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A New Notion of Effective Resistance for Directed
Graphs—Part II: Computing Resistances
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Abstract—In Part I of this work we defined a generalization
of the concept of effective resistance to directed graphs, and we
explored some of the properties of this new definition. Here, we
use the theory developed in Part I to compute effective resistances
in some prototypical directed graphs. This exploration highlights
cases where our notion of effective resistance for directed graphs
behaves analogously to our experience from undirected graphs, as
well as cases where it behaves in unexpected ways.

Index Terms—Directed graphs, effective resistance, graph the-
ory, networked control systems, networks.

I. INTRODUCTION

IN the companion paper to this work, [1], we presented
a generalization of the concept of effective resistance to

directed graphs. This extension was constructed algebraically
to preserve the relationships for directed graphs, as they exist
in undirected graphs, between effective resistances and control-
theoretic properties, including robustness of linear consensus to
noise [2], [3], node certainty in networks of stochastic decision-
makers [4], and speed-accuracy tradeoffs [5]. Further appli-
cations of this concept to directed graphs should be possible
in formation control [6], distributed estimation [7], [8] and
optimal leader selection in networked control systems [9]–[12].

Effective resistances have proved to be important in the
study of networked systems because they relate global network
properties to the individual connections between nodes, and
they relate local network changes (e.g., the addition or dele-
tion of an edge, or the change of an edge weight) to global
properties without the need to re-compute these properties for
the entire network (since only resistances that depend on the
edge in question will change). Accordingly, the concept of
effective resistance for directed graphs will be most useful if
the resistance of any given connection within a graph can be
computed, and if it is understood how to combine resistances
from multiple connections. Computation and combination of
resistances are possible for undirected graphs using the familiar
rules for combining resistors in series and parallel.
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In this paper, we address the problems of computing and com-
bining effective resistances for directed graphs. In Section II
we review our definition of effective resistance for directed
graphs from [1]. In Section III we develop some theory to
identify directed graphs that have the same resistances as an
equivalent undirected graph. We use these results in Section IV
to recover the series-resistance formula for nodes connected by
one directed path and the parallel-resistance formula for nodes
connected by two directed paths in the form of a directed cycle.
In Section V we examine nodes connected by a directed tree
and derive a resistance formula that has no analogue from
undirected graphs.

II. BACKGROUND AND NOTATION

We present below some basic definitions of directed graph
theory, as well as our definition of effective resistance. For more
detail, the reader is referred to the companion paper [1].

A graph G consists of the triple (V , E , A), where V = {1, 2,
. . . , N} is the set of nodes, E ⊆ V × V is the set of edges and
A ∈ R

N×N is a weighted adjacency matrix with non-negative
entries ai,j . Each ai,j will be positive if and only if (i, j) ∈
E , otherwise ai,j = 0. The graph G is said to be undirected if
(i, j) ∈ E implies (j, i) ∈ E and ai,j = aj,i. Thus, a graph will
be undirected if and only if its adjacency matrix is symmetric.

The out-degree of node k is defined as doutk =
∑N

j=1 ak,j . G
has an associated Laplacian matrix L, defined by L = D −A,
where D is the diagonal matrix of node out-degrees.

A connection in G between nodes k and j consists of two
paths, one starting at k and the other at j and which both
terminate at the same node. A direct connection between nodes
k and j is a connection in which one path is trivial (i.e., either
only node k or only node j)—thus a direct connection is
equivalent to a path. Conversely, an indirect connection is one
in which the terminal node of the two paths is neither node k
nor node j.

The graph G is connected if for each pair of nodes in the
graph, there exists a connection between them. Equivalently, G
is connected if and only if it contains a globally reachable node.

A connection subgraph between nodes k and j in the graph
G is a maximal connected subgraph of G in which every node
and edge form part of a connection between nodes k and j in G.
If only one connection subgraph exists in G between nodes k
and j, it is referred to as the connection subgraph and is denoted
by CG(k, j).

Let Q ∈ R
(N−1)×N be a matrix that satisfies

Q1N = 0, QQT = IN−1 and QTQ = Π. (1)
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Using Q, we can compute the reduced Laplacian matrix for
any graph as

L = QLQT (2)

and then for connected graphs we can find the unique solution
Σ to the Lyapunov equation

LΣ + ΣL
T
= IN−1. (3)

If we let

X := 2QTΣQ (4)

the resistance between two nodes in a graph can be computed as

rk,j =
(
e
(k)
N −e

(j)
N

)T

X
(
e
(k)
N − e

(j)
N

)
= xk,k + xj,j − 2xk,j .

(5)

Note that Definition 3 in the companion paper [1] extends
effective resistance computations to disconnected graphs as
well.

Recall from the companion paper [1] that the reduction
operation in (2) can be applied to any square matrix. That is,
for a square matrix M , M := QMQT .

In addition to the notation introduced in the companion paper
[1], we will use diag(k)(v) to denote a k-diagonal matrix, with
the entries of v along the kth diagonal and zeros elsewhere
(and the dimensions inferred from the length of v and k). Note
that the positive numbered diagonals are those above the main
diagonal and the negative numbered diagonals are those below
the main diagonal.

III. DIRECTED AND UNDIRECTED GRAPHS

WITH EQUAL EFFECTIVE RESISTANCES

In this section we prove Proposition 1, which provides suffi-
cient conditions for the resistances in a directed graph to be the
same as the resistances in an equivalent undirected graph. The
proof relies on two lemmas, which we state first.

Recall that a permutation matrix is a square matrix contain-
ing precisely one entry of 1 in each row and column with every
other entry being 0.

Lemma 1: Let P be a permutation matrix. Then P has the
following properties;

(i) P−1 = P T , (6)

(ii) PΠ = ΠP, and (7)

(iii) (P − I)Π = Π(P − I) = P − I. (8)

The proof of this lemma is given in Appendix A. Since PT

also satisfies the requirements of a permutation matrix, the
results of Lemma 1 apply to PT as well [this can also be seen
by simply transposing (6)–(8)].

The following lemma is required to prove Proposition 1, and
its proof is given in Appendix A.

Lemma 2: Let A be a square matrix and P be a permutation
matrix of the same dimension as A. Suppose that AP is
diagonal. Then

(i) PA is also diagonal

(ii) A(P − I) +AT (PT − I) is symmetric, that is

A(P − I) +AT (PT − I)

= (P − I)A+ (PT − I)AT , and (9)

(iii) (P − I)
T
A

T
A(P − I) = (P − I)AA

T
(P − I)

T
.

(10)

The following proposition demonstrates that certain directed
graphs have the same effective resistances as equivalent undi-
rected graphs. It relies on the assumption D = AP for some
permutation matrix P , which can only hold if each node has at
most one outgoing and at most one incoming edge. The only
connected graphs that satisfy this condition are directed path
and cycle graphs.

Proposition 1: Suppose G = (V , E , A) is a connected (di-
rected) graph with matrix of node out-degrees D. Furthermore,
suppose there is a permutation matrix P such that D = AP .
Let Gu = (Vu, Eu, Au) be the undirected graph with Vu = V ,
Eu such that (i, j) ∈ E ⇒ (i, j) and (j, i) ∈ Eu, and Au =
(1/2)(A+AT ). Then the effective resistance between two
nodes in G is equal to the effective resistance between the same
two nodes in Gu.

Proof: The Laplacian matrix L of G is given by L =
D −A = A(P − I). Thus L is given by L = QA(P − I)QT ,
which can be rewritten [using (8)] as L = A(P − I). Further-
more, since G is connected, L is invertible [2].

Next, we claim that the Laplacian matrix of Gu is given by
Lu := (1/2)[A(P − I) +AT (PT − I)]. To see this, we first
note that we can rewrite Lu as Lu = (1/2)(D +ATPT )−Au.
But by part (i) of Lemma 2, PA is diagonal and therefore so is
ATPT . Hence Du := (1/2)(D +ATPT ) is a diagonal matrix.
Furthermore, Lu1N = (1/2)[A(P1N − 1N) +AT (PT1N −
1N)]. But since P is a permutation matrix, P1N = 1N and
PT1N = 1N , and so Lu1N = 0. Therefore, Lu is equal to a
diagonal matrix minus Au and has zero row sums. Hence Du

must be the diagonal matrix of the row sums of Au, i.e., the
matrix of out-degrees of Gu.

Since Gu contains every edge in G (in addition to the reversal
of each edge) and G is connected, Gu must also be connected.
Thus Σu = (1/2)L

−1
u is the solution to the Lyapunov (3) for

Gu. Using our expression for Lu and (8), we can write Σu =

[A(P − I) +A
T
(P − I)

T
]
−1

. Since Σu is symmetric, we can

also write Σu = [(P − I) A+ (P − I)
T
A

T
]
−1

.
Now, when we substitute Σu into the left hand side of (3) for

G, we obtain

LΣu +ΣuL
T
=

[
I +A

T
(P − I)

T
(
A(P − I)

)−1
]−1

+

[
I +

(
(P − I)

T
A

T
)−1

(P − I)A

]−1

.
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Using the Matrix Inversion Lemma [13] applied to the first
term, we can rewrite this as

LΣu +ΣuL
T
= I −

[
I +A(P − I)

(
A

T
(P − I)

T
)−1

]−1

+

[
I +

(
(P − I)

T
A

T
)−1

(P − I)A

]−1

. (11)

But by (10), (P−I)
T
A

T
A(P−I)=(P−I)AA

T
(P−I)

T
,

so A(P − I)(A
T
(P − I)

T
)
−1

= ((P − I)
T
A

T
)
−1

(P − I)A
and the final two terms in (11) are equal (with opposite signs).

Thus LΣu+ΣuL
T
=I , and so Σu solves (3) for G. This implies

Σ = Σu, X = Xu and rk,j = ru k,j for all nodes k and j. �

IV. EFFECTIVE RESISTANCES FROM

DIRECT CONNECTIONS

In this section we compute the resistance in directed graphs
between a pair of nodes that are only connected through a single
direct connection, or two direct connections in opposite direc-
tions (i.e., the connection subgraph consists of either a directed
path or a directed cycle). These two scenarios are analogous (in
undirected graphs) to combining multiple resistances in series
and combining two resistances in parallel. At present, we do
not have general rules for combining resistances from multiple
direct connections.

The most basic connection is a single directed edge. Intu-
itively, since an undirected edge with a given weight is equiv-
alent to two directed edges (in opposite directions) with the
same weight, one would expect that the resistance of a directed
edge should be twice that of an undirected edge with the same
weight. The following lemma shows that this is indeed true.

Lemma 3: If CG(k, j) consists of a single directed edge from
node k to node j with weight ak,j , then

rk,j =
2

ak,j
. (12)

Proof: If we take node j to be the first node in CG(k, j)
and node k to be the second, then CG(k, j) has Laplacian

matrix L =

[
0 0

−ak,j ak,j

]
. In this case, there is only one

matrix Q (up to a choice of sign) which satisfies (1),
namely Q =

[
1/

√
2 −(1/

√
2)
]
. Then we have L =

QLQT = ak,j , and hence Σ=1/2ak,j . Thus X=2QTΣQ=[
1/2ak,j −(1/2ak,j)

−(1/2ak,j) 1/2ak,j

]
, and finally

rk,j =
(
e
(1)
2 − e

(2)
2

)T

X
(
e
(1)
2 − e

(2)
2

)
=

2

ak,j
. �

As a result of Lemma 3, when we refer to the effective
resistance of a single (directed) edge, we mean twice the inverse
of the edge weight. Our next two results extend to some directed
graphs the familiar rules from undirected graphs for combin-
ing resistances in series and parallel. These cover the cases
when a pair of nodes is connected only by either a directed path
or cycle.

Theorem 1: Suppose CG(k, j) consists of a single directed
path. Then rk,j is given by the sum of the resistances of each
edge in the path between the two nodes (where the resistance of
each edge is computed as in Lemma 3).

Proof: Suppose we label the nodes in CG(k, j) from 1 to
N in the order in which they appear along the path, starting
with the root and moving in the direction opposite the edges.
Then we can write the adjacency matrix of CG(k, j) as A =
diag(−1)([a1 a2 · · · aN−1]), and the matrix of node out-degrees
as D = diag([0 a1 · · · aN−1]).

If we let P be the permutation matrix containing ones
above the main diagonal and in the lower left corner, we
can observe that D = AP . Therefore, by Proposition 1, the
resistance between any two nodes in CG(k, j) is equal to the
resistance between the same two nodes in an undirected graph
with adjacency matrix Au = (1/2)(A+AT ).

Now, Au is the adjacency matrix of an undirected path, with
weights of (1/2)ai on each edge. But the resistance of an edge
in an undirected graph is the inverse of the edge weight and so
each edge has resistance 2/ai. Thus the edge resistances in this
undirected graph match those in the original directed path graph
(computed according to Lemma 3). Furthermore, the resistance
between two nodes connected by an undirected path is simply
the sum of the resistances of the edges between them. Thus the
same is true for two nodes connected by a directed path. �

Theorem 2: Suppose CG(k, j) consists of a single directed cy-
cle. Then rk,j is given by the inverse of the sum of the inverses
of the resistances of each path connecting nodes k and j (where
the resistance of each path is computed as in Theorem 1).

Proof: Suppose we label the nodes in CG(k, j) from
1 to N in the reverse of the order in which they appear
around the cycle, starting with any node. Then we can write
the adjacency matrix of CG(k, j) as A = diag(N−1)([a1]) +
diag(−1)([a2 a3 · · · aN ]) and the matrix of node out-degrees
as D = diag([a1 a2 · · · aN ]).

If we let P be the permutation matrix containing ones
above the main diagonal and in the lower left corner, we
can observe that D = AP . Therefore, by Proposition 1, the
resistance between any two nodes in CG(k, j) is equal to the
resistance between the same two nodes in an undirected graph
with adjacency matrix Au = (1/2)(A+AT ).

Now, Au is the adjacency matrix of an undirected cycle, with
weights of (1/2)ai on each edge. But the resistance of an edge
in an undirected graph is the inverse of the edge weight, so
each edge has resistance 2/ai. Thus the edge resistances in
this undirected graph match those in the original directed cycle
graph (computed according to Lemma 3). Furthermore, the
resistance between nodes k and j connected by an undirected
cycle is given by

ru k,j =
1

1
r1

+ 1
r2

,

where r1 is the resistance of one path between nodes k and
j and r2 is the resistance of the other path. Thus the same is
true for two nodes connected by a directed cycle, where (by
Theorem 1) r1 and r2 are equal to the resistances of the two
directed paths between nodes k and j. �
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V. EFFECTIVE RESISTANCES FROM

INDIRECT CONNECTIONS

Lemma 3 and Theorems 1 and 2 suggest a very intuitive
interpretation of effective resistance for directed graphs. A
directed edge can be thought of as “half” of an undirected edge,
and so the resistance of a directed edge is twice the resistance
of an undirected edge with the same weight. Then, in path
and cycle graphs, resistances combine in series and in parallel
in their usual ways. However, connections in directed graphs
can be much more complicated. For example, two nodes in a
directed graph may be indirectly connected even if neither node
is reachable from the other (by each having a path to a mutually-
reachable node). In Theorem 3 we prove an explicit expression
for resistances in the case when CG(k, j) is a directed tree with
unit edge weights. This result provides a complete characteriza-
tion of the effective resistances found in (unweighted) directed
trees. Tree graphs are widely utilized due to their simplicity
and scalability, and often spanning trees (within more complex
graphs) are an object of interest. Furthermore, this provides an
initial step towards the understanding of effective resistance in
more general directed graphs. Before proving the theorem, we
state two lemmas on the correspondence between resistances
and the matrix X from (4), and two lemmas on the resistance
between two leaves in a directed tree. The proofs of all of these
lemmas can be found in Appendix B. We also rely on the finite
series expressions given and proved in Appendix C.

Lemma 4: There is a one-to-one relationship between the
effective resistances between nodes in a graph and the entries
of the matrix X from (4). In particular

rk,j = xk,k + xj,j − 2xk,j , (13)

xk,j =
1

2N

N∑
i=1

rk,i +
1

2N

N∑
i=1

rj,i

− 1

N2

N−1∑
i=1

N∑
�=i+1

ri,� −
1

2
rk,j . (14)

Lemma 5: Suppose G is a directed path with unit edge
weights containing N nodes, in which the nodes are labelled
from 1 to N in the order in which they appear along the path,
starting with the root. Let X be the corresponding matrix from
(4). Then the entries of X are given by

xk,j=
2N2+3N+1+3k2+3j2 − 3(N + 1)k − 3(N + 1)j

3N
− |k − j|. (15)

The following results are needed to prove Theorem 3. In
them, we examine the resistance between the leaves of a tree
containing two branches that meet at its root and with unit
weights on every edge. We denote such a tree, with branches of
length n and m, by Gtree

n,m, and an example is shown in Fig. 1(b).
The effective resistance between the two leaves of Gtree

n,m will be
denoted by r(n,m).

Lemma 6: The effective resistance between the two leaves of
Gtree
n,1 is given by

r(n, 1) = 2(n− 1) + 22−n. (16)

Fig. 1. (a) The generic form of CG(k, j) when it is a directed tree with more
than one leaf and unit weights on every edge. (b) A tree, Gtree

n,m, in which rk,j
is equal to its value in CG(k, j) when CG(k, j) is a directed tree as shown in
part (a).

Lemma 7: For positive integers n and �, the resistance
between the two leaves of Gtree

n,�+1 satisfies

r(n, �+1) =
−3n2 + 3�2 − 2n�− n+ 5�+ 2

2(n+ �+ 1)2

+
�2 + 2n�+ 2n+ 3�

n+ �+ 1
2−n +

n2 + n+ 2

2(n+ �+ 1)
2−�

+
1

4(n+�+1)

�∑
k=1

(
4− 2

n+�+1
−2k−�

)
r(n, k)

− n+�+2

2(n+�+1)

n∑
k=1

(
1

n+�+1
−2k−n

)
r(k, �)

− 1

4(n+�+1)

n∑
k=1

�∑
j=1

(21+k−n − 2j−�)r(k, j).

(17)

We now proceed to solve the recurrence relation given by
Lemmas 6 and 7 using several finite series results given in
Appendix C. In the appendix and some of the following results,
we make use of binomial coefficients, defined as(

n

k

)
=

n!

k!(n− k)!
n, k ∈ Z, 0 ≤ k ≤ n. (18)

Theorem 3: Suppose CG(k, j) consists of a directed tree with
unit weights on every edge. Then rk,j is given by

rk,j = 2(n−m) + 23−n−m

�m+1
2 �∑

i=1

i

(
n+m+ 2

n+ 2i+ 1

)
(19)

where n is the length of the shortest path from node k to a
mutually reachable node and m is the length of the shortest
path from node j to a mutually reachable node.

Proof: Since every node in CG(k, j) is reachable from
either node k or node j, if CG(k, j) is a tree then only nodes
k and j can be leaves. But every tree has at least one leaf, so
suppose that node k is a leaf. If node j is not a leaf, then CG(k, j)
must be a directed path and node j is the closest mutually
reachable node to both nodes k and j. Then m = 0, n is the
path length from k to j and (19) reduces to rk,j = 2n, which
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follows from Theorem 1. Conversely, if node j is a leaf but
node k is not, CG(k, j) must be a directed path and node k is the
closest mutually reachable node to both nodes k and j. Then
n = 0, m is the path length from j to k and (19) reduces to
rk,j = −2m+ 23−m

∑�(m+1)/2�
i=1 i

(
m+2
2i+1

)
. But by (73) and (71)

from Lemma 10,
∑�(m+1)/2�

i=1 i
(
m+2
2i+1

)
= m2m−1, and so (19)

becomes rk,j = 2m, which follows from Theorem 1.
Now, if both node k and node j are leaves, then CG(k, j) must

be a directed tree with exactly two branches. Thus CG(k, j) must
correspond to the tree shown in Fig. 1(a) and n and m are the
path lengths from nodes k and j, respectively, to the point where
the two branches meet. Furthermore, bothn andm are at least 1.

By Corollary 1 from the companion paper [1], we observe
that the resistance between nodes k and j remains the same as
we remove all the nodes of CG(k, j) from the root to the node
where the two branches meet. Thus, rk,j can be computed as the
resistance between the two leaves of the tree shown in Fig. 1(b).
Let this tree be called Gtree

n,m, and since the only two parameters
that define Gtree

n,m are n and m, we can write rk,j as a function of
n and m only. That is

rk,j =: r(n,m).

In order to compute r(n,m), we will begin by considering
the case where m = 1. Substituting m = 1 into (19) gives
r(n, 1) = 2(n− 1) + 22−n, which follows from Lemma 6.

Now, suppose that (19) holds for all n > 0 and all m ∈
{1, 2, . . . , �}, for some � > 0. Then r(n, � + 1) can be com-
puted using Lemma 7. In particular, all resistances in the right-
hand side of (17) are given by (19). Therefore, we find that
r(n, � + 1) matches the expression s(n, �) given in Lemma 15.
Thus, r(n, � + 1) can be written as in (96).

Next, suppose that � is odd. That is, � = 2p+ 1 for some
integer p ≥ 0. Then (96) gives us

r(n, 2p+ 2) = 2(n− 2p− 2) + 21−n−2p

p+1∑
i=1

i

(
n+ 2p+ 4

n+ 2i+ 1

)

+
g(n, p)

n+ �+ 1
(20)

where g(n, p) is given by (86) in Lemma 13. But by Lemma 13,
g(n, p) = 0 for any integers n ≥ 0 and p ≥ 0. Thus (19) holds
for m = �+ 1.

Finally, suppose that � is even. That is, � = 2p for some
integer p > 0. Then (96) gives us

r(n, 2p+ 1) = 2(n− 2p− 1) + 22−n−2p

p∑
i=1

i

(
n+ 2p+ 3

n+ 2i+ 1

)

+
4p2 + 2np+ 2n+ 6p+ 2

n+ 2p+ 1
21−n−2p +

h(n, p)

n+ �+ 1

where h(n, p) is given by (95) in Lemma 14. But by Lemma 14,
h(n, p) = 0 for any integers n ≥ 0 and p ≥ 0. Thus

r(n, 2p+ 1) = 2(n− 2p− 1) + 22−n−2p

p+1∑
i=1

i

(
n+ 2p+ 3

n+ 2i+ 1

)

and so (19) holds for m = �+ 1.

Fig. 2. A simple 3-node directed graph, Gstar
3 , with resistances of 2n and 2m

on each edge.

Therefore, by induction we have that (19) also holds for all
n > 0 andm > 0. �

Equation (19) is a highly non-intuitive result, not least be-
cause on initial inspection it does not appear to be symmetric in
n and m (although we know that it must be, by Theorem 3 in
the companion paper). Therefore, it becomes easier to interpret
(19) if we reformulate it in terms of the shorter path length and
the difference between the path lengths. Thus, if we let n be the
length of the longer path, that is, n = m+ d for some d ≥ 0,
(19) becomes

rk,j=2d+23−2m−d

�m+1
2 �∑

i=1

i

(
2m+d+2

m+d+2i+1

)
=:2d+e(m, d).

Then, using (18), we can write

e(m, d+ 1) =23−2m−d

�m+1
2 �∑

i=1

i
2m+ d+ 3

2m+ 2d+ 4i+ 4

×
(

2m+ d+ 2

m+ d+ 2i+ 1

)

<
2m+ d+ 3

2m+ 2d+ 4
e(m, d)

and hence conclude that limd→∞ e(m, d) = 0. Thus, when the
connection subgraph between two nodes is a directed tree,
the resistance between them is twice the difference between
the lengths of the paths connecting each node to their closest
mutually reachable node, plus some “excess” that disappears
as this difference becomes large. Conversely, the excess is
significant when the path length difference is small, leading to
a resistance that is greater than twice the difference.

One common approach to the analysis of resistive circuits
is to replace a section of the network that connects to the rest
through a single pair of nodes by a single resistor with an equiv-
alent resistance. The simplest example of this is the replacement
of a path with a single edge with equivalent resistance. If this
principle were to extend to the calculation of effective resis-
tance in directed graphs, then r2,3 in Gstar

3 (as shown in Fig. 2)
would match the formula from Theorem 3. However, a simple
calculation shows that in Gstar

3

r2,3 = 2(n+m)− 2nm

n+m

which only matches (19) for n = m = 1. Thus in more general
cases of connection subgraphs like Gtree

n,m but with arbitrary
weights on every edge, the resistance between the leaves does
not depend only on the equivalent resistance of each path.
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Theorems 1, 2 and 3 by no means characterise all the possible
connection subgraphs in a directed graph. Other connection
subgraphs include multiple paths from k to j (some of which
could coincide over part of their length), multiple paths from
k to j and multiple paths from j to k (again, some of which
could partially coincide), multiple indirect connections of the
type analyzed in Theorem 3 (which could partially coincide)
and a combination of indirect and direct (i.e., path) connections.
Further analysis is needed to completely describe how to com-
pute resistances in these situations.

VI. CONCLUSION

The results of Lemma 3 and Theorems 1 and 2 demonstrate
that in some situations our definition of effective resistance
for directed graphs behaves as an intuitive extension of effec-
tive resistance in undirected graphs. In contrast, Theorem 3
demonstrates a fundamental difference between effective re-
sistance in directed and undirected graphs that arises from
the fundamentally different connections that are possible only
in directed graphs. Nevertheless, the results presented above
show that our notion of effective resistance for directed graphs
provides an approach that can relate the local structure of a
directed graph to its global properties. The familiar properties
of effective resistance allows for a firm analysis of directed
graphs that behave similarly to undirected graphs, while the un-
familiar properties can provide insight for the design of directed
networks which contain essential differences as compared to
undirected networks.

APPENDIX A
PROOFS FOR SECTION III

Proof of Lemma 1:

(i) This follows from the fact that the rows (or columns) ofP
form an orthonormal set. See, e.g., Theorem 2.1.4 in [14].

(ii) Since P contains precisely one 1 in each row and column,
P1N = 1N and 1T

N = 1T
NP . Thus PΠ = P − (1/N)

P1N1T
N = P − (1/N)1N1T

NP = ΠP .
(iii) The first part follows from (7), and again using the fact

that P1N = 1N and 1T
N = 1T

NP , we have (P − I)Π =
P − I − (1/N)P1N1T

N + (1/N)1N1T
N = P − I . �

Proof of Lemma 2:

(i) Let D := AP , which is diagonal by assumption. Then,
by Lemma 1, we can see that A = DPT . Thus PA =
PDPT , which implies that PA is formed by permuting
the rows and columns of a diagonal matrix, and is there-
fore diagonal.

(ii) Since AP and PA are diagonal, they are both symmetric.
Thus ATPT (= (PA)T = PA) is symmetric too. Since
(−A−AT ) is also symmetric, the result follows.

(iii) First we note that as AP is diagonal, it is symmetric and
commutes with its transpose (i.e., itself). ThusPTATAP =
APPTAT = AAT [by (6)]. Similarly, by part (i), PA is
also diagonal and so it too is symmetric and commutes
with its transpose. Hence PAATPT = ATPTPA =
ATA [by (6)]. Using these facts, we can observe that
(PT − I)ATA(P − I) = (P − I)AAT (PT − I). Now,

adding (P − I)A2(P − I) to both sides gives us [(P−
I)A+ (PT −I)AT ]A(P − I) = (P − I)A[A(P−I) +
AT (PT − I)]. But we can use (9) to write this as

A(P − I)A(P − I) +AT (PT − I)A(P − I)

= (P−I)A(P−I)A+ (P−I)A(PT−I)AT . (21)

Now, by (8), we can pre-or post-multiply any factor of
(P − I) or (PT − I) by Π without changing the matrix.
Therefore, we can subtract (P − I)AΠA(P − I) from
both sides of (21), obtain a common factor of ΠA(P−I)
on the left hand side and (P − I)AΠ on the right hand
side, then use (9) to obtain

(PT − I)ATΠA(P − I) = (P − I)AΠAT (PT − I)

which is equivalent to (using (8) again)

(PT − I)ΠATΠAΠ(P − I)

= (P − I)ΠAΠATΠ(PT − I).

Finally, pre-multiplying by Q and post-multiplying by
QT gives us our desired result. �

APPENDIX B
PROOFS FOR SECTION V

Proof of Lemma 4: (13) is simply the definition of rk,j .
To derive (14), we first note that from (1) and (4), X has the
property that X1N = 0 and 1T

NX = 0T . That is, X has zero
row-and column-sums.

Now, using (13), we can write rk,i = xk,k + xi,i − 2xk,i for
any 1 ≤ i ≤ N . Then, by summing this equation over i, we
obtain

∑N
i=1 rk,i = Nxk,k + tr(X) (since X has zero row-

sums). Next, by summing again over k, we find that tr(X) =

(1/2N)
∑N

k=1

∑N
i=1 rk,i. But ri,i = 0 ∀ i and ri,k = rk,i (by

Theorem 3 in the companion paper [1]). Thus we can say that

tr(X) =
1

N

N−1∑
i=1

N∑
�=i+1

ri,�. (22)

Combining (22) with our expression for
∑N

i=1 rk,i gives us

xk,k =
1

N

N∑
i=1

rk,i −
1

N2

N−1∑
i=1

N∑
�=i+1

ri,�. (23)

Substituting the expression from (23) for xk,k and xj,j in (13)
produces (14). �

Proof of Lemma 5: Suppose k, j ∈ {1, 2, . . . , N}. Then
by Theorem 1, we know that the resistance between nodes k and
j in our directed path is equal to 2 (the resistance of each edge)
times the number of edges between them. Since the nodes are
labelled in order along the path, this gives us rk,j = 2|k − j|.
Therefore, from Lemma 4, we know that

xk,j =
1

N

N∑
i=1

|k − i|+ 1

N

N∑
i=1

|j − i| − 2

N2

N−1∑
i=1

N∑
�=i+1

|i− �|

− |k − j|. (24)
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We now proceed by examining each summation in turn.
The first sum can be broken into two parts and then simpli-
fied using (59) to obtain

∑N
i=1 |k − i| = (2k2 − 2(N + 1)k +

(N + 1)N)/2. By replacing k with j in the previous ex-
pression, we observe that

∑N
i=1 |j − i| = (2j2 − 2(N + 1)j +

(N + 1)N)/2.
In the third sum in (24), we observe that � > i for every term.

Thus |i− �| = �− i, and we can use (59) and (60) to obtain∑N−1
i=1

∑N
�=i+1 |i− �| = (N2 − 1)N/6. Finally, (15) follows

from substituting our expressions for each summation into (24).
�

Proof of Lemma 6: The number of nodes in Gtree
n,1 is

N = n+ 2. Let us label the nodes in Gtree
n,1 from 1 to n+ 1,

in the reverse order of the edges, along the branch of length
n, starting with the root (thus the leaf of this branch is node
n+ 1). Then the other leaf (with an edge connecting it to the
root) will be node N = n+ 2. Thus the resistance we seek to
find is r(n, 1) = rn+1,n+2.

Let Apath
Np

, Dpath
Np

and Lpath
Np

denote the adjacency matrix,
matrix of out-degrees and Laplacian matrix of a directed path
containing Np nodes and unit weights on every edge. Let the
nodes in this path be labelled from 1 to Np in the reverse
of the order in which they appear, starting with the root.
Thus Apath

Np
= diag(−1)(1Np−1), D

path
Np

= diag([0 1T
Np−1]) and

Lpath
Np

= diag([0 1T
Np−1])− diag(−1)(1Np−1). From these, we

can observe that

1T
Np

Lpath
Np

= e
(Np)T
Np

− e
(1)T
Np

, (25)

e
(i)T
Np

Lpath
Np

=

{
e
(i)T
Np

− e
(i−1)T
Np

if 1 < i ≤ Np

0T if i = 1.
(26)

Next, we will let QNp
be a (Np − 1)×Np matrix which satis-

fies (1), and L
path
Np

and Σpath
Np

be derived from (2) and (3) using

Lpath
Np

and QNp
. Let Xpath

Np
= 2QT

Np
Σpath

Np
QNp

, according to

(4). Then, by Lemma 5, the entries of Xpath
Np

are given by (15).
Now, we can write the adjacency matrix, matrix of out-

degrees and Laplacian matrix of Gtree
n,1 as A =

[
Apath

n+1 0

e
(1)T
n+1 0

]
,

D =

[
Dpath

n+1 0
0T 1

]
, and L =

[
Lpath
n+1 0

−e
(1)T
n+1 1

]
. Next, let Q =[

Qn+1 0
α1T

n+1 −β

]
, where α = 1/

√
(n+ 1)(n+ 2) and β =√

(n+ 1)/(n+ 2). Then Q satisfies (1). We can use (2), (25)
and the facts that Lpath

n+11n+1 = 0n+1 and β(α+ β) = 1 to
express L as

L =

[
L
path
n+1 0

(β − α) e
(1)T
n+1Q

T
n+1 + αe

(n+1)T
n+1 QT

n+1 1

]
.

In order to compute resistances in Gtree
n,1 , we must find the ma-

trix Σ which solves (3). Since we have partitionedL into a 2×2

block matrix, we will do the same for Σ. Let Σ =

[
S t
tT u

]
,

where S ∈ R
n×n is a symmetric matrix, t ∈ R

n and u ∈ R.
Then multiplying out the matrices in (3) and equating blocks
in this matrix equation gives us

L
path
n+1S + SL

pathT
n+1 = In, (27)

L
path
n+1t+ t+ (β − α)SQn+1e

(1)
n+1

+ αSQn+1e
(n+1)
n+1 = 0, (28)

2u+ 2(β − α)e
(1)T
n+1Q

T
n+1t

+ 2αe
(n+1)T
n+1 QT

n+1t = 1. (29)

From (27), it is clear that S = Σpath
n+1 . In addition, we can

rewrite (29) as

u =
1

2
− (β − α)e

(1)T
n+1Q

T
n+1t− αe

(n+1)T
n+1 QT

n+1t. (30)

In order to find a complete solution for Σ, we must solve (28)
for t. However, resistances are computed from X , which, if
we let v := QT

n+1t = [vi] and use (4), can be written as the
first equation shown at bottom of the page. Hence, to compute
resistances in Gtree

n,1 , we need only to compute v, not t. We can
also note that as X does not depend on our choice of Q (by
Lemma 2 in the companion paper [1]), neither does v. In fact,
we can write (30) as u = (1/2) + (α− β)v1 − αvn+1, and the
resistance we seek as

r(n, 1) = xpath
n+1n+1,n+1 + (α+ β)2 + 2(α+ β)2(α− β)v1

+ 2(α+ β) [2− α(α + β)] vn+1. (31)

Thus we only need to find v1 and vn+1 in order to compute
r(n, 1).

Now, vi = e
(i)T
n+1v = e

(i)T
n+1Q

T
n+1t. We will therefore proceed

by left-multiplying (28) by e
(i)T
n+1Q

T
n+1. Using the fact that

S = Σpath
n+1 , we obtain

e
(i)T
n+1Q

T
n+1Qn+1L

path
n+1v + vi +

β − α

2
e
(i)T
n+1X

path
n+1 e

(1)
n+1

+
α

2
e
(i)T
n+1X

path
n+1 e

(n+1)
n+1 = 0. (32)

But e
(i)T
n+1Q

T
n+1Qn+1=e

(i)T
n+1(In+1−(1/(n+1))1n+11

T
n+1)=

e
(i)T
n+1 − (1/(n+ 1))1T

n+1 by (1), so by (25) and (26)

e
(i)T
n+1Q

T
n+1Qn+1L

path
n+1v =

⎧⎪⎨
⎪⎩

1
n+1v1 + vi − vi−1 − 1

n+1vn+1

if 1 < i ≤ n+ 1
1

n+1v1 −
1

n+1vn+1 if i = 1.

X =

[
Xpath

n+1 + 2αv1T
n+1 + 2α1n+1v

T + 2α2u1n+11
T
n+1 −2βv − 2αβu1n+1

−2βvT − 2αβu1T
n+1 2β2u

]
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Furthermore, using (15), we observe that

e
(i)T
n+1X

path
n+1 e

(1)
n+1 =xpath

n+1i,1

=
(2n+ 3)(n+ 2)

3(n+ 1)
+

i(i− 2n− 3)

n+ 1
,

e
(i)T
n+1X

path
n+1 e

(n+1)
n+1 =xpath

n+1i,n+1 = −n(n+ 2)

3(n+ 1)
+

i(i− 1)

n+ 1
.

Substituting these expressions into (32) gives us

vi =
1

2
vi−1 −

1

2(n+ 1)
v1 +

1

2(n+ 1)
vn+1

+ f + g(i) if 1 < i ≤ n+ 1 (33)

v1 =
1

n+ 2
vn+1 + h (34)

where f=[(3α−2β)n+ 3(α− β)](n+ 2)/12(n+ 1), g(i) =
i[−βi+ 2(β − α)n− 2α+ 3β]/4(n+ 1), and h = (αn/6) +
((α− β)n(2n+ 1)/6(n+ 2)).

We can now recursively apply (33) n times, starting with
i = n+ 1, to find

vn+1 = 2−nv1 −
v1

n+1

n∑
k=1

2−k+
vn+1

n+ 1

n∑
k=1

2−k + 2f

n∑
k=1

2−k

+ 2

n∑
k=1

g(n+ 2− k)2−k. (35)

But we can write g(n+ 2− k) = g1 + g2k + g3k
2, where

g1 = (β − 2α)(n+ 2)/4, g2 = (2αn+ 2α+ β)/4(n+ 1),
and g3 = (−β)/4(n+ 1). Therefore, by (61)–(63), the sum
involving g(n+ 2− k) is

n∑
k=1

g(n+ 2− k)2−k = g1(1− 2−n) + g2
[
2− (n+ 2)2−n

]
+ g3

[
6− (n2 + 4n+ 6)2−n

]
.

Using this result and (61), (35) becomes

n+ 2−n

n+ 1
vn+1 =

(n+ 2)2−n − 1

n+ 1
v1 + 2f(1− 2−n)

+ 2g1(1− 2−n) + 2g2
[
2− (n+ 2)2−n

]
+ 2g3

[
6− (n2 + 4n+ 6)2−n

]
. (36)

But now (36) and (34) form a pair of linear equations in v1
and vn+1. Using the expressions for f , g1, g2, g3 and h, along
with the definitions of α and β, their solution is given by

v1 =
α[−2n2 + 5n− 6 + 6.2−n]

6

vn+1 =
α
[
n2 + 2n− 12 + (6n+ 12)2−n

]
6

. (37)

Finally, using (15) and (37) in (31), along with the expressions
for α and β, gives us (16). �

Proof of Lemma 7: As stated in the lemma, we will
assume that n and � are positive integers throughout this proof.
Let Nn,� be the number of nodes in Gtree

n,� . The branch of
length n contains n nodes (excluding the root), while the other
branch contains � nodes (excluding the root). Therefore, we
have Nn,� = n+ � + 1. Let us label the nodes in Gtree

n,� from

1 to n+ 1 along the branch of length n, in reverse order of the
edge directions and starting with the root (thus the leaf of this
branch is node n+ 1). Then let us label the nodes in the branch
of length � from n+ 2 to Nn,� = n+ �+ 1 in reverse order of
the edge directions. Thus the second leaf is node Nn,�.

In the following, we will denote the adjacency matrix of
Gtree
n,� by An,�, its matrix of node out-degrees by Dn,� and its

Laplacian matrix by Ln,�. Furthermore, we will let Qn,� be a
(Nn,� − 1)×Nn,� matrix that satisfies (1) and Ln,� and Σn,�

be the corresponding matrices from (2) and (3) using Ln,� and
Qn,�. Finally, Xn,� will be the matrix from (4), computed using
Σn,� and Qn,�. Then, by Lemma 4, the entries of Xn,� are
related to the resistances in Gtree

n,� by (14).

As in the proof of Lemma 6, let Apath
Np

, Dpath
Np

and Lpath
Np

de-
note the adjacency matrix, matrix of out-degrees and Laplacian
matrix of a directed path containing Np nodes and unit weights
on every edge. Let the nodes in this path be labelled from 1 to
Np in the order in which they appear, starting with the root.
Then we can write An,�, Dn,� and Ln,� in terms of Apath

Np
,

Dpath
Np

and Lpath
Np

as follows: An,� =

[
Apath

n+1 ∅
e
(1)
� e

(1)T
n+1 Apath

�

]
,

Dn,� =

[
Dpath

n+1 ∅
∅ Dpath

� + e
(1)
� e

(1)T
�

]
and Ln,� =[

Lpath
n+1 ∅

−e
(1)
� e

(1)T
n+1 Lpath

� + e
(1)
� e

(1)T
�

]
.

Using these expressions as well as (25) and (26), we can
observe that

1T
Nn,�

Ln,� = −2e
(1)T
Nn,�

+e
(n+1)T
Nn,�

+e
(Nn,�)T
Nn,�

, (38)

e
(i)T
Nn,�

Ln,�=

⎧⎪⎨
⎪⎩
e
(i)T
Nn,�

−e
(i−1)T
Nn,�

if 1<i≤Nn,�, i �=n+2

e
(n+2)T
Nn,�

−e
(1)T
Nn,�

if i=n+2

0T if i=1.

(39)

Let us now consider Gtree
n,�+1. By our labeling convention, the

resistance between the two leaves of Gtree
n,�+1 is given by r(n, � +

1) = rn+1,n+�+2. Now, we can write the adjacency matrix of

Gtree
n,�+1 in terms of An,� as An,�+1 =

[
An,� 0

e
(Nn,�)T
Nn,�

0

]
. In a

similar fashion, we can write the matrix of node out-degrees

for Gtree
n,�+1 as Dn,�+1 =

[
Dn,� 0
0T 1

]
, and the Laplacian matrix

as Ln,�+1 =

[
Ln,� 0

−e
(Nn,�)T
Nn,�

1

]
.

Now, let Qn,�+1 =

[
Qn,� 0

α1T
Nn,�

−β

]
, where α = 1/√

Nn,�(Nn,� + 1) = 1/
√
(n+ �+ 1)(n+ �+ 2) and β =√

Nn,�/(Nn,�+1)=
√
(n+ �+ 1)/(n+ � + 2). Then Qn,�+1

satisfies (1). We can therefore use (2), (38) and the facts that
Ln,�1Nn,�

= 0Nn,�
and β(α+ β) = 1 to compute Ln,� as

Ln,�

=

[
Ln,� 0

−2αe
(1)T
Nn,�

QT
n,�+αe

(n+1)T
Nn,�

QT
n,�+(α+β)e

(Nn,�)T
Nn,�

QT
n,� 1

]
.
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In order to compute resistances in Gtree
n,�+1, we must find

the matrix Σn,�+1 which solves (3). Since we have par-
titioned Ln,�+1 into a 2 × 2 block matrix, we will do

the same for Σn,�+1. Let Σn,�+1 =

[
S t
tT u

]
, where S ∈

R
(Nn,�−1)×(Nn,�−1) is a symmetric matrix, t ∈ R

Nn,�−1 and
u ∈ R. Then multiplying out the matrices in (3) and equating
blocks in this matrix equation gives us

Ln,�S + SL
T
n,� = INn,�−1, (40)

Ln,�t+ t− 2αSQn,�e
(1)
Nn,�

+ αSQn,�e
(n+1)
Nn,�

+ (α+ β)SQn,�e
(Nn,�)
Nn,�

= 0, (41)

2u− 4αe
(1)T
Nn,�

QT
n,�t+ 2αe

(n+1)T
Nn,�

QT
n,�t

+ 2(α+ β)e
(Nn,�)T
Nn,�

QT
n,�t = 1. (42)

From (40), it is clear that S = Σn,�. In addition, we can
rewrite (42) as

u =
1

2
+ 2αe

(1)T
Nn,�

QT
n,�t− αe

(n+1)T
Nn,�

QT
n,�t

− (α+ β)e
(Nn,�)T
Nn,�

QT
n,�t. (43)

Thus in order to find a complete solution for Σn,�+1, we must
solve (41) for t. However, resistances are computed from the
entries of Xn,�+1, which, if we let v := QT

n,�t = [vi] and use
(4), can be written as the equation shown at the bottom of the
page. Hence, in order to compute resistances in Gtree

n,�+1, we
need only to compute v, not t. We should also note that as
Xn,�+1 does not depend on our choice of Qn,�+1 (by Lemma 2
in the companion paper [1]), neither does v. In fact, we can
write (43) as u = (1/2) + 2αv1 − αvn+1 − (α+ β)vNn,�

, and
the resistance we seek as

r(n, � + 1) = xn,�n+1,n+1 + (α + β)2 + 4α(α+ β)2v1

+ 2(α+ β) [2− α(α + β)] vn+1 − 2(α+ β)3vNn,�
. (44)

Thus we only need to find v1, vn+1 and vNn,�
in order to

compute r(n, � + 1).

Now, vi = e
(i)T
Nn,�

v = e
(i)T
Nn,�

QT
n,�t. We will therefore proceed

by left-multiplying (41) by e
(i)T
Nn,�

QT
n,�. Using the fact that S =

Σn,�, we obtain

e
(i)T
Nn,�

QT
n,�Qn,�Ln,�v + vi − αe

(i)T
Nn,�

Xn,�e
(1)
Nn,�

+
α

2
e
(i)T
Nn,�

Xn,�e
(n+1)
Nn,�

+
α+ β

2
e
(i)T
Nn,�

Xn,�e
(Nn,�)
Nn,�

= 0. (45)

But e
(i)T
Nn,�

QT
n,�Qn,� = e

(i)T
Nn,�

(INn,�
− (1/Nn,�)1Nn,�

1T
Nn,�

) =

e
(i)T
Nn,�

− (1/Nn,�)1
T
Nn,�

by (1), and so by using (38) and (39),
we find

e
(i)T
Nn,�

QT
n,�Qn,�Ln,�v =

2

Nn,�
v1 −

1

Nn,�
vn+1 −

1

Nn,�
vNn,�

+

⎧⎪⎨
⎪⎩
vi − vi−1 if 1 < i ≤ Nn,�, i �= n+ 2

vn+2 − v1 if i = n+ 2

0 if i = 1.

Furthermore, we observe that e
(i)T
Nn,�

Xn,�e
(1)
Nn,�

= xn,�i,1,

e
(i)T
Nn,�

Xn,�e
(n+1)
Nn,�

=xn,�i,n+1, and e
(i)T
Nn,�

Xn,�e
(Nn,�)
Nn,�

=xn,�i,Nn,�
.

Substituting these expressions into (45) gives us

vi =
1

2
vi−1 −

1

Nn,�
v1 +

1

2Nn,�
vn+1 +

1

2Nn,�
vNn,�

+
α

2
xn,�i,1 −

α

4
xn,�i,n+1 −

α+ β

4
xn,�i,Nn,�

if 1 < i ≤ Nn,�, i �= n+ 2, (46)

vn+2 =
1

2
v1 −

1

Nn,�
v1 +

1

2Nn,�
vn+1 +

1

2Nn,�
vNn,�

+
α

2
xn,�n+2,1 −

α

4
xn,�n+2,n+1

− α+ β

4
xn,�n+2,Nn,�

, and (47)

v1 =
1

Nn,� + 2
vn+1 +

1

Nn,� + 2
vNn,�

+
αNn,�

Nn,� + 2
xn,�1,1

− αNn,�

2(Nn,� + 2)
xn,�1,n+1 −

(α+ β)Nn,�

2(Nn,� + 2)
xn,�1,Nn,�

.

(48)

We can now recursively apply (46) n times, starting with
i = n+ 1, and simplify using (61) to find

Nn,� − 1 + 2−n

Nn,�
vn+1

=
[−2 + (Nn,� + 2)2−n]

Nn,�
v1 +

1− 2−n

Nn,�
vNn,�

+ α

n∑
k=1

xn,�n+2−k,12
−k − α

2

n∑
k=1

xn,�n+2−k,n+12
−k

− α+ β

2

n∑
k=1

xn,�n+2−k,Nn,�
2−k. (49)

Xn,�+1 =

[
Xn,� + 2αv1T

Nn,�
+ 2α1Nn,�

vT + 2α2u1Nn,�
1T
Nn,�

−2βv − 2αβu1Nn,�

−2βvT − 2αβu1T
Nn,�

2β2u

]
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Similarly, we can recursively apply (46) � − 1 times, starting
with i = N�,n = n+ �+ 1, substitute in (47) and simplify
using (61) to find

Nn,� − 1 + 2−�

Nn,�
vNn,�

=

[
−2 + (Nn,� + 2)2−�

]
Nn,�

v1 +
1− 2−�

Nn,�
vn+1

+ α

�∑
k=1

xn,�Nn,�+1−k,12
−k − α

2

�∑
k=1

xn,�Nn,�+1−k,n+12
−k

− α+ β

2

�∑
k=1

xn,�Nn,�+1−k,Nn,�
2−k. (50)

Note that (50) reduces to (47) when � = 1.
But now (48)–(50) form a set of three of simultaneous linear

equations in v1, vn+1 and vNn,�
. Substituting their solution into

(44) and then multiplying by Nn,� (and using the definitions of
α and β) gives us

Nn,�r(n, � + 1)

= Nn,� + 1 + (22−n − 21−�)xn,�1,1

+ (2−� − 21−n)xn,�1,n+1

+ (Nn,� + 1)(2−� − 21−n)xn,�1,Nn,�

+Nn,�xn,�n+1,n+1 + 4

n∑
k=1

xn,�n+2−k,12
−k

− 2

�∑
k=1

xn,�Nn,�+1−k,12
−k − 2

n∑
k=1

xn,�n+2−k,n+12
−k

+

�∑
k=1

xn,�Nn,�+1−k,n+12
−k

− (2Nn,� + 2)

n∑
k=1

xn,�n+2−k,Nn,�
2−k

+ (Nn,� + 1)

�∑
k=1

xn,�Nn,�+1−k,Nn,�
2−k. (51)

Now, by (5), we can write xn,�k,j = (1/2)xn,�k,k + (1/2)
xn,�j,j − (1/2)rk,j . Furthermore, by Theorem 1 we know that

rk,j =2|k − j| if 1 ≤ k, j ≤ n+ 1,

or n+ 2 ≤ k, j ≤ Nn,�, (52)

r1,j =2(j − n− 1) if n+ 2 ≤ j ≤ Nn,�. (53)

Finally, by the definition of r(·, ·), we can say that

rk,j = r(k − 1, j − n− 1) if 1 < k ≤ n+ 1

and n+ 2 ≤ j ≤ Nn,�. (54)

Therefore, we can substitute for each non-diagonal xn,�k,j

term in (51) and use (61) and (62), along with the fact that
Nn,� = n+ �+ 1 to find

(n+ �+ 1)r(n, � + 1)

= −4n+ 2�+ 4 + (�2 + n�+ 2�− 3)21−n

+ (�+ 4)2−� + (n+ �+ 2)
n∑

k=1

r(n + 1− k, �)2−k

− 1

2

�∑
k=1

r(n, �+1−k)2−k +

(
n+ �+

1

2

)
xn,�n+1,n+1

+
[
(n+ �+ 1)(2−1−� − 2−n) + 1

]
xn,�1,1

− n+ �+ 2

2
xn,�n+�+1,n+�+1

− (n+ �+ 1)

n∑
k=1

xn,�n+2−k,n+2−k2
−k

+
n+ �+ 1

2

�∑
k=1

xn,�n+�+2−k,n+�+2−k2
−k

or, by changing indices inside the sums

(n+ �+ 1)r(n, � + 1)

= −4n+ 2�+ 4 + (�2 + n�+ 2�− 3)21−n

+ (�+ 4)2−� +
n+ �+ 2

2

n∑
k=1

r(k, �)2k−n

− 1

4

�∑
k=1

r(n, k)2k−�

+

(
n+ �+

1

2

)
xn,�n+1,n+1

+
[
(n+ �+ 1)(2−1−� − 2−n) + 1

]
xn,�1,1

− n+ �+ 2

2
xn,�n+�+1,n+�+1

− n+ �+ 1

2

n∑
k=1

xn,�k+1,k+12
k−n

+
n+ �+ 1

4

�∑
k=1

xn,�n+1+k,n+1+k2
k−�. (55)

Now, by (14) from Lemma 4, we know that

xn,�i,i =
1

Nn,�

Nn,�∑
k=1

ri,k − 1

N2
n,�

Nn,�−1∑
k=1

Nn,�∑
j=k+1

rk,j . (56)

Using (52)–(54) and then (59), we can write the first sum
in (56) as

n+�+1∑
k=1

ri,k

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n2+�2+n+� if i=1

n2+(3−2i)n+2(i−1)2

+
�∑

k=1

r(i−1, k) if 1<i≤n+1

2n2+�2+2n�+(4−4i)n+(3−2i)�

+2(i−1)2+
n∑

k=1

r(k, i−n−1) if n+2≤ i ≤n+�+1.

(57)
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We can note that the double sum in (56) is independent
of i. Let

f :=

Nn,�−1∑
k=1

Nn,�∑
j=k+1

rk,j .

Then, substituting (56) and (57) into (55), changing indices and
using the results of Lemma 8 produces

(n+ �+ 1)r(n, �+ 1)

=
−3n2 + 3�2 − 2n�− n+ 5�+ 2

2(n+ �+ 1)

+ (�2 + 2n�+ 2n+ 3�)2−n + (n2 + n+ 2)2−1−�

+
1

4

�∑
k=1

(
4− 2

n+ �+ 1
− 2k−�

)
r(n, k)

− n+ �+ 2

2

n∑
k=1

(
1

n+ �+ 1
− 2k−n

)
r(k, �)

− 1

4

n∑
k=1

�∑
j=1

(21+k−n − 2j−�)r(k, j). (58)

Finally, dividing (58) through by n+ �+ 1 produces our de-
sired result. �

APPENDIX C
FINITE SERIES

The following series are either well-known or special cases
of well-known series. The first two and the general cases of the
third and fourth usually appear in any introductory mathemati-
cal text that covers series (e.g., section 4.2 of [15]). The fifth is
slightly more obscure.

Lemma 8: For integer values of n > 0

(i)

n∑
k=1

k =
1

2
n(n+ 1) (59)

(ii)

n∑
k=1

k2 =
1

6
n(n+ 1)(2n+ 1) (60)

(iii)

n∑
k=1

2−k = 1− 2−n (61)

(iv)

n∑
k=1

k2−k = 2− (n+ 2)2−n (62)

(v)
n∑

k=1

k22−k = 6− (n2 + 4n+ 6)2−n. (63)

Proof: Equations (59) and (60) are special cases of (6.2.1)
in [16], while (61)–(63) are special cases of (6.9.1) in [16]. All
are easily proved using induction. �

A. Finite Series of Binomial Coefficients

Although there are many interpretations and uses of binomial
coefficients, we will simply assume two basic facts about them,

namely Pascal’s rule(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
, 1 ≤ k ≤ n− 1 (64)

and the binomial formula

(x+ y)n =

n∑
i=0

(
n

i

)
xiyn−i, n ≥ 0. (65)

Pascal’s rule follows easily from (18) while the binomial for-
mula can be inductively proved using Pascal’s rule. Equations
(64) and (65) can also be found in standard introductory math-
ematics texts, such as sections 1.5–1.6 in [15].

We can use Pascal’s rule to derive some identities involving
binomial coefficients. These identities include the two in the
following lemma.

Lemma 9: For integer values of n,m and k, with n > 0,
m ≥ 0 and 0 ≤ k ≤ m

(i)

n∑
i=1

(
m+ i

m+ 1

)
=

(
n+m+ 1

m+ 2

)
(66)

(ii)

n∑
i=1

(
m+ i

k + i

)
=

(
n+m+ 1

n+ k

)
−
(
m+ 1

k

)
. (67)

Proof: Both results can be easily proven using mathemat-
ical induction and Pascal’s rule. �

A special case of the binomial formula can be found by
substituting y = 1 into (65), which gives

(1 + x)n =

n∑
i=0

(
n

i

)
xi, n ≥ 0. (68)

Differentiating this expression with respect to x gives us

n(1 + x)n−1 =

n∑
i=0

i

(
n

i

)
xi−1, n ≥ 1. (69)

In the following results, we will make use of a few “well-
known” series of binomial coefficients (for example, the first
two can be found in [17, Chapter 3] and all can be solved by
Mathematica). Since they are not as standard as the basic facts
stated above, we will include a brief proof of them for the sake
of completeness.

Lemma 10 (Standard Sums of Binomial Coefficients): For
integer values of n

(i)

�n
2 �∑

i=0

(
n

2i

)
= 2n−1, n > 0 (70)

(ii)

�n−1
2 �∑

i=0

(
n

2i+ 1

)
= 2n−1, n > 0 (71)

(iii)

�n
2 �∑

i=0

2i

(
n

2i

)
= n2n−2, n > 1 (72)

(iv)

�n−1
2 �∑

i=0

(2i+ 1)

(
n

2i+ 1

)
= n2n−2, n > 1. (73)
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Proof: Substituting x=±1 into (68) gives us
∑n

i=0

(
n
i

)
=

2n and
∑n

i=0(−1)i
(
n
i

)
=0 for anyn>0. Equations (70) and (71)

can be found by taking the sum and difference of these two ex-
pressions and dividing by 2. Similarly, substituting x = ±1 into
(69) gives us

∑n
i=0 i

(
n
i

)
= n2n−1 and

∑n
i=0(−1)i−1i

(
n
i

)
= 0

for any n > 1. Equations (72) and (73) can be found by taking
the sum and difference of these two expressions and dividing
by 2. �

We can now use the results from Lemma 10 to derive some
more specialized series. These are summarized in the following
lemma. As a point of notation, we will assume that any sum not
containing any terms (such as

∑−1
i=0 ai) is equal to zero.

Lemma 11 (Specialized Sums of Binomial Coefficients): For
integer values of p ≥ 0

(i)

p+1∑
i=1

i

(
2p+ 4

2i+ 2

)
= p22p+2 + 1 (74)

(ii)

p∑
i=1

i

(
2p+ 2

2i+ 1

)
= p22p (75)

(iii)

p+1∑
i=1

i

(
2p+ 4

2i+ 1

)
= (p+ 1)22p+2 (76)

(iv)

p∑
i=1

i

(
2p+ 3

2i+ 2

)
= (2p− 1)22p + 1 (77)

(v)

p∑
i=1

i

(
2p+ 3

2i+ 1

)
= (2p+ 1)22p − p− 1 (78)

(vi)

p∑
i=1

2p∑
k=2i−1

i2−k

(
k + 2

2i+ 1

)
= p2 +

1

2
p (79)

(vii)

p∑
i=1

2p−1∑
k=2i−1

i2−k

(
k + 2

2i+ 1

)
= p2 − 1

2
p (80)

(viii)

p+1∑
i=1

2p+1∑
k=2i−1

i2−k

(
k + 2

2i+ 1

)
= p2 +

3

2
p+

1

2
. (81)

Proof:

(i) This follows by substituting n = 2p+ 4 into (72) and
(70), taking the difference between the first expression
and twice the second, removing the i = 0 and i = 1
terms, shifting indices by 1, and then dividing by 2. By
the conditions on (72) and (70), this is true for p ≥ 0.

(ii) This follows by substituting n = 2p+ 2 into (73) and
(71), taking the difference between these expressions and
dividing by 2. By the conditions on (73) and (71), this is
true for p ≥ 0.

(iii) This follows by substituting p+ 1 for p in (75).
(iv) This follows by substituting p− 1 for p in (74), adding

this to (75), and using Pascal’s rule to say that
(
2p+2
2i+1

)
+(

2p+2
2i+2

)
=

(
2p+3
2i+2

)
.

(v) This follows by substituting n = 2p+ 3 into (73) and
(71), taking the difference between these expressions,
dividing by 2 and taking the final term out of the sum.
By the conditions on (73) and (71), this is true for p ≥ 0.

(vi) Let s(p) represent the value of this sum, as a function
of p. That is, s(p) =

∑p
i=1

∑2p
k=2i−1 i2

−k
(
k+2
2i+1

)
. Then

we can see that s(0) = 0 and furthermore [using (78)
and (76)], s(p+ 1) = s(p) + 2(p+ 1)− (1/2). Thus,
we can say that s(p) =

∑p
k=1(2k − (1/2)), which sim-

plifies using (59) to our desired result.
(vii) We can see that

p∑
i=1

2p−1∑
k=2i−1

i2−k

(
k + 2

2i+ 1

)
=

p∑
i=1

2p∑
k=2i−1

i2−k

(
k + 2

2i+ 1

)

− 2−2p

p∑
i=1

i

(
2p+ 2

2i+ 1

)

and then the result follows from (79) and (75).
(viii) This follows by substituting p+ 1 for p in (80). �

In addition to these series evaluations, the following series
manipulations will prove to be useful.

Lemma 12 (Equivalent Binomial Series): For integer values
of p ≥ 0 and n ≥ 0

(i)

p+1∑
i=1

2p+1∑
k=2i−1

i2−k

(
n+ k + 3

n+ 2i+ 2

)

=

p+1∑
i=1

2p+1∑
k=2i−1

i2−k+1

(
n+ k + 2

n+ 2i+ 1

)

− 2−2p−1

p+1∑
i=1

i

(
n+ 2p+ 4

n+ 2i+ 2

)
(82)

(ii)

p∑
i=1

2p∑
k=2i−1

i2−k

(
n+ k + 3

n+ 2i+ 2

)

=

p∑
i=1

2p∑
k=2i−1

i2−k+1

(
n+ k + 2

n+ 2i+ 1

)

− 2−2p

p∑
i=1

i

(
n+ 2p+ 3

n+ 2i+ 2

)
. (83)

Proof:

(i) First, let us suppose that p ≥ 0, n ≥ 0 and i is an
integer between 1 and p+ 1 (inclusive). Then, we can
use Pascal’s rule with k > 2i− 1 to write

(
n+k+3
n+2i+2

)
=(

n+k+2
n+2i+2

)
+
(
n+k+2
n+2i+1

)
, while for k = 2i− 1 we can

say
(
n+k+3
n+2i+2

)
=

(
n+2i+2
n+2i+2

)
= 1 =

(
n+2i+1
n+2i+1

)
=

(
n+k+2
n+2i+1

)
.

With these two facts, we can write

2p+1∑
k=2i−1

2−k

(
n+ k + 3

n+ 2i+ 2

)
=

2p+1∑
k=2i

2−k

(
n+ k + 2

n+ 2i+ 2

)

+

2p+1∑
k=2i−1

2−k

(
n+ k + 2

n+ 2i+ 1

)
. (84)

By shifting indices by 1, substituting in (84), and then
rearranging, the first sum on the right becomes

2p+1∑
k=2i

2−k

(
n+ k + 2

n+ 2i+ 2

)
=

2p+1∑
k=2i−1

2−k

(
n+ k + 2

n+ 2i+ 1

)

− 2−2p−1

(
n+ 2p+ 4

n+ 2i+ 2

)
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and so (84) becomes
2p+1∑

k=2i−1

2−k

(
n+ k + 3

n+ 2i+ 2

)
= 2

2p+1∑
k=2i−1

2−k

(
n+ k + 2

n+ 2i+ 1

)

− 2−2p−1

(
n+ 2p+ 4

n+ 2i+ 2

)
.

Substituting this expression into the left hand side of (82)
produces the desired result.

(ii) Again, let us suppose that p ≥ 0, n ≥ 0 and i is an
integer, now between 1 and p (inclusive). As above, we
can use Pascal’s rule to write

2p∑
k=2i−1

2−k

(
n+ k + 3

n+ 2i+ 2

)
=

2p∑
k=2i

2−k

(
n+ k + 2

n+ 2i+ 2

)

+

2p∑
k=2i−1

2−k

(
n+ k + 2

n+ 2i+ 1

)
. (85)

By shifting indices by 1, substituting in (85), and then
rearranging, the first sum on the right becomes
2p∑

k=2i

2−k

(
n+ k + 2

n+ 2i+ 2

)
=

2p∑
k=2i−1

2−k

(
n+ k + 2

n+ 2i+ 1

)

− 2−2p

(
n+ 2p+ 3

n+ 2i+ 2

)

and so (85) becomes
2p∑

k=2i−1

2−k

(
n+ k + 3

n+ 2i+ 2

)
= 2

2p∑
k=2i−1

2−k

(
n+ k + 2

n+ 2i+ 1

)

− 2−2p

(
n+ 2p+ 3

n+ 2i+ 2

)
.

Substituting this expression into the left hand side of (83)
produces the desired result. �

Now, we can use Lemmas 11 and 12 to evaluate two more
complicated expressions which will be necessary for the com-
pletion of our derivation.

Lemma 13: Let p and n be non-negative integers, and let

g(n, p) :=
4p2+6p+2

n+2p+2
+4p+(4p2+4np+4n+10p+6)21−n

+ 2−2p

+2−n−2p

p+1∑
i=1

i

{
2

(
n+ 2p+ 4

n+ 2i+ 1

)
−
(
n+ 2p+ 4

n+ 2i+ 2

)

−(2n+ 4p+ 6)

(
2p+ 4

2i+ 1

)}

+22−n

p+1∑
i=1

2p+1∑
k=2i−1

i2−k

{
n+2p+1

n+2p+2

(
n+ k + 2

n+ 2i+ 1

)

−
(
n+k+2

n+2i

)
+

(
k+3

2i+1

)}

+2−2p

p+1∑
i=1

n∑
k=1

i2−k

{(
k + 2p+ 4

k + 2i+ 2

)
− 2n+4p+6

n+2p+2

×
(
k + 2p+ 3

k + 2i+ 1

)}
. (86)

Then g(n, p) = 0 ∀n, p ≥ 0.

Proof: First, we can use (76) to simplify the third term in
the first sum. In addition, the third term in the second sum can
be written as

(
k+2
2i+1

)
+
(
k+2
2i

)
using Pascal’s rule for k ≥ 2i− 1.

We can then apply (81) to the
(
k+2
2i+1

)
term. This gives us

g(n, p) =
4p2 + 6p+ 2

n+ 2p+ 2
+4p−(2p2+7p+5)21−n + 2−2p

+ 2−n−2p

p+1∑
i=1

i

{
2

(
n+2p+4

n+2i+1

)
−
(
n+ 2p+ 4

n+ 2i+ 2

)}

+ 22−n

p+1∑
i=1

2p+1∑
k=2i−1

i2−k

{
n+2p+1

n+2p+2

(
n+k+2

n+2i+1

)

−
(
n+k+2

n+2i

)
+

(
k+2

2i

)}

+ 2−2p

p+1∑
i=1

n∑
k=1

i2−k

{(
k+2p+4

k+2i+2

)

−2n+4p+6

n+2p+2

(
k+2p+3

k+2i+1

)}
.

(87)

Next, we will consider the case when p = 0. Using (18) and
(61), we can simplify g(n, 0) to find that g(n, 0) = 0 ∀n ≥ 0.
Thus, in the rest of the proof, we will assume that p > 0.
Furthermore, when n = 0, we can use (74), (76) and (81) to
find that g(0, p) = 0 ∀ p > 0.

Next, let us consider g(n+ 1, p). Substituting n+ 1 in for
n in (87), taking the k = n+ 1 terms out of the final sum and
applying (64) and (82) gives us

g(n+1, p)

=
4p2 + 6p+ 2

n+ 2p+ 3
+4p−(2p2+7p+5)2−n + 2−2p

+2−n−2p−1

p+1∑
i=1

i

{
2

(
n+ 2p+ 4

n+ 2i+ 1

)
− 2

(
n+ 2p+ 4

n+ 2i+ 2

)}

+21−n

p+1∑
i=1

2p+1∑
k=2i−1

i2−k

{
n+ 2p+1

n+2p+3

(
n+k+2

n+2i+1

)

−
(
n+ k + 2

n+ 2i

)
+

(
k + 2

2i

)}

+ 2−2p

p+1∑
i=1

n∑
k=1

i2−k

{(
k + 2p+ 4

k + 2i+ 2

)
− 2n+ 4p+8

n+2p+3

×
(
k + 2p+ 3

k + 2i+ 1

)}
. (88)

Now, let us define a new function, a(n, p), as

a(n, p) := (n+2p+3)g(n+1, p)−(n+2p+2)g(n, p). (89)
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Then, from (87) and (88), we obtain

a(n, p)= 4p+
(
4p3+2np2+16p2+7np+5n+17p+5

)
2−n

+2−2p+2−n−2p

p+1∑
i=1

i

{
−(n+2p+1)

(
n+2p+4

n+2i+1

)

−
(
n+ 2p+ 4

n+ 2i+ 2

)}

+ (n+ 2p+ 1)21−n

p+1∑
i=1

2p+1∑
k=2i−1

i2−k

×
{
−
(
n+ k + 2

n+ 2i+ 1

)
+

(
n+ k + 2

n+ 2i

)
−
(
k + 2

2i

)}

+2−2p

p+1∑
i=1

n∑
k=1

i2−k

{(
k+2p+4

k+2i+2

)
−2

(
k+2p+3

k+2i+1

)}
.

(90)

We can use (74), (76) and (81) to show that a(0, p) = 0. In a
similar manner as before, we will next consider a(n+ 1, p).
Substituting n+ 1 in for n in (90), taking the k = n+ 1 terms
out of the final sum and applying (64) and (82) produces

a(n+1, p)=4p+(4p3 + 2np2 + 18p2

+ 7np+ 5n+ 24p+ 10)2−n−1

+ 2−2p + 2−n−2p−1

p+1∑
i=1

i

×
{
−(n+2p+2)

(
n+2p+4

n+2i+1

)
−2

(
n+2p+4

n+2i+2

)}

+ (n+ 2p+ 2)2−n

p+1∑
i=1

2p+1∑
k=2i−1

i2−k

×
{
−
(
n+k+2

n+2i+1

)
+

(
n+k+2

n+2i

)
−
(
k + 2

2i

)}

+ 2−2p

p+1∑
i=1

n∑
k=1

i2−k

{(
k + 2p+ 4

k + 2i+ 2

)

−2

(
k + 2p+ 3

k + 2i+ 1

)}
.

(91)

Once again, we will define a new function, b(n, p), as

b(n, p) :=
a(n+ 1, p)− a(n, p)

n+ 2p
. (92)

This function is well-defined since its denominator is positive
for all p > 0 and n ≥ 0. Then, from (90) and (91), we obtain

b(n, p)=−(2p2+7p+5)2−n−1+2−n−2p−1

p+1∑
i=1

i

(
n+2p+4

n+2i+1

)

− 2−n

p+1∑
i=1

2p+1∑
k=2i−1

i2−k

{
−
(
n+k+2

n+2i+1

)
+

(
n+k+2

n+2i

)
−
(
k+2

2i

)}
.

(93)

Using (76) and (81), we find that b(0, p)=0. Finally, we will fol-
low our previous procedure once more and consider b(n+1, p).
Substituting n+ 1 in for n in (93), using (64) and (82), and
comparing to (93) produces

b(n+ 1, p) =
1

2
b(n, p). (94)

Hence, from (94) and b(0, p) = 0, we conclude that
b(n, p) = 0 ∀n ≥ 0, p > 0. Substituting this result into (92)
tells us that a(n+ 1, p) = a(n, p) ∀n ≥ 0, p > 0, which,
along with the fact that a(0, p) = 0, allows us to conclude that
a(n, p) = 0 ∀n ≥ 0, p > 0.

Finally, we can substitute this result into (89) to find that

g(n+ 1, p) =
n+ 2p+ 2

n+ 2p+ 3
g(n, p) ∀n ≥ 0, p > 0

which, along with the facts that g(0, p) = 0 and g(n, 0) = 0,
gives us our desired result. �

Lemma 14: Let p and n be non-negative integers, and let

h(n, p) :=
4p2 + 2p

n+ 2p+ 1
+ 4p− 2

+ (4p2 + 4np+ 2n+ 6p+ 2)21−n

+ 21−2p − (4p2 + 2np+ 2n+ 6p+ 2)21−n−2p

+ 21−n−2p

p∑
i=1

i

×
{
2

(
n+ 2p+ 3

n+ 2i+ 1

)
−
(
n+ 2p+ 3

n+ 2i+ 2

)

−(2n+ 4p+ 4)

(
2p+ 3

2i+ 1

)}

+ 22−n

p∑
i=1

2p∑
k=2i−1

i2−k

×
{

n+ 2p

n+ 2p+ 1

(
n+ k + 2

n+ 2i+ 1

)

−
(
n+ k + 2

n+ 2i

)
+

(
k + 3

2i+ 1

)}

+ 21−2p

p∑
i=1

n∑
k=1

i2−k

×
{(

k + 2p+ 3

k + 2i+ 2

)
− 2n+ 4p+ 4

n+ 2p+ 1

×
(
k + 2p+ 2

k + 2i+ 1

)}
. (95)

Then h(n, p) = 0 ∀n, p ≥ 0.
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Proof: This proof proceeds almost exactly as the proof of
Lemma 13. The only differences are that we use (64), (77)–(79)
and (83) to simplify expressions [rather than (61), (64),
(74), (76), (81), and (82)] and our intermediate functions are
defined as

c(n, p) := (n+2p+2)h(n+1, p)−(n+ 2p+ 1)h(n, p)

d(n, p) :=
c(n+ 1, p)− c(n, p)

n+ 2p− 1

where d(n, p) is well-defined since its denominator is positive
for all p > 0 and n ≥ 0. �

Our final result covers some simplification required for the
proof of Theorem 3.

Lemma 15: Suppose n and � are positive integers, and let

s(n, �) :=
−3n2 + 3�2 − 2n�− n+ 5�+ 2

2(n+ �+ 1)2

+
�2 + 2n�+ 2n+ 3�

n+ � + 1
2−n +

n2 + n+ 2

2(n+ �+ 1)
2−�

+
1

2(n+ �+ 1)
s1(n, �) +

1

n+ � + 1
s2(n, �)

− n+ �+ 2

n+ �+ 1
s3(n, �)

−((n+�+2)/(n+�+1))s4(n, �)−(1/(2(n+�+1)))s5(n, �)−
(1/(n+ �+ 1))s6(n, �), where

s1(n, �) :=
�∑

k=1

(
4− 2

n+ �+ 1
− 2k−�

)
(n− k)

s2(n, �) :=

�∑
k=1

(
4− 2

n+ �+ 1
− 2k−�

)
21−n−k

×
� k+1

2 �∑
i=1

i

(
n+ k + 2

n+ 2i+ 1

)

s3(n, �) :=

n∑
k=1

(
1

n+ �+ 1
− 2k−n

)
(k − �)

s4(n, �) :=

n∑
k=1

(
1

n+�+1
−2k−n

)
22−k−�

� �+1
2 �∑

i=1

i

(
k+�+2

k+2i+1

)

s5(n, �) :=
n∑

k=1

�∑
j=1

(21+k−n − 2j−�)(k − j)

s6(n, �) :=

n∑
k=1

�∑
j=1

(21+k−n−2j−�)21−k−j

� j+1
2 �∑

i=1

i

(
k+j+2

k+2i+1

)
.

Then

s(n, �)= 2(n− �−1)+22−n−�

� �+1
2 �∑

i=1

i

(
n+�+3

n+2i+1

)
+

1

n+�+1

×
[

�2+�

n+�+ 1
+2�−2+21−�

+ (�2+2n�+2n+3�+2)21−n+21−�

��+1
2 �∑

i=1

n∑
k=1

i2−k

×
{(

k + �+ 3

k + 2i+ 2

)
− 2n+ 2�+ 4

n+ �+ 1

(
k + �+ 2

k + 2i+ 1

)}

+ 21−n−�

� �+1
2 �∑

i=1

i

×
{
2

(
n+ �+ 3

n+ 2i+ 1

)
−
(
n+ �+ 3

n+ 2i+ 2

)

−(2n+2�+4)

(
�+3

2i+1

)}
+22−n

� �+1
2 �∑

i=1

�∑
k=2i−1

i2−k

×
{

n+ �

n+ �+ 1

(
n+ k + 2

n+ 2i+ 1

)
−
(
n+ k + 2

n+ 2i

)

+

(
k + 3

2i+ 1

)}]
. (96)

Proof: We can use (59), (61) and (62) to simplify each
of s1(n, �), s3(n, �) and s5(n, �). This gives us s1(n, �) =
((−2�3 + 4n2�+ 2n�2−2n2−�2 − 4n−�−2)/(n+ �+1)) +
(n+ 1)21−�, s3(n, �) = ((−3n2 + 4�2 − 2n�+ n+ 8�+ 4)/
2(n+ �+ 1))− (�+ 1)21−n and s5(n, �) = −n2 − 2�2 +
6n�− 3n− 6�+ (�2 + 3�)21−n+ (n2 + 3n)2−�.

To simplify each of s2(n, �), s4(n, �) and s6(n, �), we can
exchange the order of summation to make the sum over i the
outermost sum, and then apply (64), (66) and/or (67) to obtain

s2(n,�)=

(
4− 2

n+�+1

)
21−n

� �+1
2 �∑

i=1

�∑
k=2i−1

i2−k

(
n+k+2

n+2i+1

)

− 21−n−�

� �+1
2 �∑

i=1

i

(
n+ �+ 3

n+ 2i+ 2

)

s4(n, �)=
1

n+ �+ 1
22−�

� �+1
2 �∑

i=1

n∑
k=1

i2−k

(
k + �+ 2

k + 2i+ 1

)

− 22−n−�

� �+1
2 �∑

i=1

i

(
n+ �+ 3

n+ 2i+ 1

)

+ 22−n−�

� �+1
2 �∑

i=1

i

(
�+ 3

2i+ 1

)

s6(n,�)=22−n

� �+1
2 �∑

i=1

�∑
k=2i−1

i2−k

{(
n+k+2

n+2i+1

)
+

(
n+k+2

n+2i

)}

− 22−n

� �+1
2 �∑

i=1

�∑
k=2i−1

i2−k

(
k + 3

2i+ 1

)

− 21−�

� �+1
2 �∑

i=1

n∑
k=1

i2−k

(
k + �+ 3

k + 2i+ 2

)
.



1752 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 61, NO. 7, JULY 2016

Substituting our simplified expressions for s1, s2, s3, s4, s5
and s6 into the definition of s(n, �) gives us our desired result.

�

REFERENCES

[1] G. Young, L. Scardovi, and N. E. Leonard, “A new notion of effective
resistance for directed graphs—Part I: Definition and properties,” IEEE
Trans. Autom. Control, vol. 61, 2016.

[2] G. Young, L. Scardovi, and N. Leonard, “Robustness of noisy consensus
dynamics with directed communication,” in Proc. ACC, Baltimore, MD,
2010, pp. 6312–6317.

[3] G. Young, L. Scardovi, and N. Leonard, “Rearranging trees for robust con-
sensus,” in Proc. CDC-ECC, Orlando, FL, USA, 2011, pp. 1000–1005.

[4] I. Poulakakis, G. F. Young, L. Scardovi, and N. E. Leonard, “Information
centrality and ordering of nodes for accuracy in noisy decision-making
dynamics,” IEEE Trans. Autom. Control, vol. 61, no. 4, pp. 1040–1045,
2016.

[5] V. Srivastava and N. Leonard, “Collective decision-making in ideal net-
works: The speed-accuracy tradeoff,” IEEE Trans. Contr. Netw. Syst.,
vol. 1, no. 1, pp. 121–130, 2014.

[6] P. Barooah and J. Hespanha, “Graph effective resistance and distributed
control: Spectral properties and applications,” in Proc. CDC, San Diego,
CA, USA, 2006, pp. 3479–3485.

[7] P. Barooah and J. Hespanha, “Estimation on graphs from relative mea-
surements,” IEEE Contr. Syst. Mag., vol. 27, no. 4, pp. 57–74, 2007.

[8] P. Barooah and J. Hespanha, “Estimation from relative measurements:
Electrical analogy and large graphs,” IEEE Trans. Signal Process., vol. 56,
no. 6, pp. 2181–2193, 2008.

[9] S. Patterson and B. Bamieh, “Leader selection for optimal network coher-
ence,” in Proc. CDC, Atlanta, GA, USA, 2010, pp. 2692–2697.

[10] A. Clark and R. Poovendran, “A submodular optimization framework
for leader selection in linear multi-agent systems,” in Proc. CDC-ECC,
Orlando, FL, USA, 2011, pp. 3614–3621.

[11] M. Fardad, F. Lin, and M. Jovanović, “Algorithms for leader selection
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