provides insights on transient and process characteristics, which

are otherwise not possible through statistical analysis. Our goal is to show that the

proposed model from Chapter 3 can reproduce a wide range of human behaviors sur-

prisingly well, suggesting that the model may have captured the mechanisms behind

some of the behaviors observed in the experiment. It also provides a predictive capa-

bility that can be used to design new experiments to test hypotheses and refine the

model.

Before we begin it is important to note that Groten and Feth et.al. [26] are the

original experiment designers who have run experiments and recorded the original

data. We acquired the data set from one of their experiments in which participants

used visual feedback. The work reported in this chapter is based on the Groten and

Feth et.al. data set and is an outcome of collaboration among all authors in [59].
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4.1 A two-person shared tracking experiment

In this experiment, pairs of human participants performed a tracking task that re-

quired shared decision-making and execution. Players were given limited feedback

and sometimes different signals inducing conflicting individual preferences. The data

set was originally recorded as part of the experiment described in [26], but the data

itself was not analyzed for what is reported in the present study.

In Fig. 4.1A, the experimental setup is shown. A pair of participants sat in front

of two computer screens separated by a wall, and they each used a hand knob to

jointly control a cursor (displayed as a small red ball on the screen, visible to both

players) to track a reference path. The position of the cursor in the vertical direction

was automatically set at a constant rate. The position of the cursor in the horizontal

direction was the scaled algebraic mean of each of the two player’s hand knob position

and was commonly visible to both players. No verbal communication was allowed

between the two players, and the only feedback given to the players was the visual

image of the position of the cursor and the reference path. Players could not see the

position of the other. The reference path, displayed as a white line, changed in time

as it moved down the screen with a constant velocity of 15mm/s. At regular time

intervals the path split in a way that looked like the shape of the letter “T” into

two paths that then later merged again into a single path. Each “T” meant that a

shared decision for one of the two alternative paths was required for tracking. (At

the instant shown in Fig. 4.1A, the red dot is at a position slightly above the split of

the paths“T”).

To influence the horizontal motion of the cursor, each participant had to slide a

hand knob on a 1-D horizontal interface: the ball’s horizontal position was rendered as

the algebraic mean of the two players’ hand knob positions. Both players’ trajectories

and the mean trajectories were recorded, and an example of the data set is shown in

Fig. 4.1B.
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Figure 4.1: Experimental setup, data and decision scenario types. A) A video snap-
shot of two players performing the shared tracking task. Two players jointly control
a cursor on the screen to track a given reference path. The players are separated by
a wall and wear headphones with white noise playing. No direct communication is
allowed. The only feedback the player receives that pertains to the other player is
the continuous-time visual image of the position of the cursor. The decision scenario
shown corresponds to a conflict between the players’ preferred paths: one player has
a “hard” preference for going right, and the other a “soft” preference for going left.
B) Data collected for the case shown in A). The positions in time of the players, as
well as the mean were collected. Time at 0 ms is defined as the instant when the
“T” in the reference path aligns with the vertical position of the cursor (center of the
screen). The duration of the decision is 3 s, i.e.; it is 3 s from the time the cursor
aligns with the “T” to the time the cursor aligns with the re-joining of the reference
paths. Before and after the decision, a phase for calibration occurs where both players
follow the same single reference path. C) A complete trial of the experiment consists
of 18 non-repeated decision scenarios occurring in random order. D) There are six
types of decision scenarios. Three of them induce conflicting preference in the players.
We say a player holds a “hard” preference when the player only sees one reference
path (on the left or right), and holds a soft preference when there are two paths and
one is thicker than the other. A player is said to hold an unknown preference, when
there are two reference paths with equal width. When the two players’ preferences
are for opposite sides, there is a conflict.
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Figure 4.2: Trajectories of players in decision scenario types Hard-Hard No Conflict
and Hard-Soft No Conflict. Total number of participant pairs is 61 in each case.
In the Hard-Hard No Conflict decision scenario types shown in panels (a) and (b),
trajectories of the “first” Player H are in red and those of the “second” Player H are
in blue. In the Hard-Soft No Conflict decision scenario types shown in panels (c) to
(f), trajectories of Player H are in red and trajectories of Player S are in blue. The
mean trajectories are in black.

Throughout a trial in the experiment, players saw, in random order, non-repeated

decision scenarios (starting at the “T” s), such as the one shown in the snapshot

of Fig. 4.1A. A complete trial consisting of 18 such decisions is shown in Fig. 4.1C.

Each decision scenario was separated by a non-decision path, which was the same for

both players, as a calibration procedure. In some decision scenarios, a player could

only see one of the two alternative reference paths, inducing what we call a “hard”

preference for that single reference path. In other decision scenarios, a player could

see both alternatives, where one was a thick path and one a thin path. In this decision

scenario, since it was easier to track the thicker path, the player was assumed to hold

a soft preference for the thicker path. In the remaining decision scenarios, a player

could see both alternative paths, which were equally thin, and is therefore said to

have no induced preference, and therefore an unknown preference.
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There were six general decision scenario types, as shown in Fig. 4.1D, which were

pairwise combinations of hard, soft and unknown preferences for each of the two

players. A conflict occurred when the preferences of the two players were for opposite

sides. If the players had conflicting preferences, and both insisted on tracking their

preferred directions, the decision outcome would end up in deadlock, with the ball

moving along neither reference path, causing loss of time and opportunity for either

player to achieve their preferred goal. Among the six decision scenario types, three

were scenario types without conflict in preferences, for which the decision outcomes

were straightforward, and cohered with the players’ shared preferences. In those

cases, the shared decision was simply to coordinate speeds. However, there were also

three conflict decision scenario types, for which different decision-making behaviors

and outcomes were observed, making it compelling to study those processes. In

particular, the Hard-Soft Conflict decision scenario is the one that incorporates all

possible human behaviors as indicated in the trajectories of this experimental data

set in Figs. 4.2-4.4.

In Figs. 4.2-4.4 trajectories for all decision scenario types and each of the players

are plotted by decision scenarios. The decision scenarios are called 1 to 18 and the

letters l, L, r, R are used to denote the type of reference path shown to the players. l

and L each denote a path shown to the left and r and R each denote a path shown to

the right. A lower case letter indicates a thin path, and an upper case letter indicates

a thick path. The paths are located at 1 (i.e. right) and -1 (i.e. left). If a player is

shown just one reference path then just one letter will be used; otherwise two letters

will be used to denote the thickness. So for example, two players that each just see

a thin reference path to the left will be denoted “l-l”. If “player 1” instead sees a

thick path to the left and a thin path to the right, this will be denoted “Lr-l” etc.

A player with one letter has a hard preference and with two letters, one upper case
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(a) Decision Type 1: Lr-Lr
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(b) Decision Type 2: lR-lR
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(c) Decision Type 3: Lr-lr

−4 −3 −2 −1 0 1 2 3 4
−1000

0

1000

2000

3000

4000

Position

T
im

e
 (

m
s
)

(d) Decision Type 4: lr-Lr
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(e) Decision Type 5: lR-lr
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(f) Decision Type 6: lr-lR

Figure 4.3: Trajectories of players in decision scenario types Soft-Soft No Conflict and
Soft-Unknown. Total number of participant pairs is 61 in each case. In the Soft-Soft
No Conflict decision scenario types, shown in panels (a) and (b), trajectories of players
with the left preference are in red and trajectories of players with right preference
are in blue. In the Soft-Unknown decision scenario types shown in panels (c) to (f),
trajectories of players with unknown preference are in green and trajectories of players
with a soft preference are in blue. The mean trajectories are in black. Location of
preferences of players with soft preference in Soft-Soft No Conflict types are shown
as blue panels at 1 and -1. Location of the opposite path to the preferences of Player
S in the Soft-Unknown types are shown in green.

and one lower case, has a soft preference. A player with two lower case letters has an

unknown preference.

It can be seen in Figs. 4.2-4.4 that the individual behaviors (as reflected in tra-

jectories) are most unpredictable in the conflict decision scenario types. Notably, the

variety of behaviors that occurred in other decision scenario types all appear in the

case of the Hard-Soft Conflict decision scenario types.

In this experiment, there were a total of 58 participants. All participants were

university personnels and students at the Technical University of Munich, in Munich,

Germany. Out of all participants, 32 played three trials (each trial consisting of

18 decisions) with different partners each time, and 13 participants played only one
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(a) Decision Type 15: l-lR
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(b) Decision Type 16: lR-l
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(c) Decision Type 17: r-Lr
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(d) Decision Type 18: Lr-r
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(e) Decision Type 7: Lr-lR
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(f) Decision Type 8: lR-Lr

Figure 4.4: Trajectories of players in decision scenario types Soft-Soft Conflict and
Hard-Soft Conflict. Total number of participant pairs is 61 in each case. For Hard-
Soft Conflict decision scenario types, shown in panels (a) to (d), trajectories of Player
H are in red and trajectories of Player S are in blue. Location of preferences of Player
S are shown as a blue stripe. Location of preferences of Player H are shown as red
stripe. The mean trajectories are in black. For Soft-Soft Conflict decision scenario
types, shown in panels (e) and (f), trajectories of the “first” Player S are in red and
trajectories of the “second” Player S in blue. Location of preferences of the “first”
Player S are shown as a red stripe and that of the “second” Player S are shown as a
blue stripe. The mean trajectories are in black.

trial, with a partner who also played only one trial. The mean of the ages of all

participants was 25.78, and the standard deviation was 4.87. All participants were

right-handed and were incentivized to follow the track as closely as possible. Details

of the reward structure and how success was measured quantitatively are presented

in [26]. Participants were separated by a wall. In addition, players wore headphones

in which white noise was played, so that neither direct communications, nor the noise

of moving handknobs could be sensed. Players were not shown the entire track signal

before the experiment. However, all participants had gone through a test run before

the actual trial, where they could view both screens, and thus became aware of the

different types of decision scenarios. They were also informed about the randomness of
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the order of decision scenarios, and that the situation combinations were not repeated.

They knew that there would always be a solution, i.e., that the two players would

each see at least one common path at a “T”.

The sliding motion interface was equipped with a force sensor (burster load cell

8542-E), a hand knob and a linear actuator (Thrusttube). The control of the interface

modeled a virtual object with intertia only. The cursor position was defined as the

mean of the two indvidual device positions. The control of the cursor motion was im-

plemented in MATLAB/Simulink and executed on the Linux Real Time Application

Interface RTAI. The graphical representation of the path was run on a separate com-

puter and communication between the computers was realized by a UDP connection

in a local area network. For further details, see Groten and Feth et.al. [26].

4.2 Model-free statistics of experimental data

As a first step to understanding the experimental observations, we collected statistics

on the decision outcomes and starting order (i.e., who started first) for the three

conflict cases.

For a given trial, if the mean trajectory entered a certain neighborhood of one

of the two alternative reference paths and stayed there for a sufficiently long time,

then the pair of players is said to have reached a decision, and we define the decision

outcome to be for that particular path (for details of the methods see Appendix

B). The bounds of the neighborhood for the thick path, thin path and centerline,

are defined by µthick, µthin, and µ0 respectively. Each neighborhood is defined as

a box surrounding the path, with length equal to the signal duration (3000 ms)

and width equal to twice the bounds centered around the path or centerline. The

bounds µthick, µthin, and µ0 are percentages of the distance between the reference

paths and the centerline. Fig. 4.5A presents the decision outcomes statistics. The
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decisions were defined for the following criterion. The threshold on the thick path

was µthick = 0.35. The threshold on the thin path was µthin = 0.1. The threshold for

deadlock at centerline was µzero = 0.1. Time required to stay within the threshold

was Tpreference = 50 ms for the preferences, and Tcenter = 2000 ms for deadlock. In

the Hard-Soft Conflict decision type, the stronger preference is defined to be the hard

preference. In the case of Hard-Soft Conflict, Player H was able to win the decision

for 64.3% of the time. A remarkable 25.4% of the time, the decision was for the side

for which Player H had no track, i.e. Player S was able to win the decision 25.4% of

the time. And for the remaining 10.3% of the time, the decision outcome was other

than classified above. This 10.3% consisted of deadlock, unclassified decisions and

decisions that reached both hard and soft preferences in the process.

In the Soft-Soft Conflict decision type, we distinguish between left and right pref-

erences. For 52.5% of the time, the decision outcome was for the right preference,

while 47.5% of the time, it was for the left preference. In the Soft-Unknown decision

type, the stronger preference was the soft preference, and 87.3% of the time, the

decision outcome was for the soft preference.

In the Soft-Unknown decision type, a decision for the side opposite to the soft

preference was as frequent as 11.9%. A decision for the non-preferred side may have

occurred when the player with the unknown preference initiated first. For the re-

maining 0.8% of the time, the outcome was not accurate enough to be counted.

Fig. 4.5B presents a comparison of the starting order between the players in dif-

ferent conflict decision scenario types. In the Hard-Soft Conflict decision type, Player

H was the initiator for 36.5% of the time. Player S was the initiator for 62.7% of

the time. Only in two cases, did both players start out at the same time. In the

Soft-Soft Conflict decision type, the player with the preference for the right side was

the initiator for 55.7% of the time. The player with the preference for the left side

was the initiator for 44.3% of the time. In the Soft-Unknown decision type, the player
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with the soft preference was the initiator for 82.4% of the time, and the player with

an unknown preference was the initiator for 17.6% of the time.

Fig. 4.5 C-E show the decision outcomes by starting order for the three conflict

decision scenario types. In the Hard-Soft Conflict decision scenario, when Player H

initiated, she almost always won the decision. When Player S initiated, all decisions

were possible. In the Soft-Soft Conflict decision scenario, when the left preference

player initiated, the decision was most likely for the left preference, and similarly for

the right preference player. In the Soft-Unknown case, when the player with a soft

preference initiated, the decision was most likely for that preference, and when the

player with unknown preference initiated, the decision could be both.

We performed the Chi-squared test on the Soft-Soft Conflict decision scenario, and

Fisher’s exact test on the Hard-Soft Conflict and Soft-Unknowns cases (see Table 4.1

below), to test the correlation between the starting order and decision outcome. The

null hypothesis was that the decision outcomes were independent of the starting order

of the players. For all of the cases, we computed a p-value of p < 0.01, indicating that

the decision outcomes significantly differed by starting order of the players [13] [14].

However, statistical significance does not say exactly what role starting time plays,

and how for the Hard-Soft Conflict decision type, although Player S initiated more

often, she didn’t win the decision more often. In the other two cases however, the

player who initiated the motion was typically a proxy for the decision outcome.

One possible reason why Player S would start out more often is that the soft

preference path is 40 times wider (40 pixels versus 1 pixel on the screen) than the

hard preference path both vertically and horizontally, as in Fig. 4.1A. And therefore,

the “T” indicating the start of the decision happens sooner for the player who sees a

thick path. It is likely due to this difference that Player S started out first more often.

The horizontal portion of the soft preference track would reach Player S’s action level

(level where the cursor moves) sooner than the hard preference does for Player H,
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Figure 4.5: Decision outcomes and starting order. A). Frequency of decision outcomes
for each of the three conflict decision scenario types. Red represents the stronger
preference (i.e., the hard preference in the Hard-Soft Conflict decision scenario and
the soft preference in the Soft-Unknown case). Red also represents the left preference
in the Soft-Soft Conflict decision scenario. Blue represents the other preference. Green
represents decisions not classified due to inaccuracy. B). Frequency of initiator for
each of the three decision scenario types. Red represents the initiator being the player
with the stronger preference (as defined before) and blue represents the initiator being
the player with the weaker preference and green represents both players initiating at
the same time. C)-E) Decision outcomes for each type of initiator for the three conflict
decision scenario types. In the Hard-Soft Conflict decision scenario, when Player H
initiated, she almost always won the decision. When Player S initiated, all decisions
were possible. In the Soft-Soft Conflict decision scenario, when the left preference
player initiated, the decision was most likely for the left preference, and similarly for
the right preference player. In the Soft-Unknown decision case, when the player with
a soft preference initiated, the decision was most likely for that preference, and when
the player with unknown preference initiated, the decision could be both.

resulting in a noticeable time delay by design. The delay should be more obvious

when the two decision scenario types are different. When both have soft preferences,

there should be little influence from the delay.
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Table 4.1: Cross tabulation of incidents of decision outcomes (H preference, S pref-
erence, L preference, R preference, None of the above) and incidents of initiating
(Player H, Player S, Player L, Player R, Player Unknown, Both at the same time)
for the three different decision scenarios

Hard-Soft Conflict H preference S preference None
Player H initiates 81 5 3
Player S initiates 74 57 22

Both 2 0 0

(a) Initiator and decision outcomes for the Hard-Soft Conflict decision scenario.

Soft-Soft Conflict L preference R preference None
Player L initiates 52 16 0
Player R initiates 6 48 0

Both 0 0 0

(b) Initiator and decision outcome for the Soft-Soft Conflict decision scenario.

Soft-Unknown S preference Opposite to S None
Player S initiates 189 11 1

Player Unknown initiates 21 17 1
Both 3 1 0

(c) Initiator and decision outcome for the Soft-Unknown decision scenario.

These statistical findings suggest that the starting order (and therefore relative

starting time) play a potentially important role. However, we also noticed that sta-

tistical analysis of the start and end status of the decision behaviors alone were not

sufficient for us to understand why the players reached certain decisions. Player S

started out more often than Player H, but did not win the decision more often. This

motivates our investigating of the trajectories with our model to find explanations for

the decision-making process.
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4.3 Fitting the dynamical model to data and pa-

rameter analysis

The Hard-Soft Conflict model Eq.3.5 (including all parameters) was fitted to all data

sets available for the Hard-Soft Conflict decision scenarios. There were a total of 244

sets of data, and each data set consisted of 5000 ms of trajectories for each player and

for the mean. All of the parameters in the Hard-Soft Conflict model were fitted except

for τ . We did not expect individuals to learn or develop a consistent personality trait

in this experiment with unrepeated task trials. Therefore, we allowed the parameters

to vary from trial to trial, and every trial was fit individually. We then evaluated

all fits and parameter values to find a general trend on the relationship between

parameters and behaviors.

We applied a time constant of τ = 100 ms for all fits so that the speed of the

model matches the speed for the majority of the data trajectories. The value of 100

ms for the time constant was found out based on preliminary fitting to the data by

using various values of τ . The time constant affects the transient and reflects the

inherent time scale of the process. We fit to the data up until tf = 3000 ms and used

a common Heaviside function to account for the ending of the decision phase (see

methods in Appendix C).

Fig. 4.6 shows the statistics for goodness-of-fit. The mean of the root mean squared

(RMS) error is 0.39 with a standard deviation of 0.18. The root mean squared error

for the best fitted data is 0.08, and 0.94 for the worst fitted data. We have normalized

the data such that the tracking goal is at 1 and −1. The mean of the RMS to be at

0.39 is considered good for overall fit quality, as can be seen in the trajectories fitted

and discussed later on in Figs. 4.10 -4.11.

We refer to a player who changes her mind and changes course of action after

some unsuccessful attempts to change the motion of the mean as someone who makes
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Figure 4.6: Goodness-of-fit in terms of root mean squared error. A total of 244 data
sets were fitted. Each data set included three trajectories of 5000 data points (1 point
per ms.)

a “compromise” in the coordination. We will use the word “compromise” in the

following text to mean that the player has given up her previous intention.

There were cases in the data (less than 25 per cent of the time) when Player S and

Player H behaved as if they exchanged roles. In those trials, Player S was often more

forceful and did not make a “compromise” whatever the mean decision was, while

Player H made a compromise soon after the task started, and even actively moved

towards a side where she could see no path. We allowed for the fitting routine to

select a binary parameter to decide whether αH = 0 or αH 6= 0 would better fit the

case, i.e. whether Player H should be modeled as such or as Player S instead.

Fig. 4.7 shows the decision outcomes fitted with αH = 0, and mapped on the

plane of relative social thresholds (θS − θH) versus relative starting times (tH − tS).

It can be seen that for tH − tS < 0, i.e. Player H starting first, regardless of the

values of θS − θH , the decision outcomes were exclusively for the hard preference or

otherwise unclassified. For tH − tS ≥ 0 all decisions were present, while for θS− θH >

0, a decision for the soft preference was more likely. It can be noticed that the

starting time differences were greater for the double decisions, which were cases when

the decision reached both preferences during one trial. The majority of the hard
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Figure 4.7: Decision outcomes mapped onto the plane of relative fitted social thresh-
olds (θS−θH) versus relative fitted starting times (tH−tS in milliseconds). Outcomes
are identified by different markers. Red squares represent decision outcomes for the
hard preference. Blue empty circles represent outcomes for the soft preference. Green
filled circles represent decisions reaching both hard and soft preferences. Black filled
circles represent the single occasion of deadlock (at the centerline), and gray filled
circles represent outcomes which are not accurately classified as above. The defini-
tion for decision outcomes used for this case is the same as that used in Fig. 4.5. It
can be seen that for the fitted data sets, a higher social threshold of Player S is a
necessary condition for Player S to win when Player H plays according to the given
cue (αH = 0), with only one exception. Player S starting first is also a necessary
condition for the decision outcome to be the soft preference.

preference outcomes lie in the dense cluster in the range of −2 < θS − θH < 0 when

tH − tS was around 0, and in the range of −500 ms < tH − tS < 500 ms when θH − θS

was around 0.

Fig. 4.8 shows the decision outcomes fitted with αH 6= 0. For all cases fitted with

Player H playing as if holding a soft preference, the decision outcome was never for

the hard preference, or deadlock or double decisions, but only for the soft preference

or otherwise unclassified. For all but one case, the decision outcomes for the soft

preference occur when tH − tS > 0. In summary, for the decision outcome to be the

soft preference where Player H played as if having a soft preference, Player S generally

started earlier than Player H, with just one exception.
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Figure 4.8: Decision outcomes mapped onto plane of relative fitted starting times
(tH − tS in milliseconds) and relative fitted social thresholds (θS − θH) when αH 6= 0.
αH 6= 0 is used to fit to data sets where the player with a hard preference plays as if
she had an alternative track and therefore instead of the hard preference, she had a
soft preference. Outcomes are identified by different markers. Blue circles represent
decision outcomes for the soft preference and gray empty circles represent decision
outcomes which are not accurately classified as above. Overall, including the data
sets fitted to the case when αH = 0, Player S starting out first is a necessary condition
for the decision outcome to be the soft preference for but one exception.

Fig. 4.9 shows the decision outcomes fitted with αH = 0 in the plane of the

fitted preference threshold δS for Player S versus the relative fitted social thresholds

(θS − θH). When δS was greater than 2, the decision outcome was almost exclusively

for the soft preference when θS − θH > 0. Diagonally, when δS was less than 2, the

decision outcome was almost exclusively for the hard preference when θS−θH < 0. In

general, when θS − θH < 0, that is when Player S is more “social” than Player H, the

decision outcome is almost exclusively for the hard preference with only one exception.

The case of deadlock had a δS value greater than 4, while the corresponding θS − θH

and tH − tS were almost 0.

Mapping human behavioral parameters onto the plane of decision outcomes leads

us to a closer understanding of the distribution of individual player’s transient be-

haviors in this continuous-time social coordination task. We have seen that there is
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Figure 4.9: Decision outcomes mapped onto the plane of fitted preference thresh-
olds δS of Player S versus relative fitted social thresholds (θS − θH). Outcomes are
identified by different markers. Red squares represent decision outcomes for the hard
preference. Blue empty circles represent outcomes for the soft preference. Green filled
circles represent decisions reaching both hard and soft preferences. Black filled circles
represent the single occasion of deadlock (at the centerline), and gray filled circles
represent outcomes which are not accurately classified as above. The definition for
decision outcomes used for this case is the same as that used in Fig. 4.5. It can be
seen that for a higher social threshold θS of Player S and a preference threshold δS
greater than 2 the decision outcome tended to be exclusively the soft preference or
on the side of the soft preference. On the other hand, when Player S had a relatively
lower social threshold θS then for all values of δS the decision outcome tended to be
on the side of the hard preference with one exception.

great variability in behaviors across the players from the fact that parameters are

relatively broadly distributed in the parameter space. However, the parameter space

is separated by stable decision outcomes and there are characteristic clusters that

allow us to identify different behavior types.
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4.4 Explaining behaviors in terms of dynamical

processes

We compared fitted and data trajectories to show how key model parameters help

explain the dynamic process behind a decision. In Fig. 4.10, five different types of

decision processes are presented. The parameters for the fits are shown in Table

4.2. Fig. 4.10A presents a frequently observed decision process where the player

with the hard preference (in red) started out early, and Player S (in blue) simply

followed. Players adjusted their speeds and the mean reached the hard preference

path accurately. It can be seen from the parameters in Table 4.2 that Player S had

an intermediate value of preference threshold δS, which accounts for Player S ignoring

the preference when the preference became too far.

Fig. 4.10B shows the case where Player S (in blue) started out first, towards the

direction for which Player H had no track, and successfully pulled the mean towards

the soft preference for some time. As soon as Player H started moving, Player S

made a compromise and turned around. The threshold parameters revealed that it

was Player S’s relatively lower social threshold that led to the compromise. At the

same time, Player S had a high preference threshold, implying that there was a strong

determination to stick to the preference. However, the force to pursue the preference

was overcome by the force of the social interaction.

Fig. 4.10C shows another frequently seen process, where the two players started

out almost simultaneously and towards opposite directions. Player S reacted to the

resulting deadlock quickly by turning around and making a compromise so that the

hard preference was reached. Comparing the parameters for this case and that of Fig.

4.10A reveals that in this case, Player S had a slightly lower social threshold, i.e., a

slighter greater willingness to compromise for coordination.
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Mean trajectory (model fit)
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Figure 4.10: Data and model fits for representative decision processes. The param-
eters for the fits are shown in Table 4.2. A). Decision outcome was for the hard
preference. Player H started out early, and Player S followed without pursuing her
preference. B). Decision outcome was for both the hard and soft preferences. Player
S started out first towards the soft preference, but as soon as Player H started mov-
ing, Player S compromised for the hard preference. C). Decision outcome was for the
hard preference. The two players started out almost simultaneously and towards their
respective preferences. However, Player S reacted to the resulting deadlock quickly
by turning the other way and making a compromise so that the hard preference was
reached. D). Decision outcome was for the soft preference. Player S started out first
and insisted on the preference, while Player H gave up right around when the mean
reached the soft preference. E). Decision outcome was for the hard preference. Player
H acted more forceful than Player S even though Player S started out earlier.

Fig. 4.10D shows a case where the decision outcome was for the soft preference.

Player S started out first and insisted on the preference, while Player H gave up

after trying for a while. Parameters show that Player H had a relatively lower social

threshold.

Fig. 4.10E shows a case where Player H was more forceful and Player S did not

have to turn around for the mean to reach the hard preference. Parameters suggest
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Figure tH tS θH θS δS BS RH RS

Fig. 4.10A -135.00 -88.48 1.51 1.80 1.24 7.90 7.20 7.08
Fig. 4.10B 999.87 -622.17 5.97 1.03 2.63 2.77 19.82 5.57
Fig. 4.10C -80.37 -31.45 1.55 1.54 1.36 9.15 15.46 13.20
Fig. 4.10D 8.46 -150.34 0.87 2.65 0.84 6.07 6.04 5.28
Fig. 4.10E -173.45 -429.64 4.31 0.52 2.22 8.75 16.61 1.35
Fig. 4.11A -25.83 -73.37 0.70 0.70 4.16 11.80 3.66 3.64
Fig. 4.11C -25.01 -161.24 1.06 1.39 1.1 14.06 1.26 4.07
Fig. 4.11D 0 -321.82 0.65 0.48 1.00 2.69 23.27 1.08

Table 4.2: Table of fitted parameters when αH = 0.

Figure No. tH tS θH θS δH δS RH RS BH BS

Fig. 4.11B -18.07 -84.63 1.23 2.09 1.45 5.17 1.09 24.13 4.65 16.24
Fig. 4.11E 0.91 -299.98 1.40 1.51 1.50 1.50 3.01 5.00 14.98 5.77

Table 4.3: Table of fitted parameters when αH 6= 0.

that the value of the social threshold of Player H was relatively high even though the

the value of the preference threshold of Player S, δS was also high.

Besides the above typical decision process, there are a few more worth pointing

out. The one case of deadlock present in Fig. 4.5 is shown in Fig. 4.11A. In this case

both players gave up trying and remained in deadlock until the end. Player S had a

very high preference threshold. Fig. 4.11B shows the case where Player S played as

if having a hard preference, and Player H played as if having a soft preference. As

mentioned before, this case was fitted assuming αH 6= 0. Both Player S’s preference

threshold, and social threshold, were greater than those of Player H’s. The parameter

values for this fit are shown in Table 4.3.

Fig. 4.11C presents a case where the two players were coordinating their speeds

with simultaneous overshoot and undershoot, but the mean went to the hard prefer-

ence path. Here, Player S started out first, and was able to pull the mean towards her

advantage, but turned around in a compromise. Both Player S’s preference threshold

and social thresholds were relatively low. Fig. 4.11D shows a case where the two play-
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Figure 4.11: Data and model fits for less common kinds of decision processes. The
parameters for the fits are shown in Table 4.2 and Table 4.3. A). Decision outcome
was for deadlock. Both players gave up trying and remained in deadlock. B). Decision
outcome was for soft preference. Player S played as if having a hard preference, and
Player H played as if having a soft preference. C). Decision outcome was for the hard
preference. Two players coordinated their speeds in the process of reaching a decision
and simultaneously overshot and undershot, but the mean stayed on a path. Player
S initiated the movement, but decided to turn around to compromise for Player H.
D). Decision outcome not classified. Players seemed to have moved with canceling
oscillations and did not try further to make the decision. E). Decision outcome was
for the soft preference. Players played as if having exchanged roles. Player H followed
Player S.

ers reached a decision somewhere in the middle between the soft preference and the

centerline. In this case, both players seem to have moved with canceling oscillations

and were not forceful enough to make the decision.

Fig. 4.11E shows a case where Player H followed Player S as if they exchanged

roles and Player S was much more forceful.

In this experiment, individuals played a particular decision type once with a pre-

scribed partner, and no learning was possible since neither the partner player, nor the
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decision scenario types were repeated. The parameters that we were able to extract

and interpret therefore stand for the behavior for the one process that was fitted to.

It remains to be tested in future experiments to see if players develop a particular

social threshold or preference threshold, after repeatedly playing the game with a

fixed partner player and for a fixed sequence of decision scenarios.

Our model has limitations as well, and not all decision curves of the experimental

data were a good fit, as presented in Fig. 4.12. Fig. 4.12A is an example of dead-

lock by compromise, where both players moved opposite each other in a gesture of

compromise. While the resulting decision looks like a deadlock, it was not counted

as a deadlock decision since it is not in the close-enough vicinity of the centerline.

We were able to reproduce this decision outcome, but could not capture the transient

behavior. If we introduce one more parameter as a gain in front of the social interac-

tion term, we should be able to capture such deadlock cases, since it is possible that

in this case, the social interaction is a stronger term than we have assumed.

Fig. 4.12B shows a case where Player H suddenly increased speed after the decision

had reached the soft preference side (which Player H could not see). We have used

a constant time constant for all trials, and could not produce sudden changes in the

speed in one direction that required a higher time constant. If we introduced one

more gain into the model, or allowed the time constant to change for each data set,

we should be able to capture such processes.

From a cognitive science perspective, these results could also be due to the fact

that players did not always act consciously in this task [35, 43]. Interactive tasks

where players cannot see each other can be very complex. In cases where players

seem to be not taking action or being consistently stubborn and “single-minded”, it

may be because these trials happened when players were not consciously performing

an interactive task (i.e. not being “social” or “deciding” at all). We therefore suggest

that social interaction is a conscious act that may require some form of cueing, and
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simply displaying the mean trajectory may not be enough to motivate players to con-

sciously interact with the “invisible” other player. Nevertheless, our model has shown

potential usefulness in explaining human behaviors in decision-making processes that

are otherwise not able to be described with data analysis alone.

Player S (data)

Mean trajectory (data)
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Location of H preference
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Figure 4.12: Trajectories that were not well fitted with the model. A. Deadlock by
compromise. B. Change in time constant is present. It is of future work to investigate
how to capture these transient processes, while our current model can only capture
the outcomes for these cases.
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Chapter 5

Game-theoretic analysis of

behavior in the shared control task

5.1 Background

In this chapter we study human behaviors in Chapter 4 from a game-theoretic per-

spective, and examine evolution of strategies at the population level. A game is an

interactive decision-making setting where two or more players make independent de-

cisions (without communication or prior agreement) in a strategic situation where

their individual reward is influenced by the joint decision of all players in the game

[53]. Game theory examines how incentives affect individual decisions in a strategic

setting. To use game theoretic tools, we assume that players make rational decisions.

By rational, we mean that they will always prefer a strategy that will help them

achieve the best rewards for themselves given the responses of others.

A normal form game is defined by the rewards given to the players and carries the

form of a reward matrix, which we will introduce in detail later. In this chapter, we

analyze the shared control task from Chapter 4 using the formulation of a repeated

normal form game formulation, and investigate if players make decisions that achieve
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joint strategies corresponding to game-theoretic equilibria, even though players can-

not compute such equilibria (due to incomplete information). Nash equilibrium is an

important concept in game theory. A Nash equilibrium, named after the mathemati-

cian John Nash, is a set of strategies, one for each of the players in a game, that has

a special property that each player’s choice is his best response to the choices of all

other players. A Nash equilibrium corresponds to the players playing the strategies

in which no one can be better off by unilaterally deviating. In other words, at a Nash

equilibrium, nobody has the incentive to deviate from the equilibrium unilaterally,

and the strategy played is therefore a best response given the strategies of others

[31, 53].

A repeated game is a type of game that maps well to continuous-time processes

where the same one-shot game is repeated a number of times as the process evolves,

and rewards are accumulated along the way. Repeated games allow players to adapt

their strategies based on past observations and use feedback that is otherwise not

possible in one-shot games [53]. Often, strategies that result in the highest individual

rewards for playing a repeated game may not be the same as the strategies that result

in the highest individual rewards in a one-shot game, because players can learn or

adapt in a way so that they may implicitly cooperate and play a socially optimal

strategy that is better than individually best response (Nash) strategies. One type

of equilibrium that can be reached is called a correlated equilibrium.

First introduced by mathematician Robert Aumann in 1974 [3], a correlated equi-

librium is one of the most commonly observed (in laboratory settings) and natural (by

intuition) outcomes of repeatedly played coordination games that have two or more

Nash equilibria. Intuitively a correlated equilibrium is best understood by considering

the game to be played repeatedly, even through one-shot games can have correlated

equilibrium as well. A correlated equilibrium requires the existence of at least two

pure Nash equilibria. Suppose there are only two, then at the correlated equilibrium,
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the players reach a consensus that half of the time they will play one of the Nash

equilibria and the remaining half of the time they play the other equilibrium. It is as

if they were coordinated through some communication: i.e. if you switch in the next

round I switch. At a correlated equilibrium, a player chooses his strategy only on the

condition that the other player also chooses the correlated equilibrium strategy. The

two players’ strategies are correlated, hence the name. What’s striking about this

equilibrium concept is that correlated equilibria predict that such coordinated divid-

ing between Nash equilibrium strategies can emerge even without communication or

signaling [30, 3, 4].

In the case of a population reaching a correlated distribution of strategies over

two Nash equilibria, then half of the population will play one equilibrium strategy

and the other half of the population will play the other equilibrium strategy, as if

someone had told them to split. The most obvious benefit of playing a correlated

equilibrium is that players can avoid negative reward outcomes and play in a more

“fair” way [53].

There are many notions of equilibria in game theory other than the ones we

consider in this chapter [53]; however, these are not relevant to our study and hence

will not be reviewed here.

Two player interactions in continuous-time coordination games have been studied

by Braun et. al. in [10, 9]. Using experiments [9], Braun et. al. investigated human

pairwise coordination in sensorimotor tasks that correspond to classical coordina-

tion games with multiple Nash equilibria. They found that successful coordination

between two players (who were not allowed to communicate with each other) was

achieved in the majority of the experimental trials and that such coordination was

characterized by statistical features including increased mutual decision dependence

and increased joint entropy. While they showed that players were able to converge

80



to the Nash equilibria in the majority of the trials, how strategies evolve in time was

not addressed.

The goal for this chapter is twofold. First we show that in the experiment for

which we studied individual transient behaviors in Chapter 4, the majority of players

are able to converge to playing the Nash equilibrium strategies as predicted by game

theoretic analysis. This finding provides motivation for investigating why players are

able to “learn” or converge to the Nash equilibrium strategies even though they don’t

know the incentives of the other player. Second, by observing the evolution of strate-

gies at the population level, we suggest an explanation for how convergence of Nash

equilibrium strategies can take place. By analyzing the mean field strategy evolution

we see that as a population, the majority of players are able to jointly converge onto

the Nash equilibrium strategies in time as if they knew their co-players rewards as

well. We show through simulations for two examples that the replicator dynamics

can reproduce very similar strategy profiles as found in empirical observations.

5.2 A normal form coordination game with incom-

plete information

We first formulate the experimental task of Chapter 4 into a normal form game. At

first glance the game formulation results in a reward structure that looks like an

anti-coordination game instead of the classical coordination game where the highest

rewards for each player are achieved when players play the same strategies. We will

explain why it is appropriate to formulate the game as an anti-coordination game

instead of a classical coordination game, since in this tracking experiment, it is the

mean position of the two players that influences their respective rewards and not

the player’s own absolute positions. There is a higher possibility of tracking the

reference path more accurately if the players coordinate more freely than having to
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move in sync. We then show that for the different decision scenario types, the one-

shot normal form game that we define can have one or more pure Nash equilibria

that can be interpreted as best response individual strategies for the players. In the

scope of this chapter, we are only interested in pure Nash equilibria in the games we

are going to describe.

The game formulation of the experiment as summarized in Chapter 4 and con-

ducted by Groten et. al. [26] can be formally described in terms of the language of

game theory as follows. Two players, who we refer to as Player 1 and Player 2 for now,

repeatedly interact in a game setting where the game outcome depends on the joint

strategies of the players, which also decides their respective rewards. For each player

i = 1, 2, the set of strategies are called left (L), right (R) and center (C). A strategy

of L corresponds to a model decision variable zi with a value zi ≤ −1. A strategy of

R corresponds zi ≥ 1. The strategy of C corresponds to the value zi ∈ (−1, 1). This

provides a map from continuous values on the real line onto the three distinct sets

identified with the three distinct strategies L, R and C.

We define each trial of the task of Chapter 4 that lasts from −1000 ms (1000

ms before the reference path splits at a “T”) to 3000 ms when the reference paths

merge as a repeated game of the one-shot game with the three strategies L, R and

C. The number of repeated rounds of the one-shot game depends upon the resolution

we use to discretize the 4000 ms time period. We use the resolution of one round

per millisecond so that the total number of rounds is 4000. The goal of the game

(as in the experiment) is for the two players to coordinate their decisions so that the

mean 1
2
(z1 + z2) reaches 1 or −1. In our game theoretic formulation, we assume that

a reward is accumulated in each round by each player throughout the repeated play.

Each individual therefore try to maximize her average reward in each repeated play.

Reward to the players is modeled as reflecting the probability of achieving higher

accuracy in tracking the preferred reference path. Intuitively, in order to achieve co-

82



ordination and therefore to get a nonzero reward, the players should not choose the

same strategies (as this may result in overshoot), and should not choose joint strate-

gies that are opposite to each other (as this may result in deadlock), and furthermore,

should not choose joint strategies that are both at the center (as this may result in

no action similar to deadlock). The only joint strategies that will earn at least one of

the players a nonzero reward is the joint strategy that consists of one player playing

center, and the other player playing left or right depending on the game’s reward

structure. Even though this is a coordination game, the way we discretize the strat-

egy space makes the game similar to an anti-coordination game as opposed to the

classical coordination game in the literature.

The strategies, besides being called left, right and center, may also be called “pref-

erence (P)”, which means that it corresponds to a side for which the player will gain

higher reward, “opposite of the preference (O)”, indicating a side for which the player

may not have any reward or lower reward, and “ no preference(C)”, meaning that the

player chooses to not make a strong move and not indicating obvious preference. For

clarity, we will stick with the definitions of the strategies as left (L), right (R) and

center (C) until later when we introduce the replicator dynamics in the next section,

where we will use the P, C and O notation if necessary.

Given two players and three strategies, the reward for each player is contained in

a three-by-three reward matrix in which the rows are the strategies for the player who

has been assigned the reward, and the columns are the strategies of the co-player.

For instance, consider a “Hard-Soft Conflict game”, corresponding to the Hard-Soft

Conflict decision scenario type as described in Chapter 4, where the first player has a

hard preference for left (for instance), and the second player has a soft preference for

right. We denote such a game as l-lR, following the notation of Chapter 4 in Section

4.1. We define the reward matrix Al for Player 1 (with a hard preference for Left) as
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Al =

L R C

L 0 0 α

R 0 0 0

C α 0 0

Player 1 can only receive a non-zero reward α, which we explain later, if the joint

strategy is Player 1 playing C and the other player playing L (denoted by (C,L)) or

Player 1 playing L and the other player playing C (denoted by (L,C)). Depending on

the other player’s incentives, Player 1 needs to adjust the strategy accordingly. At

these two strategies (given that the other player plays accordingly) the mean has a

higher probability of reaching -1 (L), which is Player 1’s preference. Similarly, we

define the reward matrix BlR for Player 2 (with a soft preference for Right) as

BlR =

L R C

L 0 0 γ

R 0 0 β

C γ β 0

We define the reward matrix for a player with unknown preference, denoted by Alr

as

Alr =

L R C

L 0 0 γ

R 0 0 γ

C γ γ 0

The values α, β, γ in the reward matrices are chosen to indicate the relative mea-

sure of rewards for different joint strategies. We assume that α, β, γ ≥ 1 and that

α > β > γ. The player who has a hard preference for Left, will always have the re-

ward matrix Al regardless of the co-player’s rewards. By combining and permutating

the above three reward matrices we can reproduce joint strategy reward structures

84



(tables) that define the two-player three-strategy games for the experiment corre-

sponding to the 18 decision scenario types as in Chapter 4. Example reward tables

for the six qualitatively different game types, namely the Hard-Hard No Conflict

game, Hard-Soft No Conflict game, Soft-Soft No Conflict game, Soft-Soft Conflict

game, Soft-Unknown game and Hard-Soft Conflict game, are shown in Tables 5.1-5.6.

In the reward tables, the pure Nash equilibrium or equilibria are colored whereas

other joint strategies are not. Different colors are used for the two players’ payoffs

and the player’s position (Player 1 or Player 2) are colored accordingly. Player 1 is

always the row player meaning that she selects the row strategies and Player 2 is

always the column player selecting the column strategies.

Player 2
L R C

L (0,0) (0,0) (α,α)
Player 1 R (0,0) (0,0) (0,0)

C (α,α) (0,0) (0,0)

Table 5.1: Reward table for the Hard-Hard No Conflict game. Both players have a
hard preference for left (L).

Player 2
L R C

L (0,0) (0,0) (α,β)
Player 1 R (0,0) (0,0) (0,γ)

C (α,β) (0,γ) (0,0)

Table 5.2: Reward table for the Hard-Soft No Conflict game. Player 1 has a hard
preference for left (L) and Player 2 has a soft preference for left (L).

Classical game theory predicts outcomes of game play in terms of equilibrium

strategies by computing the equilibria of the normal form game. All normal form

games have at least one Nash equilibrium, which may not be a pure Nash equilibrium.

But in our case, all games (corresponding to the decision scenario types in Chapter 4)

have pure Nash equilibria. A pure Nash equilibrium (of a one-shot game) is a set of
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Player 2
L R C

L (0,0) (0,0) (β,β)
Player 1 R (0,0) (0,0) (γ,γ)

C (β,β) (γ,γ) (0,0)

Table 5.3: Reward table for the Soft-Soft No Conflict game. Both players have a soft
preference for left (L).

Player 2
L R C

L (0,0) (0,0) (γ,β)
Player 1 R (0,0) (0,0) (γ,γ)

C (γ,β) (γ,γ) (0,0)

Table 5.4: Reward table for the Soft-Unknown game. Player 1 has no preference and
Player 2 has a soft preference for left (L).

strategies that yield the best rewards for both players so that no one has an incentive

to deviate from the equilibrium strategy if the other player does not choose to play

otherwise as well. As the game is repeated, always playing the Nash equilibrium may

not result in the best average reward because once the co-player’s strategies become

predictable, it is possible to achieve higher reward by “cheating” for example. In the

experiment of Chapter 4, players do not know the reward matrices of the other player

and as will be seen in the data analysis later, players do not switch between Nash

equilibria within a trial of 4000 rounds. However, across trials, and therefore as a

population, if there is more than one Nash equilibrium, the population can be seen

to divide and distribute over the Nash equilibria solutions. Specifically, players who

played a certain Nash equilibrium strategy in one trial (of 4000 rounds) switched to

a another Nash equilibrium strategy in another trial. At the population level, this

corresponds to a correlated equilibrium distribution over strategies. But within trial

(within the 4000 rounds), players when converged onto a joint strategy do not switch

between Nash equilibrium strategies.
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Player 2
L R C

L (0,0) (0,0) (γ,β)
Player 1 R (0,0) (0,0) (β,γ)

C (γ,β) (β,γ) (0,0)

Table 5.5: Reward table for the Soft-Soft Conflict game. Player 1 has a soft preference
for right (R) and Player 2 has a soft preference for left (L).

Player 2
L R C

L (0,0) (0,0) (α,γ)
Player 1 R (0,0) (0,0) (0,β)

C (α,γ) (0,β) (0,0)

Table 5.6: Reward table for the Hard-Soft Conflict game. Player 1 has a hard pref-
erence for left (L) and Player 2 has a soft preference for right (R).

5.3 Equilibrium strategies in experimental data

We discretize the strategy space in the experimental data according to the afore-

mentioned game formulation such that the player strategies (even though evolving in

continuous space) can be mapped onto the three discrete strategies corresponding to

the game formulation above. By doing so we can show our first result that the major-

ity of equilibrium strategies of the two players in the experimental data correspond

to the Nash equilibria.

We computed the mean individual position during the time frame from 1500 ms

to 2500 ms and recorded the frequency in the population of each joint strategy. We

used this to determine which joint strategy was reached at the end of the game. We

will refer to this joint strategy as the “endpoint” strategy or as “equilibrium strat-

egy” since in the majority of cases, the strategies have converged. The equilibrium

strategies for Hard-Soft Conflict games and Soft-Soft Conflict games are shown in

Fig. 5.1 where the color scale represents the frequency of a certain joint strategy of

Players 1 and 2. The total number of trials is 61. According to our game-theoretic
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formulating of the experiment, the type of game changed every 4000 rounds and each

game scenario is only played for one trial. Players did not know the joint reward table

but only their own rewards and therefore were unable to recognize which game they

were playing.

In Fig. 5.1(a), Player 1 has a hard preference for left (l) and Player 2 has a soft

preference for right (lR). The game type is Hard-Soft Conflict. The Nash equilibria

are Player 1 playing L and Player 2 playing C, denoted by (L,C) and Player 1 playing

C and Player 2 playing L, denoted by (C,L). As can be seen, the majority of players

played the joint strategy (L,C) for this game. Similarly, Fig. 5.1 (b)-(d) are all

Hard-Soft Conflict game types, where the majority of players played one of the Nash

equilibria. The symmetric Nash equilibrium corresponds to the same rewards, but

it is not natural for players to play them and therefore not seen as frequently in the

data.

Fig. 5.1(e) and (f) correspond to endpoint strategies in Soft-Soft Conflict games.

In both panels (e) and (f), one of the players have a soft preference for Left and

the other player has a soft preference for Right. There are four Nash equilibria in

each case for the two panels, which are (L,C), (C,L), (R,C) and (C,R). The resulting

endpoint strategy distribution across all trials in population shows that the number

of times one player plays her preference (L) or (R) and the other player playing center

(C) is almost equally distributed across the two Nash equilibria (L,C) and (C, R) in

one case (panel (e)) , and (R,C) and (C,R) in the symmetric case (panel (f)).

The equilibrium strategies for Hard-Soft No Conflict games and Soft-Soft No Con-

flict games are shown in Fig. 5.2 where the color scale represents the frequency of a

certain joint strategy of Players 1 and 2. Fig. 5.2 (a) and (b) correspond to the Hard-

Hard No Conflict game where both players have the same reward matrices. The Nash

equilibria for panel (a) are (L,C) and (C,L) and for panel (b) are (R,C) and (C,R).
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Almost all players were able to play one of the Nash equilibria and as a population

the distribution over Nash strategies corresponds to a correlated equilibria.
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Figure 5.1: Frequency of joint strategies at equilibrium from the experimental data
are binned into quadrants of the strategies of players for the Hard-Soft Conflict game
(panels (a) to (d)) and the Soft-Soft Conflict game (panels (e) and (f)). Notation for
the game types are defined according to the decision scenario definition in Section 4.1.
The capital letters inside the figures represent strategies: L for left, R for right and
C for center. As an example, the joint strategies of Player 1 playing L and Player 2
playing C produces a final position of the mean on the side of L. The Nash equilibria
joint strategies for panels (a) and (b) are (L,C) and (C,L). For panels (c) and (d) are
(R,C) and (C,R). And for panels (e) and (f) are (L,C), (C,L), (R,C) and (C,R).

Fig. 5.2(c) to (f) correspond to the Hard-Soft No Conflict game type where both

players have the highest reward in the same joint strategy position in their respective

reward matrices. In particular, the Nash equilibria for panel (c) and (d) are (L,C)

and (C,L), for panel (e) and (f) they are (R,C) and (C,R). The distribution over the

two Nash equilibria in each case of panels (c) to (f) differs slightly, indicating other

factors possibly affecting the decision-making and not just the incentives, since the

incentives are similar in these cases. One possibility is the starting times of the two

players, or that there could be a bias towards the right, as can be seen in panels (e)
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Figure 5.2: Frequency of joint strategies at equilibrium from the experimental data
are binned into quadrants of the strategies of players for games types Hard-Hard No
Conflict (panels (a) and (b)) and Hard-Soft No Conflict (panels (c) to (f)). The total
number of participant pairs is 61 for each case. The Nash equilibria joint strategies
for panels (a), (c) and (d) are (L,C) and (C,L). For panels (b), (e) and (f) are (R,C)
and (C,R).

and (f) where there is a higher tendency for the player with a preference for R to play

R than as seen in panels (c) and (d) where players with a preference for L play L or

C almost equally frequently.

The equilibrium strategies for Soft-Soft No Conflict games and Soft-Unknown

games are shown in Fig. 5.3. Fig. 5.3 (a) and (b) correspond to the Soft-Soft No

Conflict game where both players have the same reward matrices. The Nash equilibria

for panel (a) are (L,C) and (C,L) and for panel (b) are (R,C) and (C,R). Almost

all players were able to play one of the Nash equilibria and as a population the

distribution over Nash strategies is close to a correlated equilibria.

Fig. 5.2(c) to (f) correspond to the Soft-Unknown game type. In particular, the

Nash equilibria for panels (c) and (d) are (L,C) and (C,L), and for panels (e) and

(f) they are (R,C) and (C,R). Here in each case only one Nash equilibrium is played
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Figure 5.3: Frequency of joint strategies at equilibrium from the experimental data
are binned into quadrants of the strategies of players for games types Soft-Soft No
Conflict (panels (a) to (b)) and Soft-Unknown (panels (c) to (f)). The total number
of trials is 61 in each case. The Nash equilibria joint strategies for panels (a), (c) and
(d) are (L,C) and (C,L). For panels (b), (e) and (f) are (R,C) and (C,R).

by most players because it corresponds to the more natural way of responding to the

game.

The fact that we observed the majority of the players playing the Nash equilibrium

motivates us to look for a potential dynamical process that suggests how such an

equilibrium converged from a given initial distribution of strategies on the population

level.

5.4 Evolution of strategies in time and replicator

dynamics.

To examine the dynamical process we studied how the strategies in the experiment

evolved over time. First, we computed the frequency of individual strategies (rather
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than joint strategies) across the population of players at each millisecond throughout

the 4000 ms long trial for each game of the 18 games corresponding to the 18 decision

types of the experiment in Chapter 4. Then we summed up the frequency of individual

strategies over the six qualitatively different game types. In the Hard-Soft Conflict

game, the Soft-Unknown game and the Hard-Soft No Conflict game, the number of

trials is 244. In the Soft-Soft Conflict game, the Soft-Soft No Conflict game and the

Hard-Hard No Conflict game, the number of trials is 122.
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Player 1 plays P

Player 1 plays O

Player 1 plays C

Player 2 plays P

Player 2 plays O

Player 2 plays C

Figure 5.4: Evolution of strategies in the Hard-Hard No Conflict game. Player 1
and Player 2 have the same hard preference. Strategy P represents the common the
preference of the two players. Strategy O represents the opposite of the preference
and C represents center. All players start the game at strategy C.

Fig. 5.4 shows the evolution of frequency of strategies that occurred in both player

populations in the Hard-Hard No Conflict game. In this game players’ strategies at

either position evolve from the starting condition C towards an endpoint strategy

in a similar way because they have the same reward structure corresponding to the

same preferences. The strategies in the population converges to a distribution similar

to a correlated equilibrium where half of the population of Player 1 (red) play the

strategy P, while half of the population of Player 2 (blue) play C. At the same time,

the other half of the population of Player 1 play the C (orange), while the other half

of the population of Player 2 play P (dark blue). A very similar process can be seen

in the Soft-Soft No Conflict game as shown in Fig. 5.5. In these two games, players
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had identical preferences and reward matrices, therefore even though they could not

see directly which game they were playing, the interactions overall between the two

players in these two games are similar.
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Figure 5.5: Evolution of strategies in the Soft-Soft No Conflict game. Player 1 and
Player 2 have the same soft preference.
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Player H plays P

Player H plays O

Player H plays C

Player S plays P

Player S plays O

Player S plays C

Figure 5.6: Evolution of strategies in the Hard-Soft No Conflict game. Player 1 has a
hard preference and Player 2 has a soft preference which coincides with the preference
with that of Player 1. Strategy P represents the common preference, O represents
the opposite of the common preference.

Fig. 5.6 shows the evolution of frequency of strategies that occurred in both player

populations in the Hard-Soft No Conflict game. Both player population’s preference

P are the same. As soon as the game started, the population of Player S playing P

(dark blue) increased at a rate faster than the increase in the probability of Player
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H playing P (red) resulting in roughly 60% of the times the joint strategy (P,C) was

played by Player S and Player H and 40% of the time (C,P) was played, as opposed to

50%− 50% in the Soft-Soft No Conflict game. Otherwise, this process is also similar

to the other two No Conflict games, where players generally coordinated smoothly

and the final equilibria corresponded to the Nash equilibria.
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Figure 5.7: Evolution of strategies in the Soft-Unknown game. Strategy P represent
the preference of Player S. Strategy O represents the opposite to P. Player U has no
preference.

Fig. 5.7 shows the evolution of frequency of strategies that occurred in both player

populations in the Soft-Unknown game. In this game Player S (red) started much

earlier than Player U (blue) and the resulting process is similar to the Hard-Soft No

Conflict game.

Fig. 5.8 shows the evolution of frequency of strategies that occurred in both player

populations in the Soft-Soft Conflict games. At around −500 ms both player popu-

lations start to change strategies from C to L or R. In particular, about half of the

players preferring L (red) change from initial state C to strategy P (means left for

Player L), and 25% of the players preferring R (blue) change to strategy P (means

right for Player R) and the another 25% of player R play O (means left for Player R).

The remaining roughly half of Player L still play C, and the remaining half of Player

R also still play C. This corresponds to an equilibrium distribution of joint strategies
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Figure 5.8: Evolution of strategies in the Soft-Soft Conflict game. Player L has a
preference for left (L), hence the P strategy for Player L represents L. Player R has
a preference for right (R), hence the P strategy for Player R represents R.

where roughly 50% of the whole population of Player L and Player R play (P,C) and

25% play (C,P) and 25% play (C,O). The fact that Player R are more likely to choose

the opposite of their preference in the course of the game may be due to other factors

not predictable from a game theoretic analysis. It also suggests possible interaction

bias between players who have a preference for left versus those who have a preference

for right which might be due to the way the experiment was conducted or the habits

of the participants.
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Figure 5.9: Evolution of strategies in the Hard-Soft Conflict game. Strategy P for
Player H is opposite to the strategy P for Player S. In other words, the strategy P
for Player H is equal to the strategy O for Player S and vice versa.
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Fig. 5.9 shows the evolution of frequency of strategies that occurred in both player

populations in the Hard-Soft Conflict game. At around −500 ms both players started

to change strategies at almost identical rates. Within one second, the majority of

Player H (red) changed their strategy from C to P. At around 800 ms (which is roughly

one second after the first strategy change), 80% of Player H chose to play P and 20%

still remained playing C. Player S reacted similarly fast and the number of Player

S choosing to play their preference (which is the opposite of the hard preference)

increases until around 400 ms reaching a peak. The time of the peak frequency of

changing strategies from C to P for Player S also occurs around one second after the

first player initiating the game.

Comparing the processes of how strategies in populations change across different

game types as shown in Figs. 5.4-5.9 leads to the following observation. First, it is

noticeable that the peak of the curve representing Player S playing P, which means

the maximum number of trials when players having a soft preference insisted on the

preference, is higher when Player S played against a player who had no soft preference.

In other words, when Player S played against a player with a hard preference or no

preference, more of Player S in the population will insist on their preference during

the game play. In all these cases of Hard-Soft Conflict, Hard-Soft No Conflict and

Soft-Unknown games, the peak of Player S playing P reached or even exceeded 0.6.

Interestingly, when Player S played against a player who also had a soft preference,

the peak was at most 0.5. This can be due to a bias in the experimental design due

to the different starting times of the players caused by the difference in path widths

at the split of the “T”, as discussed in Chapter 4, or it can suggest that the incentive

due to the hard preference was actually weaker than that due to the soft preference.

Evolutionary game theory was invented by Maynard Smith [60], when he applied

game theory to study evolution of biological populations in competition. Replicator

dynamics [65] is one of the descriptive methods that explains how an evolutionarily
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stable strategy is achieved from a given initial distribution of strategies in the popu-

lation. Replicator dynamics is the product of merging both ideas of game theory and

dynamical systems. In particular, it assumes that the strategies reproduce (or spread)

proportionally to the success of the strategy measured by the rewards players receive

from playing the strategy. The name “replicator” simply means that the individuals

in this population playing a game replicate those strategies that are most successful.

The fixed points of the replicator dynamics have two properties. First, every Nash

equilibrium is a fixed point of the replicator dynamics but not every fixed point is a

Nash equilibrium [31]. Second, for pairwise games (like the ones we consider), any

asymptotically stable fixed point of the replicator dynamics is an evolutionarily sta-

ble strategy and replicator dynamics imply that an evolutionary process can produce

rational behavior even though agents in the group may not consciously do so [31].

Using replicator dynamics to describe and predict human and other organisms

collective decision-making behaviors in pairwise interactions has gained wide interest

since the invention of the concept. It has advanced the understanding of interactive

behaviors across many fields, from mathematical biology to economics and behavioral

finance [34]. Recently there has been an increasing acknowledgement that the repli-

cator dynamics are especially suitable for understanding multi-agent learning in both

artificial and biological systems. They inspire simple and biologically plausible learn-

ing algorithms that require no assumption of rationality, or common information, or

high cognitive capacity so that it is easy and efficient to implement on autonomous

agents, or be used to describe various multi-agent learning behaviors [66].

We use a two-population three-strategy replicator dynamics model to capture the

fact that the player may choose among three different strategies, left (L), right (R)

and center (C), as well as having a different reward structure from her co-player (thus

two sets of population states evolving simultaneously). General convergence results

to the Nash equilibrium exists for replicator dynamics of homogenous populations,

97



but convergence to the Nash equilibrium is not guaranteed for dynamics involving

heterogenous populations [65]. Next we show through simulation what equilibrium

states can be reached given an initial distribution of strategies for the Hard-Soft

Conflict game and Soft-Soft Conflict game as an example.

Denote two populations (population 1 and 2) playing a game, where they have

possibly different reward matrices such as reward matrix A for population 1 and

reward matrix B for population 2. Both populations have three strategies to choose

from that are the same for both populations. Denote the population states as x = {xi}

for population 1 and y = {yi } for population 2, where i ∈ {1, 2, 3} represents the

index of strategies. (·)i is used to denote the i-th entry of a vector. We also denote

the three strategies 1, 2 and 3 as preference (P), opposite to the preference (O) and

center (C) or left (L), right (R) and center (C) as before. Population states xi and yi

represent the shares of the population playing strategy i in their respective population

1 and 2. By definition,
∑3

i=1 xi = 1 and
∑3

i yi = 1. For better simulation of the

model to capture the dynamic process in the data, we define two time parameters,

one for each population, namely the “group” starting times t1 and t2 that represents

the onset of evolution of strategies in the respective player populations 1 and 2. Like

before with individual behaviors, we define time constants τ1 and τ2, assumed to be a

constant for all strategies in the same population. With these two extra parameters,

we write the replicator dynamics for i = 1, 2, 3 as

τ1ẋi = [(Ay)i − x′Ay]xiH(t− t1) (5.1)

τ2ẏi = [(Bx)i − y′Bx]yiH(t− t2). (5.2)

We use (·)′ to denote the transpose of a matrix. As before, the function H(t, ti)

is a Heaviside function and takes the value of 1 after t > ti. In the following, we
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show the simulations of the replicator dynamics for a Hard-Soft Conflict game and a

Soft-Soft Conflict game and compare to the empirical observations from the data.

First, we define the reward matrices for the Hard-Soft Conflict game for simulation.

In the Hard-Soft Conflict game, the preference strategy is opposite for Player H and

Player S, and the reward matrices are defined by AH and BS representing the rewards

for Player H in population 1 and Player S in population 2. The P and O strategies

in the reward matrices mean opposite sides for the two reward matrices AH and BS.

In other words, the P (O) strategy for Player H with reward matrix AH is the O (P)

strategy for Player S with reward matrix BS.

Fig. 5.10 shows a simulation of the replicator dynamics Eqs. 5.1-5.2 for a Hard-

Soft Conflict game, with the parameter values τ1 = 625 ms, τ2 = 425 ms, t1 = −400

ms and t2 = −420 ms. The reward matrices are defined below. Initial conditions are

x(0) = [0.02, 0.02, 0.96]′ and y(0) = [0.01, 0.01, 0.98]′. The parameters are chosen to

match the simulation as closely as possible to observation in the data as shown in Fig.

5.9. However, no optimization fitting procedure was carried out and the parameters

were chosen based on intuition and trial and error. In particular, the starting times

t1 and t2 were chosen based on observation from the data. The values for the reward

matrices were chosen such that Player H has more incentive in playing P than Player

S playing their respective P. As a result, the time constants was chosen based on

trial and error and satisfy the relation that τ1 > τ2, implying that the evolution of

strategies in the Player H population is slightly slower than the Player S population.

Intuitively it means that the Player S population changes in strategy faster than the

Player H population in the finite number of rounds of repeated play.

AH =

P O C

P 0 0 5

O 0 0 0

C 5 0 0
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BS =

P O C

P 0 0 4

O 0 0 1

C 4 1 0

The resulting simulation resembles the empirical results of Fig. 5.9. In particular, the

simulation captures the time of the peak of strategy evolution of Player S at around

500 ms (blue line with blue circles), as the number of Player S increases to play C

rather than P.

While the simulation of the replicator dynamics resembles the data, what’s dif-

ferent is the equilibrium values. In particular, replicator dynamics suggest that the

whole population of Player H and Player S will converge to the Nash equilibrium

(P,C) whereas in data, more decision outcomes are possible. Even though the repli-

cator dynamics may not predict the equilibrium accurately, it captures the features

of the transient of the evolution of strategies.

Fig. 5.11 shows a simulation of the replicator dynamics Eqs. 5.1-5.2 for a Soft-Soft

Conflict game and for the parameter values τ1 = 225 ms, τ2 = 225 ms, t1 = −300

ms and t2 = −300 ms. Initial conditions are x(0) = [0.01, 0.01, 0.98]′ and y(0) =

[0.01, 0.01, 0.98]′. Reward matrices AL for Player L and BR for Player R defined

below. In the Soft-Soft Conflict game, the highest individuals rewards for the two

players correspond to opposite strategies. As before, the initial conditions are chosen

based on the data and happen to be identical. However, the dynamics is very sensitive

to the initial conditions and slight perturbation away from identical initial conditions

can produce very different results, for example leading to a unique Nash equilibrium.

The resulting simulation resembles the empirical results of Fig. 5.8. In particular,

the evolution of strategies of Player L playing L (red line with red circle) and the

evolution of Player R playing C (blue line blue triangle). The replicator dynamics
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simulations suggest that Player R playing R should also increase instead of playing

L.

AL =

L R C

L 0 0 4

R 0 0 3.5

C 4 3.5 0

BR =

L R C

L 0 0 3.5

R 0 0 4

C 3.5 4 0
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Figure 5.10: Simulation of Eqs. 5.1-5.2 with parameters τ1 = 625 ms, τ2 = 425 ms,
t1 = −400 ms and t2 = −420 ms and initial conditions x(0) = [0.02, 0.02, 0.96]′ and
y(0) = [0.01, 0.01, 0.98]′. The reward matrices are defined by AH for Player H and
BS for Player S.

Replicator dynamics assume that individuals play myopically (meaning that de-

cisions are driven by immediate individual rewards and not by future rewards). The

fact that in this game, players’ strategies evolve in a similar fashion as predicted by

replicator dynamics suggests the possibility that human decision-making among alter-

natives, when there is incomplete information, is based on myopic decision rules. At

the group level, this suggests that successful coordination (corresponding to a Nash
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Player L plays L

Player L plays R

Player L plays C

Player R plays L

Player R plays R

Player R plays C

Figure 5.11: Simulation of Eqs. 5.1-5.2 with parameters τ1 = 225 ms, τ2 = 225 ms,
t1 = −300 ms and t2 = −300 ms and initial conditions x(0) = [0.01, 0.01, 0.98]′ and
y(0) = [0.01, 0.01, 0.98]′. The reward matrices are defined by AL for Player L and
BR for Player R.

equilibrium or correlated equilibrium) is possible even without the communication

between the players and that players are able to adapt “naturally” by playing the

strategies that are best responses for themselves given the strategies of others.
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Chapter 6

Conclusions and future work 1

In this dissertation we studied collective decision-making among heterogeneously in-

formed individuals with dynamic interactions using differential equation models and

experimental data validation. In particular, we investigated the influences of param-

eters in collective decision-making problem on the emergent group level outcome. We

also examined decision-making behaviors and how behaviors can be quantified and

compared both at the individual level and the collective level.

In Chapter 2 we studied the role of uninformed individuals and individual sensing

range in collective decision-making using a previously developed model on animal

collective motion in the plane. The continuous-time, deterministic, dynamical system

model was defined and analyzed in [50], [51] and [41] and shown to approximate

well the decision-making of a group of informed and uninformed individuals on the

move as studied with a computational model in [19]. The continuous-time model

has the advantage of analytical tractability. By analyzing parametric conditions for

the stability of solutions on the invariant manifolds of the reduced continuous-time

model, we provided formal evidence that an increase in uninformed population size

1Discussions in the following on the analysis of Chapter 2 have been mainly taken from [41]
verbatim with minor adjustments.
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N3 can improve decision-making for a group in motion by increasing the likelihood

that the group will make a decision rather than compromise.

The evidence consists of three results. First, we showed that the presence of

a sufficient number of uninformed individuals prevents the existence of the worse

compromise solution (one that corresponds to motion in the direction opposite to

the mean of the two preferred directions) on the manifold where there can be two

stable compromise solutions. Further, we showed that a large enough N3 limits the

attractiveness of the remaining stable compromise solution, making the sufficient

condition for stability of the manifold M111 corresponding to compromise also a

necessary condition.

Second, we showed that the minimum difference in preference direction required

for a group decision decreased with a decreasing individual sensing range (equiv-

alently, an increasing threshold r on synchrony of directions sensed). This result

suggests that the more local the sensing of an individual, the better the sensitivity

to the conflict in preference as a collective; when individuals sense too much of the

group, the result is a filtering of the local influences and a mean (compromised) col-

lective response. By increasing the density of the group, even by adding uninformed

individuals, an individual can reduce its sensing range and keep track of the same

number of neighbors; in such a way an increase in population size of uninformed indi-

viduals lowers the critical difference in preference direction, making a group decision

more likely.

Third, we showed that an increasing uninformed population size N3 increases the

region of parameter space for which a decision solution is exclusively stable among

the eight solutions derived in [41].

The improvements that have been shown in collective decision-making with in-

creased uninformed population size provide a testable hypodissertation about the ad-

vantages of groups of heterogeneously informed individuals. Experiments that tested
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and further explored the beneficial role of the uninformed individuals are described

in [28].

In addition, these results provide ideas for more cost-efficient engineering designs

of multi-agent systems performing tasks together. Adding individuals that do not

invest directly in an external preference provides a low cost way in which groups can

enhance better decision-making. Despite the fact that the model was deliberately

designed as deterministic and results are formally proven for the case of symmetric

populations, we showed through simulation that the results also remain robust to

noise and modestly asymmetric informed sub-populations.

In Chapter 3, motivated by the animal collective motion model of [50, 41], we pro-

posed and analyzed a continuous-time dynamical system model for human decision-

making in a continuous-time interactive tracking task where individual decision mak-

ers have little information about the true preferences and incentives of other decision

makers in the group. The abstract collective decision-making problem involves mul-

tiple decision makers coordinating their individual choices continuously in time for

a group level (mean) decision outcome by only observing the mean of their individ-

ual decisions. Individuals in the group may have conflicting preferences for one of

two alternatives. We define a model for multiple individuals deciding between two

alternatives, but we focus our analysis on the case of two individual decision makers.

Our model has two features not present as far as we know in the current ani-

mal motion or human coordination literatures, namely a conditional tradeoff between

two possibly different preferences and consensus-enhancing heterophilious interactions

between agents. In particular, we proposed that without direct communication, indi-

vidual decision-making depends on two critical distances in the real-valued decision

space over time. We refer to an individual as a player and we represent an individ-

ual’s decision state as a position on the real line. The critical distances are (1) the

distance between the player’s position and the group mean, and (2) the distance be-
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tween the group mean position and the position of the player’s preferred alternative.

Each player i then makes decisions, represented as motion in decision space based

on how these distances compare to their decision thresholds, which depend on two

threshold parameters: the social threshold parameter θi and the preference threshold

parameter δi. These parameters represent the tolerances that players hold for how

far these distances have to be to affect their decisions. A higher value of the social

threshold parameter represents a higher tendency to ignore the associated distance.

For example, the higher the social threshold parameter θi of player i, the more likely

it is that player i is going to neglect the social force and pursue her decision-making

without caring about how far she is from the group mean. A high preference thresh-

old parameter δi, on the other hand, represents a tendency for player i to stick to her

preference, as opposed to an alternative choice, such as the current closer alternative.

An individual with a higher preference threshold parameter is more likely to insist on

pulling the group mean towards her preference, even when another alternative option

is right nearby.

During the course of the decision-making, the players cannot know the preference

or the strength of the preference of the other player. However, they may guess about

the other player’s intention by observing the mean of their decisions as it changes

continuously in time. If the mean does not move according to one player’s own

decision-making, she would infer that it must be the result of the other player’s

decision-making in the opposite direction. Various studies have proposed explanations

in terms of intention integration and having shared mental models when two or a small

number of humans perform similar tasks [26, 38, 8, 47]. Such complex processes are

hard to accurately quantify, and we do not claim to directly have such a component

about integrating intentions or shared mental models in our model. Our proposed

model allows sufficient autonomy for each decision maker to make adaptive decisions

without having to rely on a direct measurement of the other player’s decision-making.
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The advantage of our model is that it can easily describe decision-making behaviors

in a large group of individuals, where no one can guess the intention of the rest of

the group.

We used bifurcation analysis, with threshold parameters as bifurcation parame-

ters, to study the model for two players, in which one had a hard preference for one

alternative and the other a soft preference for the other alternative. We showed bista-

bility of decision outcomes for certain parameter ranges and a single stable solution

for other ranges, suggesting the subtle role that the decision threshold parameters

play in affecting the decision. In the region where there were two stable solutions,

initial conditions would be the deciding factor between the two solutions.

While our model is relatively simple in contrast to previous research on modeling

human decision-making in social settings, we were able to clearly identify factors

that are critical in influencing the individual behaviors and explaining the emergence

of group decision out of self-organized behaviors even in the presence of conflicting

preferences and limited feedback.

In Chapter 4, we analyzed human behaviors in a shared tracking experiment by

Groten and Feth et. al. [26] using the model developed in Chapter 3. We showed how

statistical analysis of the start and end status of the decision behaviors alone was not

sufficient to explain why the players reached certain decision as Player S started out

more often than Player H, but did not win the decision more often. This motivates

our model-based investigation of decision-making process. We fit the model to data

and showed that it reproduced a wide range of human behaviors surprisingly well,

suggesting that the model may have captured the mechanisms behind some of the

behaviors observed in the experiment.

In particular, we found that successful coordination of decisions by the two players

was achieved when either Player S had a low preference threshold, or Player H had a

high social threshold. The more intransigent Player S was to her preference, the more

107



impervious to the social force Player H had to be in order to “win” the coordinated

decision. However, we also saw cases when Player H “compromised” soon and let

Player S win. Even though initial conditions only affect decision outcomes for some

cases (as predicted by the bifurcation plots in Chapter 3), there is evidence from

the human behavior experimental results that in some cases better shared decision-

making is reached with more favorable initial conditions. In this experiment, the

initial positions are almost identical for the two players and therefore the starting

times become the deciding initial conditions.

Our model has limitations in that it could not fit all cases of human behavior in

the data. While there was a small portion of data for which we could not reproduce

the transient trajectories, we could always at least reproduce the correct decision

outcome.

Our approach of using a continuous-time dynamical systems model offers a distinc-

tive advantage that allows us to gain insight into continuous-time decision-making.

The experimental data that we have validated our theory on may be less complex

as compared to behaviors in real-world decision scenarios: however, the experimental

conditions did test the essential features of decision scenarios where communications

between decision makers are restricted and individual preferences are conflicting. The

data allowed us to apply our theory and gain understanding of human behaviors in

shared decision-making in coordination tasks. As traditional data analysis alone does

not suffice in identifying and quantifying the critical factors and mechanisms, us-

ing mathematical models such as ours to help understand experimental data may

be further developed and used in future studies of human behaviors in interactive

decision-making.

The model can be extrapolated to higher dimensions in two different ways. The

first is to increase the number of players, making the game a real game of incomplete

information since now no one can infer the decision state of the other players. One
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can investigate if there will be periodic solutions, where the group mean stays fixed

but individual relative positions cycle indefinitely. If there will be some cycles in the

model, it then remains to be tested experimentally and see if there is indeed periodic

behavior. In a controlled experimental setting, we should be able to influence the

thresholds through task and rewards design.

A second way to extrapolate the model is to increase the number of alternatives.

When individuals have more than two alternatives to choose from, there may be

complex group level dynamic by which individuals assess and eventually decide on a

single alternatives.

Our model is applicable to a wide range of decision situations. It is of particular

interest for future work to see how our proposed model can predict decision outcomes

for different decision scenarios with different types of feedback limitations between the

players. In an experimental setting, the starting times and starting positions can be

controlled and new types of conflict scenarios can be introduced. To induce a higher

or lower preference threshold of Player S, a higher or lower cost for losing the decision

may also be imposed on the players. We hope that our model-based investigation

of human behaviors can help towards the design of a human-robot interactive ex-

periment to investigate human behaviors in interactions with autonomous co-players

of various personalities that are played out by robots with personalities imposed by

model parameters.

In Chapter 5, we took a game theoretic perspective to study human behaviors

in the experiment of Chapter 4. We formulated the aforementioned coordination

problem into a normal form game and showed that the majority of the population

could converge onto the game-theoretic equilibrium strategy by the final rounds of

the game. We then showed through simulations of the replicator dynamics for the

Hard-Soft Conflict and Soft-Soft Conflict games that the simulated evolution of popu-

lations of strategies resembled empirical observations, suggesting that the underlying
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individual-based strategic responses may be myopic. Even when individuals did not

know what game was being played, the population as a whole could learn to play the

game-theoretic equilibrium strategies in time as a result of repeated pairwise game

playing and updating strategies.

While numerous learning algorithms exist in the literature for game theoretic

problems and especially for coordination games, comparison studies of game theoretic

formulation with experimentally controlled human behaviors are rare. Most of the

existing theoretical predictions that are compared to human behavioral data consider

strategic interactions where players are able to perceive the entire game structure

(both her own and the opponent’s rewards), or are able to deduce complete game

information iteratively using a given prior and Bayesian updates, or to keep a certain

account (memory) of their opponent’s strategy history in order to compute the best

reply (as in regret-matching algorithms and fictitious play) [10, 9]. Other studies

on human game play in experimental settings have questioned whether players use

complex computations that involve, for instance, Bayesian updates. The most natural

algorithms are those that don’t require a lot of computations or memories or common

rationality and information knowledge. Using regret-based learning and replicator

dynamics to explain overall population level learning is an approach gaining increasing

attention [34], as well as using coupled drift-diffusion models where the players have

possibly different and stochastic perceptions of the rewards [61].

One can continue to investigate the role of learning in human subjects performing

interactive tasks with incomplete information. Learning in an interactive setting is

inherently more complex than learning in a single-agent setting, because during pro-

cess of learning and updated decisions of other players change the environment to be

learned. As we have already seen from the models in this dissertation, feedback is

central to adapting to the environment, yet how individuals use feedback to update

their decision-making can lead to different group level outcomes, some better than
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others. A possible future direction is to conduct new experiments with motor inter-

action tasks that are similar to the one we studied and formally design them in a

game setting to study how individuals learn through repeated interaction and strictly

enforced incentives.

In this dissertation we have used two very different approaches in understanding

collective decision making in conflict situations. The two different approaches provide

insights from two different perspectives on how decision outcomes on the collective

level emerge out of individual-level decision rules and interactions. In the dynamical

systems modeling approach (in Chapters 2, 3 and 4), we have seen that the collective

decision outcome emerges based on how decision makers balance between the social

and preference influences. It is one decision maker’s tendencies relative to the other’s

decision-making tendencies that determines the mean decision outcome. We have also

seen that initial conditions affect the final mean decision outcome, especially when two

decision makers have comparable decision thresholds. We fitted the model predictions

to human trajectories and gained understanding on the transients of the behavior.

The fact that we could use a simple dynamical systems model to predict transient

features in human decision-making makes the approach of using dynamical systems

useful in designing robotic systems or human-robot systems for decision-making tasks

in continuous-time while maintaining group cohesion.

However, with the dynamical system’s approach, there is no notion of optimizing a

collective decision, or responding in a best way to the decisions of other decision mak-

ers or to the environment. In examining the human behavioral data, we hypothesized

that it was however possible, that the players played by not dynamically balancing

between social and environmental influences, but to best respond to the other player’s

decisions. In many engineering applications, it may be desirable that not only the

right collective decisions can be achieved but also be optimized while individual incen-

tives need not be communicated. To develop systems that achieve optimal collective
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decisions, it is important as a first step, to examine if human players can achieve such

a goal in the experimental data. While we can predict or describe optimal behav-

iors for one individual with optimal control theory, for decision behaviors of groups

consisting more than one decision maker requires tools from game theory.

With the game theoretic modeling approach (in Chapter 5), we have seen that

decision outcomes that correspond to the optimal individual rewards at equilibrium

can be predicted using the reward structure (i. e. incentives in the game) and the

rationality assumption that individuals maximize their own rewards. Being able to

describe the incentives of the game with a parameterized reward matrix (i. e. the

model of the game) is important in predicting the game outcome. Replicator dynamics

then further explains how such equilibrium can be reached in continuous-time in a

population, suggesting that the individual level decision rules may be very simple. The

game-theoretic approach can be used in engineering applications when the incentives

of the individual can be clearly defined and learning algorithms that guarantee the

convergence to an equilibrium corresponding to an optimization goal are available and

can be computed cost-efficiently. In Chapter 5 we’ve only provided some evidence

from data that human players are able to play game-theoretic equilibria in games

with incomplete information. We have not studied but have suggested that one could

continue to study the learning algorithms that guarantee for each individual to reach

a game-theoretic equilibrium.

With this dissertation we hope to provide additional methodology and mathe-

matical models for understanding the process of continuous-time collective decision-

making among heterogeneously informed individuals. Decision-making is a central

part of control and by studying individual level decision rules and mechanisms for

how group level decisions arise out of individual level decision-making, we hope to

contribute to the design of collective control laws for solving a wide range of problems

ranging from engineering to social applications.
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Appendix A

Proofs for Chapter 2

A.1 Sufficient conditions for M111 to be unstable

Here we prove the sufficient conditions for M111 to be unstable.

Lemma A.1.1 A sufficient condition for M111 to be unstable is | cos θ̄2
2
| < r and

N3 > 2N1.

Proof: The manifold M111 is one of compromise and can have up to two stable

solutions. To show that the compromise manifold is unstable near its first stable

solution, is to show conditions for which the Jacobian of the boundary layer dynamics

gives at least one positive eigenvalue. This is equivalent to showing | cos Ψ1−Ψ2

2
| < r,

where Ψ1,2 is the stable equilibrium of interest (see [50]). The equilibrium satisfies

the following equations defined for 0 < Ψ1 <
θ̄2
2
< Ψ2 < θ̄2:

Ψ1 + Ψ2 = θ̄2 (A.1)

Ψ3 =
θ̄2

2
(A.2)

sin(θ̄2 −Ψ2) +
K1N1

N
sin(θ̄2 − 2Ψ2) =

K1N3

N
sin(

θ̄2

2
−Ψ2). (A.3)
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The solution Ψ1, Ψ2 and Ψ3 defined by Eqs. A.1-A.3 is the first stable equilibrium

onM111 and is denoted by ΨM8,7 in [50] (Eq. [6.32-34]). For the additional condition

N3 > 2N1, this is the only equilibrium that exists on this manifold. We show that this

solution is unstable when it is the only equilibrium, and therefore M111 is unstable

as long as | cos θ̄2
2
| < r and N3 > 2N1.

To begin, we define Ψ1−Ψ2

2
= ∆12. From the domain of Ψ1 and Ψ2, 0 < Ψ1 <

θ̄2
2
<

Ψ2 < θ̄2, we can infer the following:

∆12 < 0, |∆12| ∈ (0, π/2) (A.4)

cos ∆12 > 0 (A.5)

sin ∆12 < 0. (A.6)

We can rewrite Eq. (C.1) as

Ψ1

2
+

Ψ2

2
=
θ̄2

2
(A.7)

⇐⇒
Ψ1

2
+

Ψ2

2
−Ψ2 =

θ̄2

2
−Ψ2 (A.8)

⇐⇒
Ψ1 −Ψ2

2
= ∆12 =

θ̄2 − 2Ψ2

2
. (A.9)

Using Eq. (C.9), we can rewrite (C.3) as

sin(∆12 +
θ̄2

2
) +

K1N1

N
sin(2∆12) =

K1N3

N
sin(∆12) (A.10)

⇐⇒

sin ∆12 cos
θ̄2

2
+ cos ∆12 sin

θ̄2

2
+ 2

K1N1

N
sin ∆12 cos ∆12 =

K1N3

N
sin ∆12. (A.11)
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Divide both sides by sin ∆12(6= 0) ⇐⇒

cos
θ̄2

2
+ cos ∆12

sin θ̄2
2

sin ∆12

+ 2
K1N1

N
cos ∆12 =

K1N3

N
(A.12)

⇐⇒

cos
θ̄2

2
=
K1N3

N
− 2

K1N1

N
cos ∆12 + cos ∆12

sin θ̄2
2

(− sin ∆12)
. (A.13)

From here we prove by contradiction. The idea is as follows: Suppose cos ∆12 ≥ r,

which is contrary to what we want to prove. We will show that this implies a result

that contradicts our assumption r > cos θ̄2
2

when N3 > 2N1. Thus cos ∆12 < r.

So, suppose cos ∆12 ≥ r, and ∆12 < 0, |∆12| ∈ (0, π
2
). Then

−1 < −(cos ∆12)2 ≤ −r2 (A.14)

and thus

sin ∆12 = −
√

1− (cos ∆12)2. (A.15)

From Eq. A.14 we get

− sin ∆12 ≤
√

1− r2 (A.16)

⇐⇒
1

− sin ∆12

≥ 1√
1− r2

. (A.17)

We assumed that cos θ̄2
2
< r, and θ̄2

2
∈ (0, π

2
); therefore

sin
θ̄2

2
>
√

1− r2. (A.18)

Using Eqs. A.14- A.18, the last term on the RHS of Eq. A.13 becomes

cos ∆12

sin θ̄2
2

(− sin ∆12)
> r

√
1− r2

√
1− r2

= r. (A.19)
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By definition, cos ∆12 < 1 ⇐⇒

− cos ∆12 > −1 (A.20)

⇐⇒

−2
K1N1

N
cos ∆12 > −2

K1N1

N
. (A.21)

We can show that cos θ̄2
2

is bounded by the following:

cos
θ̄2

2
=
K1N3

N
− 2

K1N1

N
cos ∆12 + cos ∆12

sin θ̄2
2

(− sin ∆12)
(A.22)

>
K1N3

N
− 2

K1N1

N
+ r (A.23)

( if N3 > 2N1) (A.24)

> r. (A.25)

This is a contradiction since we assumed in the first place that cos θ̄2
2
< r. There-

fore, cos ∆12 < r and therefore, M111 is unstable near ΨM8,7 . Hence, a sufficient

condition for M111 to be unstable is

| cos
θ̄2

2
| < r, and N3 > 2N1. (A.26)

�

A.2 Sufficient conditions for M100 to be unstable.

Here we prove two conditions. First we show that when K1 < 2N/N1, the second

stable solution of M100 does not exist. Then we show the condition for which when

it does exist, it is unstable.

Lemma A.2.1 The second stable solution ofM100 does not exist when K1 < 2N/N1.
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Proof: According to [50] page 148, the second solution exists if and only if K1 ∈[
2N
N1

(
cos
(
θ̄2
2

) 2
3

+ sin
(
θ̄2
2

) 2
3

) 3
2

, 4N
N1 sin θ̄2

]
, and θ̄2 ∈ [π/2, π].

Let us define G(θ̄2) =

(
cos
(
θ̄2
2

) 2
3

+ sin
(
θ̄2
2

) 2
3

) 3
2

. First notice that G(θ̄2) is a

decreasing function of θ̄2 in the given domain of θ̄2 and takes minimum value when

θ̄2 = π. The resulting lower bound on K1 becomes 2N
N1

(
cos
(
π
2

) 2
3 + sin

(
π
2

) 2
3

) 3
2

= 2N
N1

.

Therefore, if K1 < 2N/N1, according to the above necessary and sufficient condi-

tion, the second solution on M100 does not exist. �

Lemma A.2.2 When K1 < 2N/N1, the second solution on M100 is unstable when

r >
√

1− d2, d =
N sin(θ̄2/2)

2N1K1

. (A.27)

Proof: According to [50] page 99 Lemma 5.2.4, the stable equilibrium (denoted by

ρsync), when it exists for K1 <
2N
N1

, satisfies

0 < ρsync <
√

1− d2, d =
N sin(θ̄2/2)

2N1K1

. (A.28)

For the manifold to be not attracting near this equilibrium, the Jacobian of the

boundary layer dynamics has to have at least one positive eigenvalue. Therefore, we

look for condition such that −(ρsync − r) > 0 ([50] page 149). This is equivalent

to requiring r > ρsync. As long as r is greater than the upper bound of ρsync, the

condition will be satisfied. Therefore, the sufficient condition forM100 to be unstable

near its second solution ρsync is

r >
√

1− d2, d =
N sin(θ̄2/2)

2N1K1

. (A.29)

�
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A.3 Proof for M011 to be stable within the param-

eter space for stable collective decision

Lemma A.3.1 M011 can be stable within the parameter space for which M010 and

M001 are stable.

Proof: The necessary and sufficient condition forM011 to be stable is given by (from

[50]).

1√
1 + ν2

< r <

√
1

2
+

1

2
√

1 + ν2
(A.30)

where

ν =
N sin(θ̄2/2)

N3K1 +N cos(θ̄2/2)
.

The necessary and sufficient condition forM010 andM001 to be stable is given by

∣∣∣∣cos

(
θ̄2

2

)∣∣∣∣− r < 0.

We can prove thatM011 can be stable within the parameter space for whichM010

and M001 are stable by showing that the following is always satisfied:

1√
1 + ν2

> | cos
θ̄2

2
|. (A.31)

For simplicity, let LHS = 1√
1+ν2 , and RHS = | cos θ̄2

2
|. We have

LHS2 =
1

1 + ν2
, RHS2 = cos2 θ̄2

2
. (A.32)

Define C = K1N3

N
. We rewrite LHS in terms of C as
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LHS2 =
1

1 + ν2
=

1

(
sin

θ̄2
2

C+cos
θ̄2
2

)2 + 1
=

(C + cos θ̄2
2

)2

C2 + 2C cos θ̄2
2

+ 1
= 1−

sin2 θ̄2
2

C2 + 2C cos θ̄2
2

+ 1
.

(A.33)

We rewrite RHS as

RHS2 = 1− sin2 θ̄2

2
. (A.34)

Subtracting the two, we have for θ̄2 > 0,

LHS2 −RHS2 = sin2 θ̄2

2
−

sin2 θ̄2
2

C2 + 2C cos θ̄2
2

+ 1
= sin2 θ̄2

2

C2 + 2C cos θ̄2
2

C2 + 2C cos θ̄2
2

+ 1
> 0.

(A.35)

By definition, LHS > 0, RHS ≥ 0, therefore LHS > RHS, i. e.,

1√
1 + ν2

> | cos
θ̄2

2
| (A.36)

ThereforeM011 can be stable within the parameter space for a collective decision. �
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Appendix B

Methods and additional figures for

Chapter 3

Here we show the details of methods for computing the bifurcation plots, and an

additional figure for Chapter 3.

B.1 Computing the bifurcations

To make the bifurcation plots, we redefine the closer path c to change smoothly from

−1 to 1 in a sigmoid fashion. This way we avoid the discontinuity in the system

caused by c:

c =
2

1 + e−100x̄
− 1 (B.1)

The equilibrium of the system is the pair of solutions at which the derivative terms

become zero. Since we are most interested in the equilibrium values of x̄ instead of

the individual positions, it is useful to make a change of coordinates into y1 and y2
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coordinates, defined as the following:

y1 =
xH + xS

2

y2 =
xH − xS

2
.

(B.2)

For the bifurcation plots, we further ignore the step function H and use a general

time constant of 1, instead of 100 ms as in the original equations. These differences

do not affect the equilibrium solutions, nor the stability of the original system.

The resulting system equations in y1 and y2 coordinates are

ẏ1 = −y1 +
1

2
αS(c+ 1) +

1

2
y2(βS − βH)

ẏ2 = 1− 1

2
αS(c+ 1)− 1

2
y2(βS + βH).

(B.3)

αS =
1

1 + e−BS(|1+y1|−δS)

βH =
1

1 + e−RH(|y2|−θH)

βS =
1

1 + e−RS(|y2|−θS)
.

(B.4)

At equilibrium, ẏ1 = 0, and ẏ2 = 0. Simplifying the equations leads to the

following, which define, in general, all equilibrium points to the system Eqs. B.3:

1− y1 = y2βH

1 + y1 − αS(c+ 1) = y2βS.

(B.5)

Local stability of the equilibria can be found by evaluating the eigenvalues of the

Jacobian matrix at the equilibria. If the Jacobian eigenvalues carry negative real

parts, then the equilibrium is locally asymptotically stable. If, however, at least one

eigenvalue has a positive real part, then the equilibrium is locally unstable. We denote
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the Jacobian matrix by J. First we define the following terms:

D1 = 25αS(1 + c)(1− c) +
1

2
BS(c+ 1)αS(1− αS)sgn(1 + y1)

D2 =
1

2
βS +

1

2
y2RSβS(1− βS)sgn(y2)

D3 =
1

2
βH +

1

2
y2RHβH(1− βH)sgn(y2).

(B.6)

The sign function is defined as

sgn(x) =


−1 if x < 0

0 if x = 0

1 if x > 0.

The Jacobian matrix is then

J =

−1 +D1 D2 −D3

−D1 −D2 −D3.


The eigenvalues of the Jacobian are defined by the characteristic polynomial:

λ2 + (1−D1 +D2 +D3)λ+D2D3 − 2D1D3 = 0. (B.7)

The Routh-Hurwitz criterion for second-order polynomials to have roots with negative

real-parts requires

1−D1 +D2 +D3 > 0

D2 +D3 − 2D1D3 > 0.

(B.8)

Computations were carried out in MATLAB. Function fsolve was used to compute

the solutions for the equilibria for a range of initial guesses and parameter values.

Then the eigenvalues of the Jacobian were evaluated to determine stability of the

equilibria for the bifurcation plots. The initial guesses of the solutions were found

using the nullclines (see Fig. B.1). The two-parameter bifurcation plot is produced

by mapping all bifurcation points onto the two-parameter plane.
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Figure B.1: Nullclines of the system equations as parameters θS and δS change.
Nullclines of the system equations in (y1, y2) coordinates are plotted for parameters
θH = 1.2, RH = RS = BS = 20. The horizontal axis is y1, and the vertical axis is
y2. The green lines are the set of points where dy1

dt
= 0. The magenta lines are set of

points where dy2

dt
= 0. The panels A-C show the nullclines for three different values of

θS. Inside each panel, the values of θS are the same. The values of δS for each figure
in the panels decrease from top to bottom.
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Appendix C

Methods and additional figures for

Chapter 4

Here we list our methods and additional figures for Chapter 4.

C.1 Data and statistics

We collected statistics for the decision outcome in the following way. For a given trial,

if the mean trajectory entered a certain neighborhood of one of the two alternative

reference paths and stayed there for a sufficiently long time, then the pair of players

is said to have reached a decision, and we define the decision outcome to be for

that particular path. When the trajectory was in the close neighborhood of zero

(centerline), it is referred to as deadlock. When the trajectory was somewhere other

than these classifications, it is called a “no decision”, or “unclassified”. We also allow

a separate class corresponding to “multiple” decision outcomes.

The bounds of the neighborhood for the thick path, thin path and centerline, were

defined by µthick, µthin, and µ0 respectively. Each neighborhood is defined as a box

surrounding the path, with length equal to the signal duration (3000 ms) and width

equal to twice the bounds centered around the path or centerline. The bounds µthick,
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µthin, and µ0 are percentages of the distance between the reference paths and the

centerline.

Fig. C.1 below illustrates the boxes used to compute the statistics. We denote by

Tpreference (ms) the minimum length of time necessary to stay within a neighborhood

in order to qualify as the associated decision outcome. We vary the bounds µthick,

µthin, and µ0 from 0.1 to 0.35, by increments of 0.05, and we compare the correspond-

ing statistical distribution of outcomes. We also vary the duration Tpreference from

50ms to 2000ms, by increments of 50ms, and again compare results. Trajectories

that are sensitive to small changes in the bounds and thresholds are rare in the data

set. For the ranges of µthick, µthin, µ0, Tpreference and Tcenter, the outcome statistics

is relatively robust with error bars less than 10% of the present values. As shown

in Fig. C.1B, the decision can be classified as a soft preference, or as ‘unclassified’,

depending on the width of the boxes and duration required to stay in the box.
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Mean trajectory (data)

Range for decision (S preference)

Range for decision (H preference)

Portion of trajectory that has 
entered the range for decision

Range for decision (Deadlock)

Figure C.1: Illustrative example for criteria on the statistics of decision outcomes.
µthick=µthin=µ0 = 0.15 A. Double decision: both the hard and soft preferences are
reached. B. Classification of these types of outcomes A and B are sensitive to the
choice of the bounds and threshold. If Tpreference increases or if µthick decreases, the
decision in A would not be counted as a double decision but a single decision for
the hard preference stead, and the decision in B) would not be counted as a soft
preference but as an unclassified outcome.

Let player i’s waiting position be her position at -1000 ms, i.e. one second before

the time of the “T”. We define the starting time ti of player i to be the first time

when player i has deviated from her waiting position by a distance exceeding a fixed
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threshold ε. The player who starts first will be referred to as the “initiator”. This

player has complete control over the mean for some time until the other player also

starts moving. Depending on how big the difference is between the two players’

starting times, the extent of dominance of the initiator can differ. The starting time

is sensitive to the threshold ε. However, the starting order (i.e. who starts first) is

generally not sensitive to changes in ε within the range of 0.01 and 0.3 for the majority

of data sets, i.e., there is less than 10% variation in the statistics.

C.2 Pre-processing of the data for fitting to the

model

Data for each decision-making process pertains to three continuously running parts:

the decision-making period (0 ms to 3000 ms), the waiting period (-1000 ms to 0

ms), and the ending period (3000 ms to 4000 ms). Accordingly, we fitted to the data

segment lasting from −1000 ms to 4000 ms for each decision scenario, where 0 ms is

defined as the onset of the decision “T”. The split in the reference paths lasts from 0

ms to 3000 ms. Furthermore, we normalized the data to the track position, so that

the normalized target track locations are at 1 and -1 (on the horizontal axis), where

0 is the centerline.

We assume that players did not know their relative distance to the mean initially,

and collapsed all players’ trajectories to the starting position of the mean. Statistics

of the absolute starting positions (i.e. position at −1000 ms) of the mean and Player

S were collected. The histograms and statistics of the starting positions are shown in

Fig. C.2. The mean of the starting positions for the mean trajectory was −0.0025,

and the standard deviation was 0.0246, suggesting that the mean position started

almost at centerline. The mean of the starting positions for Player S was −0.028,
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with a standard deviation of 1.0627, suggesting that the starting positions of Player

S spread out from the centerline.

In order to see if starting on a particular side would lead to decision outcomes for

that side, we compared the starting sides with the decision outcomes based on the

measurements for Fig. 4.5 in Chapter 4. We found that the ratio between the number

of times that Player S started on the decision side versus that for the opposite side is

1.22, which is very close to 1. We think that this is not a strong enough evidence to

suggest that absolute starting positions correlate with decision outcomes. Therefore,

by collapsing the players’ trajectories to the starting position of the mean, we have

not excluded important factors that influence the decision outcome.

−4 −3 −2 −1 0 1 2 3
0

10

20

30

40

50

Starting position of player with S preference at −1000ms

max: 2.7
min: -3
mean: -0.028
std deviation: 1.0627

Ratio between 
the frequencies 
when S starting 
on the final 
decision side and 
starting on the 
opposite 
side=1.22  

−0.1 −0.05 0 0.05 0.1
0

20

40

60

Starting position of the mean at −1000ms

max: 0.07
min: -0.095
mean: -0.0025
std deviation: 0.0246

Figure C.2: Histograms of absolute starting positions of the mean and Player S. The
starting positions of the mean and Player S are defined as the positions at −1000 ms.
We compared the starting positions to the decision outcomes and found that there is
no evident correlation between a starting side and final decision.

C.3 Fitting a dynamical system to continuous-

time data

We fit the model equations to each set of trajectories by minimizing the sum of the

error squared between the model simulation and the pre-processed data for each time

step in the 5000 ms length for each data set in the hard soft conflict decision type.
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Parameters were in confined ranges for optimization. In particular, θH , θS, δH , δS were

bounded between 0.1 and 6. RH , RS, BH , BS were bounded between 1 and 25, and tH ,

tS were bounded between −1000 ms and 1000 ms. The bounds were found through

preliminary fitting which suggest that the ranges were appropriate for the majority

data set.

All of 244 data sets for the Hard-Soft Conflict decision scenario were fitted and the

corresponding parameters analyzed. The data we fit the model to are sequences of

positions in time, denoted by x(t), where t = −1000, ..., 0, 1, 2, ...4000 in milliseconds.

Denote our model by ẏ = f(y,Π), where Π is the set of all parameters to be optimized.

We set the initial conditions y(0) for our model equal to x(0). The optimization

problem is then to seek Π that minimizes the mean squared error:

E(Π) =
1

5001

4000∑
t=−1000

||x(t)− y(t|Π)||2 (C.1)

subject to the constraint of ẏ = f(y,Π) and y(0) = x(0).

C.4 Parameter ranges and conditions for opti-

mization routine

The ranges for parameter search and fit optimization were found through repeated

pre-fitting and adjustments to see if the optimization routine would hit the boundaries

of the ranges. The optimization routine (lsqnonlin in MATLAB) searches for the

best-fit parameters, until the changes in the errors between data and fit, are below a

threshold of 10−5, or until the number of iterations have reached a maximum of 105.

The fit was then examined and the root mean squared error computed. The fit was

then improved if the root mean squared error was too large, by varying the initial

values of the parameters.
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