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Robustness of Noisy Consensus Dynamics with Directed Communication

George Forrest Young, Luca Scardovi and Naomi Ehrich Leonard

Abstract— In this paper we study robustness of consensus in
networks of coupled single integrators driven by white noise.
Robustness is quantified as the H2 norm of the closed-loop
system. In particular we investigate how robustness depends
on the properties of the underlying (directed) communication
graph. To this end several classes of directed and undirected
communication topologies are analyzed and compared. The
trade-off between speed of convergence and robustness to noise
is also investigated.

I. INTRODUCTION

The study of consensus problems has gained much in-
terest in recent years, in particular with the application
to multi-agent autonomous systems [1]–[4]. In this setting,
consensus refers to every agent reaching agreement about
some common or shared quantity. Two major areas where
consensus is required are collective decision-making (such as
deciding a common direction of travel) and collective sensing
(such as reaching agreement about a measured environmental
parameter). Both of these frameworks apply to biological
systems such as bird flocks [5] and fish schools [6], and
a number of models have been proposed to explain the
methods by which animal groups reach consensus [7]–[9].
In an engineering context, the same consensus problems
must be solved by autonomous groups of aerial, ground or
underwater vehicles [10].

For the purposes of achieving consensus, most of the
important details of a multi-agent system are encoded by
the communication graph of the system. In this way, the
performance of the consensus protocol can be related to the
properties of the communication graph. This provides a more
general setting to investigate consensus and allows for the
application of graph-theoretic notions and tools. In particular,
it is well known that the properties of the Laplacian matrix
of the graph are intimately related to the performance of the
consensus protocol [1], [3], [11], [12].

Since autonomous systems must operate in uncertain envi-
ronments without direct supervision, it is important that such
systems be robust. Multi-agent systems should be robust with
respect to several different parameters, including component
or individual agent failure, environmental uncertainty and
communication uncertainty. This means that there are a num-
ber of different ways in which the robustness of consensus
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can be measured. Robustness to failure can be measured
by the node and edge connectivities of the communication
graph, while robustness to uncertainty and noise can be re-
lated to the H∞ norm, H2 norm, or L2 gain of the consensus
system. H∞ robustness has been investigated in [13]–[15]
in relation to uncertainty in the communication graph and to
non-ideal communication channels. L2 robustness has been
considered in [12], [16] in relation to bounded (in the L2

sense) inputs or errors. A notion of robustness equivalent
to the H2 norm for discrete-time consensus on undirected
graphs has been used in [17] and for a particular undirected
graph in [18], however little work appears to have been done
on H2 robustness of consensus for directed graphs.

In this paper we study the robustness of consensus to
communication noise for directed communication topologies,
which we show is naturally characterized by the H2 norm
of the system. In this context, the H2 norm measures the
expected steady-state dispersion of the agents under unit-
intensity white noise. Thus systems with lower H2 norms
will remain closer to consensus despite the presence of noise.
It should be noted that we do not consider the “accuracy” of
the final consensus value, merely how well it is maintained.

The paper is organized as follows. In Section II notations
are summarized. In Section III the model is introduced. In
Section IV we introduce the robustness measure and we
provide a closed-form expression for a particular class of
graphs. Finally, in Section V, several families of directed and
undirected graphs are compared and the trade-off between
speed of convergence and robustness is investigated.

II. PRELIMINARIES AND NOTATION

The state of the system is given by x = [x1, x2, . . . , xN ] ∈
RN , where xi is the state of agent i. For each agent i we
define the set of neighbors, Ni, to be the set of agents which
supply information to agent i.

We call the state of the system a consensus state when
x = γ1N , where 1N = [1, 1, . . . , 1]T ∈ RN and γ ∈ R.
Let Π be the projection matrix onto the subspace of RN
orthogonal to 1N . Thus Π = IN − 1

N 1N1TN , where IN is
the N -dimensional identity matrix. Then the system is in
consensus if and only if Πx = 0.

We associate to the system a (directed) communication
graph G = (V, E , A), where V = {1, 2, . . . , N} is the set of
nodes, E ⊆ V × V is the set of edges and A ∈ RN×N is a
weighted adjacency matrix with nonnegative entries ai,j . A
is defined such that ai,j > 0 if and only if (i, j) ∈ E . Every
node in the graph corresponds to an agent in our system,
while the graph contains edge (i, j) when j ∈ Ni. That
is, every directed edge in G points from an agent receiving



information to the agent supplying the information. Then
ai,j is the weight given by agent i to the information from
agent j. Note that according to our definition, G will contain
at most one edge between any pair of nodes and will not
contain any self-cycles (edges connecting a node to itself).

The out-degree (respectively in-degree) of node k is de-
fined as doutk =

∑N
j=1 ak,j (respectively dink =

∑N
j=1 aj,k).

A graph is said to be balanced if for every node, the out-
degree and in-degree are equal.
G has an associated Laplacian matrix L, defined by

L = D − A, where D = diag (dout1 , dout2 , . . . , doutN ) is the
diagonal matrix of node out-degrees. The row sums of the
Laplacian matrix are zero, that is L1N = 0. Thus 0 is always
an eigenvalue of L with corresponding eigenvector 1N .
Balanced graphs have the particular properties that 1TNL = 0
and, as the Laplacian is then a hyperdominant matrix with
zero excess, L+ LT ≥ 0 [19].

A path in G is a (finite) sequence of nodes such that each
node is a neighbor of the previous one. The graph G is
connected if it contains a globally reachable node k; i.e.
there exists a node k such that there is a path in G from i to
k for every node i. It can be shown that all the eigenvalues
of L are either 0 or have positive real part, and 0 will be a
simple eigenvalue of L if and only if G is connected [20].

To allow for meaningful comparisons between directed
communication graphs, we can normalize a graph by scaling
the edge weights so that each node has an out-degree of
either 1 or 0. That is, for every non-zero ai,j , we replace
ai,j with 1

dout
i
ai,j . This notion is similar to the way graph

Laplacians are defined in [13]. Physically, this corresponds
to each agent in our system taking as an input a weighted
average of the differences between its own variable and those
of its neighbors. Throughout the rest of this paper, we will
assume that every directed graph has been normalized.

The graph G is said to be undirected if (i, j) ∈ E
implies (j, i) ∈ E and ai,j = aj,i. We can generate an
equivalent undirected graph for any directed graph. We first
replace every edge (i, j) with the two edges (i, j) and (j, i),
each with weight ai,j

2 . Then, if there are multiple edges
between two nodes, the edges are combined by summing
their weights. Equivalently, the adjacency matrix of the
undirected graph will be the symmetric part of the directed
adjacency matrix. Note that a graph will be undirected if and
only if its adjacency and Laplacian matrices are symmetric.

III. NOISY CONSENSUS DYNAMICS

In consensus dynamics, noise can be introduced to each
agent through communication errors, spurious measurements
and other means. For simplicity, we assume that every
agent is independently affected by white noise of the same
intensity. The resulting dynamics are

ẋ(t) = −Lx(t) + ξ(t) (1)

with x ∈ RN and where ξ(t) ∈ RN is a random signal
with E[ξ(t)] = 0, E[ξ(t)ξT (τ)] = α

2 INδ(t − τ) and
E[x(0)ξT (τ)] = 0. δ(t) is the Dirac delta function and α > 0
is the intensity of the noise.

Since (1) is only marginally stable in the noise-free case,
we only consider the dynamics on the subspace of RN
orthogonal to the subspace spanned by 1N . We let Q ∈
R(N−1)×N be a matrix whose rows form an orthonormal
basis of this subspace. This is equivalent to requiring that

Q1N = 0,

QQT = IN−1 and QTQ = IN −
1
N

1N1TN = Π.
(2)

Note that LQTQ = L
(
IN − 1

N 1N1TN
)

= L as L1N = 0.
Next, we define y := Qx. Then y = 0 if and only if x =
γ1N , γ ∈ R. A measure of the distance from consensus is
the dispersion of the system ||y(t)|| =

(
yT (t)y(t)

) 1
2 . Note

that the projection of (1) onto the subspace spanned by 1N
will give the dynamics of the mean of x. These dynamics
remain marginally stable (in the noise-free case).

Differentiating y(t), we obtain

ẏ(t) = −L̄y(t) +Qξ(t) (3)

where L̄ = QLQT is the reduced Laplacian matrix.
Note that L̄ is not unique, since we can compute it using

any matrix Q that satisfies (2). However, if Q and Q′ both
satisfy (2), we can define P := Q′QT . Then Q′ = PQ and
P is orthogonal. Therefore, if y′(t) := Q′x(t) = Py(t),
we have that y′T (t)y′(t) = yT (t)PTPy(t) = yT (t)y(t) and
thus the dispersion is invariant to the choice of Q.

Lemma 1: L̄ has the same eigenvalues as L but the zero
eigenvalue.

Proof: Define the matrix

V =
[

Q
1√
N

1TN

]
The matrix V is orthogonal as

V V T =
[

Q
1√
N

1TN

] [
QT 1√

N
1N
]

=
[
IN−1 0

0 1

]
= IN

and

V TV =
[
QT 1√

N
1N
] [ Q

1√
N

1TN

]
= IN −

1
N

1N1TN +
1
N

1N1TN = IN .

Consider the change of coordinates v = V x, and the
corresponding (noise-free) dynamics

v̇ = −V LV T v

where we used the fact that V −1 = V T . Clearly the
eigenvalues of L and V LV T are the same. In particular we
have that

V LV T =
[

QLQT 0
1√
N

1TNLQ
T 0

]
, (4)

where we used the fact that L1N = 0. Since (4) is a block
matrix, the eigenvalues of (4) are the solutions of

λ det(λI −QLQT ) = 0.

We conclude that L̄ has the same eigenvalues of L but the
zero eigenvalue.



By Theorem 4 of [20], L has eigenvalue 0 with multiplicity
1 precisely when the communication graph is connected.
Furthermore, Geršgorin’s theorem guarantees that all other
eigenvalues have real parts strictly positive. Thus for con-
nected graphs, all eigenvalues of L̄ have positive real part,
and so −L̄ is Hurwitz. In the rest of this paper we will
assume that G is connected and thus (in the absence of
noise), (3) converges exponentially to zero. The speed of
convergence will be determined by the eigenvalue of L̄
with smallest real part, or equivalently, by the eigenvalue
of L with second-smallest real part. For undirected graphs
this corresponds to the standard definition of the algebraic
connectivity of the graph. It is worth noting that the definition
of algebraic connectivity for directed graphs, as given in [21],
does not correspond to the speed of convergence.

IV. ROBUSTNESS AND THE H2 NORM
A. The H2 norm as a measure of robustness

We now seek to describe the robustness of the consensus
dynamics to white noise inputs. Since the dispersion of the
system ||y(t)|| defines the distance to consensus, we measure
the robustness of the system by H := lim

t→∞
E [||y(t)||]. Since

yT (t)y(t) is a scalar quantity, yT (t)y(t) = tr
(
yT (t)y(t)

)
=

tr
(
y(t)yT (t)

)
. Therefore, if we let Σ(t) := E[y(t)yT (t)],

H = lim
t→∞

[tr (Σ(t))]
1
2 =

[
tr
(

lim
t→∞

Σ(t)
)] 1

2
=: [tr (Σss)]

1
2 .

Note that this definition corresponds to the steady-state
mean-square deviation used in [17].

For the state-space system ẏ = Ay + Bu, z = Cy with
A Hurwitz, the H2 norm is

[
tr(CXCT )

] 1
2 , where X is the

solution of the Lyapunov equation AX+XAT +BBT = 0.
It is well known that our definition of H is equal to the
H2 norm of system (3) with output equation z(t) = Iy(t).
However, we include a proof of this for completeness.

Lemma 2: For unit-intensity white noise, Σss is the so-
lution to the Lyapunov equation L̄Σss + ΣssL̄T = I . That
is, H is equal to the H2 norm of system (3) with output
equation z(t) = Iy(t).

Proof: Differentiating Σ (t) with respect to time, we
obtain

Σ̇(t) = E
[
ẏ(t)yT (t) + y(t)ẏT (t)

]
= E

[
−L̄y(t)yT (t) +Qξ(t)yT (t)− y(t)yT (t)L̄T

+y(t)ξT (t)QT
]

= −L̄Σ(t)− Σ(t)L̄T +QE
[
ξ(t)yT (t)

]
+ E

[
y(t)ξT (t)

]
QT .

Notice that the solution of (3) is y(t) = e−L̄ty(0) +∫ t
0

e−L̄(t−τ)Qξ(τ) dτ , which leads to

E
[
y(t)ξT (t)

]
= e−L̄tQE

[
x(0)ξT (t)

]
+
∫ t

0

e−L̄(t−τ)QE
[
ξ(τ)ξT (t)

]
dτ

=
∫ t

0

1
2

e−L̄(t−τ)Qδ(t− τ) dτ

=
1
2
Q.

Therefore, we have that

Σ̇(t) = −L̄Σ(t)− Σ(t)L̄T +
1
2
QQT +

1
2
QQT

= −L̄Σ(t)− Σ(t)L̄T + I.

And in steady state (i.e. as t→∞) Σ̇(t) = 0, so we get

L̄Σss + ΣssL̄T = I (5)

Thus, [tr (Σss)]
1
2 is the H2 norm of system (3).

B. H2 norm for graphs with normal reduced Laplacian
matrices

We can use Lemma 2 to derive a relationship between the
eigenvalues of L and the H2 norm of system (3) when the
reduced Laplacian matrix L̄ is normal, that is when L̄L̄T =
L̄T L̄. Normal matrices are particularly easy to work with
since we know by the Spectral Theorem that they can be
diagonalized using unitary matrices. We can use this fact to
solve the Lyapunov equation (5) and obtain an expression
for the H2 norm of system (3).

First, we want to characterize those graphs with normal
reduced Laplacians.

Lemma 3: L̄ is normal if and only if ΠL is normal, that
is, if and only if ΠLLTΠ = LTΠL.

Proof: By definition, ΠL is normal if (ΠL) (ΠL)T =
(ΠL)T (ΠL), that is, if ΠLLTΠ = LTΠ2L (as Π is
symmetric). However, Π is a projection matrix, so Π2 = Π.
Thus ΠL being normal is equivalent to

ΠLLTΠ = LTΠL. (6)

Now, since L̄ = QLQT , L̄ being normal is equivalent to
QLQTQLTQT = QLTQTQLQT , which reduces to

QLLTQT = QLTΠLQT (7)

since QTQ = Π and LΠ = L.
Suppose L̄ is normal. Then, pre-multiplying (7) by QT

and post-multiplying by Q gives us ΠLLTΠ = ΠLTΠLΠ.
However, LΠ = L and thus ΠLT = LT also. Therefore,
ΠLLTΠ = LTΠL, and so ΠL is normal.

Suppose ΠL is normal. Then, pre-multiplying (6) by Q
and post-multiplying by QT gives us QQTQLLTQTQQT =
QLTΠLQT . But QQT = IN−1, and so QLLTQT =
QLTΠLQT . Thus, L̄ is normal.

Although Lemma 3 gives us the most general condition on
L for L̄ to be normal, it is instructive to consider some special
graphs that have normal reduced Laplacians. Incidentally,
Lemma 3 also shows that the normality of L̄ does not depend
on a particular choice of matrix Q.

Lemma 4: Let G be a connected graph with normal Lapla-
cian matrix. Then G is balanced.

Proof: Suppose L is the Laplacian matrix of a con-
nected graph G and that LLT = LTL. Since G is connected,
the 0 eigenvalue of L has multiplicity 1. Hence the only non-
zero vectors v for which Lv = 0 are v = β1N , β ∈ R. Since
LTL1N = 0 we have that LLT 1N = 0 and we conclude
that

LT 1N = β1N , β ∈ R. (8)



Premultiplying both sides of (8) by 1TN we obtain

β1TN1N = 0

Thus 1TNL = 0, and so the graph must be balanced.
Lemma 5: If L is a normal Laplacian matrix of a con-

nected graph then L̄ is also normal (as a complex matrix).
Proof: Suppose L is the Laplacian matrix of a con-

nected graph and that LLT = LTL. By Lemma 4, we
know that LT 1N = 0, or 1TNL = 0. Then ΠL =(
I − 1

N 1N1TN
)
L = L. Thus ΠL is normal and so, by

Lemma 3, L̄ is normal as well.
Any undirected graph will have a symmetric Laplacian

matrix, which is trivially normal. Thus we know that L̄
will be normal for all undirected graphs. In addition to this,
there exist directed graphs with normal Laplacians, such as
all circulant graphs (for example, see Section V-B), which
by Lemma 5 have normal reduced Laplacians. Furthermore,
some directed graphs do not have normal Laplacians but still
satisfy the condition of Lemma 3 (see Section V-D).

Now we are able to derive a formula for the H2 norm of a
system with normal L̄ in terms of the non-zero eigenvalues
of the Laplacian matrix.

Proposition 1: Suppose L is a Laplacian matrix of a
connected graph with eigenvalues λ1 = 0 < Re{λ2} ≤
Re{λ3} ≤ . . . ≤ Re{λN}, and that ΠL is normal. Then the
H2 norm of system (3) is

H =

(
N∑
i=2

1
2Re{λi}

) 1
2

(9)

Proof: By Lemma 3, we know that L̄ is nor-
mal. Furthermore, by Lemma 1 the eigenvalues of L̄ are
λ2, λ3, . . . , λN . Therefore, by the Spectral Theorem, we can
find a unitary matrix V (i.e. V V ∗ = V ∗V = I , where
∗ is the Hermitian operator) such that L̄ = V ΛV ∗, where
Λ = diag{λ2, . . . , λN}. Note that as L̄ is real, L̄T = L̄∗.
Therefore, to find the H2 norm, we must solve the Lyapunov
equation

V ΛV ∗Σ + ΣV Λ∗V ∗ = I.

Rearranging, we get

ΛV ∗ΣV + V ∗ΣV Λ∗ = I.

Now, let Γ = V ∗ΣV , and note that tr (Σ) = tr (V ΓV ∗) =
tr (V ∗V Γ) = tr (Γ). Thus, H = [tr(Γ)]

1
2 , where

ΛΓ + ΓΛ∗ = I.

Since Λ and I are both diagonal matrices, Γ must be a
diagonal matrix as well. Thus Γ and Λ commute and we
can write

ΓΛ + ΓΛ∗ = Γ (2Re{Λ}) = I,

which implies

Γ = (2Re{Λ})−1
.

Thus Γ is the diagonal matrix with entries
1

2Re{λ2} , . . . ,
1

2Re{λN} and we conclude that

H =

(
N∑
i=2

1
2Re{λi}

) 1
2

.

Remark 1: Equation (9) does not hold for every graph
(see Section V-C). However, based on numerical results,
we conjecture that (3) is a lower bound for the H2 norm
associated to any graph.

Remark 2: One well-known property of undirected graphs
is the effective resistance Kf , or Kirchhoff index [22]. The
effective resistance of a graph can be related to the power
dissipated by the graph when it is considered as a resistor
network, and also to the expected commute time between any
two nodes for a random walk with transition probabilities
governed by the edge weights [23]. This is related to the
eigenvalues of the graph Laplacian by the formula Kf =

N

N∑
j=2

1
λj

, leading to the relationship

H =
(
Kf

2N

) 1
2

.

V. PROPERTIES OF FAMILIES OF GRAPHS

A graph with good convergence speed will have a large
value for the real part of the second-smallest eigenvalue,
while a graph with good robustness will have a small value
of the H2 norm. In this section we compare the properties
of families of directed and undirected graphs to investigate
the trade-off between speed of convergence and robustness
to noise.

A. Complete graphs

The complete graph on N nodes contains an edge connect-
ing every pair of nodes. In its usual form, every edge has
unit weight and so L would equal NI−1N1TN = NΠ. In its
normalized form, every edge has a weight of 1

N−1 and thus
the complete graph has Laplacian matrix L = N

N−1Π. The
complete graph is undirected so L is symmetric, and hence
normal, with eigenvalues 0, N

N−1 ,
N
N−1 , . . . ,

N
N−1 . Thus the

complete graph has convergence speed N
N−1 and H2 norm

N−1√
2N

.

B. Cycle graphs

The (directed) cycle graph on N nodes consists of a closed
“chain” of nodes with each node connected to the next node
in the chain. When every edge has unit weight, the cycle
graph will have Laplacian matrix

L =


1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
. . . . . .

...
0 0 · · · 1 −1
−1 0 · · · 0 1

 .



Now, L is a circulant matrix, and all circulant matrices
are normal. Furthermore, the characteristic equation of L
is (λ− 1)N − (−1)N = 0 and so L has eigenvalues 1 +
eiπ(1− 2k

N ), k = 0, 1, . . . , N−1. Thus the convergence speed
is Re

{
1 + eiπ(1− 2

N )
}

= 1 + cos
(
π − 2π

N

)
= 2 sin2

(
π
N

)
.

Since L is a normal matrix, we can apply Lemma 5 and
Proposition 1 to obtain

H =

N−1∑
k=1

1

2Re
{

1 + eiπ(1− 2k
N )
}
 1

2

=
1√
2

[
N−1∑
k=1

1
1 + cos

(
π
(
1− 2k

N

))] 1
2

=
1√
2

[
N−1∑
k=1

1
2 sin2

(
kπ
N

)] 1
2

Since
N−1∑
k=1

csc2

(
kπ

N

)
=
N2 − 1

3

we conclude that

H =

√
N2 − 1

12
.

We can also consider the undirected form of the cycle
graph. As outlined in Section II, the adjacency matrix of
the undirected cycle is the symmetric part of the adjacency
matrix of the directed cycle. Then, the undirected cycle will
have Laplacian matrix

L =


1 − 1

2 0 · · · − 1
2

− 1
2 1 − 1

2 · · · 0
...

. . . . . . . . .
...

0 · · · − 1
2 1 − 1

2
− 1

2 · · · 0 − 1
2 1

 .
Now L is symmetric, so Proposition 1 applies. Furthermore,
the eigenvalues of L are the real parts of the eigenvalues of
the directed cycle. Thus the undirected cycle has convergence
speed 2 sin2

(
π
N

)
and H2 norm

√
N2−1

12 .

C. Path graphs

The path graph on N nodes consists of an open “chain” of
nodes with each node connected to the next. It is equivalent
to the cycle graph with one edge removed. When every edge
has unit weight, the path graph will have Laplacian matrix

L =


1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
. . . . . .

...
0 0 · · · 1 −1
0 0 · · · 0 0

 .
In this case it is clear that L is not balanced, and so by
Lemma 4, L is not normal.

Since L is upper triangular, its eigenvalues are just
its diagonal entries, namely 0, 1, 1, . . . , 1. Therefore, the

convergence speed of the path graph is 1, and the for-
mula from Proposition 1 produces the following result:(∑N

i=2
1

2Re{λi}

) 1
2

=
√

N−1
2 . However, numerical calcula-

tions show that (at least for N ≤ 50), the H2 norm of the
path graph is

√
N2−1

6 .
We can consider the undirected path graph by finding the

symmetric part of the adjacency matrix of the directed path.
This produces the following Laplacian matrix

L =


1
2 − 1

2 0 · · · 0
− 1

2 1 − 1
2 · · · 0

...
. . . . . . . . .

...
0 · · · −1

2 1 − 1
2

0 · · · 0 − 1
2

1
2

 .

This matrix has eigenvalues 2 sin2 kπ
2N , k = 0, 1, . . . , N − 1

and since it is symmetric we can apply Proposition 1. Then,
using the fact that

∑N−1
k=1 csc2

(
kπ
2N

)
= 2

3

(
N2 − 1

)
, we have

that the undirected path has convergence speed 2 sin2 π
2N and

H2 norm
√

N2−1
6 .

D. Star graphs

The (imploding) star graph on N nodes consists of a
“central” node with every other node connected to this
central one. When every edge has unit weight, the star graph
will have Laplacian matrix

L =


1 0 · · · 0 −1
0 1 · · · 0 −1
...

...
. . .

...
...

0 0 · · · 1 −1
0 0 · · · 0 0

 .

Now, we can write L = IN − 1NeTN , where eN =
(0, . . . , 0, 1)T ∈ RN . Then ΠL = Π

(
IN − 1NeTN

)
= Π,

since Π1N = 0. As Π is normal, Proposition 1 can be
applied.

Since L is upper triangular, its eigenvalues are its diagonal
entries, 0, 1, 1, . . . , 1. Therefore, the convergence speed of
the star graph is 1 and by equation (9), the H2 norm of the
star graph is

√
N−1

2 .
Once again we can consider the undirected form of this

graph by finding the symmetric part of the adjacency matrix
and then forming a new Laplacian. For the undirected star
graph, we find that the Laplacian matrix is

L =


1
2 0 · · · 0 − 1

2
0 1

2 · · · 0 − 1
2

...
...

. . .
...

...
0 0 · · · 1

2 − 1
2

− 1
2 − 1

2 · · · − 1
2

N−1
2

 .

Then L has eigenvalues 0, 1
2 ,

1
2 , . . . ,

1
2 ,

N
2 , and we can apply

Proposition 1 to find the H2 norm. Thus the undirected star
has convergence speed 1

2 and H2 norm N−1√
N

.
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Fig. 1. Convergence speed and H2 norm for certain directed and undirected
graphs. The graphs shown are: CG - complete graph, DC - directed cycle,
UC - undirected cycle, DP - directed path, UP - undirected path, DS -
directed star and US - undirected star.

E. Comparison of complete, cycle, path and star graphs

Figure 1 shows the convergence speed and H2 norm of the
complete, cycle, path and star graphs. The complete graph
has the best performance in both categories among these
families. However, as the number of nodes increases, the
directed path and directed star approach the complete graph
in speed, and the directed star approaches it in robustness.
This shows that the performance of the complete graph
(which requires (N − 1)2 directed edges for N nodes) can
be almost matched by certain graphs with many fewer edges
(e.g. the star graph with N − 1 edges).

These results also provide additional motivation for con-
sidering directed graphs for consensus problems. As well
as the practical problems with maintaining undirected com-
munication links in physical networks, undirected graphs can
sometimes be out-performed in both speed and robustness by
their directed counterparts. The directed and undirected path
graphs have the same H2 robustness, but the directed graph
produces much higher convergence speeds. In addition, the
directed star graph out-performs the undirected star in terms
of both speed and robustness.

VI. CONCLUSIONS AND FUTURE WORK
We studied robustness of consensus in networks of coupled

single integrators with directed communication topologies,
perturbed by white noise. The robustness is measured by
the H2 norm of the system and is related to the un-
derlying (directed) communication graph. A central result
is a closed-form expression for the H2 norm of a large
class of graphs in terms of the eigenvalues of the graph
Laplacian. A comparison of a number of simple families of
graphs has shown that directed graphs can sometimes out-
perform undirected graphs in both speed and robustness. In
addition we have shown that for graphs with many nodes,

performance similar to that of the complete graph can be
achieved by graphs with many fewer edges. Application of
this work to the study of animal aggregations is a subject
of ongoing work. A fundamental challenge is the extension
of the proposed technique to analyze networks with time-
varying and periodic communication topologies.
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