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Rearranging trees for robust consensus

George Forrest Young, Luca Scardovi and Naomi Ehrich Leonard

Abstract— In this paper, we use the H2 norm associated
with a communication graph to characterize the robustness
of consensus to noise. In particular, we restrict our attention to
trees, and by systematic attention to the effect of local changes
in topology, we derive a partial ordering for undirected trees
according to the H2 norm. Our approach for undirected trees
provides a constructive method for deriving an ordering for
directed trees. Further, our approach suggests a decentralized
manner in which trees can be rearranged in order to improve
their robustness.

I. INTRODUCTION

The study of linear consensus problems has gained much
attention in recent years [1]–[4]. This attention has arisen, in
part, from the wide range of applications of linear consensus,
including collective decision-making [3], formation control
[5], sensor fusion [6], distributed computing [7] and analysis
of biological groups [8]. In most of these applications, in-
formation passed between agents can be corrupted by noise.
It is therefore necessary to understand the robustness of
consensus when noise is present, with the goal of designing
systems that can efficiently filter noise and remain close to
consensus. For a linear system with additive white noise, a
natural measure of robustness is the H2 norm [9].

For the study of consensus, most of the important details
are described by the communication graph. In fact, the
properties of the Laplacian matrix of the graph are deeply
related to the performance of the consensus protocol. In
this way, the study of consensus often reduces to studying
the underlying graph, and relating graph properties to the
performance of the original system [1], [3], [10], [11].

Communication in a multi-agent system is likely to be
of a directed nature, simply because each agent may treat
the information it receives differently than its neighbors.
Additionally, directed communication can arise when in-
formation is transferred through sensing or when agents
have limited capabilities and may choose to only receive
information from a subset of possible neighbors. In many
real systems, the graph between agents may change over
time depending on the behavior and decisions of individual
agents [1]. Therefore, when searching for ways in which
to impose effective graphs on multi-agent systems, it is
highly advantageous to consider whether such graphs could
be formed in a decentralized manner.
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In this paper, we study the robustness of a particular family
of graphs, namely trees, according to their H2 norms. We
develop a partial ordering among trees that allows us to
find a tree with minimal H2 norm, given certain constraints.
Although most of this partial ordering has already been
developed in the literature on Wiener indices [12]–[15], our
methods of proof are new. In particular, we rely only on
local changes in which one or more leaf nodes are moved
from a single location in the tree to a new location. This
approach provides insight into ways in which trees can be
rearranged in a decentralized manner in order to improve
their robustness. Additionally, our methods can be used to
derive a similar ordering for directed trees that could not be
done using the Wiener index literature.

This paper is organized as follows. In Section II we
summarize notation. In Section III we discuss theH2 norm in
more detail. In Sections IV and V we discuss the relationship
between the H2 norm and other graph indices. In Section VI
we introduce a system of terminology to describe tree graphs,
and in Section VII we derive our partial ordering. Finally,
in Section VIII, we discuss the potential for a decentralized
algorithm to improve the H2 norm of a tree.

II. PRELIMINARIES AND NOTATION

The state of the system is x = [x1, x2, . . . , xN ] ∈ RN ,
where xi is the state of agent i. We call the state consensus
when x = γ1N , where 1N = [1, 1, . . . , 1]T ∈ RN and γ ∈
R. For each agent i we define the set of neighbors, Ni, to
be the set of agents that supply information to agent i.

We associate to the system a communication graph G =
(V, E , A), where V = {1, 2, . . . , N} is the set of nodes,
E ⊆ V × V is the set of edges and A ∈ RN×N is
a weighted adjacency matrix with nonnegative entries ai,j

corresponding to the weight on edge (i, j). Every node in
the graph corresponds to an agent, while the graph contains
edge (i, j) when j ∈ Ni. Then ai,j is the weight given by
agent i to the information from agent j.

An edge (i, j) ∈ E is said to be undirected if (j, i) is also
in E and ai,j = aj,i. A graph is undirected if every edge is
undirected, that is, if A is symmetric. Two nodes are said to
be adjacent when there is an edge between them.

The out-degree of node k is defined as dout
k =

∑N
j=1 ak,j .

G has an associated Laplacian matrix L, defined by L =
D−A, where D = diag (dout

1 , dout
2 , . . . , dout

N ) is the diagonal
matrix of out-degrees. The row sums of the Laplacian matrix
are zero, that is L1N = 0. Thus 0 is always an eigenvalue
of L with corresponding eigenvector 1N . Furthermore, all
eigenvalues of L have non-negative real part (by Geršgorin’s



Theorem). For an undirected graph, L is symmetric, so in
addition 1T

NL = 0 and all the eigenvalues of L are real.
A path in G is a (finite) sequence of nodes containing

no repetitions and such that each node is a neighbor of the
previous one. The length of a path is given by the sum of
the weights on all edges traversed by the path.

The graph G is connected if it contains a globally reach-
able node k; i.e. there is a path in G from i to k for every
node i. It can be shown that 0 will be a simple eigenvalue of
L if and only if G is connected [16]. If an undirected graph
is connected, there will be a path in G between every pair
of nodes. We use λi to refer to the ith eigenvalue of the
Laplacian matrix, when arranged in ascending order by real
part. Thus λ1 = 0 for any Laplacian matrix, and Re {λ2} > 0
if and only if G is connected.

The distance, di,j , between nodes i and j in a graph is the
shortest length of any path from i to j. If no such path exists,
di,j is infinite. The diameter, d, of a graph is the maximum
distance between all pairs of nodes in the graph.

A tree on N nodes is a connected undirected graph in
which every pair of nodes is connected by a unique path.
This implies that a tree contains exactly N − 1 undirected
edges and that it contains no cycles (paths with positive
length connecting a node to itself). A rooted tree is a tree
in which one particular node has been identified as the root
(note that other than being called the root, there is nothing
“special” about this node). A directed tree is a connected
graph containing exactly N −1 directed edges. In a directed
tree, the globally reachable node is identified as the root.

III. ROBUST NOISY CONSENSUS AND THE H2

NORM

In this paper we assume that every agent is independently
affected by white noise of the same intensity. The resulting
consensus dynamics are (as in [5], [9], [17])

ẋ(t) = −Lx(t) + ξ(t) (1)
with x ∈ RN and where ξ(t) ∈ RN is a zero-mean mutually
independent white stochastic process.

Since (1) is only marginally stable in the noise-free case
(corresponding to the fact that there is no “preferred” or
“correct” value for the agents to agree upon), we only
consider the dynamics on the subspace of RN orthogonal
to the subspace spanned by 1N . We let Q ∈ R(N−1)×N be
a matrix with rows that form an orthonormal basis of this
subspace. This is equivalent to requiring that

Q1N = 0,

QQT = IN−1 and QTQ = IN −
1
N

1N1T
N .

(2)

Next, we define y := Qx. Then y = 0 if and only if x =
γ1N , γ ∈ R. A measure of the distance from consensus is
the dispersion of the system ‖y(t)‖2.

Differentiating y(t), we obtain

ẏ(t) = −L̄y(t) +Qξ(t) (3)
where L̄ = QLQT is the reduced Laplacian matrix.
L̄ has the same eigenvalues as L except the zero eigen-

value, which implies that −L̄ is Hurwitz precisely when the

graph is connected [9]. Thus, for a connected graph in the
absence of noise, system (3) will converge exponentially to
zero. In the presence of noise, (3) will no longer converge,
but will remain in motion about zero. We define the robust-
ness of consensus to noise as the expected dispersion of the
system in steady state. Note that this definition is analogous
to the steady-state mean-square deviation used in [7]. Our
measure of robustness corresponds to the H2 norm of system
(3), with output equation z(t) = IN−1y(t). H2 norms of
consensus systems have also been studied in [5], [17].

In [9] we proved that for a system with an undirected
communication graph1, the H2 norm is given by

H =

(
N∑

i=2

1
2λi

) 1
2

. (4)

In general, the H2 norm of a directed graph can be
computed as H = [tr(Σ)]

1
2 , where Σ is the solution to the

Lyapunov equation [9]
L̄Σ + ΣL̄T = I. (5)

Since this H2 norm can be computed using only the
communication graph, in the rest of this paper we associate
the H2 norm with the graph. Thus when we refer to the H2

norm of a graph, we mean the H2 norm of system (3) (with
output z = y) with L̄ computed from the given graph.

IV. EFFECTIVE RESISTANCE AS A MEASURE OF
THE H2 NORM

Although equation (4) allows us to compute the H2 norm
for any undirected graph, it does not readily allow us to infer
relationships between structural features of the graph and the
H2 norm. However, the concept of the effective resistance, or
Kirchhoff index, of a graph can help us in this respect. The
effective resistance results from considering a given graph
as an electrical network, where every edge corresponds to
a resistor with resistance given by the inverse of the edge
weight. The resistance between two nodes in the graph is
given by the resistance between those two points in the
electrical network, and the effective resistance of the graph
is the sum of the resistances between all pairs of nodes[18].

The effective resistance of a graph is related to the
eigenvalues of the graph Laplacian [18] by the formula

Kf = N

N∑
i=2

1
λi

, leading to the relationship

H =
(
Kf

2N

) 1
2

. (6)

We therefore see that for graphs with equal numbers of
nodes, any ordering induced by the effective resistance is
the same as that induced by the H2 norm.

Although computing the effective resistance can be diffi-
cult for most graphs, it is very straightforward for trees. In a
tree with unit weights on every edge, the resistance between
two nodes is given by the distance between them [19]. Hence,
the effective resistance of a tree with unit edge weights is

Kf =
∑
i<j

ri,j =
∑
i<j

di,j . (7)

1In fact, the result in [9] is more general and extends to directed graphs
with a normality condition on their Laplacian matrix.



Although the concept of effective resistance does not
apply to directed graphs, we can define an extension so that
equation (6) applies to all graphs. The resistance between
two nodes of an undirected graph can be computed as [18]

ri,j = (L†)i,i + (L†)j,j − 2(L†)i,j (8)
where L† is the Moore-Penrose pseudoinverse of L. For an
undirected graph, we can explicitly write L† = 2QT ΣQ,
where Σ is the solution to the Lyapunov equation (5). Thus,
if we let X = 2QT ΣQ, we can compute for any graph

ri,j = (X)i,i + (X)j,j − 2(X)i,j . (9)
Using equation (9), we can compute “directed resistances”

(and hence Kirchhoff indices) for directed graphs. Through
this construction, we can show that equation (6) will hold
for directed graphs as well. Then, in a directed tree (as in
an undirected tree) the resistance between two nodes only
depends on the paths between them. The proofs and results
for directed trees will appear in a future publication.

In the following sections we determine a partial ordering
of undirected trees with unit edge weights. The same order-
ing will apply to the set of trees with a given constant edge
weight, as all resistances will be proportional to those in the
corresponding tree with unit weights.

V. THE H2 NORM AND OTHER GRAPH INDICES

In addition to the Kirchhoff index, many other “topolog-
ical” indices of graphs have arisen out of the mathematical
chemistry literature [20]. One of the earliest to arise was
the Wiener index, W [20]. The Wiener index for any
(undirected) graph is defined as

W =
∑
i<j

di,j . (10)

Thus, for trees with unit edge weights, the Kirchhoff and
Wiener indices are identical. However, the two indices differ
for any other graph. Hence, while the results in Section VII
apply equally to Wiener indices, we choose to interpret them
only in terms of the Kirchhoff index and H2 norm.

Much work has already been done on comparing trees
based on their Wiener indices. It is already well-known that
the Wiener index of a tree will fall between that of the star
and that of the path [12], [21]. For trees with a fixed number
of nodes, the 15 trees with smallest Wiener index and the
17 trees with largest Wiener index have been identified [13],
[14]. Further, for trees with a fixed number of nodes and a
fixed diameter, the tree with smallest Wiener index has been
found [15]. Therefore, most of the main results in Section
VII have already been derived. Our contribution includes new
methods of proof that rely on local changes of topology and
provide constructive means to order directed trees and derive
decentralized strategies for improving robustness.

A different graph index, developed in the mathematical
literature, is the maximum eigenvalue of the adjacency matrix
A [22]. Simić and Zhou developed a partial ordering of trees
with fixed diameter according to this index in [22]. Their
work, in particular the families of trees they considered and
the order in which they proved their results, has motivated
the approach taken in this paper.

VI. A SYSTEM OF TERMINOLOGY FOR TREES

We first introduce a system of terminology relating to
trees. Much of our terminology corresponds to that in [22]
and earlier papers. TN,d is the set of all trees containing
N nodes and with diameter d. For N ≥ 3, a tree must
have d ≥ 2, and TN,2 contains only one tree. This tree is
called a star, and is denoted K1,N−1. For all positive N , the
maximum diameter of a tree is N − 1, and TN,N−1 contains
only one tree. This tree is called a path, and is denoted PN .

A leaf (or pendant) is a node with degree 1. A bouquet is
a non-empty set of leaf nodes, all adjacent to the same node.
A node which is not a leaf is called an internal node.

A caterpillar is a tree for which the removal of all leaf
nodes would leave a path. The set of all caterpillars with N
nodes and diameter d is denoted by CN,d (see Figure 1). Any
caterpillar in CN,d contains a path of length d, with all other
nodes adjacent to internal nodes of this path. In particular, we
refer to the caterpillar that contains a single bouquet attached
to the ith internal node along this path PN,d,i (see Figure
2). To avoid ambiguity, we require 1 ≤ i ≤ bd

2c. The tree
formed from PN−1,d,b d

2 c
by attaching an additional node to

one of the leaves in the central bouquet is denoted by NN,d

(see Figure 3).

Fig. 1. General form of a caterpillar in CN,d, with nj ≥ 0 additional leaf
nodes attached to each internal node j in the path of length d.

Fig. 2. The caterpillar PN,d,i, a path of length d with a bouquet containing
N − d− 1 leaf nodes attached to the ith internal node on the path.

Fig. 3. The tree NN,d, formed from P
N−1,d,b d

2 c
by attaching an

additional node to one of the leaves in the central bouquet. Note that
N − d− 3 could be 0.

The double palm tree (also referred to as a dumbbell in
[12]) is a caterpillar with two bouquets, one at each end
of the path (see Figure 4). We use DN,p,q to denote the
double palm tree on N nodes, with bouquets of sizes p and
q. If we take a rooted tree T (with root r) and attach two
separate paths containing l and k nodes to the root, we call
the resulting tree a vine and denote it by T r

l,k (see Figure 5).

VII. MANIPULATIONS TO REDUCE THE
EFFECTIVE RESISTANCE OF TREES

We can now start to describe a partial ordering on trees
based on their H2 norms. Every tree is assumed to have a



Fig. 4. Double palm tree DN,p,q , with bouquets of sizes p and q at each
end of a path.

Fig. 5. The vine T r
l,k , formed from a rooted tree T by separately connecting

paths containing l and k nodes to the root.

unit weight on every edge. First, we determine the effect
of moving a leaf from one end of a double palm tree to the
other, and use this to derive a complete ordering of all trees in
TN,3 (Theorem 1). Second, we consider moving a leaf from
one end of a vine to the other, and use this to prove that
the path has the largest H2 norm of any tree with N nodes
(Theorem 2), and to derive a complete ordering of TN,N−2

(Theorem 3). Finally, by moving all (or almost all) nodes in
a bouquet to an adjacent node, we show that PN,d,b d

2 c
has

the smallest H2 norm of any tree with diameter d (Theorem
4) and that for any tree that is not a star, we can find a
tree of smaller diameter with a smaller H2 norm (Theorem
5). From Theorem 5 we also conclude that the star has the
smallest H2 norm of any tree with N nodes.

A. Double Palm Trees

We begin our partial ordering by showing that the H2

norm of a double palm tree is reduced when we move a
single node from the smaller bouquet to the larger one.

Lemma 1: Let 1 < p ≤ q and p + q ≤ N − 2. Then
H2 (DN,p,q) > H2 (DN,p−1,q+1).

Proof: In DN,p,q, let one of the nodes in the bouquet of
size p be node 1. The remaining nodes are labelled 2 through
N . To form DN,p−1,q+1, we take node 1 and move it to the
other bouquet. Since all other nodes remain unchanged, we
can use equation (7) to write
Kf (DN,p,q)−Kf (DN,p−1,q+1) = N∑

j=2

d1,j


DN,p,q

−

 N∑
j=2

d1,j


DN,p−1,q+1

.

Now, in DN,p,q, the path length between node 1 and any
of the remaining p− 1 nodes in the bouquet of size p is 2.
Similarly, the path length between node 1 and any node in
the bouquet of size q is N − p − q + 1. Finally, the path
lengths between node 1 and the internal nodes take on each
integer value from 1 to N − p− q.

Conversely, in DN,p−1,q+1, the path length between node
1 and any of the nodes in the bouquet of size p− 1 is N −
p − q + 1. The path length between node 1 and any of the
remaining q nodes in the bouquet of size q + 1 is 2. Again,
the path lengths between node 1 and the internal nodes take
on all integer values from 1 to N − p− q.

Thus, DN,p−1,q+1 (compared to DN,p,q) has more nodes
at a distance 2 from node 1 and fewer nodes at a dis-

tance N − p − q + 1, while the sum of distances to all
internal nodes remains the same. Therefore Kf (DN,p,q) >
Kf (DN,p−1,q+1). Hence, by equation (6), the result holds.

Although Lemma 1 applies to double palm trees with any
diameter, we can apply it to trees with d = 3 in order to
prove our first main result.

Theorem 1: For N ≥ 4, we have a complete ordering of
TN,3, namely H2 (DN,1,N−3) < H2 (DN,2,N−4) < . . . <

H2

(
DN,bN−2

2 c,d
N−2

2 e

)
.

Proof: Any tree with d = 3 must have a longest path of
length 3. Any additional nodes in the tree must be connected
through some path to one of the two internal nodes on this
longest path. In addition, any node adjacent to one of the
internal nodes of the longest path forms a path of length 3
with the node at the far end of the path. Hence all such nodes
must be leaves and so every tree with d = 3 is a double palm
tree. The ordering follows from Lemma 1.

B. Vines

Our next task is to find an ordering of trees with the largest
possible diameter. Lemma 2 applies to trees of any diameter,
but again we can specialize it to give the results we need.

Lemma 2: Let T be a tree containing more than one node
and with a root r, and let l, k be any positive integers such
that 1 ≤ l ≤ k. Then H2

(
T r

l,k

)
< H2

(
T r

l−1,k+1

)
.

Proof: Let the total number of nodes in T r
l,k be N (so

N − k − l > 1), and let the leaf at the end of the path
containing l nodes be node 1. Let the remaining nodes in
the two paths be nodes 2 through l + k, and let the root of
T be node l+ k+ 1. The remaining nodes in T are labelled
l+ k+ 2 through N . To form T r

l−1,k+1, we take node 1 and
move it to the end of the other path. Since all other nodes
remain unchanged, we can use equation (7) to write

Kf

(
T r

l−1,k+1

)
−Kf

(
T r

l,k

)
= N∑

j=2

d1,j


T r

l−1,k+1

−

 N∑
j=2

d1,j


T r

l,k

. (11)

Now, in both T r
l,k and T r

l−1,k+1, the path lengths between
node 1 and all nodes along the paths (including the root of
T ) take on each integer value between 1 and l + k. Hence
the sum of these path lengths does not change between the
two trees. Furthermore, since the root of T lies on every path
between node 1 and any other node in T , we can write

d1,j = d1,l+k+1 + dl+k+1,j , j ≥ l + k + 2.
Therefore, for T r

l,k, the sum of the distances from node 1
to all the nodes in T is (N − l − k + 1)l plus the sum
of the distances from node r to each node in T . However,
in T r

l−1,k+1, the sum of the distances from node 1 to all
the nodes in T is (N − l − k + 1)(k + 1) plus the sum
of the distances from node r to each node in T . Thus
Kf

(
T r

l−1,k+1

)
> Kf

(
T r

l,k

)
and so by equation (6), the

result holds
The first consequence of Lemma 2 is that the tree with

largest d (i.e. d = N − 1) also has the largest H2 norm.



Theorem 2: The path PN has the largest H2 norm of any
tree with N nodes.

Proof: Any tree T1 which is not a path will contain a
node with degree greater than 2. We can locate one such node
that has two paths (each with fewer than N nodes) attached.
Let T be the tree formed by removing these two paths from
T1, and let this node be the root of T . Then T1 = T r

l,k, and
by Lemma 2 we can find a tree with larger H2 norm.

We can also use Lemma 2 to derive an ordering of those
trees with d one less than its maximum value (i.e. d = N−2).

Theorem 3: For N ≥ 4, we have a complete
ordering of TN,N−2, namely H2

(
PN,N−2,bN−2

2 c

)
<

H2

(
PN,N−2,bN−2

2 c−1

)
< . . . < H2 (PN,N−2,1).

Proof: Every tree in TN,N−2 must contain a path of
length N − 2 (which contains N − 1 nodes), and one addi-
tional node. This node must be adjacent to an internal node
of the path, since otherwise we would have a path of length
N − 1. Thus every tree in TN,N−2 is of the form PN,N−2,i,
for some 1 ≤ i ≤ bN−2

2 c. Now, PN,N−2,i = T r
i,N−i−2,

with T a path containing 2 nodes (and one identified as
the root). Suppose that i < bN−2

2 c. Then i < N − i − 2,
and so by Lemma 2, H2 (PN,N−2,i) = H2

(
T r

i,N−2−i

)
>

H2

(
T r

i+1,N−3−i

)
= H2 (PN,N−2,i+1).

Each tree in TN,N−2 consists of a path of length N − 2
with one leaf attached to an internal node. Theorem 3 ensures
that the H2 norm is smallest when this internal node is at
the center of the path.

C. Caterpillars

We now have complete orderings for TN,2 (trivial, since
TN,2 contains only the star), TN,3 (by Theorem 1), TN,N−2

(by Theorem 3) and TN,N−1 (trivial, since TN,N−1 contains
only the path). We next consider the remaining families of
trees with 4 ≤ d ≤ N − 3 (and hence, N ≥ 7).

Rather than deriving complete orderings, the main goal of
the next two lemmas is to find the tree in TN,d with lowest
H2 norm. However, we use two steps to attain our result as
this provides greater insight into the ordering amongst the
remaining trees. Lemma 5 then allows us to combine the
results to prove (Theorem 4) that among trees of diameter
d, the one with lowest H2 norm is PN,d,b d

2 c
. Theorem 5

provides a comparison of trees with different diameter.
Lemma 3: Suppose N ≥ 7 and 4 ≤ d ≤ N − 3. If T ∈

CN,d, then H2 (T ) ≥ H2

(
PN,d,b d

2 c

)
, with equality if and

only if T = PN,d,b d
2 c

.
Proof: Since d ≤ N − 3 and T ∈ CN,d, a longest path

in T contains N−d−1 ≥ 2 leaves attached to internal nodes
(other than the two leaves in the longest path). Suppose that
PT is a longest path in T . For the rest of this proof, when
we refer to leaf nodes and bouquets, we mean leaves not part
of PT , and bouquets made up of these leaves.

Suppose T contains a single bouquet. Thus T = PN,d,i

for some 1 ≤ i ≤ bd
2c. If i 6= bd

2c, then by Lemma 2,
H2 (PN,d,i) > H2 (PN,d,i+1).

Suppose T contains multiple bouquets. Locate a bouquet
furthest from the center of PT , and move every leaf in this

bouquet one node further from the closest end of PT . Call
this new tree T ′, and label the nodes that were moved 1
through n. Then between T and T ′, the path lengths between
each of these leaves and any other leaf decrease by 1. The
path lengths between each of these leaves and ≤ bd+1

2 c
nodes on PT increase by 1, and the path lengths between
each of these leaves and ≥ bd+1

2 c nodes on PT decrease by
1. Thus the sum of the path lengths in T ′ is less than the sum
in T , and so by equations (7) and (6), H2 (T ′) < H2 (T ).

Thus, if T is not PN,d,b d
2 c

, there is a tree in CN,d with
strictly smaller H2 norm.

Lemma 4: Suppose that N ≥ 7 and 4 ≤ d ≤ N − 3. Let
T be a tree in TN,d \ CN,d. Then H2 (T ) ≥ H2 (NN,d), with
equality if and only if T = NN,d.

Proof: Let PT be a longest path in T (of length d), and
let m be the number of nodes with distances to PT greater
than 1 (the distance between a node and PT is the shortest
distance between that node and any node on the path).

If m > 1, locate a bouquet with the greatest distance from
PT , label the leaves in this bouquet 1 through n, and label the
adjacent node n+1. Suppose that either the distance between
this bouquet and PT is greater than 2, or the distance is 2 and
another bouquet exists the same distance from PT . Let T ′

be the tree formed by moving all leaves in this bouquet one
node closer to PT . By our assumptions, T ′ ∈ TN,d \ CN,d.
Then di,n+1 increases by 1 for i = 1, . . . , n. Conversely, di,j

decreases by 1 for i = 1, . . . , n and j > n + 1. Since there
must be at least d+ 2 ≥ 6 of these other nodes (with labels
above n+ 1), the sum of all distances in T ′ is smaller than
the sum of all distances in T . Thus H2 (T ′) < H2 (T ).

If the bouquet we found has a distance of 2 to PT , and is
the only such bouquet, form T ′ by moving leaves 1 through
n−1 one node closer to PT . Then T ′ ∈ TN,d\CN,d. Now, di,n

and di,n+1 both increase by 1 for i = 1, . . . , n−1. However,
di,j decreases by 1 for i = 1, . . . , n − 1 and j one of the
remaining ≥ d+ 1 ≥ 5 nodes. Thus H2 (T ′) < H2 (T ).

If m = 1, then T contains a single node at a distance
2 from PT , and all other nodes in T are either on PT

or adjacent to nodes on PT . Locate a node on PT with
additional nodes attached that is furthest from the center of
the path. Label all nodes attached to this node 1 through n
(including the node at distance 2 from PT if it is connected
to PT through this node), and label this node n+ 1. If n+ 1
is not the bd

2c
th internal node on the path (i.e. if T 6= NN,d),

then form T ′ by moving all nodes not on PT that are adjacent
to n+1 (including the node at distance 2, if present) one node
further from the closest end of PT . Then T ′ ∈ TN,d \ CN,d.
Furthermore, for i = 1, . . . , n, di,j decreases by 1 for any
j not on PT , increases by 1 for ≤ bd

2c nodes on PT and
decreases by 1 for ≥ dd

2e + 1 nodes on PT . Thus the sum
of the distances in T ′ is less than the sum in T , and so
H2 (T ′) < H2 (T ).

Hence for every tree in TN,d \CN,d other than NN,d, there
exists another tree in TN,d \ CN,d with smaller H2 norm.

Lemma 5: Suppose that N ≥ 7 and 4 ≤ d ≤ N−3. Then
H2

(
PN,d,b d

2 c

)
< H2 (NN,d).



Proof: Label the node in NN,d that is a distance 2
from the longest path as node 1, and label the node it is
adjacent to as node 2. Then we can form PN,d,b d

2 c
from

NN,d by moving node 1 one node closer to the longest
path. Then d1,j decreases by 1 for j = 3, . . . , N , and d1,2

increases by 1. Since N ≥ 7, the sum of all path lengths in
PN,d,b d

2 c
is less than in NN,d. Thus, by equations (7) and

(6), H2

(
PN,d,b d

2 c

)
< H2 (NN,d).

Now, we have enough to determine the tree in TN,d with
smallest H2 norm.

Theorem 4: Let N ≥ 4 and 2 ≤ d ≤ N − 2. The tree in
TN,d with smallest H2 norm is PN,d,b d

2 c
.

Proof: For d = 2, TN,d only contains K1,N−1, which
is the same as PN,2,1. For d = 3, the result follows from
Theorem 1 since DN,1,N−3 = PN,3,1. For 4 ≤ d ≤ N − 3,
this is a simple consequence of Lemmas 3, 4 and 5. For
d = N − 2, the result follows from Theorem 3.

Finally, we can combine several of our earlier results
to obtain a basic comparison between trees of different
diameters.

Theorem 5: Let 3 ≤ d ≤ N − 1. For any tree in TN,d,
there is a tree in TN,d−1 with a smaller H2 norm. Hence,
the star K1,N−1 has the smallest H2 norm of any tree with
N nodes.

Proof: By Lemma 2, H2 (PN,N−2,i) < H2 (PN ) (for
any 1 ≤ i ≤ bN−2

2 c).
Let 4 ≤ d ≤ N − 2. Suppose T ∈ TN,d.

Then by Theorem 4, H2(T ) ≥ H2

(
PN,d,b d

2 c

)
. But by

Lemma 2, H2

(
PN,d,b d

2 c

)
> H2

(
PN,d−1,b d−1

2 c

)
. Thus

H2

(
PN,d−1,b d−1

2 c

)
< H2(T ).

Let T ∈ TN,3. Then by Theorem 1, H2(T ) ≥
H2 (DN,1,N−3). But by Lemma 2, H2 (K1,N−1) <
H2 (DN,1,N−3). Thus H2 (K1,N−1) < H2(T ).

VIII. DISCUSSION

We were able to derive the results in Section VII by deter-
mining the effect of moving leaves on effective resistances.
With our well-defined definition of “directed resistance” for
directed graphs, the same calculations can be made for
directed trees as well. Thus our approach in this paper
provides a constructive method for deriving a partial ordering
of directed trees according to their H2 norms. Further details
will appear in a future publication. Previous known results
on the Wiener index of trees do not provide the same
opportunity for the examination of directed trees.

Additionally, the manipulations we used to prove our
results suggest how trees can be rearranged to improve
their H2 norms in a decentralized fashion. In particular, we
showed that for a non-star tree, the H2 norm can always be
reduced either by moving a single node to somewhere else
in the tree, or by moving a bouquet of nodes to an adjacent
node. These manipulations are “local” in the sense that nodes
are moved only from a single location in the tree at a time,
and the rest of the nodes in the tree are not required to take
any additional action. Thus, we can propose the following

decentralized method to improve the robustness of a tree.
Consider a large tree connecting many nodes, each of which
has only local information. For example, suppose each node
knows the graph between it and a fixed number of other
nodes, as well as the degrees of each of these nodes. If
the local neighborhood of node i connects to the rest of
the tree through a single other node j, and node i is a leaf
furthest from node j within its local neighborhood, then i is
a candidate to be moved one node closer to j. Once such
nodes identify themselves, they could move, form a new tree,
and repeat the process.
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