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ABSTRACT
We studied social decision-making in the rule-based improvisational
dance There Might Be Others, where dancers make in-the-moment
compositional choices. Rehearsals provided a natural test-bed
with communication restricted to non-verbal cues. We observed a
key artistic explore–exploit tension in which the dancers switched
between exploitation of existing artistic opportunities and riskier
exploration of new ones. We investigated how the rules
influenced the dynamics using rehearsals together with a model
generalized from evolutionary dynamics. We tuned the rules to
heighten the tension and modelled nonlinear fitness and
feedback dynamics for mutation rate to capture the observed
temporal phasing of the dancers’ exploration-versus-exploitation.
Using bifurcation analysis, we identified key controls of the
tension and showed how they could shape the decision-making
dynamics of the model much like turning a ‘dial’ in the
instructions to the dancers could shape the dance. The
investigation became an integral part of the development of the
dance.
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1. Introduction

Social decision-making enables group efforts that are neither fully scripted nor centrally
controlled (Dyer et al. 2009), so predicting group behaviour requires understanding
what drives individual choices (Sanfey 2007). Social decision-making is studied in
various research communities, including social choice theory (Arrow 1951; Sen 1970;
Saari 2001), which combines social ethics with voting theory, social neuroeconomics
(Fehr and Camerer 2007; Sanfey 2007; Lee 2008), which joins game theory with psychol-
ogy and neuroscience, and collective animal behaviour (Seeley and Buhrman 1999;
Conradt and Roper 2003; Couzin et al. 2005; Meunier et al. 2006; Leonard et al. 2012).
In network science, researchers examine the role of network structure in decentralized
decision-making groups (Lazer and Friedman 2007; Olfati-Saber, Fax, and Murray
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2007; Mason and Watts 2009; Greening, Pinter-Wollman, and Fefferman 2015; Landgren,
Srivastava, and Leonard 2016).

A fundamental consideration in settings where options yield rewards is how decision-
makers make choices that balance exploitation of options with well-known rewards with
the riskier, but possibly advantageous, exploration of options with poorly known rewards.
In reward-based decision-making, the decision-maker chooses from a set of options and
receives a reward associated with the chosen option. Rewards may be uncertain and vari-
able, and so the decision-maker seeking to maximize reward faces a dilemma between
choosing an option that is known to yield reasonably high reward (exploitation) versus
choosing an option for which they have little information but that could yield even
higher reward (exploration). Exploitation and exploration are in tension because a
decision-maker who only exploits will not get the new information that comes from
exploring, and a decision-maker who only explores will not leverage the new information
received.

When the decision-maker is allowed a sequence of reward-bearing choices over time,
the explore–exploit tension changes with each choice. For example, consider choosing a
restaurant for dinner in a city where you are visiting for an extended time. Suppose you
have an outstanding meal at restaurant A on the first night. Exploiting the newly
gained information, you return the second night but have merely a decent meal. Then,
on the third night, you wonder if you should exploit your two data points and go back
to restaurant A for what you can anticipate will be something in between decent and out-
standing. Or do you explore a restaurant B hoping to find a consistently outstanding meal?

A large literature addresses the explore–exploit tension for single decision-makers and
provides algorithms for choices that reliably optimize the accumulation of reward over
time (Lai and Robbins 1985; Auer, Cesa-Bianchi, and Fischer 2002; Kaufmann, Cappé,
and Garivier 2012). The tension is examined in a wide range of contexts, including
control of attention in the brain (Cohen, McClure, and Yu 2007), allocation of treatments
in clinical trials (Villar, Bowden, and Watson 2015), and animal foraging in a patchy
environment (Krebs, Kacelnik, and Taylor 1978). The tension has more recently been
studied for groups of interacting decision-makers, using simulation (Lazer and Friedman
2007), experiment (Mason and Watts 2009), and model-based analysis (Kalathil, Nayyar,
and Jain 2014; Kolla, Jagannathan, and Gopalan 2016; Landgren, Srivastava, and Leonard
2016). In these group decision-making settings, individuals make their own choices among
options, but they are influenced by social interactions that involve observations and com-
munications of the choices or evaluations that others in the group make.

The studies of decision-making groups raise important open questions about how
factors in the social interactions influence the explore–exploit tension and the group’s
decision-making dynamics. How important is the clarity of the communication of
choices and rewards? Does it matter if interactions are with experts or with novices?
What is the role of the network structure of the interactions, i.e. who can observe or com-
municate with whom? Mason and Watts (2009) ran an experiment in which each partici-
pant was asked to make a sequence of choices of location on a computer generated map in
order to find the deepest oil well. After every choice, each participant could see their
reward (how deep the oil at the location selected) as well as the choices and rewards of
some of the other participants. The data showed that networks (as compared to solitary
decision-making) suppressed individual exploration, i.e. individuals copied one another

2 K. ÖZCIMDER ET AL.



more often than trying out a new location. However, when someone in the group made a
highly rewarding choice, the whole group benefited.

The authors cautioned that their results were likely dependent on the structure of the
environment, where there was only one location with a deep oil well and thus little infor-
mation to be gained by exploring the rest of the map. The average reward at each location
also remained constant, which has been the case in most settings examined in the litera-
ture. When average rewards do not change, decision-makers can ultimately stop exploring
once they have enough information to find the best option. These observations illustrate
the importance of understanding the influence of the environment on the explore–exploit
tension and the group’s decision-making dynamics. For instance, if the rewards change,
how frequently will the decision-maker explore? What happens if environmental con-
ditions create urgency in decision-making? How does decision-making change if sticking
with the current option is easy and choosing a new one is costly? What if the reward
associated with an option decreases if a decision-maker sticks with it too long? Or what
if the reward is diminished when too many individuals select the same option at the
same time?

In the present paper, we report on a novel, generative investigation of There Might Be
Others (TMBO), an open choreographic work where performers collectively create the
piece in real-time negotiating a catalogue of defined movement ‘modules’ with a set of per-
former instructions and governing rules. TMBO builds on the tradition of open scores and
improvisational works wherein the performers compose the work in performance within a
set of rules and contingencies. The artistic quality of TMBO unfolds as the dancers exper-
iment with relationships, timing, space, and groupings and collectively work to ensure
unpredictability. Through their decisions balancing how, when, and where to perform
the defined vocabulary, the dancers create beautiful moments of juxtaposition, complex
groupings, and dynamic shifts in tempo.

Our investigation arose out of an art and science collaboration aimed at finding prin-
cipled ways to influence the creative process in social, rule-based art-making. As it turned
out, the investigation led to this and much more, including a fresh perspective on the
development of the piece and the means to examine open scientific questions. TMBO pro-
vided a rich opportunity for studying social decision-making in a creative endeavour by
highly trained artists, with rehearsals serving as a natural test-bed and dynamics well-
suited to mathematical modelling and analysis. In TMBO, the dancers’ decisions carry
both artistic rewards and risks. Recognizing this, we identified an explore–exploit
tension driving the artistic choices of the dancers, and a connection between the
tension and the rules of the dance. We defined choosing to ‘exploit’ as joining a
module currently being danced, and choosing to ‘explore’ as introducing a module that
has not yet been danced. These are in tension, and yet the resulting dynamics are quite
different from the standard explore–exploit dynamics in which average rewards are
stationary. In TMBO, rewards can change depending on the sequence of choices, the chan-
ging environment, and the dancers’ artistic sensibilities. For example, a module that
initially was highly rewarding might lose its appeal if it is danced for too long; one or
more dancers might then seek to explore something new. The result is a richly varied
dynamic involving periodic switching between exploration and exploitation.

To investigate the mechanisms at play and the opportunities for design, we made a sys-
tematic examination of the rules, environmental context, explore–exploit tension and the
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overall effect on the decision-making dynamics and the dance. Our approach integrated
ongoing rehearsals with the TMBO dancers and analysis of a low-dimensional mathemat-
ical model of the explore–exploit tension, which we generalized from evolutionary
dynamics (Bürger 1998). In rehearsal, we modified rules and recorded the resulting behav-
iour of the dancers. With the model we studied the sensitivity of the explore–exploit
dynamics with respect to parameters in the modelled rules and context. Our observations
in rehearsal led to refinements in the model. And the model provided an off-line tool for
examining mechanisms and for investigating new opportunities before trying them in
rehearsal and designing them into practice. We learned much about the driving forces
behind the underlying switching dynamics of the dance and how these dynamics could
be shaped with subtle modification to instructions. Along the way, the language of our
explore–exploit study became our baseline language for making TMBO.

In this paper, we describe our investigation of the artistic explore–exploit tension in
TMBO, its driving influence on the group’s decision-making dynamics, and the unfolding
of the dance. We reveal how the investigation itself became an integral part of the devel-
opment of the dance. And we show how the results of the investigation, including the
dance and the model, provide new ways of understanding and shaping these and
related social decision-making dynamics.

2. Structure and rules of the dance

TMBO was conceived by choreographer Rebecca Lazier who was inspired by the musical
piece In C composed by Terry Riley in 1964. Mid-development, Rebecca invited compo-
ser Dan Trueman and engineering professor Naomi Leonard to join the project; they
were examining emergence in structured improvisation and were inspired by both In
C and the art-science project Flock Logic (Leonard et al. 2014). In In C, musicians
make compositional choices as they play an ordered sequence of 53 musical melodic pat-
terns (Riley 1964; Reed 2011). All of these patterns fit on a single page, and the instruc-
tions for the piece are similarly concise. In C is both participatory and emergent, relying
on collective musical decision-making from a group of expert performers to create a per-
formance that is always recognizable but also unique; it is widely considered one of the
most influential pieces of twentieth-century concert music, and the beginning of musical
Minimalism (Carl 2009).

Similarly, TMBO is defined by a catalogue of 44 movement modules (in analogy to the
musical melodic patterns) and performing instructions that lay out the choreographer’s
artistic objectives and rules for how a group of dancers can manipulate the modules in per-
formance (Lazier et al. 2016). The objectives and rules also apply to how a group of
dancers can order the modules in performance, since, unlike in the Riley piece, no pre-
scribed order is set in the TMBO score. Riley instructs the players to repeat each
melodic pattern as many times as they wish before moving on to the next, to proceed
in order, and to listen to the group to stay within three patterns of one another. In
TMBO, performers use these general rules, except that dancers are responsible for the
compositional tone of the work by selecting which module should come next based on
the needs of the piece in the moment. Once a module is introduced in the dance, the
order is then set forth and followed by the entire cast. However, no one can lead two
modules in a row, as the leadership must be shared by the group. Using rules and

4 K. ÖZCIMDER ET AL.



games to create dance has a long and rich history (Clemente 1990). There is also a growing
body of research on cognition and the distributed choreographic process (Kirsh 2011). In
Guimerà et al. (2005), the mechanisms of self-assembly of teams in creative endeavours are
examined.

TMBO’s 44 modules include a balance of composed movement, gestural ideas, and
tasks. Some modules are boisterous, such as Jump Bean, where the instruction is to
bounce and interact with fellow dancers, others meditative, such as Oar, where the
body is gently shifting forward and backward while one hand swoops in a paddle-like
action. There are complex phrases where performers will join in unison, jumping patterns
that slice through the space, and single actions like Human Pile where performers pile on
top of each other in stillness. The aesthetic influences range from ballet, contemporary,
and modern dance to hip hop and various folk forms. The modules are the vocabulary
of TMBO and while each is defined and recognizable, they can be adapted according to
rules for each module in order to fulfil the compositional needs of the piece in the
moment. In devising the modules, we learned that they need to have dynamic, rhythmic,
expressive, spatial, and stylistic range to support an aesthetic of the work that is multi-
faceted and unpredictable. Each dancer must memorize the catalogue of modules and
be able to not only select the one most suited for the moment but also be willing to con-
tinually develop the performance of the modules in new ways with each iteration. Figure 1
shows two photos from a performance of TMBO at New York Live Arts, New York City, in
March 2016.

TMBO starts with dancers gradually joining the performance of a single module and
proceeds with dancers introducing modules. As a new module is introduced the order
is then set and each performer must proceed in the order modules appeared; in the
general rules they cannot skip or switch modules. Any dancer can introduce a new
module at any time, although no more than one module can be introduced at the same
time nor can a dancer lead two modules in a row; it is imperative that leadership shift
among the entire population. Once a module has been introduced, danced, and aban-
doned, it cannot be re-introduced. Modules can be juxtaposed by different subgroups of
dancers performing different modules simultaneously. However, the dancers are restricted
to a limited number of modules at a time; in the general rules, the limit is three modules at
a time. Dancers can experiment with and innovate variations of any current module at any
time, as long as they respect the rules and keep modules recognizable to the cast to ensure
clear communication. The dance is over after a fixed time or when all the modules have
been performed, whichever comes first. Because none of the dancers’ decisions are made in
advance and they are instructed to never repeat what they have done before, each rehearsal
and performance brings fresh choices of sequencing, timing, counterpoint, relationships,
and variation of modules.

By design, the dancers retain considerable creative freedom: they choose which and
when, as well as where and how, modules are performed to meet artistic goals for juxta-
position, unpredictability, and dynamic pacing. Social interactions are a priority: the
dancers should clearly communicate their choices through their movement and other
non-verbal cues, keep up frequent observation of the movement choices of the other
dancers, and make their own choices in response to what the other dancers are doing.
For example, one artistic objective seeks texture and richness through juxtaposition of
modules, and this can only be achieved through coordinated choices among the
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dancers, such as when a fraction of the group chooses to perform Arms while the rest per-
forms Jump Bean as in the bottom photo of Figure 1. Another artistic objective seeks
recurring moments of surprise, each defined by the introduction of a new module. This
too can only be achieved through coordinated choices among dancers, since only one
dancer can introduce a module at a time, and the limit on the number of current
modules cannot be exceeded.

Through direct interactions with and observations of dancers rehearsing and perform-
ing TMBO, we discovered that the social decision-making during TMBO is driven in large
part by an explore–exploit tension in which rewards are artistic in nature. By choosing to

Figure 1. Photos from a TMBO performance at New York Live Arts, New York City, in March 2016. In the
top photo, several dancers on the left side perform the module Flamingo and several dancers on the
right side perform the module Folk, while a pair in the foreground perform the module Box and Drag. In
the bottom photo, three dancers on the sides perform the module Arms and two dancers in the centre
perform the module Jump Bean. Photo credit: Ian Douglas.
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experiment with an existing module, the dancer exploits a known option. And by choosing
to introduce a new module, the dancer takes the riskier step and explores a less predictable
option. Both are creative choices and can add artistically to the performance. We found
that a key to how the dancers trade off exploiting and exploring is the performance rule
that limits the number of modules that should be danced at a time. Originally, a limit
of three modules was loosely applied, meaning that the dancers would sometimes add a
fourth module. However, if the limit is made strict and there are already three modules
being danced, a dancer cannot add a new module until all the dancers coalesce into
two modules. In this way, exploiting and exploring are strongly in tension for the
group: either the dancers experiment with all the current modules or they complete a
current module so that one dancer can introduce a newmodule. The tension exists in prin-
ciple for any limit on number of current modules; however, we found that the lower the
limit the greater the tension. So for our investigation, we set the strict limit to be two
modules at a time, which means a dancer can add a new module only when all dancers
have converged on a single module.

The musical component of TMBO operates similarly to the dance. The musicians have
their own set of modules, and while they are conceptually paired with the dance modules,
in performance the musicians set their own module order and may not be lined up with
the dancers. A full exploration of the musical component of TMBO is beyond the scope of
this paper, and our research focus here was on the dance; in the future, it would be of inter-
est to pursue a similar exploration of the musical decision-making dynamics, and how the
musical and dance dynamics might interact.

3. Studio rehearsals

We made a systematic investigation of the influence of changes in performance rules and
context on the dancers’ decision-making dynamics and the dance, during a rehearsal in the
Patricia andWard Hagan ’48 Studio, Lewis Center for the Arts, Princeton University on 25
July 2015. Because the aim was to find principled ways to modify the structure to influence
the choreographic development of the dance, the Institutional Research Board (IRB) at
Princeton University did not require that we seek IRB approval for the study reported
in this paper.

Our systematic study focused on three abbreviated run-throughs of TMBO, each lasting
9–10 minutes, rather than the full 60 minutes of a TMBO performance. The catalogue of
modules available to the dancers was also reduced from 44 to 9 modules. The dancers were
instructed to start with the module Clapping, which was one of the nine in the catalogue
for each run-through. Nine professional dancers participated in the rehearsal: Rhonda
Baker, Simon Courchel, Natalie Green, Raja Feather Kelly, Cori Kresge, Christopher
Ralph, Tan Temel, Saúl Ulerio, and Shayla Vie-Jenkins. All nine dancers took part in
Run-through 1, but only eight of the dancers took part in Run-throughs 2 and 3 since
Saúl Ulerio had to leave early. For all three run-throughs we fixed the following perform-
ance rules, slightly modified from the general rules:

1 any dancer can introduce a new module at any time
2 a module cannot be chosen if it has come and gone
3 any dancer can switch to any current module at any time
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4 any dancer can skip a module
5 no more than two modules can be danced at a time.

Rules (1) and (2) are unchanged from the general rules: only one module can be intro-
duced at a time and the same dancer should not introduce two modules in a row. Rules (3)
and (4) are new relative to the general rules where the set order is to be followed. Rule (5) is
a modification of the original loose enforcement of a maximum of three modules at a time
to a strict enforcement of a maximum of two modules at a time.

Before they performed the run-throughs, the dancers were not informed of the motiv-
ation for the modified rules, the model, nor the investigation of an explore–exploit tension.
Each run-through was recorded with two high-definition video cameras angled to capture
the whole stage.

3.1. Run-through 1

In Run-through 1, the catalogue of available modules included the following nine: Clap-
ping, Flamingo, Chain, Whip It, Crawl and Sing, Trigger, Do Op, Lay Down and Get
Up, Drop and Roll. The run-through began with dancers starting the module Clapping.

Figure 2. Run-through 1.
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A snapshot at 37 s into Run-through 1 is shown in Figure 2(a). In the snapshot, three
dancers, Simon, Natalie, and Tan, performed Clapping facing one another in the centre
of the space; Rhonda and Raja can be seen on the edges of the rehearsal space not parti-
cipating in Clapping, although Raja had briefly been clapping.

In the snapshot of Figure 2(b), at 42 s into Run-through 1, Cori can be seen walking and
clapping. Natalie, who is lying down on her back, has clearly introduced the module Lay
Down and Get Up. Since there was only one active module, Clapping, any dancer could
have decided to introduce a new module among the remaining eight in the catalogue at
any moment, but Natalie chose Lay Down and Get Up. At this point in time, since
there were two active modules, Clapping and Lay Down and Get Up, no new module
could have been introduced.

In the snapshot of Figure 2(c), at 69 s into Run-through 1, the dancers were distributed
over the two active modules, Clapping and Lay Down and Get Up, although Natalie had
switched back to Clapping. Cori, Chris, Rhonda, Saúl, and Tan were also performing Clap-
ping. Note that Chris (second from the left) had begun to modify Clapping; here he can be
seen clapping with his arms rather than his hands. Natalie was also modifying Clapping by
moving her shoulders to the beat. Shayla, lying on her side, Simon, lying on his stomach,
and Raja, lying on his back, were all performing Lay Down and Get Up.

At 146 s into Run-through 1, when all the dancers coalesced, at least momentarily into
Lay Down and Get Up, Cori introduced the module Whip It and Shayla almost immedi-
ately joined her. The snapshot of Figure 2(d) shows the dancers at just this moment, with
Cori and Shayla performing Whip It and the rest of the dancers evolving Lay Down and
Get Up. Since Clapping had come and gone, the dancers were no longer allowed to perform
it for the remainder of Run-through 1.

By 275 s into Run-through 1, eight of the dancers were performing Whip It and only
one dancer (Rhonda) remained with Lay Down and Get Up. A snapshot at 298 s into
Run-through 1 is shown in Figure 2(e). This lasted until around 335 s when Rhonda
finally joined Whip It. The module Do Op was then immediately introduced. Whip It
was over shortly thereafter and Drop and Roll was introduced. A snapshot at 412 s into
Run-through 1 is shown in Figure 2(f), where six dancers can be seen performing Do
Op and three dancers can be seen (mid-roll on the floor) performing Drop and Roll.
The dancers remained with Do Op and Drop and Roll until Run-through 1 ended at
540 s (nine minutes). By the end, all nine dancers were performing Do Op. Although
they were available to the dancers, the four modules Flamingo, Chain, Crawl and Sing,
and Trigger were not selected during Run-through 1.

3.2. Run-through 2

In Run-through 2, we added to the instructions of Run-through 1 by asking the dancers to
be more impulsive in their choices, i.e. to increase their tendency to switch modules. The
intent was to examine switching tendency as a possible design ‘dial’ that could be cued to
the whole group of dancers during a run-through, for example, by signaling with the beat
of a drum. Switching tendency was identified as a candidate design dial since it was
revealed to be associated to critical parameters in the analysis of the mathematical
model as described below. For Run-through 2 the catalogue of available modules included
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the following nine: Clapping, Arms, Box, Bravo, Bumper Body, Chris, Folk, Kiss, Romper
Room.

Run-through 2 began with dancers starting the module Clapping. A snapshot at 38 s
into Run-through 2 is shown in Figure 3(a). In the snapshot, three dancers, Simon,
Shayla, and Raja, can be seen performing Clapping. Raja had already begun modifying
Clapping by clapping his hands on his knees. The module Bumper Body was introduced
and the snapshot at 109 s in Figure 3(b) shows Cori, Chris, Natalie, and Tan, all perform-
ing Bumper Body while Shayla, Simon, and Raja continued in Clapping.

When Bumper Body ended, Folk was introduced. When Folk ended Romper Room was
introduced and when Romper Room ended Chris was introduced. All the while Clapping
persisted. And dancers frequently switched back and forth between Clapping and which-
ever other module was current. For example, at 157 s in Figure 3(c), Natalie, Simon, Chris,
and Shayla were all performing Folk. But at 228 s in Figure 3(d), Shayla and Cori were the
only two dancers performing Folk, and at 251 s in Figure 3(e), Raja was alone doing Folk.
Those dancers who had returned to Clapping were arranged in a line, and it was if the
dancers were taking turns doing solo performances of Folk.

All of the dancers but Chris can be seen performing the module Chris at 368 s in Figure
3(f). Chris was keeping Clapping alive. In fact, Clapping had another resurgence of

Figure 3. Run-through 2.
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popularity before it was abandoned and Bravo introduced. At the 9-minute mark, one
dancer remained in Chris while the rest performed Bravo.

3.3. Run-through 3

In Run-through 3, the catalogue of nine modules was the same as in Run-through
2. However, the additional rule was changed: in Run-through 3, we asked the dancers
to be more resistant to changing their choices, i.e. to decrease their tendency to switch
modules. The intent was to continue to examine switching tendency as a possible
design dial. However, in contrast to Run-through 2 where the dial was turned up, in
Run-through 3 the dial was turned down.

Run-through 3 began with the dancers starting the module Clapping. At 70 s into the
run-through, the module Box and Drag was introduced. Box and Drag persisted while
Clapping ended and Kiss was introduced, Kiss ended and Folk was introduced, Folk
ended and Bravo was introduced. Box and Drag was still active at the 9-minute mark,
along with Bravo.

Throughout Run-through 3, there was a minimal switching between active modules; for
example, there was nothing like the switching of soloists performing Folk as seen in Run-
through 2. When Shayla introduced Folk at 286 s into Run-through 3, she performed it
alone for 48 s before she was joined by Simon, and then some of the others. At 450 s,
Chris rose up from Box and Drag and caught each dancer who was performing Folk
and folded the dancer into Box and Drag until at 490 s, he managed to get everyone com-
mitted to Box and Drag and Folk was gone. At just this moment, Chris introduced Bravo.
Later, after the 9-minute mark, when almost all the dancers were performing Bravo, Cori
seemed to play with the idea of folding some of them into Box and Drag, something like an
echo of what we had seen Chris do earlier.

After Run-through 3, we ran one more run-through during which we tried out a global
cue to signal a change in instruction, i.e. to signal a dial change. One beat on the drum
directed the dancers to make more ‘studied’ choices, whereas a scale on the xylophone
directed the dancers to make more ‘random’ choices. The dancers were a bit worn out
at this point, but they described enjoying the exercise. Raja described liking the connection
to the external environment rather than only to internal, i.e. social, factors. Cori reported
liking the global external signal because it served to refresh in her mind a priority.

3.4. Quantifying group dynamics

Motivated by our modelling approach, described below, we quantified the explore–exploit
dynamics of the group of dancers in terms of the distribution of dancers over the modules.
For Run-throughs 1, 2, and 3, we visualized the changing distribution by plotting in Figure
4 the fraction of total number of dancers performing each of the current modules as a
function of time. Videos extracted from the cameras were synchronized using off-the-
shelf video editing tools (SI Appendix, Figure S1). The synchronized videos were then ana-
lysed by counting the number of dancers for each one-second time period and the trajec-
tories drawn by connecting the sample points.

The top, middle, and bottom plots of Figure 4, show what fraction of the group of
dancers in Run-through 1, 2, and 3, respectively, performed which modules, distinguished
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by colour, over time. Time, on the horizontal axis, is denoted by t and expressed in seconds
from the start of the run-through at t=0 s until the 9-minute mark at t=540 s.

We denote the fraction of dancers at time t performing one of the two current modules
by x1(t) and the fraction of dancers at time t performing the other of the two current
modules by x2(t). The fractions x1(t) and x2(t) therefore take values between 0 and 1
for all t. Since only two modules were allowed at a time, x1(t)+ x2(t) = 1 if all dancers
were dancing at time t. For instance, at t=300 s into Run-through 1, reading off the
higher (green) line in the top plot of Figure 4, the fraction of dancers performing Whip
It was x1(300) = 8/9 (everyone but Rhonda) and reading off the lower (red) line, the frac-
tion of dancers performing Lay Down and Get Up was x2(300) = 1/9 (Rhonda).

Figure 4. The fraction of total number of dancers performing each of the at most two modules, x1 and
x2 as a function of time t during Run-through 1 (top plot), Run-through 2 (middle plot), and Run-
through 3 (bottom plot). For Run-through 1, the x1 and x2 are fractions of a total of nine dancers per-
forming each of the two active modules, whereas for Run-throughs 2 and 3, they are fractions of a total
of eight dancers. The modules are distinguished by the colours indicated in the key on the right.
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Typically there are two lines at any given time, one for each of the two active modules.
When a module is completed, the fraction for that module goes to zero, e.g. the disappear-
ing (black) line representing the fraction for Clapping at t=146 s in the top plot of Figure 4.
And when, a new module is introduced, a new line in a new colour emerges, e.g. the
appearing (green) line representing Whip It at t=146 s in the top plot of Figure 4.

4. Evolutionary dynamic model

Our investigations in the rehearsal described above were motivated by our analysis of a
mathematical model that we derived using the replicator–mutator dynamics from evol-
utionary game theory (Bürger 1998). These dynamics describe a game played by a popu-
lation of individuals, each of which has a fixed strategy, interacts randomly with others,
and receives a reward, also called a payoff, which determines its success in the game. In
terms of natural selection, payoff is interpreted as fitness and success as reproductive
success: the higher the fitness associated with a strategy, the faster the strategy will repro-
duce (Nowak 2006).

Letting the interacting individuals in the game represent the interacting dancers, and
the strategies represent the dance modules, the replicator–mutator dynamics provide a
useful model of TMBO. One important reason is that the fitnesses, i.e. the rewards, in
the replicator–mutator dynamics change over time; in fact, fitnesses depend explicitly
on the changing distribution of the population over the different strategies, much like
we expect artistic reward in TMBO to depend on the changing distribution of dancers
over the active modules. Another reason is that the rates of reproduction of strategies
depend not only on fitness but also on mutation, which in the equations is given by a
random term; this allows us to use mutation to represent uncertainty and spontaneity
associated with the dancers’ choices. Further, the outcomes of the replicator–mutator
dynamics range from mixed strategy solutions, where multiple strategies coexist, to
pure strategy solutions, where a single strategy is adopted by the entire population. This
parallels our central interest: the tension between how dancers exploit active modules
and how they converge on a single module so that a new one can be explored.

The outputs of the replicator–mutator dynamics are the time-varying fractions of the
population associated with the different strategies. This corresponds nicely to the dance,
where we seek to understand how the fraction of the population of dancers performing
each active module changes as a function of time (as in Figure 4). And, getting to the orig-
inal motivation for our collaboration, the mathematical model offers a number of par-
ameters that can be modulated to correspond to qualitative instructions, i.e. dials, that
the dancers might receive either before or during a performance.

So we let the strategies in the replicator–mutator model represent the dance modules,
and evolutionary time t represent the time t during the dance. We set the total number of
strategies N equal to the limit on number of dance modules that can be performed at a
time. For our study we considered the replicator–mutator dynamics with N=2. We inter-
preted a drop close to zero in the fraction of one strategy followed by a rise in that fraction
as the completion of one dance module followed by the introduction of a new module. In
this way, the replicator-mutator dynamics could be used to represent the dancers’ pro-
gression through some or all of the available catalogue of modules, while respecting the
rule limiting the number of modules allowed to be performed at a time.
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In the following, we describe the model for the case ofN=2. The more general model for
N ≥ 2 is provided in the SI Appendix S2. The replicator–mutator equations describe the
changing fractions in a very large population, so we made the simplifying abstraction that
the number of dancers in the group is very large. Then, the fraction of dancers x1(t) per-
forming one of the active modules (call it module 1) at time t and the fraction of dancers
x2(t) performing the other of the active modules (call it module 2) at time t can take any
value in the interval from 0 to 1. Since x1(t)+ x2(t) = 1 for all time t, given one fraction,
e.g. x1(t), we can always find the other, as x2(t) = 1− x1(t).

The time rate of change of x1, denoted dx1/dt, and the time rate of change of x2,
denoted dx2/dt, are given by the replicator-mutator dynamics:

dx1
dt

= (x1f1q11 + x2f2q21)− fx1,

dx2
dt

= (x1f1q12 + x2f2q22)− fx2.

(1)

Here, x1(t) and x2(t) are written as x1 and x2 for brevity. And x1f1q11 refers to the
product (multiplication) of the three variables x1, f1, and q11, and similarly for the
other terms. The variables f1 and f2 are the fitnesses (payoffs or rewards) of module
1 and 2, respectively, and f = f1x1 + f2x2 is the average fitness over the two
modules. q21, respectively q12, is the probability of mutating from module 2 to 1,
respectively from module 1 to 2. q11 and q22 are the probabilities of not mutating. So
the term in the first equation x1f1q11 − fx1, which is equal to x1f(q11f1/f− 1), will
contribute to growing x1 if q11f1/f . 1, i.e. if the relative fitness f1/f of module 1 is
sufficiently large, or shrinking x1 if q11f1/f , 1, i.e. if the relative fitness f1/f of
module 1 is sufficiently small. The other term x2f2q21 will modulate the growth or
shrinkage of x1 by a term in the rate that is proportional to q21, the probability of
mutating from module 2 to 1.

Equation (1) was originally derived to describe evolutionary biology. However, we were
motivated in part to generalize it for our purposes because it can also be derived as the
limit of a stochastic error-prone imitation process, where agents imitate a strategy, e.g.
strategy 1 with x1 . 0, at a rate proportional to its relative fitness f1/f and mutate (e.g.
because of an error) to strategy 1 from alternative strategy 2 at a rate proportional to
q21 (Traulsen, Claussen, and Hauert 2006).

In applications of the replicator–mutator dynamics, the fitnesses f1 and f2 are typically
defined as linear functions of the fractions x1 and x2, as in Nowak, Komarova, and Niyogi
(2001). A linear fitness function implies that the sensitivity of fitness to changes in frac-
tions is a constant. For example, if the fitness function is linear in x1, then if x1 is
doubled, the fitness doubles no matter if x1 is a small, intermediate, or large number.
We found that to provide a model rich enough to represent the dynamics of TMBO,
we needed more subtle sensitivity of fitness to fractions. We thus generalized the fitness
function so that it has low sensitivity to changes in x1 and x2 when they are very small
(near 0) or very large (near 1) and high sensitivity to changes in x1 and x2 when x1 and
x2 take intermediate values (near 1/2). The idea was to make the response highly sensitive
only for intermediate values of x1 and x2, when major qualitative transitions are prone to
appear.
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We defined the new nonlinear fitness functions using what’s known as a Hill type func-
tion sg,k as follows (where γ and k are parameters):

f1 = b11sg,k(x1)+ b12sg,k(x2), sg,k(x1) =
x1

1−x1

( )g

k+ x1
1−x1

( )g ,

f2 = b21sg,k(x1)+ b22sg,k(x2), sg,k(x2) =
x2

1−x2

( )g

k+ x2
1−x2

( )g .

(2)

The coefficient b11 ≥ 0 describes the strength of the dependence of f1 on x1 (b12 the depen-
dence of f1 on x2 and likewise for b21 and b22). For example, a large b12 could represent the
relative ease in transitioning commitment from module 2 to module 1. The function
sg,k(x1) is ‘sigmoidal’ in x1 (likewise sg,k(x2) is sigmoidal in x2), which means that it satu-
rates at the value 1 for x1 close to 1 and at the value 0 for x1 close to 0. When g = k = 1, it
specializes to the linear function s1,1(x1) = x1 (and s1,1(x2) = x2). The parameters k and γ
determine the shape of the sigmoidal function sg,k. Notably, for smaller values of k, sg,k

has a steeper slope (becomes more sensitive) and saturates at small or large x1 (see SI
Appendix, Figure S2).

The degree to which there is spontaneous or random switching between modules is
governed by a probability μ called mutation strength, which takes a value in the interval
from 0 to 1. We let

q11 = q22 = 1− m, q12 = q21 = m. (3)

Then μ represents the probability of randomly switching frommodule 1 to 2 or 2 to 1, and
(1− m) represents the probability of not switching.

Given a dynamic system defined by nonlinear equations, a bifurcation analysis can be
used to reveal the sensitivity of the dynamical behaviour of the system to the value of a
system parameter. A bifurcation refers to the change in number and stability of steady sol-
utions of the dynamical equations as the parameter, called the bifurcation parameter,
passes through a critical value, called the bifurcation point. Bifurcation analysis of the
dynamics of equations (1)–(3), in the linear case g = k = 1, show the solutions and
their stability to be sensitive to the value of bifurcation parameter μ (Nowak, Komarova,
and Niyogi 2001; Komarova and Levin 2010; Pais, Caicedo-Núñez, and Leonard 2012).

Consider the case of symmetric fitness coefficients in which b11 = b22 = 1 and
b12 = b21 = b with 0 < b < 1. If μ is large enough, there is a single stable distributed equi-
librium (mixed strategy solution) corresponding to x1 = x2 = 0.5, i.e. the population is
distributed equally over the two modules. If μ is small enough, the distributed equilibrium
is unstable, and there are two stable solutions, each corresponding to one strategy domi-
nating the other in the population. In the limit as μ decreases to zero there is bi-stability of
the two fully dominating module equilibria (pure strategy solutions) corresponding to
x1 = 1, x2 = 0 and x1 = 0, x2 = 1 (Nowak, Komarova, and Niyogi 2001), i.e. the stable
solutions correspond to the population fully committed to one or the other module.
Thus, the magnitude of μ determines if the population is uniformly distributed over the
modules or if a single module dominates.
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As a model of TMBO, we interpret the distributed equilibrium, x1 = x2 = 0.5 as full
exploitation, since it reflects juxtaposition of current modules with half the group perform-
ing module 1 and half the group performing module 2. We interpret the fully dominating
module equilibria as the prerequisites for exploration, since they reflect the opportunity to
introduce one or more new modules with the majority of the group performing one of the
modules and a minority performing the other. The bifurcation analysis suggested that μ is
a key control in the explore–exploit tradeoff. Since the explore–exploit tradeoff in the
dance was observed to be dynamic, we augmented our model with dynamics for μ.
That is, instead of letting μ be a fixed parameter, we defined feedback dynamics for μ
that represent how the dancers might have been modulating something like μ based on
their observations of how many dancers were performing each module (x1 and x2).
Because dancers are trained to be highly physically aware, they will have good estimates,
not only of the fractions x1 and x2, but also of the presence or absence of a dominating
module, i.e. whether the group is fully exploiting or in a position to explore a new module.

The dynamics of μ that we introduced into the model (Equation (4) below) allow flexi-
bility in representing how the dancers react to the presence or absence of a dominating
module, i.e. to the presence or absence of a large majority of the dancers performing
one module. The intuition is that the model should allow for the dancers to cycle
between the presence and absence of a dominating module, and in turn cycle between
exploring and exploiting as artistic rewards for choices grow and decline over time. So
we designed the dynamics such that if no module is dominating, μ decreases and drives
the fractions towards a dominating module. Likewise, if one of the modules is dominating,
μ increases and drives the fractions away from the dominating module solution. How sen-
sitive the reaction is depends on the remaining model parameters, notably, the sensitivity
parameter k in sg,k. Thus, μ and k, or some combination of the two, might be used to
translate the notion of switchiness from the rehearsal to the model, i.e. modulation of μ
and k in the model might provide a useful representation of a switchiness dial for the
dancers.

Let K > 0 be a time-scale parameter that regulates how fast μ changes relative to how fast
x1 and x2 change. Let 0 , a1 , 0.5 and a2 = 1− a1 be thresholds. We define the time
rate of change of μ, denoted dm/dt, as

dm
dt

= K(x1 − a1)(x1 − a2)m(1− m). (4)

Since x2 = 1− x1, the right side of Equation (4) can equivalently be written as
K(x2 − a1)(x2 − a2)m(1− m). As intended these dynamics imply that if the fractions
are close to the distributed solution where a1 , x1 , a2 and a1 , x2 , a2, then one
of the terms in the product on the right side of Equation (4) will be negative so that μ
will decrease and the fractions will move towards a dominating solution. Alternatively,
if the fractions are close to a dominating solution where 0 , x1 , a1 and a2 , x2 , 1
or 0 , x2 , a1 and a2 , x1 , 1, then the product on the right side of Equation (4)
will be positive so that μ will increase and the fractions will move towards a distributed
solution. See the SI Appendix S2 for a more general formulation of the dynamics of μ.
An earlier version of these dynamics is described in Özcimder et al. (2016).

We note that the dynamics of μ depend not only on k but also on a1 and a2. So a1 and
a2 could be investigated as to their influence on the overall dynamics and thus also as
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possible representatives of dials for the dancers. Indeed, in the model of Dey et al. (2018)
we extend the model described here by introducing dynamics for a1 and a2, which results
in even more varied and rich dynamic behaviour.

5. Results from the studio

As discussed above, we quantified the explore–exploit dynamics of the group, in both
human and modeled settings, in terms of the changing distribution of dancers over the
modules. The changing distribution can be visualized by plotting the fraction of total
number of dancers performing each of the current modules as a function of time. As
seen in Figure 4, the top, middle, and bottom plots show the fractions x1 and x2 of the
group of dancers in Run-through 1, 2 and 3, respectively, as a function of time.

During the 540 s of Run-through 1, as can be observed in the top plot of Figure 4, the
dancers performed five of the nine available modules in the catalogue. At all times except
for the beginning when the dancers were first entering and during the brief period at
t=318 s, it can be observed that there were only two active modules. During the short inter-
val at t=318 s, a third module (Do Op) was introduced a moment or two before the linger-
ing dancer (Rhonda) had completed the second active module (Lay Down and Get Up).

The top plot of Figure 4 shows that one after another the dancers started with Clapping
until, at t=34 s, there were six dancers in Clapping (x1 = 0.67). One dancer then intro-
duced Lay Down and Get Up, and others followed until at t=57 s all nine dancers were
engaged in either Clapping or Lay Down and Get Up. From t=70 to 110 s, the nine
dancers were evenly distributed over the two modules, with some switching of member-
ship. Then, x2 grew while x1 shrunk, until at t=135 s Clapping was gone (x1 = 0) and Lay
Down and Get Up was fully dominating (x2 = 1). At that moment one and then another
dancer introduced the new module Whip It and two others joined so that at t=170 s,
x3 = .44 and x2 = .56. This distributed state persisted for a while but then Lay Down
dominated again (x2 = .89). However, Whip It did not go away. Instead, a few seconds
later, there was a return to the distributed state followed by a period in which Whip It
dominated (x1 = .89). At t=318 s Do Op was introduced and quickly dominated
(x4 = 1). A few second later Drop and Roll was introduced and there followed oscillations
between a dominating module and a distributed state until at the end Do Op was fully
dominating.

Over the 540 s shown in all three of run-throughs in Figure 4, the dancers can be
observed to dynamically balance the explore–exploit tradeoff by oscillating as a group
between a dominating module (prerequisite to exploration) and a distribution over two
modules (exploitation). The frequency of the oscillations was irregular and the module
that became dominant in each cycle was irregularly chosen. The order of introduction
of modules was not necessarily the order of completion of modules. For example, in
Run-through 1, Lay Down lasted as long as Whip It even though it was introduced well
before and Do Op, introduced before Drop and Roll, outlasted Drop and Roll. In Run-
through 2, Clapping outlasted Bumper Body, Folk, and Romper Room. In Run-through
3, Box Drag was the second module introduced and it was still active at the end of the
9-minute mark.

Although the explore–exploit tradeoff was not discussed with the dancers prior to the
investigation in the studio, during the rehearsal, the dancers described feeling a distinct
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tension between experimenting with current modules and moving on to introduce new
modules. They also described finding new challenges and creative opportunities with
the new rules, most especially the limit to two modules at a time. For example, dancers
who resisted joining a popular module influenced the dynamics in new ways. This was
very apparent when Rhonda resisted giving up on Lay Down and Get Up in Run-
through 1. By exploiting the less-populated module, Rhonda actively blocked exploration.

Likewise, dancers who worked to recruit others to their module invented new variation.
By recruiting to the more-populated module, these dancers actively advanced exploration.
The snapshot in Figure 2(e) shows eight dancers in a circle around Rhonda, on the floor,
clearly urging her through their physical orientation and facial expressions to join them in
Whip It. In Run-through 3, Chris went up to several dancers performing Folk and folded
them into Box and Drag until no one remained in Folk. He then very quickly introduced
Bravo before anyone could go back to Folk. Later Cori created a moment evocative of
Chris’ strategy by folding dancers who were performing Bravo. However, Cori did not
appear to be insistent and it read as playful and humorous.

The constraints imposed by the modified rules and heightened tension were seen to
motivate new dramatic moments. And because the dancers were allowed to switch
between active modules, rather than being required to follow the order that modules
were introduced, they reported that they could hold on to an idea and find a time to
switch back to a module to pursue their idea when they saw the chance. As a result of
the experience of the investigation in the studio, the new rules became an ongoing part
of the practice and the language of explore–exploit became a baseline for development
of the piece. In performance, even when the limit of two modules was lifted and the
other modifications removed, the dancers created moments inspired by these rules.

Run-throughs 2 and 3 were also used to investigate the possibility of giving directions,
like a design dial, to the dancers that would be analogous tomanipulating design parameters
in the model (like μ and k) to modify the collective behaviour. This was investigated by
asking the dancers to modify their switching tendency. The results suggested that switching
tendency could be modified through instruction and would shape the dynamics in interest-
ingways. For example, the different instructions on switching tendencywere reflected in the
different total numbers of modules introduced in the first 480 s of the improvisations: five
modules in Run-through 1, six in Run-through 2, and four in Run-through 3. The higher
number of modules is consistent with impulsiveness, i.e. a dial up in switching tendency
(the instruction in Run-through 2) and the lower number with resistance, i.e. a dial down
in switching tendency (the instruction in Run-through 3). A similar effect can be observed
in Figure 5, which shows all of the times at which x1 (and therefore x2) switched from
increasing to decreasing or vice versa for each of the three run-throughs. These switches
were most frequent and numerous for Run-through 2, when switching tendency was
high, which yielded a total of 29 switches. They were least frequent and numerous for
Run-through 3, when switching tendency was low, which yielded a total of 20 switches.
We note, however, that this analysis might even underestimate the effect of the switching
tendency instruction, since it does not account for switches by dancers that did not
change the overall fractions. For example, in Run-through 2, dancers did a lot of switching
betweenmodules, e.g. betweenClapping andFolk. But often one dancer inFolkwould return
to Clapping just as another dancer inClapping took their place inClapping, thus leaving the
overall fractions unchanged.
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6. Results from the model

A bifurcation analysis of the model was used to investigate the roles of μ and k in the
modeled behaviour of the group. The analysis influenced, and was influenced by, the
investigation in rehearsal. To visualize the results of the analysis, we used a bifurcation
diagram, which shows how steady solutions of the model dynamics change for different
values of the bifurcation parameter μ, which in turn depends on k. We considered the sym-
metric case in which b11 = b22 = 1, b12 = b21 = b. The steady solution is represented by
either x1 or x2, and, since x1 + x2 = 1, if one steady solution is xi, then the other steady
solution is 1− xi. So the bifurcation diagram is a plot of steady solutions xi (think of it
as x1) on the vertical axis versus bifurcation parameter μ on the horizontal axis.

Six distinct bifurcation diagrams for equations (1)–(3) with b = 0.04, are plotted in the
top panel of Figure 6. These plots show how the steady solutions x1 (and x2 = 1− x1) and
their stability vary over a range of values of μ for six different values of k (see SI Appendix
S4 for a proof). Each of the six bifurcation diagrams is plotted in a different colour as
indicated by the key. Solid lines indicate solutions that are stable and dashed lines indicate
solutions that are unstable. If the solution is stable, then it remains steady even in the case
of a small change in conditions. If the solution is unstable, however, even the smallest
change in conditions will drive the dynamics away from the unstable solution and
towards a stable solution.

For every value of μ and k, there is a steady solution at the distributed solution xi = 0.5,
corresponding to half the population in module 1 and half in module 2. This means that all
six bifurcation diagrams have horizontal lines at xi = 0.5. To avoid overlapping lines from
the different diagrams, we only show the solution xi = 0.5, for each of the six bifurcation
diagrams, along the line near its intersection with the curved part of the diagram. This
point of intersection is known as the pitchfork bifurcation point. We denote by mc(k) the
value of μ at the pitchfork bifurcation point; we write mc as a function of k because the
location of the pitchfork bifurcation point depends on the value of k. In Figure 6, we identify
mc for k = 0.05 in orange andmc for k = 0.4 in darkest blue. In each bifurcation diagram, the
steady solution xi = 0.5 is stable for m . mc (solid line) and unstable for m , mc (dashed
line). Thus, in Figure 6 every solid line on xi = 0.5 continues to the right (as μ increases)
and every dashed line on xi = 0.5 continues to the left (as μ decreases).

Figure 5. Switching times for Run-throughs 1, 2, and 3. Each switching time refers to a time when the
value of x1 (and therefore x2) changed from increasing to decreasing or vice versa.
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When k = 0.4 the bifurcation diagram (farthest to the right in darkest blue) reveals a
‘supercritical’ pitchfork bifurcation, represented by the c-shaped curve that opens to the
left, at bifurcation point m = mc(0.4) ≈ 0.28. The diagram shows that for m . mc the dis-
tributed solution xi = 0.5 is the only (stable) solution. For m , mc the distributed solution

Figure 6. Evolutionary model with N=2, b=0.04, g = 2.5. (Top) Bifurcation diagrams of Equations (1)–
(3) showing steady solutions xi versus μ for six different values of k in the nonlinear fitness function.
Solid lines are stable solutions and dashed lines are unstable solutions. (Middle) Bifurcation diagram
from top panel for k=0.05 with green and purple curves, each showing path of solution xi , for a
different initial condition, and for increasing and then decreasing μ. (Bottom) xi as a function of
time for Equations (1)–(4) with K=0.05, a1 = 0.25, a2 = 0.75, and noise variance S(·) a Gaussian
with mean 0.5 and standard deviation 0.05.
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is unstable and the two (symmetric) dominant solutions are stable: x1 . 0.5 (x2 , 0.5)
and x1 , 0.5 (x2 . 0.5). The magnitude of the stable dominant solutions increases
smoothly as μ decreases. Thus, were μ to slowly decrease (increase) past the bifurcation
point, the result would be a slow change from the distributed solution to a dominant sol-
ution (vice versa).

The results from the studio in Figures 4 and 5 show instead relatively rapid switching in
xi, corresponding to oscillations in exploration versus exploitation. This suggests that the
model with k ≥ 0.4, which includes the linear fitness model from the literature, is insuffi-
cient to fully capture the observed behaviour. However, in our model with nonlinear
fitness function, rapid switching does follow for slowly varying μ if k is sufficiently
small, much like the appearance of oscillatory behaviour in relaxation oscillators (see SI
Appendix S5). This can be understood from the bifurcation diagrams in the top plot of
Figure 6 where k<0.4.

For example, when k = 0.05 the bifurcation diagram (second from the right in orange)
reveals a ‘subcritical’ pitchfork bifurcation, distinguished by the c-shaped curve that
opens to the right, at bifurcation point mc = mc(0.05) ≈ 0.09. As in the supercritical case,
when m , mc the distributed solution is unstable and the two (symmetric) dominant sol-
utions are stable. However, the situation is a little more complicated when m . mc. Here,
before μ gets very large, there are fives steady solutions, three stable (solid) and two unstable
(dashed). It is this more complicated diagram that leads to the relatively rapid switching in
the fractions x1 and x2 as μ changes.

We illustrate this with the clockwise (green) and counterclockwise (purple) curves in
the middle plot of Figure 6, which are model simulations plotted on top of the bifurcation
diagram in the case k = 0.05. The simulated curves show how the solution x1 changes for
two different initial conditions as μ is slowly increased and then slowly decreased past the
subcritical bifurcation point. The initial conditions for the green curve were approximately
x1 = 0.8 and m = 0.02, and x1 can be seen first to grow closer to 1 then to shrink to 0.5
and then to grow back towards 1. The initial conditions for the purple curve were approxi-
mately x1 = 0.1 and m = 0.08, and x1 can be seen first to shrink closer to 0 then to grow to
0.5 and then to shrink back towards 0. Each loop represents a cycle between exploration
and exploitation in the modeled dynamics. In the green curve, it is module 1 that the
population converges on before exploring a new module, whereas in the purple curve it
is module 2.

The corresponding oscillatory behaviour of x1 as a function of time t is represented in
the bottom plot of Figure 6: one circuit around the green periodic solution in the middle
plot corresponds to one up-down oscillation in the bottom plot and one circuit around the
purple periodic solution in the middle plot corresponds to one down-up oscillation in the
bottom plot.

The plot of x1 versus t in the bottom panel of Figure 6 is a simulation of Equations
(1)–(4) for N = 2, b = 0.04, k = 0.05, g = 2.5, K = 0.05, a1 = 0.25, a2 = 0.75. Here μ is
not independently driven up and down, but rather it follows its own dynamics as pre-
scribed by Equation (4). That is, Equations (1)–(4) are the dynamics of the distribution
of the population between the two active modules with small k and feedback dynamics
for μ corresponding to more switching when one module is dominant and less switching
when no module is dominant. These dynamics yield relatively rapid oscillations as
observed in the rehearsal.
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In this simulation, white noise is added to Equation (1) with variance S(xi) that depends
on xi to represent uncertainties (like that observed in Figure 4 at t = 318 s). S(·) is designed
to be symmetric about x = 0.5, vanishing on the boundaries, i.e. S(0) = S(1) = 0, and
greatest at xi = 0.5, i.e. when it is more difficult for dancers to judge distribution across
modules. The noisy response around xi = 0.5 can be observed in the simulation of
Figure 6; it leads to switching between the two different periodic solutions (green and
purple in the middle plot).

We note further, from the top of Figure 6, that as k increases the magnitude of oscil-
lations decreases, and oscillations exist for higher values, and a smaller range, of μ. The
insight here is that a small change in k can shape the oscillations in the explore–exploit
dynamics of the model.

To make a qualitative comparison of the model output with observations from the
studio (Figure 4), we plot in Figure 7 a model simulation of x1 and x2 as a function of
time t, discretized for a population of nine. Only two modules are allowed at a time
and once x1 or x2 goes to zero, the corresponding module is replaced by a new module
indicated by a new colour. The simulation uses the same parameters as in Figure 6,
except that k is varied over time, as shown in the bottom panel of Figure 7, to represent
variability in sensitivity over time.

The simulation in Figure 7 illustrates the influence of μ and k on the explore–exploit
tradeoff; it can be seen that changes in these parameters affected the model dynamics
much the same way as the change in instruction in Run-throughs 2 and 3 (for more
and less tendency to switch) affected the collective behaviour as seen in the middle and

Figure 7. Model simulation results for comparison with results in rehearsal plotted in Figure 4. (Top)
The fraction xi of a population of nine as a function of time t for a simulation of the model with N=2,
b=0.04, g = 2.5, K=0.05, a1 = 0.25, a2 = 0.75, S(·) a Gaussian with mean 0.5 and standard deviation
0.05, and time-varying k. When xi goes to zero, a new module is introduced. Different modules are
distinguished by different colours. (Bottom) Parameter k varies with time t.
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bottom plots of Figure 4. For example, during the period from t = 100 to 140 s in the simu-
lation of Figure 7, k was dramatically increased resulting in a pause in oscillations in x1 and
x2. We observe in Figure 7 features in common with all of the run-throughs in Figures 4:
oscillations with irregular frequency, irregular choice of dominating module in each cycle,
and different ordering of introduced versus completed modules.

7. Conclusions and future directions

Until we began our experiments together, TMBO existed as a dance without music, impos-
ing the general rule of staying within three modules of one another and not allowing skip-
ping or switching between modules. Following the underlying principle that the dance
should be different every time and the dancers should be looking for something
different in the moment, we employed new approaches to examine how the rules and con-
straints could be modified and designed to support creativity and bring forth new experi-
ences. By tuning our collective attention to understanding the explore versus exploit
tension, where spontaneity and risk-taking could be artistically rewarding, we widened
the dramatic possibilities of the score and heightened the performers’ knowledge of
how they prefer to engage within the group, which then created new possibilities for
both openness and control. We permanently adapted our rules to include sections
where external mechanisms signal a time to adapt responsive behaviours, i.e. to turn
the ‘dials’ in one direction or another. In the year following our joint work, Dan
Trueman completed the composition of forty-four music modules in collaboration with
the music ensembles So Percussion and Mobius Percussion, and we produced a fully rea-
lized version of TMBO with 15 dancers and 12 percussionists at New York Live Arts in
March 2016. TMBO has since been reprised on several occasions, including at The
Scotia Festival of Music, Nova Scotia, Canada, in June 2017 (for a video of the perform-
ance, see Lazier 2017).

In becoming an integral part of the development of the dance, our art and science inves-
tigation of TMBO produced new perspectives on social decision-making dynamics and
opportunities for design in a real-time, collaborative, art-making context. By integrating
studies with the TMBO dancers in rehearsal and analysis of a representative mathematical
model, we focused in on a simply parameterized mechanism to help describe and shape
how dancers in TMBO address an explore–exploit tension that derives from competing
artistic goals and constraints imposed by the choreographic rules.

In most contexts studied in the explore–exploit literature, rewards associated with
decision-making options do not change with time. Decision-makers explore and exploit
until they find the best option, and then they stop exploring. In TMBO, however, the
rewards continue to change and so the performers continue to explore. An active
module that is appealing or provocative at one moment will eventually become less so
with time or with changing circumstances. A performer may first exploit the active
module and then switch to exploring by introducing or joining in on a new module.
The new module may in turn lead others to exploit. By switching between exploring
and exploiting, the dancers keep fresh the sequencing, timing, counterpoint, relationship,
and variation of modules. The dancers’ switching behaviour was observed in the oscil-
latory dynamics of the fractions x1 and x2 of the total number of dancers committed to
each of the two active modules (Figure 4).
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The oscillatory dynamics in x1 and x2 were likewise captured with a mathematical
model, generalized from the replicator-mutator equations of evolutionary biology to
include a nonlinear fitness function with sensitivity parameter k and self-contained feed-
back dynamics for mutation rate μ. For small enough k, the model reveals a symmetric
subcritical pitchfork bifurcation, which provides a mechanism for rapid switching
between exploration and exploitation as μ evolves. Modulation of the parameters μ
and k in the model appeared to account well for the subtlety and variability of the
dancers’ innovative impulses in reactions to what the others were doing, thus providing
a possible representation of instruction dials that could be used to signal rule changes to
the dancers. For example, changes in k, which in turn changed the dynamics of μ, were
shown to affect the frequency of the explore–exploit oscillations (Figure 7), much like
what was observed in rehearsal (Figure 4) when dancers were asked to modulate
their switchiness tendency. In this case, a simple implementation of such a dial
would be to define one beat of a drum as an instruction to the dancers to increase
their switchiness tendency and two beats of the drum as an instruction to the
dancers to decrease their switchiness tendency.

The model can be used further as an off-line choreographic tool to examine the pre-
dicted consequences on collective explore–exploit dynamics of other kinds of design
modifications. For example, study of the influence of asymmetries in the relative ease in
transitioning from one module to another can be made using the parameters bij (Komar-
ova and Levin 2010). And study of the influence of thresholds in the shifting dynamics of
mutation rate can be made using the parameters a1 and a2 (Dey et al. 2018). The case in
which the limit on the number of current modules is greater than two can be studied using
the replicator–mutator dynamics with N > 2 (Pais, Caicedo-Núñez, and Leonard 2012).

Our investigation, insights, and mathematical model may generalize to other contexts
beyond structured improvisational dance, in the same way that the replicator–mutator
dynamics have been applied in various contexts. For example, the simply parameterized
but rich family of collective dynamics may provide a useful framework for examining
mechanisms of social decision-making in settings where expert performers together face
an explore–exploit tension in which rewards change with time or with changing circum-
stances, such as in other art forms, collaborative design, or team sports. The generalized
model advances a related goal, which is to draw inspiration from the dynamics of
natural systems and translate the mechanisms uncovered, using mathematics, to models
that can be used for design (Gray et al. 2018). In all these ways, our collaboration has
proved to be a generative meeting of art and science.
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S.1 Synchronized video frames

Figure S1: Snapshots at the same time from each of the two synchronized videos of the dancers during
Run-through 1.

S.2 General model for N ≥ 2

In the main text we specialize the model to N = 2. Here we present here the general model for the case that
the limit on number of modules at a time is N ≥ 2. We make the simplifying abstraction that the number of
dancers in the group is very large so that we can represent the fraction of dancers xi(t) committed at time t

to strategy i as a number in the interval [0, 1] for i = 1, . . . , N . By definition
∑N
i=1 xi(t) = 1 for all time t.

The time rate of change of xi is given by the replicator-mutator dynamics:

dxi
dt

=

N∑
j=1

xjfjqji − φxi, (S1)

where fi is the fitness of strategy i, qji is the probability of mutating from strategy j to i, and φ =
∑N
i=1 fixi

is the average fitness over the N strategies.
We define a new nonlinear fitness function fi using a Hill type function σγ,k(xj) as follows:

fi =

N∑
j=1

bijσγ,k(xj), σγ,k(xj) =

(
xj

1−xj

)γ
k +

(
xj

1−xj

)γ . (S2)

The coefficients bij ≥ 0 describe the strength of the dependence of fi on xj . The function σγ,k(xj) is sigmoidal
in xj and specializes to the linear function σ1,1(xj) = xj for γ = k = 1.

Spontaneous switching between modules is governed by a probability µ ∈ [0, 1] called mutation strength.
Following [1], we let

qii = 1− µ for all i, qij =
µbij∑
l 6=i bil

for i 6= j. (S3)
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Then the probability that dancers spontaneously switch from module i to any other module is represented by∑N
j=1,j 6=i qij = µ.
In the linear, symmetric case in which bii = 1 for all i and bij = b ∈ (0, 1) for i 6= j, if µ is large enough

there is a single stable distributed equilibrium corresponding to xi = 1/N for all i, i.e., the population is
distributed equally over all strategies. If µ is small enough the distributed equilibrium is unstable, and the
stable solutions correspond to one dominant strategy. In the limit as µ goes to zero there is multi-stability
of a fully dominating strategy equilibria corresponding to xi = 1, xj = 0, j 6= i, i.e., the population is fully
committed to one strategy.

Let K > 0 be a time-scale parameter and α a real-valued function of xi. To define dynamics for µ, we
introduce the scalar time-dependent variables wi(t) for i = 1, . . . , N and let µ(t) depend on the wi(t). The
time rate of change of wi is

dwi
dt

= Kα(xi)wi(1− wi), wi(0) ∈ [0, 1].

So wi(t) ∈ [0, 1] for all t ≥ 0 and equilibria are wi = 0 and wi = 1. We can design the function α using
thresholds on the xi to model how the dancers react to the presence or absence of a dominating module,
i.e., to the presence or absence of a large majority of the dancers performing one module. For example,
reinforcement of a dominant module can be modeled with µ = mini wi and α(xi) = ᾱ − xi for ᾱ ∈ (0.5, 1).
Then for any i such that xi > ᾱ, wi and thus µ will decrease, driving the state dynamics toward a dominating
module equilibrium. If xi ≤ ᾱ for all i, then all the wi and thus µ will increase, driving the state dynamics
toward the distributed solution.

Alternatively, we can design the function α to model the opposite reaction of the dancers to the presence
or absence of a dominating module. We do this in the main text for N = 2 in Eq. (4).

S.3 Nonlinear fitness function

The nonlinear fitness function given by Eq. (1) in the main text depends on the sigmoidal function σγ,k(xj).
The parameters γ and k determine the shape of σγ,k(xj). We illustrate the influence of k on σγ,k in Fig. S2.

Figure S2: The sigmoidal function σγ,k(xj) for different values of k and γ = 2.5.

S.4 Proof of symmetric quintic bifurcation

The proof of the supercritical pitchfork bifurcation is well known for the replicator mutator equations Eqs. (1)-
(3) from the main text with N = 2 in the case of linear fitness function corresponding to k = 1. The transition
from the supercritical to the subcritical pitchfork illustrated in Fig. 6 is through a symmetric quintic pitchfork
bifurcation with normal form −x5 + µx [2, Section VI.5 and Figure VI.6.1 top]. We prove the existence of a
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symmetric quintic pitchfork bifurcation for the replicator mutator equations Eqs. (1)-(3) from the main text
with N = 2 in the case of the new generalized nonlinear fitness function corresponding to small k. In the case
of N = 2, b11 = b22 = 1, and b12 = b21 = b ∈ (0, 1), Eqs. (1)-(3) specialize to

ẋ1 = g(x1, µ, k, γ, b)

:= x1(σγ,k(x1) + bσγ,k(1− x1))(1− µ) + (1− x1)(bσγ,k(x1) + σγ,k(1− x1))µ− φx1, (S4)

where

fi =

N∑
j=1

bijσγ,k(xj),

and

σγ,k(xj) =

(
xj

1−xj

)γ
k +

(
xj

1−xj

)γ .
Our goal is to detect a symmetric quintic pitchfork in the scalar equation

g(x1, µ, k, γ, b) = 0.

Since the system is Z2 symmetric with respect to x1 = 0.5 (that is, the change of variables x1 7→ 1 − x1
leaves Eq. (S4) invariant), this singularity has codimension 1 ([2], Theorem VI.5.1(3)). Thus, we only need
one unfolding parameter. For analytical tractability and in line with the main text, we fix b = 0.04, γ = 2.5
and use k as the unfolding parameter.

Following the recognition problem ([2], Table VI.5.3), we seek µ∗, k∗ such that

g(0.5, µ∗, k∗, 2.5, 0.04) = gx1(0.5, µ∗, k∗, 2.5, 0.04) = gx1x1x1(0.5, µ∗, k∗, 2.5, 0.04) = 0,

gx1x1x1x1x1
(0.5, µ∗, k∗, 2.5, 0.04) 6= 0 6= gx1µ(0.5, µ∗, k∗, 2.5, 0.04).

We first solve g = 0 in terms of µ and plug the solution into the equation gx1x1x1
= 0 so that it becomes a

function only of k. The equation gx1 = 0 is automatically solved by picking x1 = 0.5. Solving gx1x1x1 = 0
explicitly in terms of k is non-trivial. Instead, we examine its evolution as a function of k in Fig. S3. The
graphical analysis reveals the presence of an isolated zero for k = k∗ ' 0.257. We can now also easily verify
that

gx1x1x1x1x1
(1/2, µ∗, k∗, 2.5, 0.04) < 0, gx1µ(1/2, µ∗, k∗, 2.5, 0.04) > 0,

which completes the recognition problem for the symmetric quintic bifurcation.

S.5 Oscillatory behavior from symmetric quintic bifurcation

Unfolding the symmetric quintic bifurcation illustrated in Fig. 6 in the main text, and proved in Section S.4
in the direction of the subcritical pitchfork, introduces a new kind of multi-stability and with it a hysteresis
between the distributed solution and the dominant solutions. This allows for fast switching behavior in the xi
for the closed-loop system with N = 2 described by Eqs. (1)-(4) from the main text even as µ increases and
decreases slowly through the bifurcation point.

In the case of N = 2, b11 = b22 = 1, and b12 = b21 = b ∈ (0, 1), Eqs. (1)-(4) specialize to

ẋ1 = x1(σγ,k(x1) + bσγ,k(1− x1))(1− µ) + (1− x1)(bσγ,k(x1) + σγ,k(1− x1))µ− φx1
µ̇ = −K(x1 − α1)(α2 − x1)µ(1− µ). (S5)

When the two thresholds x1 = α1 and x1 = α2 intersect the critical manifold

M0 = {(x1, µ) : x1(σγ,k(x1) + bσγ,k(1− x1))(1− µ) + (1− x1)(bσγ,k(x1) + σγ,k(1− x1))µ− φx1 = 0}
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Figure S3: Evolution of gx1x1x1
as a function of k.

along its unstable branches, the closed-loop system (S5) exhibits two distinct oscillatory behaviors (Fig. S4).
Each of them corresponds to the periodic alternation between the distributed solution and one of the strongly
dominant solutions. The associated limit cycles are symmetric with respect to the line x1 = 0.5. They exist
for sufficiently small K.

The proof of existence and stability of these cycles uses techniques from geometric singular perturbations
and blow-up theory [3]. In Fig. S5 we provide intuition on how these cycles can be geometrically constructed
in the limit K → 0 by showing the singular (K → 0) phase portrait. Because x1 is much faster than µ,
trajectories spend most of the time on the critical manifold. The singular limits of the two limit cycles are
constructed as closed singular trajectories, which merge along the horizontal part of the critical manifold
where x1 = 0.5. Because µ is decreasing in that region, both singular cycles approach the vertical line µ = 0.
There, they split in upward and downward directions, respectively. At the intersection with the upper and
lower branches of the critical manifold, where µ is increasing, they slide along the critical manifold until the
fold singularity, where they jump back to the horizontal branch of the critical manifold, much in the same way
as a standard relaxation oscillator.

For small K > 0 the two singular cycles perturb to two exponentially stable limit cycles, corresponding to
the two oscillatory behaviors in Fig. S4. By Fenichel theory [4], these two cycles are O(e−1/K)-close to each
other in the region where they shadow the horizontal branch of the critical manifold. It follows that, for K
sufficiently small, tiny perturbations, such as the noise described in the main text, make it possible for the
system to switch between the two cycles.
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Figure S4: Co-existence of two stable limit cycles (red and blue), shown on the bifurcation diagram for
dynamics of Eq. (S5). Stable manifolds are solid lines and unstable manifolds are dashed lines. Parameters
are γ = 2.5, k = 0.01, K = 0.3, α1 = 0.25, and α2 = 0.75.
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Figure S5: Geometric construction of the two stable limit cycles (red and blue) in the limit K → 0, shown on
the bifurcation diagram for dynamics of Eq. (S5). Stable manifolds are solid lines and unstable manifolds are
dashed lines. Parameters are γ = 2.5, k = 0.01, α1 = 0.25, and α2 = 0.75.
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