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Abstract

A major area of study in recent years has been the development of robotic groups

that are capable of carrying out complicated and useful tasks and yet are comprised

of relatively simple individuals following relatively simple rules. Despite the evidence

from natural groups of animals, birds, fish and insects that such behaviour is possi-

ble, many challenges remain in the attempt to translate it into engineered systems.

One important aspect of understanding and designing group behaviour is the anal-

ysis of the communication structure within a group and its effect on overall group

performance.

In this dissertation, we focus on understanding the role played by a directed

communication graph in the ability of a group to maintain consensus in noisy envi-

ronments. To this end, we relate a H2 norm that can be computed from a directed

graph to the robustness of the group to noise. Using this relationship, we are able

to compute bounds on the group robustness and analyse the capabilities of several

families of graphs.

The robustness of consensus to noise on undirected graphs is intimately related

to the concept of effective resistance. We present a generalisation of this concept to

directed networks and confirm that our new notion of effective resistance is a graphical

property that depends on the connections between nodes in the graph. Furthermore,

in certain circumstances effective resistance in directed graphs behaves in a similar

fashion to effective resistance in undirected graphs, while in other situations it behaves

in unexpected ways.

We use effective resistance as a tool to analyse tree graphs, and derive rules by

which local changes can be made that will guarantee that the robustness of the entire

system will improve. These rules lead to the possibility of decentralised algorithms

that allow individuals interacting over a tree graph to rearrange their connections

and improve robustness without requiring knowledge of the entire group.
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Finally, we use our measure of robustness to analyse a family of interaction strate-

gies within flocks of starlings. This analysis demonstrates that the observed interac-

tions between the starlings optimise the tradeoff between robust performance of the

group and individual sensing cost.
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Chapter 1

Introduction

Over the course of the 20th century, robotics and automation became a critical part

of modern society. Today, robots are in widespread use in the manufacturing, logis-

tics, aerospace, medical and military industries. Yet despite their ubiquity in certain

areas, most modern robots require highly structured environments and predictable

conditions in which to operate. This severely limits the range of tasks that a robot

can be used for, and it has long been a goal of researchers to develop robots capable

of operating in more natural, varied and unpredictable environments. One approach

to this problem is to build more complicated and sophisticated robots, carrying more

sensors and having greater computing power. An alternative approach is to build

small and cheap robots that, through communication and collaboration, are capable

of performing sophisticated tasks as a group. The use of robotic groups as an alter-

native to individual robots potentially offers the benefit of reduced costs, but more

significantly it should provide the ability to create far more robust and adaptable

systems [15]. Motivation for this second option can also be found by observing the

natural world, where herds of animals, flocks of birds, schools of fish and swarms of

insects are collectively capable of behaviours beyond the abilities of any individual

within the group [23, 95].
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Despite its elegance as seen in the natural world, collective behaviour is difficult

to engineer. As well as the hardware and cost constraints imposed by the need

to build many robots, individual robots within a group must have the ability to

sense and communicate with one another. Rather than have a supervisor instructing

each individual, a group should be able to operate autonomously (or at least semi-

autonomously). Although one member of the group could act as a leader and make

decisions, such a scenario would negate most of the benefits (i.e., adaptability and

robustness) envisioned for collective robotics [42]. Instead, a group of robots should

implement a decentralised form of control, in which each individual makes their own

decisions based on a (potentially) limited knowledge of the rest of the group [2, 58].

Due to the decentralised nature of collective control problems, one key ability for

any group to have is the capacity to reach consensus, that is, a state in which every

individual is in agreement with every other. At its most basic level, consensus is

required to make decisions as a group, such as which task to perform next or in which

direction to travel. More generally, a group must remain cohesive to enable any sort

of collective behaviour, and this, too, requires consensus [85]. Additionally, many

more complicated group behaviours, such as formation control [89], task sharing [67]

and sensor fusion [61, 76], can be reformulated as consensus problems. Because of

this, consensus is widely seen to be one of the most prototypical forms of collective

behaviour [77].

For almost any collective system, the communication structure - that is, who is

communicating with whom - plays a determining role in the behaviour of the group

[62, 72]. In fact, under a set of reasonable simplifying assumptions, the outcome of a

consensus procedure is entirely governed by the communication structure. Therefore,

in order to build a group of robots that can collectively perform a task, it is not

enough to make them simply capable of communication. The way that they commu-

nicate, including whom they choose to communicate with and what they do with the
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information they receive, is also a critical design feature. In keeping with our goal

of decentralised control, this means that each individual should have a strategy for

finding, keeping and (potentially) changing neighbours in a way that will result in

the desired outcome for the entire group.

Since one of the goals of collective robotics is to make each individual as simple

as possible, it is important to understand how to achieve desired collective behaviour

with as little sensing and communication as is practical. This implies that we are

not ultimately concerned with absolute performance, but rather with efficient per-

formance. In particular, for groups of robots or animals, the capability to detect and

follow many neighbours comes at a cost - either directly, through the need for such

communication capacity, or indirectly, through the loss of time or energy to perform

other tasks. Therefore, every individual within a group should be able to balance the

performance gain from more interactions with the cost of additional communication.

An important distinction exists between directed and undirected communication.

In undirected communication between two individuals, both individuals receive in-

formation from the other, and the information transmitted is accorded the same

importance by each individual. In contrast, directed communication either involves

information flowing in only one direction, or information flowing in both directions

that is given different importance by each individual. Thus undirected communication

requires not only the ability for both individuals to transmit and receive information

but also some prior or active agreement about how to use that information. Directed

communication, on the other hand, covers a much wider range of situations [2, 16, 70].

Despite the greater generality of studying directed communication, undirected

communication is much easier to study and analyse. In part this is due to the symme-

try required for undirected communication, but it is also due to the fact that many of

the mathematical approaches and tools used to study communication networks have

arisen from the study of other networks that are fundamentally undirected. Thus
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additional tools are required in order to study more general directed communication

networks. Tools that relate specific aspects of network structure to group-level prop-

erties are particularly useful since they can be used to guide decentralised control

strategies.

This dissertation makes contributions to both the analysis and synthesis of di-

rected communication networks for the purpose of consensus in uncertain environ-

ments. To do so, we first concentrate on relating the robustness of a consensus

system to its communication network and then examine in more detail how to relate

structural features of the network to overall performance. With this understanding,

we are able to address the question of how an individual should choose their neigh-

bours to efficiently achieve robust performance in certain engineered and biological

settings.

1.1 Robust Consensus

The study of consensus has been a central part of the investigation of multi-agent

autonomous systems [12, 17, 70, 75, 85, 92]. Two major areas where consensus is re-

quired are collective decision-making (such as deciding a common direction of travel)

and collective sensing (such as reaching agreement about a measured environmen-

tal parameter). Both of these frameworks apply to biological systems such as bird

flocks [4] and fish schools [95], and a number of models have been proposed to explain

how animal groups reach consensus [54, 71, 99]. In an engineering context, the same

consensus problems must be solved by autonomous groups of aerial, ground or un-

derwater vehicles [89]. In addition to multi-agent systems, consensus problems arise

in networks of coupled oscillators [63, 94] and in distributed computation [67].

For the purposes of achieving consensus, most of the important details of a multi-

agent system are encoded by the communication graph of the system. In this way,
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the performance of the consensus protocol can be related to the properties of the

communication graph. This provides a more general setting to investigate consensus

and allows for the application of graph-theoretic notions and tools. In particular, it

is well known that the properties of the Laplacian matrix of the graph are intimately

related to the performance of the consensus protocol [75, 85, 88, 109].

Since autonomous systems must operate in uncertain environments without di-

rect supervision, it is important that such systems be robust. Multi-agent systems

should be robust with respect to several different parameters, including component or

individual agent failure, environmental uncertainty and communication uncertainty.

This means that there are a number of different ways in which the robustness of

consensus can be measured. Robustness to failure can be measured by the node and

edge connectivities of the communication graph, while robustness to uncertainty and

noise can be related to the H∞ norm, H2 norm, or L2 gain of the consensus system.

H∞ robustness has been investigated in [60, 64, 100] in relation to uncertainty in the

communication graph and to non-ideal communication channels. L2 robustness has

been considered in [88, 101] in relation to bounded (in the L2 sense) inputs or errors.

A slightly different notion of robustness to bounded inputs has been investigated in

[65, 102]. In addition, robustness in relation to model uncertainty has been studied

in [53] and in relation to input time delays in [98]. H2 robustness to noisy inputs has

been studied on undirected graphs in [5, 119, 120], and a similar notion for discrete-

time consensus in undirected graphs has been used in [111]. However, little work

appears to have been done on H2 robustness of consensus for directed graphs.

1.2 Effective Resistance

The concept of effective resistance has been used in relation to graphs for some

time [56]. This concept stems from considering a graph, consisting of a set of nodes
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connected by weighted edges, to represent a network of resistors (one resistor cor-

responding to each edge) with resistances equal to the inverse of the corresponding

edge weights. Then, the effective resistance between two nodes can be found by the

resistance offered by the network when a voltage source is connected between this

pair of nodes. One of the useful properties of effective resistance is that it defines a

distance function on a graph that takes into account all paths between two nodes,

not just the shortest path [56]. This allows effective resistance to be used in place of

the shortest-path distance to analyse problems involving random motion, percolation

and flows over networks.

Effective resistance has proven to have a number of interpretations and applica-

tions over a wide variety of fields. One of the earliest interpretations was in the study

of random walks and Markov chains on networks [19, 36, 78, 97], where the effective

resistance between a pair of nodes was related to expected commute, cover and hitting

times and the probabilities of a random walk reaching a node or traversing an edge.

More direct applications have arisen in the study of power dissipation and time delays

in electrical networks [45]. In addition, effective resistance has been shown to have

combinatorial interpretations, relating to spanning trees and forests [90] as well as the

number of nodes and edges in the graph [56]. Following the work of Klein and Randić

[56], there has been a substantial literature investigating the use of effective resistance

and the Kirchhoff index in the study of molecular graphs [14, 48, 55, 66, 121].

More recently, effective resistance has arisen in control theory, in the study of con-

trol, estimation and synchronisation over networks. Barooah and Hespanha described

in [7] how effective resistance can be used to measure the performance of collective

formation control, rendezvous and estimation problems. They developed the theory

of estimation from relative measurements further in [8, 9]. A number of authors have

demonstrated the use of effective resistance in investigating the problem of selecting

leaders to maximise agreement or coherence in a network [22, 41, 43, 82]. Dörfler
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and Bullo used effective resistance in their study of synchronisation of oscillators

in power networks [34], and subsequently developed a theoretical analysis involving

effective resistance for a graph reduction technique [35]. We have also connected

the concept of effective resistance to the robustness to noise of linear consensus over

networks [114, 115] as well as the performance of nodes in networks of stochastic

decision-makers [84].

By the nature of its definition, effective resistance is restricted to undirected

graphs, and in many applications, including the study of molecular graphs and elec-

trical networks, it is natural to focus solely on undirected graphs. However, in many

other applications, including random walks and networked control systems, directed

graphs arise just as naturally as undirected ones.

Accordingly, it would be particularly useful if the concept of effective resistance

could be extended to apply to any directed or undirected graph, so that analyses that

are currently only applicable to undirected graphs could be applied in the more general

case. Indeed in [7, 8, 9], the authors investigated directed measurement graphs, but

assumed undirected communication in order to analyse their systems using effective

resistance. Similarly, in [84, 114, 115], we began our investigations using directed

graphs and then specialised to undirected graphs when we used effective resistance.

1.3 Bird Flocking

Flocks of birds and schools of fish exhibit striking and robust collective behaviours de-

spite the challenging environments in which they live [4, 11, 24, 26, 27, 51, 80, 81, 95].

These collective behaviours are believed to emerge from simple, local interactions

among the individuals [25, 29, 47, 73, 79]. Significantly, such groups are able to

maintain cohesion and coherence even when every individual is subject to uncertain

information about the behaviour of its neighbours (those in the group that it can
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sense) as well as disturbances from the environment. However, it is not well un-

derstood if and how this robustness to uncertainty depends on the structure of the

interaction network of individuals, that is, on who is sensing and responding to whom.

Recent analysis of position [4] and velocity [11] correlations in empirical data

collected for large flocks of starlings (Sturnus vulgaris) has shown that each bird

responds to a fixed number, approximately seven, of its nearest neighbours. This

work suggests that following a topological interaction rule (i.e. interacting with a

fixed number of neighbours) provides important robustness benefits for group cohesion

compared to a metric rule (i.e. interacting with neighbours within a fixed distance)

[4]. In addition, work is underway on techniques that can reveal in greater detail the

precise nature of the inter-individual interactions [13, 40]. However, these analyses do

not yield an explanation for why the starlings interact with seven neighbours, rather

than some other number.

1.4 Outline of Dissertation

Motivated by the desire to design robotic groups capable of robust collective be-

haviour, in this dissertation we address some of the open questions discussed in §1.1,

§1.2 and §1.3. In Chapter 2 we provide some of the necessary mathematical back-

ground and survey some known results. We then proceed in Chapter 3 to characterise

the robustness of consensus to noisy inputs on directed networks. This discussion be-

gins with a rigorous description of how to measure robustness and how this measure

can be formulated as a H2 norm related to the communication graph. Next, we are

able to relate thisH2 norm to the eigenstructure of the Laplacian matrix of the graph.

The chapter concludes with an investigation of several simple families of graphs.

Although the eigenvalue-based approach developed in Chapter 3 can measure the

performance of a graph, it provides little insight into how the graph structure affects
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the group performance. However, this desired structural insight can be gained for

undirected graphs through the notion of effective resistance, which is intimately re-

lated to the H2 norm. In Chapter 4, we propose a new notion of effective resistance

that applies to directed graphs as well as undirected ones, and bears the same rela-

tionship to the H2 norm. We follow our new definition with an investigation of its

basic properties, including its well-definedness, its dependence on connections in the

graph and its relationship to a metric. In Chapter 5 we proceed further and calculate

the effective resistance of some of the fundamental connections that arise in directed

graphs. This analysis reveals situations where our new definition of effective resis-

tance behaves in much the same way as effective resistance in undirected graphs, as

well as situations where it behaves in unexpected and unintuitive ways.

With the understanding developed in Chapters 4 and 5, we investigate in Chap-

ter 6 the ways in which a certain family of graphs, namely trees, can be rearranged

in order to improve their robustness. Our investigation begins with undirected trees,

and using the traditional notion of effective resistance we are able to develop a partial

ordering by robustness. We then use the insight gained to propose a decentralised

algorithm that can be guaranteed to improve the robustness of an undirected tree on

each application. Following this, we use our new notion of effective resistance to de-

rive a similar partial ordering for directed trees, and discuss a decentralised algorithm

that can monotonically improve robustness in this case as well.

The applicability of the theory developed in Chapter 6 rests on an assumption

made much earlier - that is, that our measure of robustness is an appropriate and

relevant measure of performance for real-world groups. In Chapter 7, we turn our at-

tention to one such group - flocks of starlings. We proceed to compute the robustness

of both actual (to the best of our knowledge) and hypothetical interaction networks

based on measurements of the positions of each bird within a flock. These computa-

tions reveal that not only do the observed interactions within starling flocks perform
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well according to our measure, but they actually optimise the tradeoff between max-

imising robustness to noise and minimising communication costs. This result offers

both a validation of our measure of group performance as well as a potential expla-

nation for the observed behaviour of the birds.

The organisation of the body of this dissertation is summarised in Figure 1.1. The

main definitions and results of each chapter are stated, and the dependencies between

chapters are indicated by arrows. Chapter 2 provides background material for all the

later chapters. Chapters 3 to 6 form a linear sequence, with each chapter building

on the material previously presented. In contrast, Chapter 7 can be read following

Chapter 3.

We complete this dissertation in Chapter 8 by summing up our results and con-

clusions, as well as looking forward to more questions that remain to be answered.
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Figure 1.1: Organisation of the body of this dissertation. Significant definitions and
results are listed for each chapter. An arrow between chapters indicates that the
material in the earlier chapter is required for the later chapter.
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Chapter 2

Background and Notation

In this chapter we outline some of the mathematical notation and definitions that

will be used throughout this dissertation. In addition, we attempt to summarise

some of the relevant details from the fields of work on which our contribution is

based. Each of these fields is an important area of study in its own right, with many

more applications than those we discuss. We make no attempt to be comprehensive

in our treatment of them. Instead, we hope to introduce the tools that will be used

throughout this dissertation and provide a brief glimpse of the extensive work that

has preceded us.

2.1 Basic Notation and Definitions

In this dissertation, we will generally represent scalar quantities using lower case

Roman or Greek letters. The only exceptions will be the capital letter N , which we

use to denote the number of agents in a multi-agent system or the number of nodes

in a graph, the capital letter W , which we use to denote a Wiener process, and (with

a subscript f) the capital letter Kf , which we use to denote the Kirchhoff index of

a graph. The set of real numbers is denoted by R, the set of complex numbers by
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C, the set of integers by Z and the set of natural numbers‡ by N. The imaginary

unit (i.e. the square root of −1) will be denoted by a non-italic i, the real part of

a complex number z ∈ C will be denoted by Re {z} and the imaginary part of z by

Im {z}.

We will represent vectors (elements of Rn or Cn for some n ∈ N) using bold

Roman or Greek letters. These will typically be lower case, with the exception of

vector-valued Wiener processes that will be denoted by W. Their scalar entries

will be denoted with the same, non-bold, letter with a single subscript denoting the

position of the entry in the vector. When a vector carries a subscript or superscript,

its scalar entries will carry these additional sub- and superscripts as well. Thus the

ith entry of the vector x is xi, while the ith entry of the vector xk is xk i. We will

use a fixed notation for several vectors that commonly occur in this dissertation. In

particular, we use e
(k)
n to denote the kth standard basis vector of Rn. That is, e

(k)
n

contains a zero in every position except the kth position, which is a 1. In addition, we

use 1n to denote the vector in Rn containing a 1 in every entry and 0 to denote the

zero vector (with size inferred from context). For the purposes of calculation, vectors

in Rn or Cn will be treated as matrices with n rows and one column. Thus a vector

can be transposed to form a matrix with a single row.

Matrices will be represented using capital Roman or Greek letters�. A matrix M

can also be written [mi,j], where mi,j denotes the scalar entry in the ith row and jth

column of M . A capital letter with an additional subscript or superscript, such as

Mp, will still refer to a matrix, and the scalar entries of this matrix will carry the

additional sub- and/or superscript(s) - i.e., Mp = [mp i,j]. Entries of a matrix whose

values are not relevant may be denoted by the symbol ?. The identity matrix in Rn×n

will be denoted by In, and a zero matrix (with dimensions inferred from context)

will be denoted by 0/ . We will use diag(k)(v) to denote a k-diagonal matrix, with the

‡We will take 0 to be a natural number, and use N+ to denote the positive integers.
�With the exceptions of N , W and Kf , which as described above have particular uses.
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entries of v along the kth diagonal‡ and zeros elsewhere (and the dimensions inferred

from the length of v and k). A diagonal matrix can be denoted by diag(v).

Other mathematical objects (such as graphs or sets) will generally be denoted

using calligraphic capital letters.

We use λi(A) to refer to the ith eigenvalue of the (square) matrix A, when arranged

in order of ascending real part (and counting algebraic multiplicity). Similarly, σi(B)

refers to the ith singular value of the matrix B when arranged in ascending order.

The transpose of a matrix will be denoted by the exponent T , while the Hermitian

transpose will be denoted by the exponent ∗. The trace of the (square) matrix A is

the sum of its diagonal elements and is denoted by tr (A). One property of the trace

function is that for an n ×m matrix B and an m × n matrix C, tr (BC) = tr (CB)

[52, §1.2, Problem 2].

A unitary matrix is a square matrix U ∈ Cn×n with an inverse equal to its Her-

mitian transpose, that is U∗U = UU∗ = In. A real unitary matrix is called an

orthogonal matrix. A square matrix A ∈ Rn×n is called normal if it commutes with

its transpose, that is AAT = ATA. Alternatively, a matrix is normal if and only if

it has an orthonormal set of n eigenvectors in Cn (and hence can be diagonalised by

a unitary matrix). This characterisation of normal matrices is known as the Spectral

Theorem [52, Theorem 2.5.4].

An important identity involving matrix inverses can be derived by examining the

inverse of a 2 × 2 block matrix. This identity is often referred to as the Matrix

Inversion Lemma, and states that for matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n and

D ∈ Rm×m, for which A−1, D−1 and (A+BD−1C)
−1

all exist, [107]

(
A+BD−1C

)−1
= A−1 − A−1B

(
D + CA−1B

)−1
CA−1. (2.1)

‡The 0th diagonal of a matrix is the main diagonal, from the top-left to bottom-right corners.
Diagonals are numbered in increasing order above the main diagonal and in decreasing order below.
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The subspace of Rn spanned by the vector 1n is referred to as the consensus

subspace, since vectors in this subspace represent consensus states (see Definition 2.1

in §2.2). The orthogonal complement of this subspace, known as the disagreement

subspace, is of particular interest in this dissertation. In the following chapters, we

will often make use of particular matrices related to the disagreement subspace. We

will make a slight abuse of notation and use 1⊥n to denote the disagreement subspace,

instead of span{1n}⊥. Let

Π := In −
1

n
1n1

T
n (2.2)

denote the orthogonal projection matrix onto 1⊥n . Since Π is an orthogonal projection

matrix (or by examining (2.2)), we can observe that it is symmetric.

It will often be instructive to characterise the action of a matrix restricted to the

subspace 1⊥n . Suppose we choose an orthonormal basis for 1⊥n and let Q ∈ R(n−1)×n

be the matrix formed with these basis vectors as rows. This is equivalent to requiring

that

[
1√
n
1n QT

]
is an orthogonal matrix, or more explicitly,

Q1n = 0, QQT = In−1 and QTQ = Π. (2.3)

Using these properties, it follows that QΠ = Q and ΠQT = QT . Then for any vector

v ∈ Rn,

v := Qv (2.4)

is a coordinate vector (with respect to the chosen basis) of the orthogonal projection

of v onto 1⊥N . Similarly, for any matrix M ∈ Rn×n,

M := QMQT (2.5)

is the (n− 1) × (n− 1) matrix whose action on 1⊥n is identical to M , in the sense

that Mv = Mv for any v ∈ 1⊥n .
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In Chapters 5 and 6, we make use of binomial coefficients, defined as

(
n

k

)
=

n!

k! (n− k)!
n, k ∈ N, 0 ≤ k ≤ n. (2.6)

Note that by this definition, we can say

(
n

0

)
= 1,

(
n

1

)
= n, and

(
n

2

)
=
n(n− 1)

2
.

2.2 Linear Consensus Dynamics

The fundamental dynamical system studied in this dissertation describes multiple

individuals reaching consensus. To pose this formally, we consider a set of N agents

in which each individual agent is a control system, with the goal of consensus being

to drive every system to the same state. The most common approach in the analysis

of consensus is to assume that each agent can be described by a scalar state, xi for

the ith agent, and consider single-integrator control systems of the form‡

ẋi = ui, (2.7)

where ui is the control signal for agent i [12, 70, 75, 85], although more complicated

systems are sometimes analysed too [5, 42, 88, 98]. There are a number of reasons

to focus on such a simple description. Firstly, any analysis of (2.7) can be easily

extended to a system consisting of a k-dimensional state with a corresponding k-

dimensional control signal. Next, this approach allows us to focus on the effects of

communication without conflating the effects of individual system dynamics. In fact,

more complicated control systems can often depend on network properties in a very

similar way to this simple system [42]. Furthermore, if the state of the system is a

‡Or the equivalent discrete-time form of xi[k + 1] = xi[k] + ∆t ui[k].
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“virtual” quantity, such as an estimate of an environmental parameter, the location

of a target or some other decision variable, then there is no reason to impose any

more complicated dynamics on each individual. Finally, even if the agents are trying

to reach consensus on some physical state, such as a direction of travel, (2.7) can

be used if we assume that each agent can directly (or at least quickly) control the

derivative of this physical state. For example, if the state in question is a direction of

travel, we assume that each agent can control their own angular velocity. This could

be achieved if each agent runs a control loop on their angular velocity that operates at

a faster time scale than the time scale on which the desired angular velocity changes.

For systems such as these, the term consensus is formalised by the definition below.

Note that according to our convention given in §2.1, we will use N to denote the

number of agents in a system.

Definition 2.1. A system containing N agents, each represented by a scalar state

xi ∈ R, i ∈ {1, 2, . . . , N}, is in consensus if

xi = xj ∀ i, j ∈ {1, 2, . . . , N} . (2.8)

Equivalently, if the system is represented by the state vector x =

[
x1 x2 · · · xN

]T
,

then the system is in consensus if

x = γ1N , (2.9)

for some γ ∈ R.

The second key assumption in the study of consensus is that each agent is able to

access the relative state values of some set of neighbours. That is, if agent i can access

the state of agent j (through sensing, broadcast or other means), then agent i can

only measure xj−xi, and not the absolute value of xj. The distinction here may seem
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semantic since if agent i knows xi as well (which is always the case if xi is a virtual

quantity and presumably possible in almost any other case) then it can compute xj.

The distinction, however, lies in the fact that a reference point is needed to measure

absolute values, while it is not needed for relative measurements. Thus agent i could

compute state values for all of its neighbours, but these values will not necessarily

agree with the neighbours’ values of their own states. For example, if xi represented a

direction, agent i might measure directions relative to magnetic north, while agent j

might have a biased compass and measure directions relative to some other heading.

Nevertheless, consensus is still possible because the relative measurement of the two

agents’ directions is the same regardless of their respective reference points.

In order to reach consensus, each agent must choose a control law, ui, that is a

function of the relative measurements, xj − xi, to which it has access. The goal of

the control law is to drive all individual states to the same value, although for pure

consensus no conditions are placed on what this value should be. There are variations

of the consensus problem, including average-consensus (convergence to the average of

the agents’ initial states), min-consensus (convergence to the minimum of the agents’

initial states) and max-consensus (convergence to the maximum of the agents’ initial

states), in which the goal is to drive all individual states to some function of the initial

states of each agent [75]. There are a number of consensus protocols that have been

proposed, including nonlinear ones [103]. However, the most common is the linear

consensus protocol [75, 85, 88, 101], which is defined as

ui =
∑
j∈Ni

ai,j (xj − xi), (2.10)

where Ni is the set of neighbours of agent i and ai,j is a positive weight that agent i

assigns to the information from agent j.

By combining the states of all agents into a single vector, x =

[
x1 x2 . . . xN

]T
,
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we can express (2.7) with control law given by (2.10) in matrix form as

ẋ = −Lx, (2.11)

where L is known as the Laplacian matrix of the communication graph (see §2.4). If

the neighbours of any agent change over time, or if the weights chosen by any agent

change, then the matrix L in (2.11) will be a function of time. Conversely, if all sets

of neighbours and weights are fixed, L will be a constant matrix.

The linear consensus protocol is popular to study due to its simplicity and the

fact that it allows any analysis to focus on the effects of the communication structure.

Additionally, when all communication is undirected‡, the linear consensus protocol

can be found as the negative gradient of the associated positive-definite Laplacian

potential [74],

Ψ(x) =
1

2
xTLx =

1

2

N∑
i,j=1

ai,j (xj − xi)2,

where ai,j = 0 if i and j are not neighbours. Thus, in this case, (2.11) is a gradi-

ent dynamical system. The Laplacian potential can be thought of as measuring the

(weighted) disagreement between all pairs of neighbouring agents. This same poten-

tial function can be used to analyse a range of nonlinear consensus protocols [74],

implying that any results from the linear protocol could be locally applied to these

nonlinear cases as well.

Much of the early work in the study of consensus focussed on understanding

the conditions under which (2.11) converges to consensus. Since (2.10) produces no

control signals when the system is in consensus, it is clear that L (whether static

or time-varying) will always have an eigenvalue of 0 associated with the eigenvector

1N . When L is constant, (2.11) will then converge to a consensus state if every other

eigenvalue of L has a positive real part [85]. This is precisely the case when the

‡That is, when i is a neighbour of j if and only if j is a neighbour of i and ai,j = aj,i.
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corresponding (static) communication graph is connected (see §2.4). When L is a

function of time, the system will have a corresponding time-varying communication

graph (i.e. a communication graph associated with the system at each point in time)

and the analysis becomes much more complicated. Various assumptions can be made

about the time-varying nature of L - for example, that it is piecewise constant or

periodic [70, 75, 85]. In general, however, to ensure consensus there must be infinitely

many consecutive bounded time intervals such that the graph formed by the union

of the communication graphs across any such interval is connected [85]. Since this

dissertation focuses on static communication graphs, we will not present any more

details of the time-varying case.

2.3 Stochastic Differential Equations

The concept of noise is ubiquitous in science and engineering, where many physical

processes are affected by fundamentally random events (usually on a very small scale)

or unknown/unknowable events (on almost any scale). In control systems, noise usu-

ally arises as a result of imperfect measurements, physical disturbances or unmodelled

dynamics. One common notion in the modelling of noise is the (Gaussian) white noise

process [3, 44]. This is understood to be a scalar, stationary, Gaussian process, ξ(t),

with zero mean and constant spectral density over the whole real axis‡. Using this

idea, noise can be introduced to a control system as an additional input signal. For

example, a state space system may be described by

ẋ(t) = Ax(t) +B1u(t) +B2ξ(t), (2.12)

where ξ(t) is a vector-valued white noise process, with each element being an indepen-

dent scalar white noise process ξi(t). Unfortunately, equations of the form of (2.12)

‡That is, a white noise process contains equal power at every frequency.
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present mathematical difficulties, which can sometimes be ignored without harm but

actually demand a more careful approach.

To demonstrate some of the issues with the idealisation of white noise, we will

first introduce a concept intimately related to the notion of white noise - the Wiener

process‡ W . The Wiener process is a mathematical concept that was created to

describe Brownian motion in the absence of friction [3, §3.1]. Precise definitions of

W may be found in [3, §2.3] and [44, §3.8.1], but intuitively, a Wiener process is a

continuous Markov process� with a Gaussian probability density function that has

zero mean and variance growing linearly with time. Thus the value of a Wiener

process at time t follows the probability density function

p(x, t) =
1√
2πt

e−
x2

2t .

Importantly, the Markov nature of the Wiener process means that increments of

W are independent - that is, for times t1 < t2 < t3, W (t1), W (t2)−W (t1) and W (t3)−

W (t2) are independent random variables [44, §3.8.1]. Furthermore, the increments

of W are stationary. That is, the distribution of W (t2) − W (t1) depends only on

t2 − t1 (it is, in fact, Gaussian with zero mean and variance of t2 − t1), and not on

the particular values of t1 or t2. In fact, it is possible to define the Wiener process

as a process that is almost certainly continuous, with independent and stationary

increments that are Gaussian with zero mean and variance equal to the time interval

of the increment [3, §3.1].

An analysis of the white noise process defined earlier shows that [3, Equation

3.2.3b] ∫ t

0

ξ(τ) dτ = W (t), (2.13)

‡Since the Wiener process is a function of time, it can also be denoted by W (t) or Wt.
�A process is Markov if, roughly speaking, knowing the entire past history of the process provides

no more information about its future values than knowing just its present value.
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which suggests that the white noise process should be the derivative of the Wiener

process. Unfortunately, the Wiener process as described above has sample functions

that are nowhere differentiable [44, §3.8.1]. Thus, white noise does not exist in the

way that we usually understand functions or random processes to exist. Although

it is possible to extend our notions of functions and random processes to include

white noise, the larger issue is that any function x(t) which satisfies the integral

form of (2.12) becomes nowhere differentiable, and so (2.12) is not a valid differential

equation. However, the integral form remains valid - that is, we can find a continuous

random process x(t) that satisfies

x(t)− x(0) = A

∫ t

0

x(τ) dτ +B1

∫ t

0

u(τ) dτ +B2

∫ t

0

ξ(τ) dτ , (2.14)

since by (2.13), the final integral can be interpreted as a vector with each entry being

an independent Wiener process.

The desire to integrate white noise processes, as seen in (2.13) and (2.14), led to

the development of the Ito calculus. First, we make the formal substitution

dW (t) := ξ(t) dt,

after which we can write a general integral of a white noise process as

∫ t

0

b(τ)ξ(τ) dτ =

∫ t

0

b(τ) dW (τ) =

∫ t

0

b(τ) dW, (2.15)

where the τ has been dropped from the final expression for convenience. Then, the

Ito stochastic integral is defined as

∫ t2

t1

b(τ) dW := ms-lim
n→∞

{
n∑
i=1

b(τi−1) [W (τi)−W (τi−1)]

}
, (2.16)
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where τ0 = t1 < τ1 < τ2 < . . . < τn = t2 and ms-lim stands for the mean-square

limit [44, §4.2.2]. In an obvious way, these definitions can be easily extended to

k-dimensional Wiener processes W in which each element is an independent scalar

Wiener process.

The use of the Ito calculus allows equations like (2.14) to be written as

x(t)− x(0) =

∫ t

0

Ax(τ) +B1u(τ) dτ +

∫ t

0

B2 dW,

or equivalently as the stochastic differential equation

dx = (Ax +B1u) dt +B2 dW .

More generally, a stochastic differential equation has the form

dx = f(x, t) dt +G(x, t) dW, (2.17)

with f a vector-valued function of x and t, and G a matrix-valued function of x and

t. Then (2.17) describes the evolution of a random process x(t) which satisfies

x(t) = x(t0) +

∫ t

t0

f(x, τ) dτ +

∫ t

t0

G(x, τ) dW. (2.18)

Intuitively, (2.17) describes the increment in x for an infinitesimal increment in time

and corresponding increment in a Wiener process.

Since stochastic differential equations describe random variables, any analysis of

solutions to (2.17) should focus on statistical properties of the solutions, rather than

sample solutions. The most complete way to do this is to study the probability density

function of x(t), p(x, t), which satisfies the Fokker-Planck Equation [44, §4.3.5]. For
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the scalar version of (2.17), the Fokker-Planck equation is

∂

∂t
p(x, t) = − ∂

∂x
[f(x, t) p(x, t)] +

1

2

∂2

∂x2
[
g(x, t)2 p(x, t)

]
,

which has the form of an advection-diffusion equation. However, the Fokker-Planck

equation becomes increasingly more complicated in higher dimensions and its solution

becomes harder to analyse. An alternative approach is to study only some of the

moments of p(x, t), such as the mean and covariance. This approach is particularly

attractive when it is known that x(t) is a Gaussian process, and is thus completely

characterised at any point in time by its mean and covariance.

One set of sufficient conditions for (2.17) to describe a Gaussian process is for

f(x, t) to be linear in x, G(x, t) to be independent of x and x(t0) to be normally

distributed or constant [3, Theorem 8.2.10]. In this case, (2.17) can be written as

dx = [A(t)x + a(t)] dt +B(t) dW . (2.19)

Then, if we let µx(t) := E [x(t)] (where E [·] denotes the expected value operator) be

the mean of x and Σx(t) := E
[
(x(t)− µx(t)) (x(t)− µx(t))T

]
be its covariance, we

can say by [3, Theorem 8.2.6] that µx is a deterministic function of time that satisfies

the differential equation

µ̇x(t) = A(t)µx(t) + a(t), (2.20)

and Σx(t) is also a deterministic function of time that satisfies

Σ̇x(t) = A(t)Σx(t) + Σx(t)A(t)T +B(t)B(t)T . (2.21)

Thus for stochastic differential equations of the form of (2.19) (and with determin-

istic or Gaussian initial conditions) we can completely characterise their behaviour

by studying (2.20) and (2.21).
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2.4 Directed Graph Theory

When studying the effects of communication structure on collective behaviour, it is

natural to represent the communication network as a graph. Individual agents can

be represented by nodes and communication links by edges. In this way, a graph

can provide a complete description of the essential elements of the communication

between agents and allow for a formal analysis. Thus, the study of the effects of

communication structure can be reduced to understanding properties of graphs, for

which a rich literature already exists. In this section we define the terminology and

concepts of graph theory that will be useful in our study of robust consensus.

There are competing definitions for many of the basic concepts of graph theory,

mainly due to varying scope amongst authors. For our purposes, we restrict our at-

tention to directed graphs as they may arise in control theory, and so our definitions

mostly follow [75], with some taken from [6]. Two notable exceptions are our defi-

nition of connectivity, which falls between the standard notions of weak and strong

connectivity but is more applicable to control over graphs [88, 114], and our defini-

tion of connections in directed graphs, which have interesting parallels to paths in

undirected graphs.

A graph (also directed graph or digraph) G consists of the triple (V , E , A), where

V = {1, 2, . . . , N} is the set of nodes, E ⊆ V×V is the set of edges and A ∈ RN×N is a

weighted adjacency matrix with non-negative entries ai,j. Each ai,j will be positive if

and only if (i, j) ∈ E , otherwise ai,j = 0. The edge (i, j) is referred to as an edge from

node i to node j. Note that by viewing E as a subset of V ×V , G can contain at most

one edge between any ordered pair of nodes. In addition, we restrict our attention to

graphs which do not contain any self-cycles (edges connecting a node to itself).

Two graphs, G1 = (V1, E1, A1) and G2 = (V2, E2, A2), are isomorphic if there

is a bijection f : V1 → V2 such that (i, j) ∈ E1 with weight ai,j if and only if

(f(i), f(j)) ∈ E2 with weight af(i),f(j) = ai,j. That is, two graphs are isomorphic if
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one can be constructed from the other by relabelling the nodes. In most applications of

graph theory (including this dissertation), the labelling of the nodes is not significant

and so we consider any isomorphic graphs to be the same graph.

The graph Gs = (Vs, Es, As) is said to be a subgraph of the graph G = (V , E , A)

if there is an injection f : Vs → V such that if (i, j) ∈ Es with weight ai,j then

(f(i), f(j)) ∈ E with weight af(i),f(j) = ai,j. Thus a subgraph of G contains some of

the nodes of G and some (or all) of the edges in G between these nodes, with edge

weights equal to those in G.

The graph G is said to be undirected if (i, j) ∈ E implies (j, i) ∈ E and ai,j = aj,i.

Thus, a graph will be undirected if and only if its adjacency matrix is symmetric. We

use the term undirected edge to refer to a pair of edges between two nodes (one in

each direction), with equal weights.

Every directed graph G = (V , E , A) has an underlying undirected graph Gu =

(Vu, Eu, Au) (also called the mirror graph [75, 83]), with Vu = V , Eu such that

(i, j) ∈ E ⇒ (i, j) and (j, i) ∈ Eu and Au = 1
2

(
A+ AT

)
. Conceptually, the un-

derlying undirected graph can be found by first replacing every edge (i, j) with the

two edges (i, j) and (j, i), each with weight
ai,j
2

. Then, if this produces multiple edges

between any pair of nodes, the edges are combined by summing their weights.

A graph can be drawn by representing each node with a distinct, non-overlapping

circle and representing each edge (i, j) by a line joining the circles for nodes i and j.

The direction of the edge is indicated by adding an arrow to the line pointing to the

circle for node j. The edge weight can be written adjacent to the line representing

an edge. If no weight is written next to an edge, it is assumed that the edge weight

is 1. An undirected edge (corresponding to (i, j) ∈ E , (j, i) ∈ E and ai,j = aj,i)

can be represented by a single line either without any arrows or with arrows in both

directions, and with the single edge weight written next to the line. A drawing of a

directed graph is shown in Figure 2.1.
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Figure 2.1: An example of a directed graph with edge weights indicated. This graph
contains pairs of nodes with no edges between them (such as {1, 8}), pairs of nodes
with a single directed edge between them (such as {2, 3}), pairs of nodes with two
directed edges between them (such as {4, 6}) and pairs of nodes with an undirected
edge between them (such as {5, 7}).

The out-degree (respectively in-degree) of node k is defined as

doutk =
N∑
j=1

ak,j

(respectively dink =
N∑
j=1

aj,k). There are two competing definitions of out-degree or

in-degree in the graph theory literature, with some authors using the terms to mean

the number of edges leaving or incident to a node [6, §1.2], and other authors using

the definition we gave above [75, 108]. These two definitions coincide for unweighted

graphs (i.e. graphs with all edge weights equal to 1) but will not, in general, be equal

for graphs with edge weights other than 1. For the purposes of this dissertation,

the sum of the edge weights is a more useful concept of degree. A graph is said to

be balanced if for every node, the out-degree and in-degree are equal. For balanced
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graphs (including all undirected graphs), the term degree is used to refer to both the

out-degree and in-degree.

G has an associated Laplacian matrix L, defined by L = D − A, where D is the

diagonal matrix of node out-degrees, that is D = diag

([
dout1 dout2 · · · doutN

]T)
=

diag (A1N). By construction, the row sums of the Laplacian matrix are always zero,

that is L1N = 0. Thus 0 is always an eigenvalue of L with corresponding eigenvector

1N . It can be shown that all the eigenvalues of L are either 0 or have positive real

part [1]. A graph will be undirected if and only if its Laplacian matrix is symmetric,

and then all the eigenvalues of L will be real and non-negative. Balanced graphs have

the particular properties that 1TNL = 0 and, as the Laplacian is then a hyperdominant

matrix with zero excess, L+ LT ≥ 0 [106, Theorem 3.7].

To allow for meaningful comparisons between directed communication graphs, we

can normalise a graph by scaling the edge weights so that each node has an out-

degree of either 1 or 0. That is, for every non-zero ai,j, we replace ai,j with 1
douti

ai,j.

This notion is similar to the way graph Laplacians are defined in [42, 60] and edge

weights chosen in [65]. Physically, this corresponds to each agent in our system

taking as an input a weighted average of the differences between its own variable

and those of its neighbours. Applying this procedure to an undirected graph may

result in a directed graph since ai,j and aj,i could be scaled by different amounts.

Conversely, the underlying undirected graph of a normalised directed graph will not

necessarily be normalised. However, it is straightforward to see that the trace of

the Laplacian of a directed graph will be equal to the trace of the Laplacian of its

underlying undirected graph, and so the two graphs will have eigenvalues limited to

the same range. Thus normalised directed graphs may be meaningfully compared to

the underlying undirected graphs of normalised digraphs.

Since every Laplacian matrix shares the common zero eigenvector 1N , LΠ = L

and ΠLT = LT for any graph (where Π is the matrix defined in (2.2)). Furthermore,
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ΠL = L for any balanced graph (including every undirected graph).

The set of neighbours of node k, denoted Nk, is the set of nodes j for which the

edge (k, j) ∈ E . Since the set of neighbours depends on the direction of edges, it is

possible for node i to be a neighbour of node j and j to not be a neighbour of node i.

A path in G is a (finite) sequence of nodes such that each node is a neighbour of

the previous one. The edges in G between each consecutive pair of nodes in the path

are considered to be the edges traversed by the path. A path is called simple if no

internal nodes (i.e. other than the initial or final nodes) are repeated. The length of a

path is the number of edges traversed. Thus a single node is considered to be a path

of length 0. If a path exists in the graph G from node i to node j, node j is said to be

reachable from node i. A cycle in G is a non-trivial closed path. That is, a cycle is a

path of length greater than zero in which the initial and final nodes are the same. A

simple cycle is a non-trivial closed simple path. Since we are only considering graphs

which do not contain self-cycles, the minimum length of a cycle is two.

An undirected path in G is a path such that there is an undirected edge in G

between each consecutive pair of nodes in the path. As above, an undirected path

is simple if no internal nodes are repeated. Similarly, an undirected cycle is a non-

trivial closed undirected path. A simple undirected cycle is a non-trivial closed simple

undirected path that does not traverse any undirected edge more than once. Thus

the minimum length of a simple undirected cycle is three.

We define a connection in G between nodes k and j to consist of two paths, one

starting at k and the other at j and which both terminate at the same node. A

direct connection between nodes k and j is a connection in which one path is trivial

(i.e. either only node k or only node j) - thus a direct connection is equivalent to a

path. Conversely, an indirect connection is one in which the terminal node of the two

paths is neither node k nor node j. Examples of direct and indirect connections are

shown in Figure 2.2. A simple connection is a connection that consists of two simple
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(a) (b)

Figure 2.2: A directed graph on 9 nodes with: (a) a direct connection (i.e. a path)
from node 7 to node 3 highlighted, and (b) an indirect connection between nodes
3 and 7 (i.e. a path from node 7 to node 2 and a path from node 3 to node 2)
highlighted.

paths. Note that in both a connection and a simple connection, multiple nodes may

be common between the two paths.

The graph G is connected if it contains a globally reachable node k; i.e. there exists

a node k such that there is a path in G from i to k for every node i. Equivalently, G

is connected if and only if every pair of nodes has a connection between them. 0 will

be a simple eigenvalue of L if and only if G is connected [1]. An undirected graph is

connected if and only if every pair of nodes has an undirected path between them.

Other notions of connectivity also exist for directed graphs. A graph is strongly

connected if every ordered pair of nodes has a path between them. Every node in a

strongly connected graph is globally reachable, and thus a strongly connected graph

is also connected. A graph is weakly connected if its underlying undirected graph is

connected. In the underlying undirected graph of a connected graph there will be

a path from any node to the globally reachable node and a path from the globally

reachable node to any other node. Thus a connected graph is also weakly connected.
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A complete graph on N nodes is a graph containing every possible edge.

A directed (respectively, undirected) path graph on N nodes is a graph containing

exactly N − 1 directed (respectively, undirected) edges that admits a simple (respec-

tively, simple undirected) path of length N − 1 containing every node in the graph.

The underlying undirected graph of a directed path graph is an undirected path

graph.

A directed (respectively, undirected) cycle graph on N nodes is a graph containing

exactly N directed (respectively, undirected) edges that admits a simple (respectively,

simple undirected) cycle of length N containing every node in the graph. The under-

lying undirected graph of a directed cycle graph is an undirected cycle graph‡.

A directed (respectively, undirected) tree is a connected graph on N nodes that

contains exactly N − 1 directed (respectively, undirected) edges. The underlying

undirected graph of a directed tree is an undirected tree. A leaf in a directed tree is

any node with zero in-degree, and a leaf in an undirected tree is any node with only

one neighbour. The root of a directed tree is a node with zero out-degree; note that

every directed tree will contain precisely one such node. A branch of a directed tree

is a path from a leaf to the root. The diameter of an undirected tree is the length of

the longest simple path in the tree. The depth of a directed tree is the length of the

longest branch.

In a directed tree, every node other than the root has one outgoing edge, and thus

one neighbour. The neighbour of node i is called its parent, and any nodes which

have node i as their parent are the children of node i. Two nodes that share the same

parent are said to be siblings. The depth of a node in a directed tree is the length of

the path between that node and the root.

A directed star graph (also called an imploding star graph) is a directed tree with

depth equal to one. An undirected star graph is an undirected tree with diame-

‡Except for a directed cycle on 2 nodes, which has an undirected path as its underlying undirected
graph
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(a) (b)

(c) (d)

Figure 2.3: Examples of 8-node graphs from different graph families: (a) a complete
graph, (b) a directed cycle graph, (c) a directed path graph and (d) a directed star
graph.

ter equal to two. The underlying undirected graph of a directed star graph is an

undirected star graph.

Some examples from the families of graphs described above are shown in Fig-

ure 2.3, and several examples of tree graphs are shown in §6.2.
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Chapter 3

Robustness of Consensus to Noise

In this chapter we study the robustness of consensus to communication noise for

directed communication topologies, which we show is naturally characterised by a H2

norm related to the system, as defined in §3.2 below. In this context, the H2 norm

measures the expected steady-state dispersion of the agents under unit-intensity white

noise. Thus systems with lower H2 norms will remain closer to consensus despite the

presence of noise. It should be noted that we do not consider the “accuracy” of the

final consensus value, merely how well it is maintained. We proceed to examine how

this H2 norm depends on the eigenvalues of the graph Laplacian and another related

matrix, providing cases where the H2 norm can be computed from the eigenvalues

and others where it can be bounded by them. We conclude the chapter with an

examination of the properties of several basic graph families. Some results in §3.1,

§3.2.1, §3.2.2 and §3.3 have been published in [114].

3.1 Noisy Consensus Dynamics

In a consensus system, noise can be introduced to each agent through communication

errors, spurious measurements, external disturbances and other means. As with any

control system, the resulting dynamics depend on where the noise enters the system.
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For example, measurement or communication errors could lead to uncertainty in

the xj − xi terms of (2.10). Alternatively, external disturbances, errors in control

implementation (such as discretisation errors) or unmodelled dynamics can lead to

uncertainty in either the ẋi or ui terms of (2.7). This type of uncertainty is particularly

prevalent when the consensus variables xi represent physical states of the agents,

and it is this situation that we focus on in this dissertation. Then, to examine the

effects of uncertainty on consensus, noise must be added to (2.11). In general, the

amount of noise could vary between agents, either due to different environmental

conditions or some agents being more “capable” than others (e.g. by having higher

quality actuators, faster processing capacity or more robust internal control loops).

However, if we assume that every agent is identical and they are all experiencing

the same environment, it is reasonable to assume that all agents experience the same

amount of noise. Therefore, we will assume that every agent is independently affected

by additive white noise of the same intensity.

Following the discussion in §2.3, the addition of independent and identical noise

to (2.11) leads to the following stochastic differential equation

dx(t) = −Lx(t) dt + σIN dW, (3.1)

where dW represents an N -dimensional Wiener increment and σ is the intensity of

the noise. For the rest of this dissertation, we will assume (unless otherwise specified)

that the communication graph of the system is fixed, and hence that L does not

change with time.

If we let µx(t) := E [x(t)] and Σx(t) := E
[
(x(t)− µx(t)) (x(t)− µx(t))T

]
be the

mean and covariance of x(t), we know from (2.20) and (2.21) that

µ̇x(t) = −Lµx(t) and
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Σ̇x(t) = −LΣx(t)− Σx(t)LT + σ2IN .

Therefore, following the discussion in §2.2, the mean of x(t) will be guaranteed to

converge to consensus if and only if the communication graph is connected. However,

we know that L has a zero eigenvalue and if we let u be the normalised left eigenvector

of L with eigenvalue 0 (that is, uTL = 0T and uTu = 1), we observe that

d

dt

(
uTΣx(t)u

)
= σ2.

Thus the covariance matrix of x(t) grows unbounded with time.

Since L always has a zero eigenvector of 1N , we can gain additional insight by

examining (3.1) on the disagreement subspace, 1⊥N . To do this, we first define the

average and disagreement of our system.

Definition 3.1. Let x =

[
x1 x2 · · · xN

]T
be the state of a consensus system

containing N agents. Then the average system state is

xave :=
1

N
1TNx, (3.2)

and the disagreement state is

y := Qx, (3.3)

where Q ∈ R(N−1)×N is a matrix whose rows form an orthonormal basis for the

disagreement subspace. Thus Q is a matrix satisfying (2.3).

To understand why we call y the disagreement state, we can interpret (3.3) as

stating that y is a coordinate vector of the orthogonal projection of x onto 1⊥N . Using

(2.3) and (2.2), we observe that QTy (the disagreement state expressed in terms of

the standard basis on RN) is orthogonal to 1N ,

x = xave1N +QTy, (3.4)
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and

y = 0⇔ x = xave1N . (3.5)

Next, we can define the reduced Laplacian matrix, as an (N −1)× (N −1) matrix

whose action on the disagreement subspace is identical to that of L.

Definition 3.2. The reduced Laplacian matrix, L, of a graph, G is

L := QLQT , (3.6)

where L is the Laplacian matrix of G and Q ∈ R(N−1)×N satisfies (2.3).

Then we can use (3.2), (3.3) and (3.4) to rewrite (3.1) as the system of stochastic

differential equations

dxave(t) = − 1

N
1TNLQ

Ty(t) dt +
σ

N
1TN dW (3.7)

dy(t) = −Ly(t) dt + σQdW . (3.8)

In this way we observe that the dynamics of the disagreement state are decoupled

from the dynamics of the average state (although for unbalanced graphs in which

1TNL 6= 0, the dynamics of the average state depend on the disagreement state).

Using the properties of y noted above, we can measure the distance of the system

from consensus using the length of y.

Definition 3.3. Let x =

[
x1 x2 · · · xN

]T
be the state of a consensus system con-

taining N agents, and y be the disagreement state as given by (3.3). The dispersion

of the system, δ is

δ := ‖y‖2 =
(
yTy

) 1
2 . (3.9)

Before proceeding further, we note that y and L are not unique, since we can

compute them using any matrix Q that satisfies (2.3). However, if Q and Q′ both
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satisfy (2.3), we can define W := Q′QT . Then Q′ = WQ and W is orthogonal.

Therefore, if y′ := Q′x = Wy, we have that y′Ty′ = yTW TWy = yTy and thus the

dispersion is invariant to the choice of Q.

In order to examine the dynamics of the disagreement state, (3.8), we first deter-

mine how the eigenvalues of L are related to those of L.

Lemma 3.1. L has the same eigenvalues as L except for a single zero eigenvalue.

Proof. Let us define the matrix

V :=

 1√
N

1TN

Q

 .
Then V is orthogonal (i.e. V −1 = V T ), since

V V T =

 1√
N

1TN

Q

[ 1√
N

1N QT

]
=

1 0T

0 IN−1

 = IN , and

V TV =

[
1√
N

1N QT

] 1√
N

1TN

Q

 =
1

N
1N1TN + IN −

1

N
1N1TN = IN .

Since the eigenvalues of a matrix are unchanged under a similarity transform [52,

Corollary 1.3.4], the eigenvalues of L and V LV T are the same. In particular, we have

V LV T =

 QLQT 0/

1√
N

1TNLQ
T 0

 =

 L 0/

1√
N

1TNLQ
T 0

 , (3.10)

where we used the fact that L1N = 0. Since (3.10) is a block matrix, the eigenvalues

of L are the solutions of

λ det
(
λIN−1 − L

)
= 0.

We conclude that L has the same eigenvalues of L except for a single zero eigenvalue.
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Corollary 3.1. The reduced Laplacian matrix, L, of a graph, G, is invertible if and

only if G is connected.

Proof. We know that 0 is a simple eigenvalue of the Laplacian matrix L if and only if

G is connected [1]. Thus by Lemma 3.1, L will have no 0 eigenvalues precisely when

G is connected.

Lemma 3.1 can be used to make the following observation about the disagreement

state dynamics.

Proposition 3.1. The disagreement state of a consensus system converges to a sta-

tionary distribution if and only if the communication graph is connected. In this case,

the stationary distribution is Gaussian with zero mean and covariance matrix

Σstationary := lim
t→∞

E
[
y(t)y(t)T

]
=: σ2Σ, (3.11)

where Σ is the unique positive-definite solution of the Lyapunov equation

LΣ + ΣL
T

= IN−1. (3.12)

Proof. We know that all the eigenvalues of L are either 0 or have positive real parts,

and 0 is a simple eigenvalue of L if and only if the corresponding graph is connected

[1]. Thus by Lemma 3.1, −L will be Hurwitz‡ precisely when the communication

graph is connected.

Now, if we let µy(t) := E [y(t)] and Σy(t) := E
[(

y(t)− µy(t)
) (

y(t)− µy(t)
)T]

be the mean and covariance of y(t), we know by [3, Theorem 8.2.10] that y(t) will be

a Gaussian process with

µ̇y(t) = −Lµy(t) and (3.13)

‡A matrix is Hurwitz if every eigenvalue has negative real part.
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Σ̇y(t) = −LΣy(t)− Σy(t)L
T

+ σ2IN−1. (3.14)

Now, suppose that the communication graph is not connected, and so −L is not

Hurwitz. Then L must have a zero eigenvalue, with corresponding normalised left

eigenvector û. In this case, we can observe from (3.14) that

d

dt

(
ûTΣy(t)û

)
= σ2.

Thus that the covariance matrix of y(t) grows unbounded with time and hence cannot

converge.

Next, suppose that the communication graph is connected, and so −L is Hurwitz.

Since the solution of (3.13) is

µy(t) = e−Ltµy(0),

and −L is Hurwitz, we can say that

lim
t→∞

µy(t) = 0. (3.15)

Therefore, if the two limits exist, we observe that

Σstationary = lim
t→∞

Σy(t).

Next, we can write the solution of (3.14) as

Σy(t) = σ2

∫ t

0

e−L(t−τ)e−L
T
(t−τ) dτ + e−LtΣy(0)e−L

T
t.
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Since −L is Hurwitz, we observe that

lim
t→∞

e−LtΣy(0)e−L
T
t = 0/ ,

and thus (after a change of variables in the integral),

lim
t→∞

Σy(t) = Σstationary = σ2

∫ ∞
0

e−Lte−L
T
t dt. (3.16)

Using the fact that −L is Hurwitz once again, we know that this integral converges to

the unique positive definite solution Σ to the Lyapunov equation (3.12) [37, Theorem

4.1].

Therefore, since y(t) is a Gaussian process with a mean and covariance matrix that

converge to constant values, it must converge to a stationary Gaussian distribution

with these parameters.

Remark 3.1. From the proof of Proposition 3.1, the rate of convergence of y to its

stationary distribution for a connected graph will clearly be governed by the rate at

which e−Lt converges to 0/ . This in turn depends on the real parts of the eigenvalues

of −L and so will be limited by the eigenvalue whose exponential decays at the slowest

rate - that is, the eigenvalue of L with smallest real part. By Lemma 3.1, this is the

eigenvalue of L with second-smallest real part, or λ2(L). Furthermore, we know that

when the graph is disconnected and no stationary distribution is reached, λ2(L) = 0.

Therefore, we will refer to the real part of λ2(L) as the convergence speed of the

graph. Note that by (2.11), this also represents the speed at which a deterministic

consensus system on the same graph converges to consensus. For undirected graphs,

this corresponds to the standard definition of the algebraic connectivity of the graph.

It is worth noting that the definition of algebraic connectivity for directed graphs, as

given in Definition 3.6 below, does not correspond to the speed of convergence.
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Proposition 3.1 tells us that for noisy consensus systems with connected commu-

nication graphs, the system state will converge to a stationary distribution centred

on xave1N , while (because the covariance of the system grows unbounded with time)

xave1N performs a random walk along the consensus subspace. From (3.7), we observe

that when the communication graph is balanced, xave will undergo pure Brownian mo-

tion with noise intensity σ
N

. However, when the graph is unbalanced, the disagreement

state will bias the random walk of xave.

When the communication graph is disconnected, the proof of Proposition 3.1

demonstrates that the expected disagreement cannot be guaranteed to converge to

0 and furthermore that the covariance of the disagreement grows unbounded with

time. Thus for disconnected communication graphs, noise will always tend to drive

the system away from consensus.

3.2 Robustness and the H2 Norm

3.2.1 The H2 norm as a measure of robustness

We now seek to characterise the robustness of the consensus dynamics to noisy in-

puts. Since the dispersion of the system measures the distance to consensus, it is an

appropriate measure of how well the system is able to filter noise and remain close

to consensus. However, we saw in Proposition 3.1 that the distribution of the dis-

agreement state depends on the intensity of the noise σ. Since σ is a property of the

system or environment, rather than of the communication structure, we can measure

the robustness of the communication graph by assuming that σ = 1. Then a system

will be robust when it has a low value of dispersion and not robust when its dispersion

is large. To avoid dependence on initial conditions, we will only examine dispersion in

the limit as t→∞ (note that Proposition 3.1 implies that if y(0) is drawn from the

limiting distribution of y, then the distribution of y will be stationary for all values
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of t ≥ 0).

Definition 3.4. For the consensus system (3.1) with σ = 1, disagreement state given

by Definition 3.1 and dispersion given by Definition 3.3, let

η := lim
t→∞

(
E
[
δ(t)2

]) 1
2 , (3.17)

when this limit exists and η := ∞ otherwise. Then the H2 robustness of the system

is given by the inverse of η (or 0 when η =∞).

Note that by our definition, η2 corresponds to the steady-state mean-square devia-

tion used in [111]. Furthermore, since we demonstrated above that δ(t) is independent

of our choice of Q, η must also be independent of the choice of Q.

We use the term H2 in our definition of robustness since, as we can now show, η

is the H2 norm of a system corresponding to the disagreement state dynamics.

Proposition 3.2. The value of η from Definition 3.4 is precisely the H2 norm of the

state-space system P:

ẏ = −Ly +Qw

z = IN−1y.

(3.18)

Thus,

η =


[tr (Σ)]

1
2 if the graph is connected

∞ otherwise,

(3.19)

where Σ is the solution to the Lyapunov equation (3.12).

Proof. Since yT (t)y(t) is a scalar quantity, we know that yT (t)y(t) = tr
(
yT (t)y(t)

)
=

tr
(
y(t)yT (t)

)
. Thus

δ(t) =
[
tr
(
y(t)yT (t)

)] 1
2 ,

and so

η =
[
tr
(

lim
t→∞

E
[
y(t)yT (t)

])] 1
2
,
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which, by Proposition 3.1 and for σ = 1, means that η is given by (3.19).

Now, a standard definition [37, Chapter 6] of the H2 norm of the state-space

system S:

ẋ = Ax +Bu

z = Cx,

with A Hurwitz, is

‖S‖2 =
[
tr(CXCT )

] 1
2 ,

where X is the unique positive-definite solution of the Lyapunov equation [37, Propo-

sition 4.5]

AX +XAT = −BBT .

If A is not Hurwitz, then ‖S‖2 =∞.

Thus, η is precisely the H2 norm of P as defined in (3.18).

Proposition 3.2 is unsurprising, since one common interpretation of theH2 norm is

the steady-state standard deviation of the output of a system driven by unit-intensity

white noise [37, §6.1]. In this case, (3.18) represents an ordinary differential equation

interpretation of (3.8) (with white noise as the input signal) and the disagreement

state as the output.

Since η depends only on L, and hence only on the communication graph, through-

out this dissertation we will refer to η as the H2 norm of the graph. Similarly, we will

refer to the H2 robustness of a consensus system as the H2 robustness of the graph.

In accordance with our original motivation for using η to measure robustness, η

can be thought of as a distance in RN - i.e. how far away from a consensus state

you could hope to find the system. Because of this, however, the value of η can be

expected to be proportional to
√
N in the same way that ‖1N‖2 =

√
N . Therefore, if
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we want to compare systems with different numbers of agents (or graphs with different

numbers of nodes), we must adjust accordingly.

Definition 3.5. The nodal H2 norm of the consensus system (3.1) is given by
η√
N

,

and the nodal H2 robustness by

√
N

η
(or 0 when η =∞), where η is calculated as in

(3.19).

Thus the nodal H2 norm or nodal H2 robustness can be thought of as the average

contributions from each node to the overall H2 norm or H2 robustness, respectively.

Alternatively, since Σ is a covariance matrix with variances along its diagonal, the

nodal H2 norm can be thought of as an average standard deviation of each node from

consensus. This provides an interesting parallel to the node certainty index used in

[83, 84].

3.2.2 The H2 norm for graphs with normal reduced Laplacian

matrices

We can use Proposition 3.2 to derive a relationship between the eigenvalues of L and

the H2 norm of the graph when the reduced Laplacian matrix L is normal. Normal

matrices are particularly easy to work with since we know by the Spectral Theorem

that they can be diagonalised using unitary matrices. We can use this fact to solve

the Lyapunov equation (3.12) and thus obtain an expression for the H2 norm of the

graph.

First, we seek to characterise those graphs with normal reduced Laplacians.

Lemma 3.2. L is normal if and only if ΠL is normal, that is, if and only if ΠLLTΠ =

LTΠL.

Proof. By definition, ΠL is normal if (ΠL) (ΠL)T = (ΠL)T (ΠL), that is, if ΠLLTΠ =

LTΠ2L (as Π is symmetric). However, Π is a projection matrix, so Π2 = Π. Thus
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ΠL being normal is equivalent to

ΠLLTΠ = LTΠL. (3.20)

Now, since L = QLQT , L being normal is equivalent to

QLQTQLTQT = QLTQTQLQT ,

which reduces to

QLLTQT = QLTΠLQT (3.21)

since QTQ = Π and LΠ = L.

Suppose L is normal. Then, pre-multiplying (3.21) by QT and post-multiplying

by Q gives us

ΠLLTΠ = ΠLTΠLΠ.

However, LΠ = L and ΠLT = LT . Therefore, we obtain (3.20) and so ΠL is normal.

Suppose ΠL is normal. Then, pre-multiplying (3.20) by Q and post-multiplying

by QT gives us

QQTQLLTQTQQT = QLTΠLQT .

But QQT = IN−1, and so we obtain (3.21). Thus, L is normal.

Although Lemma 3.2 gives us the most general condition on L for L to be normal,

it is instructive to consider some special graphs that have normal reduced Laplacians.

Incidentally, Lemma 3.2 also shows that the normality of L does not depend on a

particular choice of matrix Q.

Lemma 3.3. Let G be a connected graph with a normal Laplacian matrix. Then G

is balanced.

Proof. Suppose L is the Laplacian matrix of a connected graph G and that LLT =
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LTL. Since G is connected, the 0 eigenvalue of L has multiplicity 1. Hence the only

vectors v for which Lv = 0 are v = β1N , β ∈ R. Since LTL1N = 0 we know by the

normality of L that LLT1N = 0. Therefore, we conclude that

LT1N = β1N , β ∈ R. (3.22)

Premultiplying both sides of (3.22) by 1TN (and using the fact that 1TNL
T = 0T ),

we obtain

Nβ = 0

⇒ β = 0.

Thus (3.22) reduces to LT1N = 0, and so the graph must be balanced.

Note that the converse to Lemma 3.3 is not true - that is, a balanced digraph will

not necessarily have a normal Laplacian matrix. For example, consider the graph

shown in Figure 3.1. This graph has Laplacian matrix

L =



2 −1 −1 0 0

0 2 −1 0 −1

0 −1 2 −1 0

−1 0 0 2 −1

−1 0 0 −1 2


.

Then a straightforward calculation shows that this graph is balanced - that is, 1TNL =

0T - but L is not normal - that is, LLT 6= LTL. In fact, since balanced graphs may be

formed through a weight-balancing algorithm (e.g., see [20]) that would be expected to

result in many different edge weights used throughout the graph, it could be expected

that “most” balanced digraphs encountered in practice will not have normal Laplacian

matrices.
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Figure 3.1: A balanced graph on 5 nodes with a Laplacian matrix that is not normal.

Lemma 3.4. If L is a normal Laplacian matrix of a connected graph then L is also

normal.

Proof. Suppose L is the Laplacian matrix of a connected graph and that LLT = LTL.

By Lemma 3.3 we know that LT1N = 0, or equivalently, 1TNL = 0T . Then

ΠL =

(
IN −

1

N
1N1TN

)
L = L.

Thus ΠL is normal and so, by Lemma 3.2, L is normal as well.

Any undirected graph will have a symmetric Laplacian matrix, which is trivially

normal. Thus we know that L will be normal for all undirected graphs. In addition to

this, there exist directed graphs with normal Laplacians, including all circulant graphs

(for example, see §3.3.2), which by Lemma 3.4 have normal reduced Laplacians.

Furthermore, some directed graphs do not have normal Laplacians but still satisfy

the condition of Lemma 3.2 (for example, see §3.3.4).

Now we are able to derive a formula for the H2 norm of a graph with normal L

in terms of the non-zero eigenvalues of the Laplacian matrix.
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Proposition 3.3. Suppose L is the Laplacian matrix of a connected graph with eigen-

values λ1 = 0 < Re{λ2} ≤ Re{λ3} ≤ . . . ≤ Re{λN}, and that ΠL is normal. Then

the H2 norm of the graph is

η =

(
N∑
i=2

1

2 Re{λi}

) 1
2

. (3.23)

Proof. By Lemma 3.2, we know that L is normal. Furthermore, by Lemma 3.1 the

eigenvalues of L are λ2, λ3, . . . , λN . Therefore, by the Spectral Theorem, we can find

a unitary matrix U ∈ C(N−1)×(N−1) such that L = UΛU∗, where

Λ = diag

([
λ2 · · · λN

]T)
.

Note that since L is real, L
T

= L
∗

= UΛ∗U∗.

Now, to find the H2 norm, we must solve the Lyapunov equation

UΛU∗Σ + ΣUΛ∗U∗ = IN−1.

Rearranging, we get

ΛU∗ΣU + U∗ΣUΛ∗ = IN−1.

Now, let Γ := U∗ΣU , and note that

tr (Σ) = tr (UΓU∗) = tr (U∗UΓ) = tr (Γ) .

Thus, η = [tr(Γ)]
1
2 , where

ΛΓ + ΓΛ∗ = IN−1.

Since Λ and IN−1 are both diagonal matrices, Γ must be a diagonal matrix as well.
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Thus Γ and Λ commute and we can write

ΓΛ + ΓΛ∗ = Γ (2 Re{Λ}) = IN−1,

which implies

Γ = (2 Re{Λ})−1 .

Thus Γ is the diagonal matrix with entries 1
2Re{λ2} , . . . ,

1
2Re{λN}

and we conclude

that

η =

(
N∑
i=2

1

2 Re{λi}

) 1
2

.

One important property of undirected graphs is the effective resistance, which

defines a distance function between nodes of the graph [56]. The sum of all distinct

effective resistances is known as the Kirchhoff index of the graph, and is denoted by

Kf . This is related to the eigenvalues of the graph Laplacian by the formula [21, 112]

Kf = N
N∑
j=2

1

λj
. (3.24)

A comparison between (3.24) and (3.23) reveals that for undirected graphs,

η =

(
Kf

2N

) 1
2

, (3.25)

which implies that for undirected graphs with equal numbers of nodes, the Kirchhoff

index is equivalent to the H2 norm in that one can be computed from the other,

and any ordering induced by one measure is the same as the ordering induced by the

other. Further implications of this relationship will be examined in more detail in

Chapters 4, 5 and 6.
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3.2.3 Bounds on the H2 norm of any graph

Equation (3.23) does not hold for every graph (e.g., see §3.3.3). In fact, the H2 norm

of a graph cannot depend only on the Laplacian eigenvalues since there exist graphs

with the same set of Laplacian eigenvalues but different H2 norms (e.g., see §3.3.3 and

§3.3.4). Instead, we will show that the formula for the H2 norm for normal graphs

provides a lower bound to the H2 norm of any graph. To do this, we will use the fact

that the solution to the Lyapunov equation (3.12) can be written as [37, Theorem

4.1]

Σ =

∫ ∞
0

e−Lte−L
T
t dt (3.26)

and therefore, by (3.19), we can express the H2 norm as

η2 =

∫ ∞
0

tr
(

e−Lte−L
T
t
)
dt. (3.27)

Proposition 3.4. Suppose L is the Laplacian matrix of a connected graph with eigen-

values λ1 = 0 < Re{λ2} ≤ Re{λ3} ≤ . . . ≤ Re{λN}. Then

η ≥

(
N∑
i=2

1

2 Re{λi}

) 1
2

(3.28)

where η is the H2 norm of system (3.8).

Proof. We start with an inequality due to Weyl [105]. For any square matrix A ∈

Rk×k,
k∑
i=1

σ2
i (A) ≥

k∑
i=1

|λi(A)|2.

In particular, we have that

k∑
i=1

σ2
i

(
eA
)
≥

k∑
i=1

∣∣λi (eA)∣∣2.
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However,
∣∣λi (eA)∣∣ = eRe{λi(A)} and by the definition of singular values [52, §7.3],

k∑
i=1

σ2
i

(
eA
)

= tr
(

eAeA
T
)

. Therefore, we can say

tr
(

eAeA
T
)
≥

k∑
i=1

e2Re{λi(A)}.

Letting A = −Lt, we obtain

tr
(

e−Lte−L
T
t
)
≥

N−1∑
i=1

e−2Re{λi(L)}t.

This inequality will still hold when we integrate with respect to t, since both sides

are positive for all values of t. Thus

∫ ∞
0

tr
(

e−Lte−L
T
t
)
dt ≥

∫ ∞
0

N−1∑
i=1

e−2Re{λi(L)}t dt.

Evaluating the integral on the right hand side and substituting from (3.27) for the

left hand side gives us

η2 ≥
N−1∑
i=1

1

2 Re
{
λi
(
L
)} ,

and hence (by Lemma 3.1),

η ≥

(
N∑
i=2

1

2 Re{λi}

) 1
2

.

In order to derive an upper bound for the H2 norm, we must first introduce the

definition of algebraic connectivity for directed graphs [108].

Definition 3.6. The algebraic connectivity of a graph is the real number α(G), com-

puted as

α(G) = min
i
λi

(
1

2
Q
(
L+ LT

)
QT

)
= min

i
λi

(
1

2

(
L+ L

T
))

(3.29)
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Using this definition, it can be shown that a graph that is not connected will

have a non-positive algebraic connectivity. Furthermore, any undirected graph that

is connected will have a positive algebraic connectivity. However, there do exist con-

nected directed graphs (even strongly connected graphs) that have negative algebraic

connectivities [108]. Our upper bound on the H2 norm of a graph will only apply to

those graphs with positive algebraic connectivity.

Proposition 3.5. Suppose L is the Laplacian matrix of a connected graph with pos-

itive algebraic connectivity. Then

η ≤

(
N−1∑
i=1

1

2λi
(
Lsym

)) 1
2

(3.30)

where η is the H2 norm of the graph and Lsym = 1
2

(
L+ L

T
)

.

Proof. We start with an inequality due to Bernstein [10]. For any matrix A,

tr
(

eAeA
T
)
≤ tr

(
eA+A

T
)
.

Letting A = −Lt, we obtain

tr
(

e−Lte−L
T
t
)
≤ tr

(
e
−
(
L+L

T
)
t

)
= tr

(
e−2Lsymt

)
.

This inequality will still hold when we integrate with respect to t, since both sides

are positive for all values of t. Thus

∫ ∞
0

tr
(

e−Lte−L
T
t
)
dt ≤

∫ ∞
0

tr
(

e−2Lsymt
)
dt.

Exchanging the trace and the integral on the right hand side and substituting from
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(3.27) for the left hand side gives us

η2 ≤ tr

(∫ ∞
0

e−2Lsymt dt

)
.

Now, the integral on the right hand side will be finite precisely when −Lsym is Hurwitz

[37, §4.1]. Since Lsym is symmetric, this is equivalent to all eigenvalues of Lsym being

positive. However, the smallest eigenvalue of Lsym is the algebraic connectivity of the

graph. Therefore, when the algebraic connectivity is positive, we can say

η2 ≤ tr

(
1

2
L
−1
sym

)
≤

N−1∑
i=1

1

2λi
(
Lsym

) ,
and so

η ≤

(
N−1∑
i=1

1

2λi
(
Lsym

)) 1
2

.

We can see that the bounds derived in Propositions 3.4 and 3.5 are both tight

for graphs with normal reduced Laplacians. By Proposition 3.3, (3.28) becomes an

equality when L is normal. In addition, when L is normal, it can be written as

L = UΛU∗,

where U is a unitary matrix and Λ is the diagonal matrix containing the eigenvalues

of L [52, Theorem 2.5.4]. Then (since L is real), L
T

= L
∗

and so

Lsym =
1

2
U (Λ + Λ∗)U∗.

Thus the eigenvalues of Lsym are the real parts of the eigenvalues of L and so by
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Proposition 3.3, (3.30) also becomes an equality.

Finally, we can derive an absolute lower bound for the H2 norm of any graph,

provided that its Laplacian matrix is normalised (note that for unnormalised Lapla-

cians, the H2 norm of any connected graph can be made arbitrarily small by simply

scaling the whole matrix).

Proposition 3.6. Suppose a graph G on N nodes has a normalised Laplacian matrix

L. Then

η ≥ N − 1√
2N

, (3.31)

where η is the H2 norm of G, computed as in (3.19).

Proof. If G is disconnected, η =∞ by (3.19) and so (3.31) trivially holds. Therefore,

in the following we will assume that G is connected. Now suppose that G has a

normalised Laplacian matrix L. Then the out-degree of any node in G is either 0 or

1 (see §2.4). Thus the diagonal entries of L are all either 0 or 1 and so

tr (L) ≤ N.

But the trace of a matrix is equal to the sum of its eigenvalues [52, Theorem 1.2.12],

and thus we must have
N∑
i=1

λi (L) ≤ N. (3.32)

Furthermore, we know that λ1 (L) = 0 and that all eigenvalues of L must be either

real or appear as complex conjugate pairs [52, §1.2]. Thus, if we let

µi := Re {λi (L)} ,

we can rewrite (3.32) as
N∑
i=2

µi ≤ N, (3.33)
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where µi ≥ 0 ∀i since L is a Laplacian matrix.

In order to derive (3.31), we seek to find the smallest possible value of the lower

bound (3.28) under the constraint (3.33). Since the right hand side of (3.28) is always

positive, minimising this expression is equivalent to minimising its square. Thus, we

seek to minimise
N∑
i=2

1

2µi
,

subject to (3.33).

Following the approach of Kuhn and Tucker [57], we let µ :=

[
µ2 · · · µN

]T
,

and form the Lagrangian function

φ (µ, ρ) := −
N∑
i=2

1

2µi
+ ρ

(
N −

N∑
i=2

µi

)
. (3.34)

Then, for our choice of φ and according to the Kuhn-Tucker conditions [57], µ̂ ∈ RN−1

will solve our original problem if and only if ∃ ρ̂ ∈ R such that

∂ φ

∂µi

∣∣∣∣
µ=µ̂,ρ=ρ̂

≤ 0 ∀ i,

(
∂ φ

∂µ

∣∣∣∣
µ=µ̂,ρ=ρ̂

)
µ̂ = 0, µ̂i ≥ 0 ∀ i, and (3.35)

∂ φ

∂ρ

∣∣∣∣
µ=µ̂,ρ=ρ̂

≥ 0,

(
∂ φ

∂ρ

∣∣∣∣
µ=µ̂,ρ=ρ̂

)
ρ̂ = 0, ρ̂ ≥ 0. (3.36)

Now,

∂ φ

∂µi
=

1

2µ2
i

− ρ, i ∈ {2, 3, . . . , N} ,

and so to satisfy (3.35), we must have

µ̂i =
1√
2ρ̂
, i ∈ {2, 3, . . . , N} . (3.37)
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Then ρ̂ cannot equal 0, and since

∂ φ

∂ρ
= N −

N∑
i=2

µi,

to satisfy (3.36) we must have
N∑
i=2

µ̂i = N. (3.38)

Substituting (3.37) into (3.38), we find the solution

ρ̂ =
(N − 1)2

2N2
,

µ̂i =
N

N − 1
, i ∈ {2, 3, . . . , N} .

(3.39)

Thus for any normalised Laplacian matrix, we can say that

(
N∑
i=2

1

2 Re{λi}

) 1
2

≥ N − 1√
2N

,

which, along with Proposition 3.4, implies (3.31).

We will see in §3.3.1 that the bound stated in Proposition 3.6 is also tight, since

it is equal to the H2 norm of the complete graph.

3.3 Properties of Families of Graphs

In addition to the H2 norm, the speed of convergence to consensus is an impor-

tant performance measure for a consensus system [75, 110]. A graph with “good”

robustness will have a small value of the H2 norm, while a graph with “good” conver-

gence speed will have a large value for the real part of the second-smallest eigenvalue.

Based on Propositions 3.3 and 3.4, these two features are not necessarily incompat-

ible, although they cannot be guaranteed to be complementary. In this section we
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compare the properties of families of directed and undirected graphs to investigate

the behaviour of these two measures of performance.

3.3.1 Complete graphs

The complete graph on N nodes contains an edge connecting every pair of nodes (e.g.,

see Figure 2.3(a)). In its most common form, every edge has unit weight and so its

Laplacian matrix would equal NI − 1N1TN = NΠ (by (2.2)). In its normalised form,

every edge has a weight of 1
N−1 and thus the complete graph has Laplacian matrix

Lcomplete
N =

N

N − 1
Π.

The complete graph is undirected and so Lcomplete
N is symmetric, and hence normal.

Now, since Π is the orthogonal projection matrix onto 1⊥N , we know that

Π1N = 0 and Πv = v

for any vector v ∈ 1⊥N . Thus

Lcomplete
N 1N = 0 and Lcomplete

N v =
N

N − 1
v

for any vector v ∈ 1⊥N , and so the eigenvalues of Lcomplete
N are

λi

(
Lcomplete
N

)
=


0 i = 1

N

N − 1
2 ≤ i ≤ N.

(3.40)

Therefore, by substituting (3.40) into (3.23), we see that the complete graph has

H2 norm

ηcomplete =
N − 1√

2N
,
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and so by Definition 3.5, the nodal H2 norm is

N − 1

N
√

2
,

which converges to 1√
2

as N →∞. Furthermore, by Remark 3.1, the complete graph

has convergence speed

λ2

(
Lcomplete
N

)
=

N

N − 1
. (3.41)

Upon comparison with the lower bound derived in Proposition 3.6, the complete

graph has the minimum possible H2 norm for any graph with a normalised Lapla-

cian matrix. It is also straightforward to observe that the convergence speed of the

complete graph is the maximum possible for any graph with a normalised Laplacian.

Lemma 3.5. Suppose a graph G on N nodes has a normalised Laplacian matrix L.

Then

Re {λ2(L)} ≤ N

N − 1
. (3.42)

Proof. For the same reasons given in the proof of Proposition 3.6, we know that any

normalised Laplacian matrix will have a trace of at most N , and the trace of a real

Laplacian matrix is given by

tr (L) =
N∑
i=2

Re {λi (L)}

Then, since Re {λ3(L)} , . . . ,Re {λN(L)} are all greater than or equal to Re {λ2(L)},

we observe that

(N − 1) Re {λ2(L)} ≤
N∑
i=2

Re {λi (L)} ≤ N,

from which (3.42) follows.
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3.3.2 Cycle graphs

The directed cycle graph on N nodes consists of a closed “chain” of nodes with each

node connected to the next node in the chain (e.g., see Figure 2.3(b)). Since every

node has a single out-going edge, in its normalised form the directed cycle graph will

have a unit weight on every edge. If we traverse the cycle in the reverse direction of

the edges and label the nodes in the order they appear, the Laplacian matrix of the

directed cycle graph will be

Lcycle
N =



1 0 · · · 0 −1

−1 1 · · · 0 0

0 −1
. . .

...
...

...
...

. . . 1 0

0 0 · · · −1 1


. (3.43)

Now, Lcycle
N is a circulant matrix, and all circulant matrices are normal [46, §3.1].

Furthermore, we can derive an analytical expression for the eigenvalues of Lcycle
N .

Lemma 3.6. Let Lcycle
N be the Laplacian matrix of the directed cycle graph on N

nodes, as given by (3.43). Then Lcycle
N has eigenvalues

λk

(
Lcycle
N

)
= 1 +


eiπ(1−

k
N ) k even

eiπ(1+
k−1
N ) k odd,

(3.44)

for k = 1, 2, . . . , N .

Proof. The proof is given in Appendix A.1.1.

Since Lcycle
N is a normal matrix, we know from Lemmas 3.4 and 3.2 that ΠLcycle

N

is normal. Thus we can write the eigenvalues in the form given in (A.2) and use
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Proposition 3.3 to obtain

ηcycle =

N−1∑
j=1

1

2 Re
{

1 + eiπ(1−
2j
N )
}
 1

2

=
1√
2

[
N−1∑
j=1

1

1 + cos
(
π
(
1− 2j

N

))] 1
2

=
1√
2

[
N−1∑
j=1

1

2 sin2
(
jπ
N

)] 1
2

=
1

2

[
N−1∑
j=1

csc2
(
jπ

N

)] 1
2

.

But by [50, Equation 24.1.2],

N−1∑
j=1

csc2
(
jπ

N

)
=
N2 − 1

3
,

and so we conclude that

ηcycle =

√
N2 − 1

12
.

Therefore, by Definition 3.5, the nodal H2 norm is

√
N2 − 1

12N
,

which grows as
√

N
12

for large N .

By Remark 3.1, the convergence speed of the directed cycle is

Re
{
λ2

(
Lcycle
N

)}
= Re

{
1 + eiπ(1−

2
N )
}

= 1 + cos

(
π − 2π

N

)
= 2 sin2

( π
N

)
.
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We can also consider the undirected form of the cycle graph. As outlined in §2.4,

the adjacency matrix of the undirected cycle is the symmetric part of the adjacency

matrix of the directed cycle. Thus, the undirected cycle will have Laplacian matrix

Lu cycle
N =



1 −1
2

0 · · · −1
2

−1
2

1 −1
2
· · · 0

...
. . . . . . . . .

...

0 · · · −1
2

1 −1
2

−1
2
· · · 0 −1

2
1


. (3.45)

Now Lu cycle
N is symmetric, so Proposition 3.3 applies. Furthermore, we can make the

following observation.

Lemma 3.7. The eigenvalues of the Laplacian matrix of the undirected cycle graph

are equal to the real parts of the eigenvalues of the Laplacian of the directed cycle.

Proof. The proof is given in Appendix A.1.2.

Thus the undirected cycle has the same H2 norm, nodal H2 norm and convergence

speed as the directed cycle.

3.3.3 Path graphs

The directed path graph on N nodes consists of an open “chain” of nodes with each

node connected to the next. It is equivalent to the directed cycle graph with one edge

removed (e.g., see Figure 2.3(c)). Since every node has at most one out-going edge,

in its normalised form the directed path graph will have a unit weight on every edge.

If we traverse the path in the reverse direction of the edges and label the nodes in
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the order they appear, the Laplacian matrix of the directed path graph will be

Lpath
N =



0 0 · · · 0 0

−1 1 · · · 0 0

0 −1
. . .

...
...

...
...

. . . 1 0

0 0 · · · −1 1


. (3.46)

In this case it is clear that Lpath
N is not balanced, and so by Lemma 3.3, we know

that Lpath
N is not normal. Furthermore, we can write Lpath

N as

Lpath
N = IN − e

(1)
N e

(1)T
N −

N∑
j=2

e
(j)
N e

(j−1)T
N ,

which (using (2.2)) means that

ΠLpath
N = IN − e

(1)
N e

(1)T
N −

N∑
j=2

e
(j)
N e

(j−1)T
N +

1

N
1Ne

(1)T
N − 1

N
1Ne

(N)T
N .

It is then straightforward to verify that ΠLpath
N is not normal. Therefore, in order

to compute its H2 norm, we cannot use Proposition 3.3. Instead, we will show in

Chapter 5 that the H2 norm of the directed path is equal to that of the underlying

undirected path.

Since Lpath
N is lower triangular, its diagonal entries are its eigenvalues [52, §1.2]

and so

λi

(
Lpath
N

)
=


0 i = 1

1 2 ≤ i ≤ N.

(3.47)

Thus the convergence speed of the path is

λ2

(
Lpath
N

)
= 1.
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We can consider the undirected path graph by finding the symmetric part of the

adjacency matrix of the directed path. This produces the following Laplacian matrix

Lu path
N =



1
2
−1

2
0 · · · 0

−1
2

1 −1
2
· · · 0

...
. . . . . . . . .

...

0 · · · −1
2

1 −1
2

0 · · · 0 −1
2

1
2


. (3.48)

Now we can compute the eigenvalues of Lu path
N .

Lemma 3.8. Let Lu path
N be the Laplacian matrix of the undirected path graph on N

nodes, as given by (3.48). Then Lu path
N has eigenvalues

λk

(
Lu path
N

)
= 2 sin2

(
(k − 1)π

2N

)
(3.49)

for k = 1, 2, . . . , N .

Proof. The proof is given in Appendix A.2.1.

Since Lu path
N is symmetric and hence normal, we can apply Proposition 3.3. Then,

we can let j = k − 1 in (3.49) and use the facts that

N−1∑
j=1

csc2
(
jπ

2N

)
=

1

2

(
2N−1∑
j=1

csc2
(
jπ

2N

)
− 1

)

(since sin
(
jπ
2N

)
= sin

(
π − jπ

2N

)
) and [50, Equation 24.1.2]

2N−1∑
j=1

csc2
(
jπ

2N

)
=

4N2 − 1

3
,
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to find that the undirected path has H2 norm

ηu path =

√
N2 − 1

6
,

and thus nodal H2 norm √
N2 − 1

6N
,

which grows as
√

N
6

for large N . Furthermore, the convergence speed of the undi-

rected path is

λ2

(
Lu path
N

)
= 2 sin2 π

2N
.

3.3.4 Star graphs

The directed star graph on N nodes consists of a “central” node with every other

node connected to this central one (e.g., see Figure 2.3(d)). Since every node has at

most one out-going edge, in its normalised form the directed path graph will have

a unit weight on every edge. If we label the central node as node 1, the Laplacian

matrix of the directed star graph will be

Lstar
N =



0 0 · · · 0 0

−1 1 · · · 0 0

...
...

. . .
...

...

−1 0 · · · 1 0

−1 0 · · · 0 1


. (3.50)

Now, we can write Lstar
N as

Lstar
N = IN − 1Ne

(1)T
N .

Then

ΠLstar
N = Π

(
IN − 1Ne

(1)T
N

)
= Π,
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since Π1N = 0. As Π is symmetric and hence normal, ΠLstar
N is also normal and so

Proposition 3.3 can be applied. Since Lstar
N is lower triangular, its diagonal entries are

its eigenvalues and so

λi
(
Lstar
N

)
=


0 i = 1

1 2 ≤ i ≤ N.

(3.51)

Therefore by (3.23), the H2 norm of the star graph is

ηstar =

√
N − 1

2
,

and thus the nodal H2 norm is √
N − 1

2N
,

which converges to 1√
2

as N → ∞. Furthermore, the convergence speed of the star

graph is

λ2
(
Lstar
N

)
= 1.

Once again we can consider the undirected form of this graph by finding the

symmetric part of the adjacency matrix and then forming a new Laplacian. For the

undirected star graph, we find that the Laplacian matrix is

Lu star
N =



1
2

0 · · · 0 −1
2

0 1
2
· · · 0 −1

2

...
...

. . .
...

...

0 0 · · · 1
2
−1

2

−1
2
−1

2
· · · −1

2
N−1
2


. (3.52)

We can then compute the eigenvalues of Lu star
N .
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Lemma 3.9. Let Lu star
N be the Laplacian matrix of the undirected star graph on N

nodes, as given by (3.52). Then Lu star
N has eigenvalues

λk
(
Lu star
N

)
=


0 k = 1

1
2

2 ≤ k ≤ N − 1

N
2

k = N.

(3.53)

Proof. The proof is given in Appendix A.3.1.

Since Lu star
N is symmetric and hence normal, we can apply Proposition 3.3 to find

its H2 norm. Thus the undirected star has H2 norm

ηu star =
N − 1√
N

,

and thus nodal H2 norm

N − 1

N
,

which converges to 1 as N → ∞. Furthermore, the convergence speed of the undi-

rected star is

λ2
(
Lu star
N

)
=

1

2
.

3.3.5 Comparison of complete, cycle, path and star graphs

Figure 3.2 shows the nodal H2 norm and convergence speed of the complete, cycle,

path and star graphs. The complete graph has the best performance in both cate-

gories among these families. However, as the number of nodes increases, the directed

path and directed star approach the complete graph in speed, and the directed star

approaches it in robustness. This shows that the performance of the complete graph

(which requires (N − 1)2 directed edges for N nodes) can be almost matched by

certain graphs with many fewer edges (e.g., the star graph with N − 1 edges).
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We can observe a trend in Figure 3.2 that within this set of examples, graphs

with higher convergence speeds mostly have smaller (i.e., better) H2 norms. This

is to be expected from Proposition 3.3, which implies that for graphs with normal

reduced Laplacians, λ2(L) makes the largest contribution to the H2 norm. However,

even under the conditions of Proposition 3.3, it is not guaranteed that improving

the convergence speed of a graph will also improve its H2 norm. Furthermore, we

can see from the directed path (the only graph in this section that does not have a

normal reduced Laplacian) that this trend does not carry over to all graphs. In fact,

the directed path has a convergence speed that approaches the maximum possible

speed for a normalised graph (by Lemma 3.5), while its H2 norm is the worst of the

graphs considered here. Therefore, for general directed graphs, the H2 norm cannot

be guaranteed to be small when the convergence speed is high.

These results also provide additional motivation for considering directed graphs for

consensus problems. As well as the practical problems with maintaining undirected

communication links in physical networks, undirected graphs can sometimes be out-

performed in both speed and robustness by their directed counterparts. The directed

and undirected path graphs have the same H2 robustness, but the directed graph

produces much higher convergence speeds. In addition, the directed star graph out-

performs the undirected star in terms of both speed and robustness.
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Figure 3.2: NodalH2 norm and convergence speed for certain directed and undirected
graphs. The graphs shown are: CG - complete graph, DC - directed cycle, UC -
undirected cycle, DP - directed path, UP - undirected path, DS - directed star and
US - undirected star.
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Chapter 4

Effective Resistance for Directed

Graphs

In this chapter we propose a generalised definition of effective resistance for any graph,

constructed in such a way that it preserves the connection between effective resistance

and networked control and decision systems (see §3.2.2 or [84, 114, 115]). This new

definition produces a well-defined pairwise property of nodes that depends only on

the connections between the nodes. Although it is no longer always a metric on the

nodes of a graph, our notion of effective resistance does allow for the construction of

a resistance-based metric for any graph. This is in contrast with a (perhaps) more

intuitive generalisation based on the use of pseudoinverses, which does not yield a

resistance-based metric in the general case. Further, this suggests that our construc-

tion should prove to be useful for applications other than those we have presented

here. The results presented in this chapter have been submitted for publication in

[117]. In Chapter 5, we explore some of the implications of our new approach by

computing effective resistances in several canonical directed graphs.
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4.1 An Extended Definition of Effective Resistance

We now proceed to examine the derivation of effective resistance for undirected graphs

and compare the matrices involved to those that arise in control-theoretic applica-

tions. Using this comparison, we propose a generalisation of effective resistance to

directed graphs that preserves key control-theoretic properties related to consensus-

type dynamics.

A complete derivation of the standard notion of effective resistance is given in

[56], in which the effective resistance between two nodes in an undirected graph can

be calculated by appropriately applying Kirchhoff’s voltage and current laws. This

calculation relies on what the authors call the “generalised inverse” of the Laplacian

matrix, a matrix X which satisfies

XL = LX = Π and

XΠ = ΠX = X.

(4.1)

Then, if we let X = [xi,j], the effective resistance is given by

rk,j =
(
e
(k)
N − e

(j)
N

)T
X
(
e
(k)
N − e

(j)
N

)
= xk,k + xj,j − 2xk,j. (4.2)

Although (4.1) are not the defining equations for the Moore-Penrose generalised in-

verse [52, §7.3, Problem 7], it is easy to show that for a symmetric Laplacian matrix

L, any solution to (4.1) will indeed be the Moore-Penrose generalised inverse of L (as

well as the group inverse of L). In fact, it is standard practice to define the effective

resistance in terms of the Moore-Penrose generalised inverse [112].

In [56], the authors describe X in the following way (with notation changed to

match this dissertation):

Definition 4.1 (Klein and Randić, [56]). X is equal on 1⊥N to the inverse of L and

is otherwise 0/ .
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This definition means that XLv = LXv = v for any v ∈ 1⊥N and X1N = 0. It

is therefore instructive to characterise the action of L restricted to the subspace 1⊥N .

By the discussion in §2.1, on 1⊥N the Laplacian matrix is equivalent to

L = QLQT ,

which is the reduced Laplacian matrix, as defined in Definition 3.2. We can see that

L is a symmetric matrix if the graph is undirected. By Corollary 3.1, L is invertible

for a connected graph. For undirected graphs, this allows us to give an explicit

construction for X as

X = QTL
−1
Q, (4.3)

which satisfies Definition 4.1 since X1N = 0 and Xv = L
−1

v for any v ∈ RN .

Furthermore, we can use (2.3) and the fact that L = LΠ = ΠL for undirected graphs

to show that (4.3) satisfies (4.1) when the graph is undirected.

It should be noted that L is not unique, since it depends on the choice of Q. How-

ever, if Q and Q′ both satisfy (2.3), we can define W := Q′QT . Then Q′ = WQ and W

is orthogonal. Hence X ′ := Q′T
(
Q′LQ′T

)−1
Q′ = QTW T

(
WQLQTW T

)−1
WQ = X

and thus the computation of X in (4.3) is independent of the choice of Q.

These multiple ways (the Moore-Penrose generalised inverse, Definition 4.1, Equa-

tion (4.1) and Equation (4.3)) to describe the matrix X no longer agree when the

graph is directed. While (4.3) still satisfies Definition 4.1, it does not satisfy Equa-

tion (4.1) (specifically, LX no longer equals Π). Furthermore, the Moore-Penrose

generalised inverse satisfies neither (4.1) nor (4.3) for non-symmetric Laplacian ma-

trices. Thus, instead of seeking to extend the notion of effective resistance to directed

graphs using one of the above descriptions (which all arose through an analysis of

electrical networks that were, by definition, undirected), we draw inspiration from a

different context that is not as fundamentally tied to electrical networks.

71



In Chapter 3, as well as in previous work on evidence-accumulation for decision-

making [83, 84], effective resistances arose due to a correspondence between covariance

matrices and the matrixX as described above (in the case of undirected graphs). Both

applications involved stochastic systems evolving on graphs with dynamics driven by

the Laplacian matrix, and covariance matrices were sought to describe the distribution

of node values. For general (i.e. directed or undirected) graphs, these covariance

matrices were computed using integrals of the form [84]

Σ1 =

∫ ∞
0

QT e−Lte−L
T
tQdt (4.4)

and (as in (3.26))

Σ =

∫ ∞
0

e−Lte−L
T
t dt. (4.5)

Now, we can observe that Σ1 = QTΣQ, and that Σ can also be expressed as the

solution to the Lyapunov equation (3.12), that is,

LΣ + ΣL
T

= IN−1.

It should be noted that (3.12) has a unique positive definite solution when all the

eigenvalues of L have positive real part (i.e. when the graph is connected) [37, Propo-

sition 4.2]. It is then clear that for undirected graphs (where L is symmetric),

Σ =
1

2
L
−1
, (4.6)

and so (using (4.3)),

Σ1 =
1

2
X.

It is this relationship that links these covariance matrices to the generalised inverse

X, and hence to effective resistances. Since these covariance matrices arise naturally
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from directed graphs as well as undirected graphs, we use their solutions to define

effective resistances on directed graphs. Thus, for any connected digraph, we let Σ

be the unique solution to the Lyapunov equation (3.12). Then, we let

X := 2QTΣQ, (4.7)

and notice that X will be symmetric for any graph because Σ is always symmetric.

Finally we can use (4.2) to define the effective resistance between any two nodes in

the graph.

Definition 4.2. Let G be a connected graph with N nodes and Laplacian matrix L.

Then the effective resistance between nodes k and j in G is defined as

rk,j =
(
e
(k)
N − e

(j)
N

)T
X
(
e
(k)
N − e

(j)
N

)
= xk,k + xj,j − 2xk,j, (4.8)

where

X = 2QTΣQ,

LΣ + ΣL
T

= IN−1,

L = QLQT ,

(4.9)

and Q is a matrix satisfying (2.3).

By summing all distinct effective resistances in a graph, we extend the definition

of the Kirchhoff index of the graph.

Definition 4.3. The Kirchhoff index, Kf , of a connected (directed) graph is

Kf :=
∑
k<j

rk,j. (4.10)

Our definition of Kf matches the Kirchhoff index defined for undirected graphs

[112], but can now be computed for directed graphs as well.
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In Chapter 3, we noticed that the H2 norm η of an undirected graph can be

expressed in terms of the Kirchhoff index as

η =

(
Kf

2N

) 1
2

.

Using Definition 4.2, this relationship can be shown to extend to directed graphs as

well.

Proposition 4.1. The H2 norm of a connected directed graph, as defined in Defini-

tion 3.4, is related to the Kirchhoff index, as defined in Definition 4.3, by

η =

(
Kf

2N

) 1
2

. (4.11)

Proof. The matrix X, as defined in (4.9), is symmetric because Σ is a positive definite

(and hence symmetric) matrix. Therefore, xk,j = xj,k and so by (4.8),

rk,j = rj,k.

Furthermore, by (4.8), rk,k = 0. We can therefore rewrite (4.10) as

Kf =
1

2

N∑
k=1

N∑
j=1

rk,j

=
1

2

N∑
k=1

N∑
j=1

xk,k + xj,j − 2xk,j

= N tr (X)−
N∑
k=1

N∑
j=1

xk,j.

But the row sums of X are all zero, since X1N = 0 by (2.3). This gives us

Kf = N tr (X) . (4.12)
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Now, from (4.9), we have X = 2QTΣQ, and so we can say

tr (X) = 2 tr
(
QTΣQ

)
= 2 tr

(
QQTΣ

)
(by the properties of the trace function [52, §1.2, Problem 2])

= 2 tr (Σ) (by (2.3)).

Then using (3.19), we have

η =

√
tr (X)

2
. (4.13)

Together, (4.12) and (4.13) give us (4.11).

Thus our definition of effective resistance immediately connects to the robustness

to noise of linear consensus on directed graphs. In a similar fashion, the variance of

each node in a balanced network of stochastic decision-makers can be computed (in

part) using the diagonal entries of the matrix Σ1 from (4.4). Then the variance of

any particular node can be found using this definition of effective resistance [84].

4.2 Basic Properties of our Definition

Although Definition 4.2 ensures that effective resistance maintains our desired rela-

tionship with the H2 norm of a graph, by itself it remains an algebraic construction

that yields little insight into the ways in which effective resistance (and hence robust-

ness) depends on the graph structure. We now proceed to analyse our definition to

understand some of its fundamental properties. In §4.2.1 we verify that Definition 4.2

results in a well-defined property of pairs of nodes in a connected digraph. In §4.2.2 we

investigate how effective resistances depend on connections in the graph and extend

Definition 4.2 further to apply to disconnected graphs. Finally in §4.2.3 we determine

that effective resistance is a distance-like function and explore the limitations of the

triangle inequality for effective resistances in directed graphs.

75



4.2.1 Effective resistance is well-defined

By construction, (4.8) will yield the regular effective resistance for any undirected

graph. However, we must confirm that our concept of effective resistance for directed

graphs is well-defined. This is achieved by the following two lemmas.

Lemma 4.1. The value of the effective resistance between two nodes in a connected

digraph is independent of the choice of Q.

Proof. Let Q and Q′ be two matrices that satisfy (2.3), and let rk,j and r′k,j be the

corresponding effective resistances between nodes k and j, computed by using Q and

Q′ in (4.8), respectively. Furthermore, let W := Q′QT . Then by (2.3), Q′ = WQ and

WW T = W TW = IN−1. Now, we can use (3.6) and the properties of W to write

L
′
= WLW T .

Next, substituting this expression into (3.12) for L
′
, we see that

Σ′ = WΣW T .

Finally, we observe that

X ′ = 2Q′TΣ′Q′ = X,

and hence, r′k,j = rk,j.

From Lemma 4.1 we see that no matter how it is computed, the effective resistance

between two nodes will be the same unique number. Next, we will show in Lemma 4.2

that the effective resistance is a property of a pair of nodes, irrespective of the way

in which they are labelled.

Lemma 4.2. The value of the effective resistance between two nodes in a connected

digraph is independent of the labelling of the nodes.
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Proof. Any two labelings of the nodes in a graph can be related via a permutation.

Suppose L and L′ are two Laplacian matrices associated with the same graph, but

with different labelings of the nodes. Then L′ can be found from L by permuting its

rows and columns. That is, there exists an N ×N permutation matrix P such that

L′ = PLP T .

Note that as a permutation matrix, there is exactly one 1 in every row and column

of P with every other entry equal to 0. Furthermore, P−1 = P T , P1N = 1N and

1TNP = 1TN [52, §0.9.5]. Thus we can observe that

QP = PQ, PQT = QTP

and

P
−1

= P
T
,

where, as usual, P = QPQT .

Now, we can use (3.6) and the properties of P to write

L
′
= P LP

T
.

Then the solution to the Lyapunov equation associated with L
′

becomes

Σ′ = PΣP
T
.

Hence, we observe that X ′ = PXP T .

Thus if P permutes node k to node m and node j to node `, we find that

r′m,` = rk,j.
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4.2.2 Effective resistance depends on connections between

nodes

Next we consider which features of a digraph will affect the effective resistance between

a given pair of nodes. For undirected graphs, we know that effective resistances

depend on every path between a pair of nodes [56]. The situation becomes more

complicated with directed graphs since there can exist pairs of nodes in a connected

digraph with no path between them. Instead of looking at paths between nodes, we

therefore have to consider connections. To incorporate all of the connections between

two nodes, we examine the reachable subgraph, an example of which is shown in

Figure 4.1.

Definition 4.4. The reachable subgraph, denoted RG(k, j), of nodes k and j in the

graph G is the graph formed by every node in G that is reachable from node k or node

j and every edge in G between these nodes.

As we demonstrate in the following lemma, if G is connected, the reachable sub-

graph of nodes k and j is precisely the subgraph formed by every connection between

them.

Lemma 4.3. If G is connected, then for any pair of nodes k and j,

(i) RG(k, j) is connected,

(ii) Every node in RG(k, j) is part of a connection between nodes k and j,

(iii) Every edge in RG(k, j) is part of a connection between nodes k and j and

(iv) Every connection in G between nodes k and j is contained in RG(k, j).

Proof. (i) Since G is connected, there is a node, `, in G which is reachable from

every other node. Since ` is reachable from nodes k and j, it is also in RG(k, j).

Now, suppose that m is a node in RG(k, j). Then there is a path in G from
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Figure 4.1: A directed graph on 9 nodes, with the reachable subgraph of nodes 3 and
7 highlighted.

m to `. Since m is reachable from either k or j, every node along this path

is as well. Thus, this path is contained in RG(k, j) and so ` is reachable (in

RG(k, j)) from every node in RG(k, j).

(ii) Let m be a node in RG(k, j). Then m must be reachable from either k or

j. Without loss of generality, suppose that m is reachable from k. Then (as

we saw in part (i)) there must be a path in RG(k, j) from m to the globally

reachable node ` as well as a path from j to `. Thus m is part of a connection

between k and j.

(iii) Let (m,n) be an edge in RG(k, j). Without loss of generality, suppose that m

is reachable from k. Then n is also reachable from k. Then (as we saw in part

(i)) there must be a path in RG(k, j) from n to the globally reachable node `

as well as a path from j to `. Thus (m,n) is part of a connection between k

and j.
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(iv) Every node along a path is reachable from the node where the path started.

Thus, every node in a connection between k and j is reachable from either k or

j and hence in RG(k, j). Since RG(k, j) contains every edge in G between its

nodes, every edge in the connection must also be in RG(k, j).

Next we proceed to show in Theorem 4.1 that the effective resistance between

two nodes in a connected digraph can only depend on the connections between them.

The proof relies on the following lemma, which describes sufficient conditions under

which effective resistances in a subgraph will be equal to those in the original graph.

Lemma 4.4. Suppose that G1 is a connected subgraph (containing N1 nodes and

with Laplacian matrix L1) of a connected graph G (containing N nodes and with

Laplacian matrix L) and suppose that the nodes in G1 are labelled 1 through N1. Let

Q1 ∈ R(N1−1)×N1 be a matrix satisfying (2.3) and suppose there is a Q ∈ R(N−1)×N

satisfying (2.3) that can be written as

Q =


Q1 0/

α1TN1
rT

0/ S


for some α ∈ R, r ∈ RN−N1 and S ∈ R(N−N1−1)×(N−N1). If the solution to (3.12) for

G (with L = QLQT ) can be written as

Σ =


Σ1 t U

tT v wT

UT w Y

 ,

for some t ∈ RN1−1, U ∈ R(N1−1)×(N−N1−1), v ∈ R, w ∈ RN−N1−1 and Y ∈

R(N−N1−1)×(N−N1−1) with Y = Y T and where Σ1 ∈ R(N1−1)×(N1−1) is the solution
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to (3.12) for G1 (with L1 = Q1L1Q
T
1 ), then for any k, j ≤ N1, the effective resistance

between nodes k and j in G is equal to the effective resistance between the same two

nodes in G1.

Proof. Effective resistances in G1 can be found from X1 = 2QT
1 Σ1Q1 as

r1 k,j = x1 k,k + x1 j,j − 2x1 k,j.

To compute effective resistances in G, we must examine X = 2QTΣQ. Using the

matrices given in the statement of the lemma, we obtain

X =

2QT
1 Σ1Q1 + 2α1N1t

TQ1 + 2αQT
1 t1TN1

+ 2α2v1N11
T
N1

?

? ?

 .
If we let p := 2αQT

1 t = [pi], we can write

X =

X1 + 1N1p
T + p1TN1

+ 2α2v1N11
T
N1

?

? ?

 .
Finally, since nodes k and j are both in G1, we obtain

rk,j = x1 k,k + 2pk + 2α2v + x1 j,j + 2pj + 2α2v − 2x1 k,j − 2(pk + pj)− 4α2v

= x1 k,k + x1 j,j − 2x1 k,j

= r1 k,j.

Note that the same calculation applies if N = N1 + 1, in which case the

0/ (N−N1−1)×N1 , S, U , w and Y blocks of Q and Σ are all empty.

Now we can state the first main result of the chapter, that the effective resis-

tance between two nodes in a connected digraph can only depend on the connections

between them.
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Theorem 4.1. The effective resistance between nodes k and j in a connected graph

G is equal to the effective resistance between nodes k and j in RG(k, j).

Proof. Let G1 = RG(k, j). Let N1, A1, D1 and L1 be the number of nodes, the

adjacency matrix, the matrix of node out-degrees and the Laplacian matrix of G1,

respectively. Let Q1 ∈ R(N1−1)×N1 satisfy (2.3). Since we know by Lemma 4.3 that

G1 is connected, we can find matrices L1, Σ1 and X1 from (4.9) for G1.

Let G2 be the subgraph of G formed by every node in G which is not in G1 and every

edge in G between these nodes. Then G2 will contain N2 nodes and have associated

matrices A2, D2, L2, Q2 and L2. Note that G2 may or may not be connected.

Now, if there was an edge (m,n) in G from a node m in G1 to a node n in G2, then

n would be reachable from either k or j (as m is reachable from one of these nodes).

Thus there are no edges in G leading from nodes in G1 to nodes in G2. Therefore, if

we order the nodes in G with the nodes in G1 listed first, followed by the nodes in G2,

then the adjacency matrix of G can be written as

A =

 A1 0/

A2,1 A2

 ,
where A2,1 ∈ RN2×N1 contains the edge weights for all edges in G leading from nodes

in G2 to nodes in G1. Similarly, we can write the matrix of node out-degrees as

D =

D1 0/

0/ D2 +D2,1

 ,
where D2,1 is the diagonal matrix containing the row sums of A2,1 along its diagonal.

Utilising these two expressions, we find that the Laplacian matrix of G can be written

as
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L =

 L1 0/

−A2,1 L2 +D2,1

 .
Now, let

Q =


Q1 0/

α1TN1
−β1TN2

0/ Q2

 ,

where α =

√
N2

N1 (N1 +N2)
and β =

√
N1

N2 (N1 +N2)
. Then Q satisfies (2.3) (note

that N = N1 +N2). Substituting this matrix into (3.6) gives us

L =


L1 0 0/

α1TN1
L1Q

T
1 + β1TN2

A2,1Q
T
1 β (α + β) 1TN2

d2,1 −β1TN2
L2Q

T
2 − β1TN2

D2,1Q
T
2

−Q2A2,1Q
T
1 − (α + β)Q2d2,1 L2 +Q2D2,1Q

T
2

 ,

where d2,1 := D2,11N2 = A2,11N1 .

In order to compute effective resistances in G, we must find the matrix Σ which

solves (3.12). Since we have partitioned L into a 3 × 3 block matrix, we will do the

same for Σ. Let

Σ =


S t U

tT v wT

UT w Y

 ,
where S ∈ R(N1−1)×(N1−1) and Y ∈ R(N2−1)×(N2−1) are symmetric matrices, U ∈

R(N1−1)×(N2−1), t ∈ RN1−1, w ∈ RN2−1 and v ∈ R. Then when we multiply out the

matrices of (3.12) and equate the (1, 1) blocks, we find

L1S + SL
T

1 = IN1−1,
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which implies that

S = Σ1.

Thus, by Lemma 4.4, the effective resistance between two nodes in G1 is equal to

the effective resistance between the same two nodes in G.

We can use Theorem 4.1 to partially extend the definition of effective resistance

to disconnected digraphs. To do this, we will first define connection subgraphs.

Definition 4.5. A connection subgraph between nodes k and j in the graph G is

a maximal connected subgraph of G in which every node and edge form part of a

connection between nodes k and j in G. That is, a connection subgraph is formed

from the union of connections between nodes k and j, and the addition of any other

connections would make the subgraph disconnected. If only one connection subgraph

exists in G between nodes k and j, it is referred to as the connection subgraph and is

denoted by CG(k, j).

From Lemma 4.3 we know that CG(k, j) = RG(k, j) if G is connected. However, a

disconnected graph may contain 0, 1 or more connection subgraphs between a pair of

nodes. There will be no connection subgraphs precisely when there are no connections

between nodes k and j in G. However, there may also be multiple connections between

a pair of nodes that lead to multiple connection subgraphs. A simple example of

connection subgraphs in a disconnected graph is shown in Figure 4.2.

By definition, whenever it exists, CG(k, j) will be connected, and we can thus com-

pute effective resistances between its nodes. We can now define effective resistances

between some node pairs in any digraph, whether or not it is connected.
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(a) (b) (c)

(d) (e)

Figure 4.2: (a) A disconnected graph on 4 nodes. (b) There are no connection
subgraphs between nodes 1 and 2. (c) The connection subgraph between nodes 1 and
3 is highlighted. (d) One connection subgraph between nodes 3 and 4 is highlighted.
(e) A second connection subgraph between nodes 3 and 4 is highlighted. In this
example, the effective resistance between nodes 3 and 4 is undefined.

Definition 4.6. The effective resistance between nodes k and j in a graph G is

rk,j =


∞ if there are no connections between nodes k and j

rk,j in CG(k, j) if CG(k, j) exists (computed using (4.8))

undefined otherwise.

By Theorem 4.1, this new definition specialises to our original definition of effective

resistance for connected graphs. For certain applications, there may be an appropriate

way to handle pairs of nodes with multiple connection subgraphs, but that falls outside

the scope of the present work.

In undirected graphs, we know that the effective resistance between two nodes

does not depend on edges that do not lie on any simple path between the nodes [56].
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Unfortunately, the situation is not as straightforward for directed graphs. Consider

the 4-node graphs shown in Figure 4.3. In Gpath4 , we observe that the Laplacian matrix

is

Lpath
4 =



0 0 0 0

−1 1 0 0

0 −1 1 0

0 0 −1 1


.

Then, if we let

Q4 =


1√
2
− 1√

2
0 0

1√
6

1√
6
−
√
2√
3

0

1
2
√
3

1
2
√
3

1
2
√
3
−
√
3
2

 ,
we can see that Q4 satisfies (2.3) and so by (3.6),

L
path

4 = Q4L
path
4 QT

4 =


1 0 0

− 2√
3

1 0

− 1
2
√
6
− 3

2
√
2

1

 .

Then following Definition 4.2, we find that

Σpath
4 =


1
2

1
2
√
3

1
2
√
6

1
2
√
3

5
6

5
6
√
2

1
2
√
6

5
6
√
2

7
6

 ,

Xpath
4 = 2QT

4 Σpath
4 Q4 =



7
4

1
4
−3

4
−5

4

1
4

3
4
−1

4
−3

4

−3
4
−1

4
3
4

1
4

−5
4
−3

4
1
4

7
4


,
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and so

rpath3,4 = xpath4 3,3 + xpath4 4,4 − 2xpath4 3,4 = 2.

However in G line, we observe that the Laplacian matrix is

Lline
4 =



1 −1 0 0

−1 1 0 0

0 −1 1 0

0 0 −1 1


.

Using the same matrix Q4 as above, we find by (3.6) that

L
line

4 = Q4L
line
4 QT

4 =


2 0 0

− 1√
3

1 0

1
2
√
6
− 3

2
√
2

1

 .

Then following Definition 4.2, we find that

Σline
4 =


1
4

1
12
√
3

0

1
12
√
3

19
36

7
18
√
2

0 7
18
√
2

19
24

 ,

X line
4 = 2QT

4 Σline
4 Q4 =



107
144

3
16

− 49
144
− 85

144

3
16

91
144

−11
48
− 85

144

− 49
144

−11
48

83
144

− 1
144

− 85
144
− 85

144
− 1

144
19
16


,

and so

rline3,4 = xline4 3,3 + xline4 4,4 − 2xline4 3,4 =
16

9
.
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Therefore, even though no new simple connections were introduced between nodes

3 and 4 in G line4 , the effective resistance between these two nodes changed. This

demonstrates that effective resistance in general directed graphs cannot be thought

of in terms of an electrical analogy. Instead, for a consensus system (for example) the

effective resistance between two nodes measures how “close” the states of each agent

can be expected to be to each other. Thus the additional edge in G line4 should bring

nodes 1 and 2 “closer” together, but also reduce their variance. Then nodes 3 and 4,

which are following node 2, are able to get “closer” to node 2 and hence “closer” to

each other as well.

(a) (b)

Figure 4.3: Two simple 4-node graphs: (a) Gpath4 , a 4-node directed path graph with
unit edge weights, and (b) G line, similar to Gpath4 but with the directed edge (2, 1)
replaced by an undirected edge.

Despite this (perhaps) unexpected behaviour, we are able to show below that

certain parts of the connection subgraph do not affect the effective resistance between

two nodes. The proof relies on the following lemma, which provides a solution to

Lyapunov equations with a certain structure.
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Lemma 4.5. Suppose that L1 ∈ RN1×N1 is the Laplacian matrix of a connected graph

satisfying LT1 e
(1)
N1

= 0 and Q1 ∈ R(N1−1)×N1 satisfies (2.3). Let α =
1√

N1(N1 + 1)
,

β =
N1√

N1(N1 + 1)
and a > 0. If L1 = Q1L1Q

T
1 , then a solution to the Lyapunov

equation

 L1 + aQ1e
(1)
N1

e
(1)T
N1

QT
1 a(α + β)Q1e

(1)
N1

α1TN1
L1Q

T
1 + aαe

(1)T
N1

QT
1

a
N1


S t

tT u


+

S t

tT u


LT1 + aQ1e

(1)
N1

e
(1)T
N1

QT
1 αQ1L

T
1 1N1 + aαQ1e

(1)
N1

a(α + β)e
(1)T
N1

QT
1

a
N1

 =

IN1−1 0

0T 1


is

S = Σ1,

t = −N1αΣ1Q1e
(1)
N1

and

u =
N1

2a
+
N2

1α
2

a

(
1TN1

L1 + ae
(1)T
N1

)
QT

1 Σ1Q1e
(1)
N1
,

(4.14)

where Σ1 is the solution to (3.12) for L1.

Proof. First we note that Σ1 exists since L1 is the Laplacian of a connected graph.

Next, equating blocks of the given matrix equation gives us

L1S + SL
T

1 + aQ1e
(1)
N1

e
(1)T
N1

QT
1 S + aSQ1e

(1)
N1

e
(1)T
N1

QT
1

+ a(α + β)
(
Q1e

(1)
N1

tT + te
(1)T
N1

QT
1

)
= IN1−1, (4.15)

αSQ1

(
LT1 1N1 + ae

(1)
N1

)
+ au(α + β)Q1e

(1)
N1

+

(
a

N1

IN1−1 + L1 + aQ1e
(1)
N1

e
(1)T
N1

QT
1

)
t = 0 and (4.16)

2au

N1

+ 2α
(
1TN1

L1 + ae
(1)T
N1

)
QT

1 t = 1. (4.17)

By directly substituting (4.14) into (4.15) and (4.17) (and noting that N1α(α +

β) = 1), we observe that (4.14) satisfies (4.15) and (4.17). Hence, we now focus our
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attention on (4.16). Substituting (4.14) into the left-hand side of (4.16) gives us

LHS = αΣ1Q1L
T
1 1N1 −N1αL1Σ1Q1e

(1)
N1

+
1

2α
Q1e

(1)
N1

+N1αQ1e
(1)
N1

1TN1
L1Q

T
1 Σ1Q1e

(1)
N1
.

(4.18)

By (3.12), we know that L1Σ1 = IN1−1 − Σ1L
T

1 . Therefore, using (2.3) and our

assumption that LT1 e
(1)
N1

= 0, we have

L1Σ1Q1e
(1)
N1

= Q1e
(1)
N1

+
1

N1

Σ1Q1L
T
1 1N1 .

Thus N1αL1Σ1Q1e
(1)
N1

= N1αQ1e
(1)
N1

+ αΣ1Q1L
T
1 1N1 , and (4.18) becomes

LHS =

(
1

2α
−N1α +N1α1TN1

L1Q
T
1 Σ1Q1e

(1)
N1

)
Q1e

(1)
N1
. (4.19)

Next, if we define V to be the matrix V := L1Q
T
1 Σ1Q1 + QT

1 Σ1Q1L
T
1 , we have

that V = V T and (since 1TN1
QT

1 = 0T by (2.3)),

1TN1
V e

(1)
N1

= 1TN1
L1Q

T
1 Σ1Q1e

(1)
N1

+ 1TN1
QT

1 Σ1Q1L
T
1 e

(1)
N1

= 1TN1
L1Q

T
1 Σ1Q1e

(1)
N1
.

But pre- and post-multiplying V by Π = QT
1Q1 and using (3.12) gives us

ΠVΠ = QT
1Q1L1Q

T
1 Σ1Q1Q

T
1Q1 +QT

1Q1Q
T
1 Σ1Q1L

T
1Q

T
1Q1

= QT
1

(
L1Σ1 + Σ1L

T

1

)
Q1

= QT
1 IN1−1Q1

= Π,
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and then by pre- and post-multiplying by e
(1)T
N1

and e
(1)
N1

, we find

e
(1)T
N1

V e
(1)
N1
− 2

N1

1TN1
V e

(1)
N1

+
1

N2
1

1TN1
V 1N1 =

N1 − 1

N1

(since V is symmetric).

But since LT1 e
(1)
N1

= 0 and Q1e
(1)
N1

= 0, we know that both e
(1)T
N1

V e
(1)
N1

= 0 and

1TN1
V 1N1 = 0. Thus

1TN1
V e

(1)
N1

=
1−N1

2
⇒ 1TN1

L1Q
T
1 Σ1Q1e

(1)
N1

=
1−N1

2
,

and so (4.19) becomes LHS = 0. Thus (4.14) also satisfies (4.16) and is therefore a

solution to the given matrix equation.

We can now proceed to state our next main result, that a globally reachable node

that is connected to the rest of the graph through a single directed edge does not

affect the effective resistance between any pair of other nodes in the graph.

Theorem 4.2. Suppose G1 is a connected graph containing only one globally reachable

node, and let G be the graph formed by connecting the globally reachable node in G1 to

an additional node via a directed edge of arbitrary weight. Then the effective resistance

between any two nodes in G1 is equal to the effective resistance between them in G.

Proof. Let N1, A1, D1 and L1 be the number of nodes, the adjacency matrix, the

matrix of node out-degrees and the Laplacian matrix of G1, respectively. Let Q1 ∈

R(N1−1)×N1 satisfy (2.3). Using Q1, we can compute L1 from (3.6) and since G1 is

connected, we can find matrices Σ1 and X1 from (4.9). Without loss of generality,

suppose that the globally reachable node in G1 is node 1. Since this is the only globally

reachable node in G1, no other nodes can be reached from node 1 and hence dout1 = 0.

Thus

LT1 e
(1)
N1

= 0. (4.20)

Let the additional node in G be node N = N1 + 1. We can see that since node 1
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is globally reachable in G1 and node N is reachable from node 1, node N is globally

reachable in G. Thus G is connected.

Now, we can write the adjacency matrix of G as

A =

A1 ae
(1)
N1

0T 0

 ,
where a > 0 is the weight on edge (1, N) in G. Similarly, we can write the matrix of

node out-degrees as

D =

D1 + ae
(1)
N1

e
(1)T
N1

0

0T 0

 .
Utilizing these two expressions, we find that the Laplacian matrix of G can be written

as

L =

L1 + ae
(1)
N1

e
(1)T
N1

−ae(1)
N1

0T 0

 .
Now, let

Q =

 Q1 0

α1TN1
−β

 ,
where α =

1√
N1 (N1 + 1)

and β =
N1√

N1 (N1 + 1)
. Then Q satisfies (2.3). Substitut-

ing this matrix into (3.6) gives us

L =

 L1 + aQ1e
(1)
N1

e
(1)T
N1

QT
1 a(α + β)Q1e

(1)
N1

α1TN1
L1Q

T
1 + aαe

(1)T
N1

QT
1

a
N1

 .
In order to compute effective resistances in G, we must find the matrix Σ which

solves (3.12). Since we have partitioned L into a 2 × 2 block matrix, we will do the
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same for Σ. Let

Σ =

S t

tT u

 ,
where S ∈ R(N1−1)×(N1−1) is a symmetric matrix, t ∈ RN1−1 and u ∈ R. Then

Lemma 4.5 gives a solution to (3.12) using L and our desired form of Σ. However,

since G is connected, we know that there must be a unique solution. Thus (4.14) from

Lemma 4.5 is the unique solution to the Lyapunov equation, and in particular,

S = Σ1.

Thus, by Lemma 4.4, the effective resistance between two nodes in G1 is equal to

the effective resistance between the same two nodes in G.

Corollary 4.1. Suppose CG(k, j) consists of a subgraph C ′G(k, j) that is connected via

a single edge of arbitrary weight to the leaf node of a directed path. Then the effective

resistance between nodes k and j in the graph G is equal to the effective resistance

between nodes k and j in C ′G(k, j).

Proof. This follows by simply applying Theorem 4.2 repeatedly to “prune” away the

nodes in the directed path.

We can see from the graphs shown in Figure 4.3 that this “pruning” operation can

only be applied to directed edges in general. There may, however, be other graphical

structures that also do not affect the effective resistance between two nodes.
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4.2.3 Effective resistance is a distance-like function and its

square root is a metric

One useful property of effective resistance in undirected graphs is that it is a metric

on the nodes of the graph [56]. This allows effective resistance to substitute for the

shortest-path distance in various graphical indices and analyses, as well as offering

an alternative interpretation of effective resistance that does not rely on an electrical

analogy. Although many of the requirements of a metric follow from the algebraic

construction of the effective resistance, the triangle inequality depends on Kirchhoff’s

laws [56]. Consequently, we shall see that effective resistance does not satisfy the

triangle inequality on general digraphs.

Importantly, however, the square root of the effective resistance is a metric. There-

fore, if a true metric on digraphs is sought which incorporates information about all

connections between two nodes, the square root of the effective resistance is a valid op-

tion. In contrast, if effective resistance had been generalised using the Moore-Penrose

generalised inverse instead of our definition, then neither would it be a metric nor

would its square root be a metric.

We note that the only difference in the conditions for a metric between a function

and its square root lies in the triangle inequality. Furthermore, if a function d(·, ·) is

a metric, then
√
d(·, ·) is by necessity a metric too.

Theorem 4.3. The square root of the effective resistance is a metric on the nodes of

any connected directed graph. That is,

rk,j ≥ 0 ∀ nodes k and j, (4.21)

rk,j = 0 ⇔ k = j, (4.22)

rk,j = rj,k, and (4.23)

√
rk,` +

√
r`,j ≥

√
rk,j ∀ nodes k, j and `. (4.24)
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Furthermore, the effective resistance itself is not a metric since it fails to satisfy the

triangle inequality.

Proof. From (4.2), we know that the effective resistance can be computed as

rk,j =
(
e
(k)
N − e

(j)
N

)T
X
(
e
(k)
N − e

(j)
N

)
,

where X = 2QTΣQ and Σ is a positive definite matrix. Now, by (2.3), we know that

the matrix

V :=

 1√
N

1TN

Q


is orthogonal and thus X is similar to

V XV T =

0 0T

0 2Σ

 .
Hence X has a single 0 eigenvalue and its remaining eigenvalues are twice those of Σ.

Furthermore, X1N = 0 since Q1N = 0. Thus X is positive semi-definite with null

space given by the span of 1N .

Since X is positive semi-definite, we can find a matrix Y ∈ RN×N such that

X = Y TY (e.g. by the Cholesky decomposition or the positive semi-definite square

root [52, §7.2]). This means that we can write effective resistances as

rk,j =
∥∥∥Y (e

(k)
N − e

(j)
N

)∥∥∥2
2
,

and therefore

√
rk,j =

∥∥∥Y (e
(k)
N − e

(j)
N

)∥∥∥
2
,

where ‖ · ‖2 denotes the regular 2-norm on RN . Therefore, if we associate each node
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k of G to the point

pk := Y e
(k)
N ∈ RN ,

we observe that
√
rk,j is equal to the Euclidean distance in RN between pk and pj.

Since e
(k)
N − e

(j)
N is perpendicular to 1N for any k 6= j, e

(k)
N − e

(j)
N is not in the null

space of Y and so pk 6= pj for k 6= j. Hence
√
rk,j is a metric on the nodes of the

graph.

Finally, to show that rk,j is not a metric, we consider the 3-node graph shown in

Figure 4.4. In this case, we find that r1,3 = 20, r1,2 = 131
21
≈ 6.24 and r2,3 = 37

7
≈ 5.29.

Thus r1,3 > r1,2 + r2,3 and the triangle inequality does not hold.

Figure 4.4: A simple 3-node directed graph, Gtriangle,where the triangle inequality
fails.

Remark 4.1. We can observe that if effective resistance was defined using X = L†

(the Moore-Penrose generalised inverse), then for the graph shown in Figure 4.4 the

triangle inequality would fail for both rk,j and
√
rk,j. Indeed, the counterexample in the

proof of Theorem 4.3 also demonstrates why the triangle inequality could be expected

to fail for any effective resistance definition that respects edge direction. We can

observe that there should be a “low” effective resistance between nodes 1 and 2 due to

the connecting edge with unit weight. Likewise, nodes 2 and 3 should have a “low”

effective resistance between them for the same reason. But node 2 does not belong to

CGtriangle(1, 3) and so there should be a “high” effective resistance between nodes 1 and
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3 due to their only connection being an edge with low weight. Thus, the sum of the

effective resistances between nodes 1 and 2 and between nodes 2 and 3 should be lower

than the effective resistance between nodes 1 and 3.

4.3 Conclusions

We have generalised the concept of effective resistance to directed graphs in a way that

maintains the connection between effective resistances and the H2 norm, as well as

some other control-theoretic properties relating to consensus-type dynamics. Despite

the algebraic nature of our generalisation, we have shown that effective resistances in

directed graphs bear a fundamental relationship to the structure of the connections

between nodes. Moreover, the square root of effective resistance provides a well-

defined metric on connected directed graphs, allowing for a notion of distance between

nodes, even in cases where neither node is reachable from the other.

Although it may have been tempting to use the Moore-Penrose generalised inverse

of a directed graph’s Laplacian matrix to define effective resistance, we have shown

that not only would this approach ignore the complexity of the derivation of effective

resistance for undirected graphs, but also fail to lead to a distance function for directed

graphs. Instead, our generalisation derives from an analysis of applications of effective

resistance in which directed graphs arise naturally. We believe that this approach

will allow for the application of this directed version of effective resistance in other

situations than those examined in this dissertation.

In the following chapter, we demonstrate how to compute effective resistances in

certain prototypical classes of graphs and we find cases where effective resistances in

directed graphs behave analogously to effective resistances in undirected graphs as

well as cases where they behave in unexpected ways.
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Chapter 5

Computing Effective Resistances in

Directed Graphs

In Chapter 4, we presented a generalisation of the concept of effective resistance

to directed graphs. This extension was constructed algebraically to preserve the

relationships for directed graphs, as they exist for undirected graphs, between effective

resistance and control-theoretic properties, including robustness of linear consensus

to noise (see §3.2.2 or or [114, 115]), and node certainty in networks of stochastic

decision-makers [84]. Further applications of this concept to directed graphs should

be possible in formation control [7], distributed estimation [8, 9] and optimal leader

selection in networked control systems [22, 41, 43, 82].

Effective resistances have proved to be important in the study of networked sys-

tems because they relate global network properties to the individual connections

between nodes, and they relate local network changes (e.g. the addition or deletion

of an edge, or the change of an edge weight) to global properties without the need

to re-compute these properties for the entire network (since only resistances that

depend on the edge in question will change). Accordingly, the concept of effective

resistance for directed graphs will be most useful if the resistance of any given con-
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nection within a graph can be computed, and if it is understood how to combine

resistances from multiple connections. Computation and combination of resistances

are possible for undirected graphs using the familiar rules for combining resistors in

series and parallel.

In this chapter, we address the problems of computing and combining effective

resistances for directed graphs. In §5.1 we develop some theory to identify directed

graphs that have the same resistances as an equivalent undirected graph. We use

some of these results in §5.2 to recover the series-resistance formula [33, §3.3] for

nodes connected by one directed path and the parallel-resistance formula [33, §3.4]

for nodes connected by two directed paths in the form of a directed cycle. In §5.3 we

examine nodes connected by a directed tree and derive a resistance formula that has

no analogue from undirected graphs. The results presented in this chapter have been

submitted for publication in [118].

5.1 Directed and Undirected Graphs with Equal

Effective Resistances

In this section we prove three propositions, each of which provides a set of sufficient

conditions for the resistances in a directed graph to be the same as the resistances in

an equivalent undirected graph.

Our first result bears an interesting parallel to Proposition 3.3 (although the

conditions of Proposition 5.1 are stronger) since it shows that directed graphs that

satisfy a normality condition on their Laplacian matrices are much “easier” to work

with. In fact, Proposition 5.1 implies that directed graphs with normal Laplacian

matrices can be thought of as equivalent to undirected graphs in many essential

respects.
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Proposition 5.1. Suppose G = (V , E , A) is a connected graph on N vertices with

Laplacian matrix L. Let Gu = (V , Eu, Au) be the underlying undirected graph of G. If

L is normal, then the effective resistance between any two nodes in G is equal to the

effective resistance between the same two nodes in Gu.

Proof. Since L is normal by assumption, we know by Lemma 3.3 that G is balanced,

and so 1TNL = 0T . Next, we claim that the Laplacian matrix of Gu is given by

Lu :=
1

2

(
L+ LT

)
. (5.1)

To see this, first note that Lu1N = 0 since L1N = 0 and LT1N = 0. Then, we can

rewrite Lu as

Lu =
1

2

(
D − A+D − AT

)
= D − Au,

where D is the diagonal matrix of node out-degrees of G and Au = 1
2

(
A+ AT

)
(see

§2.4). Therefore, Lu is equal to a diagonal matrix minus Au and has zero row sums.

Hence D must also be the diagonal matrix of the row sums of Au, i.e. the matrix of

node degrees of Gu.

Now, let Q ∈ R(N−1)×N be a matrix that satisfies (2.3). Then, since Lu is sym-

metric, we know that Lu = QLuQ
T must be symmetric as well. Since every edge in

G exists in Gu and G is connected, we know that Gu must be connected as well and

so Lu is invertible (by Corollary 3.1). Hence (3.12) for Gu reduces to

LuΣu + ΣuLu = IN−1,

which clearly has solution

Σu =
1

2
L
−1
u . (5.2)
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We will now show that Σu also solves (3.12) for G.

First, let L = QLQT and note that substituting (5.1) into (5.2) gives us

Σu =
(
L+ L

T
)−1

. (5.3)

Next, we know that L is normal (by Lemma 3.4) and invertible (by Corollary 3.1,

since G is connected). This means that we can say

LL
T

= L
T
L⇒ L

−T
L = LL

−T
, (5.4)

To show that Σu also solves (3.12) for G, we consider the term LΣu+ΣuL
T

, which

based on (5.3) and the results above gives

LΣu + ΣuL
T

= L
(
L+ L

T
)−1

+
(
L+ L

T
)−1

L
T

=
(
IN−1 + L

T
L
−1
)−1

+
(
IN−1 + L

−T
L
)−1

= IN−1 −
(
IN−1 + LL

−T
)−1

+
(
IN−1 + L

−T
L
)−1

,

where the Matrix Inversion Lemma (2.1) was used. But by (5.4), the final two terms

are identical with opposite signs. Hence, Σu solves (3.12) for G as well as Gu. This

implies that Σ = Σu, X = Xu and rk,j = ru k,j for all nodes k and j in V .

The next proposition analyses the case when the adjacency matrix of a graph

is related to its matrix of node out-degrees through a permutation. Although the

assumption for the proposition may seem relatively general, it is straightforward to

show that this can only apply to directed path and cycle graphs. The proof of

Proposition 5.2 relies on two lemmas, which we give first.

Recall that a permutation matrix is a square matrix containing precisely one entry

of 1 in each row and column with every other entry being 0.
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Lemma 5.1. Let P ∈ Rn×n be a permutation matrix. Then P has the following

properties

(i) P−1 = P T , (5.5)

(ii) PΠ = ΠP , and (5.6)

(iii) (P − In) Π = Π (P − In) = P − In, (5.7)

where Π is the matrix defined in (2.2).

Proof. The proof is given in Appendix B.1.1.

Since P T also satisfies the requirements of a permutation matrix, the results of

Lemma 5.1 apply to P T as well (this can also be seen by simply transposing equations

(5.5), (5.6) and (5.7)).

Lemma 5.2. Let A ∈ Rn×n be a square matrix and P be a permutation matrix of the

same dimension as A. Suppose that AP is diagonal. Then

(i) PA is also diagonal,

(ii) A (P − In) + AT
(
P T − In

)
is symmetric, that is

A (P − In) + AT
(
P T − In

)
= (P − In)A+

(
P T − In

)
AT , and (5.8)

(iii) (P − In)
T
A
T
A (P − In) = (P − In)AA

T
(P − In)

T
. (5.9)

Proof. The proof is given in Appendix B.1.2.

We are now ready to prove our next set of sufficient conditions.
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Proposition 5.2. Suppose G = (V , E , A) is a connected (directed) graph on N nodes

with matrix of node out-degrees D. Furthermore, suppose there is a permutation

matrix P such that D = AP . Let Gu = (V , Eu, Au) be the underlying undirected graph

of G. Then the effective resistance between any two nodes in G is equal to the effective

resistance between the same two nodes in Gu.

Proof. The Laplacian matrix L of G is given by L = D−A = A (P − IN). Thus L is

given by L = QA (P − IN)QT , which can be rewritten (using (5.7)) as

L = A (P − IN).

Furthermore, since G is connected, L is invertible by Corollary 3.1.

Next, we claim that the Laplacian matrix of Gu is given by

Lu :=
1

2

[
A (P − IN) + AT

(
P T − IN

)]
.

To see this, we first note that we can rewrite Lu as

Lu =
1

2

(
D + ATP T

)
− Au.

But by part (i) of Lemma 5.2, PA is diagonal and therefore so is ATP T . Hence

Du :=
1

2

(
D + ATP T

)
is a diagonal matrix. Furthermore,

Lu1N =
1

2

[
A (P1N − 1N) + AT

(
P T1N − 1N

)]
.

But since P is a permutation matrix, P1N = 1N and P T1N = 1N , and so Lu1N = 0.

Therefore, Lu is equal to a diagonal matrix minus Au and has zero row sums. Hence

Du must be the diagonal matrix of the row sums of Au, i.e. the matrix of out-degrees

of Gu.
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Since Gu contains every edge in G (in addition to the reversal of each edge) and G

is connected, Gu must also be connected. Thus

Σu =
1

2
L
−1
u

is the solution to the Lyapunov equation (3.12) for Gu. Using our expression for Lu

and (5.7), we can write

Σu =
[
A (P − IN) + A

T
(P − IN)

T
]−1

.

Since Σu is symmetric, we can also write

Σu =
[
(P − IN)A+ (P − IN)

T
A
T
]−1

.

Now, substituting Σu into the left hand side of equation (3.12) for G, gives

LΣu + ΣuL
T

=[
IN−1 + A

T
(P − IN)

T
(
A (P − IN)

)−1]−1
+

[
IN−1 +

(
(P − IN)

T
A
T
)−1

(P − IN)A

]−1
.

Using the Matrix Inversion Lemma, (2.1), applied to the first term, we can rewrite

this as

LΣu + ΣuL
T

= IN−1 −
[
IN−1 + A (P − IN)

(
A
T

(P − IN)
T
)−1]−1

+

[
IN−1 +

(
(P − IN)

T
A
T
)−1

(P − IN)A

]−1
. (5.10)

But by (5.9),

(P − IN)
T
A
T
A (P − IN) = (P − IN)AA

T
(P − IN)

T
,
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so

A (P − IN)
(
A
T

(P − IN)
T
)−1

=
(

(P − IN)
T
A
T
)−1

(P − IN)A,

and thus the final two terms in (5.10) are equal (with opposite signs). Thus

LΣu + ΣuL
T

= IN−1,

and so Σu solves (3.12) for G. This implies that Σ = Σu, X = Xu and rk,j = ru k,j for

all nodes k and j in V .

Our final result in this section provides conditions under which resistances in a

directed graph are equal to those in an undirected graph that is not necessarily the

underlying undirected graph of the first. The first condition requires that reversing

the labels of the nodes in the directed graph is equivalent to reversing the direction of

every directed edge (with no restrictions on undirected edges). The second condition

adds an additional symmetry requirement. The proof of Proposition 5.3 relies on the

following three lemmas.

Let J ∈ Rn×n be the matrix with ones along the counterdiagonal and zeros every-

where else. That is, J = [̂i,j] where ̂i,j = δn+1−i,j and δ is the Kronecker delta‡.

Lemma 5.3. The matrix J has the following properties

(i) JT = J, (5.11)

(ii) J−1 = J, (5.12)

(iii) JΠ = ΠJ, (5.13)

(iv) J
T

= J , and (5.14)

(v) J
−1

= J. (5.15)

‡The Kronecker delta function of integers i and j, written as δi,j , is equal to 1 when i = j and 0
when i 6= j.
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Proof. The proof is given in Appendix B.1.3.

Lemma 5.4. Let L be the Laplacian matrix of a connected graph on N nodes, and

suppose that JLTΠL = LTΠLJ . Then

IN−1 + LJ L
−1
J = IN−1 + L

−T
J L

T
J. (5.16)

Proof. The proof is given in Appendix B.1.4.

Lemma 5.5. Let L be the Laplacian matrix of a graph. Suppose Lu = 1
2

(L+ JLJ).

Then

Lu =
1

2

(
L+ J LJ

)
.

Proof. The proof is given in Appendix B.1.5.

Proposition 5.3. Let G = (V , E , A) be a connected (directed) graph on N nodes

with Laplacian matrix L, and Gu = (V , Eu, Au) be a connected undirected graph with

Laplacian matrix Lu. Suppose that Lu = 1
2

(L+ JLJ) and JLTΠL = LTΠLJ . Then

the effective resistance between any two nodes in G is equal to the effective resistance

between the same two nodes in Gu.

Proof. First we note that since G is connected, L is invertible by Corollary 3.1. Now,

as Lu is the Laplacian of an undirected graph, LTu = Lu and L
T

u = Lu. Thus Σu =

1
2
L
−1
u is the solution to the Lyapunov equation (3.12) for Gu. Now, using Lemma 5.5,

we can write

Σu =
(
L+ J LJ

)−1
Furthermore, since Σu and J are symmetric, we can also write

Σu =
(
L
T

+ J L
T
J
)−1

.
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Now, when we substitute Σu into the left hand side of equation (3.12) for G, we obtain

LΣu + ΣuL
T

= L
(
L+ J LJ

)−1
+
(
L
T

+ J L
T
J
)−1

L
T

=
(
IN−1 + J LJ L

−1
)−1

+
(
IN−1 + L

−T
J L

T
J
)−1

.

Using the Matrix Inversion Lemma (2.1) applied to the first term (and taking J
−1

= J

from Lemma 5.3), we can rewrite this as

LΣu + ΣuL
T

= IN−1 −
(
IN−1 + LJ L

−1
J
)−1

+
(
IN−1 + L

−T
J L

T
J
)−1

.

But by Lemma 5.4, the final two terms are equal (with opposite signs). Thus

LΣu + ΣuL
T

= IN−1,

and so Σu solves (3.12) for G. This implies that Σ = Σu, X = Xu and rk,j = ru k,j for

all nodes k and j in V .

5.2 Effective Resistances from Direct Connections

In this section we compute the resistance in directed graphs between a pair of nodes

that are only connected through a single direct connection, or two direct connections

in opposite directions (i.e. the connection subgraph consists of either a directed path

or a directed cycle). These two scenarios are analogous (in undirected graphs) to

combining multiple resistances in series and combining two resistances in parallel. At

present, we do not have general rules for combining resistances from multiple direct

connections.

The most basic connection is a single directed edge. Intuitively, since an undirected

edge with a given weight is equivalent to two directed edges (in opposite directions)
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with the same weight, one would expect that the resistance of a directed edge should

be twice that of an undirected edge with the same weight. The following lemma shows

that this is indeed true.

Lemma 5.6. If CG(k, j) consists of a single directed edge from node k to node j with

weight ak,j, then

rk,j =
2

ak,j
. (5.17)

Proof. If we take node j to be the first node in CG(k, j) and node k to be the second,

then CG(k, j) has Laplacian matrix

L =

 0 0

−ak,j ak,j

 .
In this case, there is only one matrix Q (up to a choice of sign) which satisfies (2.3),

namely

Q =

[
1√
2
− 1√

2

]
.

Then we have L = QLQT = ak,j, and hence Σ = 1
2ak,j

. Thus

X = 2QTΣQ =

 1
2ak,j

− 1
2ak,j

− 1
2ak,j

1
2ak,j

 ,
and finally,

rk,j =
(
e
(1)
2 − e

(2)
2

)T
X
(
e
(1)
2 − e

(2)
2

)
=

2

ak,j
.

As a result of Lemma 5.6, when we refer to the effective resistance of a single

(directed) edge, we mean twice the inverse of the edge weight. Our next two results

extend to some directed graphs the familiar rules from undirected graphs for combin-
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ing resistances in series and parallel. These cover the cases when a pair of nodes is

connected only by either a directed path or cycle.

Theorem 5.1. Suppose CG(k, j) consists of a single directed path. Then rk,j is given

by the sum of the resistances of each edge in the path between the two nodes (where

the resistance of each edge is computed as in Lemma 5.6).

Proof. Suppose we label the nodes in CG(k, j) from 1 to N in the order in which they

appear along the path, starting with the root and moving in the direction opposite

the edges. Then we can write the adjacency matrix of CG(k, j) as

A = diag(−1)
([
a1 a2 · · · aN−1

])
,

and the matrix of node out-degrees as

D = diag

([
0 a1 · · · aN−1

])
.

If we let P be the permutation matrix containing ones above the main diagonal

and in the lower left corner, that is

P =



0 1 0 · · · 0

0 0 1 · · · 0

0 0 0
. . .

...

...
...

...
. . . 1

1 0 0 · · · 0


, (5.18)

we can observe that D = AP . Therefore, by Proposition 5.2, the resistance between

any two nodes in CG(k, j) is equal to the resistance between the same two nodes in

the underlying undirected path graph with adjacency matrix Au = 1
2

(
A+ AT

)
.

Now, Au is the adjacency matrix of an undirected path with weights of
1

2
ai on
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each edge. But the resistance of an edge in an undirected graph is the inverse of the

edge weight and so each edge has resistance
2

ai
. Thus the edge resistances in this

undirected path graph match those in the original directed path graph (computed

according to Lemma 5.6). Furthermore, the resistance between two nodes connected

by an undirected path is simply the sum of the resistances of the edges between them.

Thus the same is true for two nodes connected by a directed path.

Theorem 5.2. Suppose CG(k, j) consists of a single directed cycle. Then rk,j is given

by the inverse of the sum of the inverses of the resistances of each path connecting

nodes k and j (where the resistance of each path is computed as in Theorem 5.1).

Proof. Suppose we label the nodes in CG(k, j) from 1 to N in the reverse of the order

in which they appear around the cycle, starting with any node. Then we can write

the adjacency matrix of CG(k, j) as

A = diag(N−1)
([
a1

])
+ diag(−1)

([
a2 a3 · · · aN

])

and the matrix of node out-degrees as

D = diag

([
a1 a2 · · · aN

])
.

If we let P be the permutation matrix containing ones above the main diagonal

and in the lower left corner (as in (5.18)), we can observe that D = AP . Therefore,

by Proposition 5.2, the resistance between any two nodes in CG(k, j) is equal to the

resistance between the same two nodes in the underlying undirected cycle graph with

adjacency matrix Au = 1
2

(
A+ AT

)
.

Now, Au is the adjacency matrix of an undirected cycle with weights of
1

2
ai on

each edge. But the resistance of an edge in an undirected graph is the inverse of the

edge weight, so each edge has resistance
2

ai
. Thus the edge resistances in this undi-
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rected graph match those in the original directed cycle graph (computed according

to Lemma 5.6). Furthermore, the resistance between nodes k and j connected by an

undirected cycle is given by

ru k,j =
1

1
r1

+ 1
r2

,

where r1 is the resistance of one path between nodes k and j and r2 is the resistance

of the other path. Thus the same is true for two nodes connected by a directed cycle,

where (by Theorem 5.1) r1 and r2 are equal to the resistances of the two directed

paths between nodes k and j.

5.3 Effective Resistances from Indirect Connections

Lemma 5.6 and Theorems 5.1 and 5.2 suggest a very intuitive interpretation of effec-

tive resistance for directed graphs. A directed edge can be thought of as “half” of an

undirected edge - either by noting that a directed edge allows half of the interaction

to take place that occurs through an undirected edge, or by viewing an undirected

edge as consisting of two directed edges with equal weights but in opposite directions.

Thus, the resistance of a directed edge is twice the resistance of an undirected edge

with the same weight. Then, in path and cycle graphs, resistances combine in ex-

actly the ways (i.e., in series and in parallel) we are used to. However, connections

in directed graphs can be more complicated than these. In particular, two nodes in

a directed graph may be connected even if neither node is reachable from the other.

This will occur when the only connections between the nodes consist of two non-zero

length paths which meet at a distinct node. In Theorem 5.3 we prove an explicit

expression for resistances in the case when CG(k, j) is a directed tree with unit edge

weights. Before doing so we prove two lemmas on the correspondence between re-

sistances and the matrix X from (4.7), and two lemmas on the resistance between

two leaves in a directed tree. We also rely on the finite series expressions given and

proved in Appendix B.3.
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Lemma 5.7. There is a one-to-one relationship between the effective resistances be-

tween nodes in a graph and the entries of the matrix X from (4.7). In particular,

rk,j = xk,k + xj,j − 2xk,j, and (5.19)

xk,j =
1

2N

N∑
i=1

rk,i +
1

2N

N∑
i=1

rj,i −
1

N2

N−1∑
i=1

N∑
`=i+1

ri,` −
1

2
rk,j. (5.20)

Proof. (5.19) is simply the definition of rk,j. To derive (5.20), we first note that from

(2.3) and (4.7), X has the property that X1N = 0 and 1TNX = 0T . That is, X has

zero row- and column-sums.

Now, using (5.19), we can write

rk,i = xk,k + xi,i − 2xk,i for any 1 ≤ i ≤ N.

Then, by summing this equation over i, we obtain

N∑
i=1

rk,i = Nxk,k + tr (X)

since X has zero row-sums. Next, by summing again over k, we find that

tr (X) =
1

2N

N∑
k=1

N∑
i=1

rk,i.

But ri,i = 0 ∀i and ri,k = rk,i (by Theorem 4.3). Thus we can say that

tr (X) =
1

N

N−1∑
i=1

N∑
`=i+1

ri,`. (5.21)
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Combining (5.21) with our expression for
∑N

i=1 rk,i gives us

xk,k =
1

N

N∑
i=1

rk,i −
1

N2

N−1∑
i=1

N∑
`=i+1

ri,`. (5.22)

Substituting the expression from (5.22) for xk,k and xj,j into (5.19) and rearranging

produces (5.20).

Lemma 5.8. Suppose G is a directed path on N nodes with unit edge weights, in

which the nodes are labelled from 1 to N in the order in which they appear along the

path, starting with the root. Let X be the corresponding matrix from (4.7). Then the

entries of X are given by

xk,j =
2N2 + 3N + 1 + 3k2 + 3j2 − 3 (N + 1) k − 3 (N + 1) j

3N
− |k − j| . (5.23)

Proof. Suppose k, j ∈ {1, 2, . . . , N}. Then by Theorem 5.1, we know that the resis-

tance between nodes k and j in our directed path is equal to 2 (the resistance of each

edge) times the number of edges between them. Since the nodes are labelled in order

along the path, this gives us

rk,j = 2 |k − j| .

Therefore, from Lemma 5.7, we know that

xk,j =
1

N

N∑
i=1

|k − i|+ 1

N

N∑
i=1

|j − i| − 2

N2

N−1∑
i=1

N∑
`=i+1

|i− `| − |k − j| . (5.24)

We now proceed by examining each summation in turn. The first sum can be

broken into two parts (for i < k and i > k) and then simplified using (B.26) to obtain

N∑
i=1

|k − i| = 2k2 − 2 (N + 1) k + (N + 1)N

2
. (5.25)
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By replacing k with j in the previous expression, we observe that

N∑
i=1

|j − i| = 2j2 − 2 (N + 1) j + (N + 1)N

2
. (5.26)

In the third sum in (5.24), we observe that ` > i for every term. Thus |i− `| = `−i,

and we can use (B.26) and (B.27) to obtain

N−1∑
i=1

N∑
`=i+1

|i− `| = (N2 − 1)N

6
. (5.27)

Finally, (5.23) follows from substituting (5.25), (5.26) and (5.27) into (5.24).

The following results are needed to prove Theorem 5.3. In them, we examine the

resistance between the leaves of a tree containing two branches that meet at its root

and with unit weights on every edge, Gtreen,m, as shown in Figure 5.1(b). The effective

resistance between the two leaves of Gtreen,m will be denoted by r(n,m).

Lemma 5.9. The effective resistance between the two leaves of Gtreen,1 is given by

r(n, 1) = 2(n− 1) + 22−n. (5.28)

Proof. The number of nodes in Gtreen,1 is N = n+2. Let us label the nodes in Gtreen,1 from

1 to n + 1, in the reverse order of the edges, along the branch of length n, starting

with the root (thus the leaf of this branch is node n + 1). Then the other leaf (with

an edge connecting it to the root) will be node N = n + 2. Thus the resistance we

seek to find is r(n, 1) = rn+1,n+2.

Let Apath
Np

, Dpath
Np

and Lpath
Np

denote the adjacency matrix, matrix of out-degrees and

Laplacian matrix of a directed path containing Np nodes and unit weights on every

edge. Let the nodes in this path be labelled from 1 to Np in the reverse of the order
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in which they appear, starting with the root. Thus

Apath
Np

= diag(−1)(1Np−1) ,
Dpath
Np

= diag

([
0 1TNp−1

])
and

Lpath
Np

= diag

([
0 1TNp−1

])
− diag(−1)(1Np−1) .

From these, we can observe that

1TNpL
path
Np

= e
(Np)T
Np

− e
(1)T
Np

, and (5.29)

e
(i)T
Np

Lpath
Np

=


e
(i)T
Np
− e

(i−1)T
Np

if 1 < i ≤ Np,

0T if i = 1.

(5.30)

Next, we will let QNp be a (Np − 1) × Np matrix which satisfies (2.3), and L
path

Np

and Σpath
Np

be derived from (3.6) and (3.12) using Lpath
Np

and QNp . Let Xpath
Np

=

2QT
Np

Σpath
Np

QNp , according to (4.7). Then, by Lemma 5.8, the entries of Xpath
Np

are

given by (5.23).

Now, we can write the adjacency matrix of Gtreen,1 as

A =

Apath
n+1 0

e
(1)T
n+1 0

 .
In a similar fashion, we can write the matrix of node out-degrees as

D =

Dpath
n+1 0

0T 1

 ,
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and the Laplacian matrix as

L =

 Lpath
n+1 0

−e
(1)T
n+1 1

 .
Next, let

Q =

Qn+1 0

α1Tn+1 −β

 ,
where α = 1√

(n+1)(n+2)
and β =

√
n+1
n+2

. Then Q satisfies (2.3). We can use (3.6),

(5.29) and the facts that Lpath
n+11n+1 = 0n+1 and β (α + β) = 1 to express L as

L =

 L
path

n+1 0

(β − α) e
(1)T
n+1Q

T
n+1 + αe

(n+1)T
n+1 QT

n+1 1

 .
In order to compute resistances in Gtreen,1 , we must find the matrix Σ which solves

(3.12). Since we have partitioned L into a 2 × 2 block matrix, we will do the same

for Σ. Let

Σ =

S t

tT u

 ,
where S ∈ Rn×n is a symmetric matrix, t ∈ Rn and u ∈ R. Then multiplying out the

matrices in (3.12) and equating blocks in this matrix equation gives us

L
path

n+1S + SL
pathT

n+1 = In, (5.31)

L
path

n+1t + t + (β − α)SQn+1e
(1)
n+1 + αSQn+1e

(n+1)
n+1 = 0, and (5.32)

2u+ 2 (β − α) e
(1)T
n+1Q

T
n+1t + 2αe

(n+1)T
n+1 QT

n+1t = 1. (5.33)

From (5.31), it is clear that S = Σpath
n+1 . In addition, we can rewrite (5.33) as

u =
1

2
− (β − α) e

(1)T
n+1Q

T
n+1t− αe

(n+1)T
n+1 QT

n+1t. (5.34)
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In order to find a complete solution for Σ, we must solve (5.32) for t. However,

resistances are computed from X, which, if we let v := QT
n+1t = [vi] and use (4.7),

can be written as

X =

Xpath
n+1 + 2αv1Tn+1 + 2α1n+1v

T + 2α2u1n+11
T
n+1 −2βv − 2αβu1n+1

−2βvT − 2αβu1Tn+1 2β2u

 .
Hence, to compute resistances in Gtreen,1 , we need only compute v, not t. We can also

note that as X does not depend on our choice of Q (by Lemma 4.1), neither does v.

In fact, we can write (5.34) as

u =
1

2
+ (α− β) v1 − αvn+1,

and the resistance we seek as

r(n, 1) = xpathn+1n+1,n+1 + (α + β)2 + 2 (α + β)2 (α− β) v1

+ 2 (α + β) [2− α(α + β)] vn+1. (5.35)

Thus we only need to find v1 and vn+1 in order to compute r(n, 1).

Now, vi = e
(i)T
n+1v = e

(i)T
n+1Q

T
n+1t. We will therefore proceed by left-multiplying

(5.32) by e
(i)T
n+1Q

T
n+1. Using the fact that S = Σpath

n+1 , we obtain

e
(i)T
n+1Q

T
n+1Qn+1L

path
n+1v + vi +

β − α
2

e
(i)T
n+1X

path
n+1 e

(1)
n+1 +

α

2
e
(i)T
n+1X

path
n+1 e

(n+1)
n+1 = 0. (5.36)

But e
(i)T
n+1Q

T
n+1Qn+1 = e

(i)T
n+1

(
In+1 − 1

n+1
1n+11

T
n+1

)
= e

(i)T
n+1 − 1

n+1
1Tn+1 by (2.3), and so
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by (5.29) and (5.30), we find

e
(i)T
n+1Q

T
n+1Qn+1L

path
n+1v =


1

n+1
v1 + vi − vi−1 − 1

n+1
vn+1 if 1 < i ≤ n+ 1,

1
n+1

v1 − 1
n+1

vn+1 if i = 1.

Furthermore, using (5.23), we observe that

e
(i)T
n+1X

path
n+1 e

(1)
n+1 = xpathn+1 i,1 =

(2n+ 3)(n+ 2)

3(n+ 1)
+
i(i− 2n− 3)

n+ 1
, and

e
(i)T
n+1X

path
n+1 e

(n+1)
n+1 = xpathn+1 i,n+1 = −n(n+ 2)

3(n+ 1)
+
i(i− 1)

n+ 1
.

Substituting these expressions into (5.36) gives us

vi =
1

2
vi−1 −

1

2(n+ 1)
v1 +

1

2(n+ 1)
vn+1 + f + g(i) if 1 < i ≤ n+ 1 (5.37)

v1 =
1

n+ 2
vn+1 + h, (5.38)

where

f =
[(3α− 2β)n+ 3(α− β)] (n+ 2)

12(n+ 1)
,

g(i) =
i [−βi+ 2(β − α)n− 2α + 3β]

4(n+ 1)
and

h =
αn

6
+

(α− β)n(2n+ 1)

6(n+ 2)
.

We can now recursively apply (5.37) n times, starting with i = n+ 1, to find

vn+1 = 2−nv1 −
v1

n+ 1

n∑
k=1

2−k +
vn+1

n+ 1

n∑
k=1

2−k + 2f
n∑
k=1

2−k

+ 2
n∑
k=1

g(n+ 2− k)2−k. (5.39)
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But we can write g(n+ 2− k) = g1 + g2k + g3k
2, where

g1 =
(β − 2α)(n+ 2)

4
,

g2 =
2αn+ 2α + β

4(n+ 1)
and

g3 =
−β

4(n+ 1)
.

Therefore, by (B.28), (B.29) and (B.30), the sum involving g(n+ 2− k) is

n∑
k=1

g(n+ 2− k)2−k = g1
(
1− 2−n

)
+ g2

[
2−(n+ 2) 2−n

]
+ g3

[
6−
(
n2 + 4n+ 6

)
2−n
]
.

Using this result and (B.28), (5.39) becomes

n+ 2−n

n+ 1
vn+1 =

(n+ 2) 2−n − 1

n+ 1
v1 + 2f

(
1− 2−n

)
+ 2g1

(
1− 2−n

)
+ 2g2

[
2− (n+ 2) 2−n

]
+ 2g3

[
6−

(
n2 + 4n+ 6

)
2−n
]
. (5.40)

But now (5.40) and (5.38) form a pair of linear equations in v1 and vn+1. Using

the expressions for f , g1, g2, g3 and h, along with the definitions of α and β, their

solution is given by

v1 =
α [−2n2 + 5n− 6 + 6.2−n]

6

vn+1 =
α [n2 + 2n− 12 + (6n+ 12)2−n]

6
.

(5.41)

Finally, using (5.23) and (5.41) in (5.35), along with the expressions for α and β,

gives us (5.28).
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Lemma 5.10. For positive integers n and `, the resistance between the two leaves of

Gtreen,`+1 satisfies the recurrence relation

r(n, `+1) =
−3n2+ 3`2− 2n`− n+ 5`+ 2

2(n+ `+ 1)2
+
`2+ 2n`+ 2n+ 3`

n+ `+ 1
2−n+

n2+ n+ 2

2(n+ `+ 1)
2−`

+
1

4(n+ `+ 1)

∑̀
k=1

(
4− 2

n+`+1
− 2k−`

)
r(n, k)− n+ `+ 2

2(n+ `+ 1)

n∑
k=1

(
1

n+`+1
− 2k−n

)
r(k, `)

− 1

4(n+ `+ 1)

n∑
k=1

∑̀
j=1

(
21+k−n − 2j−`

)
r(k, j). (5.42)

The proof of Lemma 5.10 relies on similar ideas to the proof of Lemma 5.9, and

is given in Appendix B.2. We now proceed to solve the recurrence relation given by

Lemmas 5.9 and 5.10 using several finite series results given in Appendix B.3.

Theorem 5.3. Suppose CG(k, j) consists of a directed tree with unit weights on every

edge. Then rk,j is given by

rk,j = 2 (n−m) + 23−n−m
bm+1

2 c∑
i=1

i

(
n+m+ 2

n+ 2i+ 1

)
, (5.43)

where n is the length of the shortest path from node k to a mutually reachable node

and m is the length of the shortest path from node j to a mutually reachable node.

Proof. Since every node in CG(k, j) is reachable from either node k or node j, if

CG(k, j) is a tree then only nodes k and j can be leaves. But every tree has at least

one leaf, so suppose that node k is a leaf. If node j is not a leaf, then CG(k, j) must

be a directed path and node j is the closest mutually reachable node to both nodes

k and j. Then m = 0, n is the path length from k to j and (5.43) reduces to

rk,j = 2n,

which follows from Theorem 5.1. Conversely, if node j is a leaf but node k is not,
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CG(k, j) must be a directed path and node k is the closest mutually reachable node to

both nodes k and j. Then n = 0, m is the path length from j to k and (5.43) reduces

to

rk,j = −2m+ 23−m
bm+1

2 c∑
i=1

i

(
m+ 2

2i+ 1

)
.

But by (B.40) and (B.38) from Lemma B.3,

bm+1
2 c∑
i=1

i

(
m+ 2

2i+ 1

)
= m2m−1,

and so (5.43) becomes

rk,j = 2m,

which follows from Theorem 5.1.

Now, if both node k and node j are leaves, then CG(k, j) must be a directed

tree with exactly two branches. Thus CG(k, j) must correspond to the tree shown in

Figure 5.1(a) and n and m are the path lengths from nodes k and j, respectively, to

the point where the two branches meet. Furthermore, both n and m are at least 1.

By Corollary 4.1, we observe that the resistance between nodes k and j remains

the same as we remove all the nodes of CG(k, j) from the root to the node where the

two branches meet. Thus, rk,j can be computed as the resistance between the two

leaves of the tree shown in Figure 5.1(b). Let this tree be called Gtreen,m, and since the

only two parameters that define Gtreen,m are n and m, we can write rk,j as a function of

n and m only. That is,

rk,j =: r(n,m).

In order to compute r(n,m), we will begin by considering the case where m = 1.

Substituting m = 1 into (5.43) gives

r(n, 1) = 2(n− 1) + 22−n,
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(a) (b)

Figure 5.1: (a) The generic form of CG(k, j) when it is a directed tree with more than
one leaf and unit weights on every edge. (b) A tree, Gtreen,m, in which rk,j is equal to its
value in CG(k, j) when CG(k, j) is a directed tree as shown in part (a).

which follows from Lemma 5.9.

Now, suppose that (5.43) holds for all n > 0 and all m ∈ {1, 2, . . . , `} (for some

` > 0). Then rk,j for m = ` + 1 can be computed using Lemma 5.10. In particular,

all resistances in the right-hand side of (5.42) are given by (5.43). Using this fact, we

find that r(n, ` + 1) matches the expression s(n, `) given in Lemma B.8. Therefore,

r(n, `+ 1) can be expressed in the form given in (B.81).

Next, suppose that ` is odd. That is, ` = 2p + 1 for some integer p ≥ 0. Then

(B.81) gives us

r(n, 2p+ 2) = 2 (n− 2p− 2) + 21−n−2p
p+1∑
i=1

i

(
n+ 2p+ 4

n+ 2i+ 1

)
+

g(n, p)

n+ `+ 1
,

where g(n, p) is given by (B.53) in Lemma B.6. But by Lemma B.6, g(n, p) = 0 for
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any integers n ≥ 0 and p ≥ 0. Thus (5.43) holds for m = `+ 1.

Finally, suppose that ` is even. That is, ` = 2p for some integer p > 0. Then

(B.81) gives us

r(n, 2p+ 1) = 2 (n− 2p− 1) + 22−n−2p
p∑
i=1

i

(
n+ 2p+ 3

n+ 2i+ 1

)
+

4p2 + 2np+ 2n+ 6p+ 2

n+ 2p+ 1
21−n−2p +

h(n, p)

n+ `+ 1
,

where h(n, p) is given by (B.67) in Lemma B.7. But by Lemma B.7, h(n, p) = 0 for

any integers n ≥ 0 and p ≥ 0. Thus,

r(n, 2p+ 1) = 2 (n− 2p− 1) + 22−n−2p
p+1∑
i=1

i

(
n+ 2p+ 3

n+ 2i+ 1

)
,

and so (5.43) holds for m = `+ 1.

Therefore, by induction we have that (5.43) also holds for all n > 0 and m > 0.

Equation (5.43) is a highly non-intuitive result, not least because on initial in-

spection it does not appear to be symmetric in n and m (although we know that

it must be, by Theorem 4.3). Therefore, it becomes easier to interpret (5.43) if we

reformulate it in terms of the shorter path length and the difference between the path

lengths. Thus, if we let n be the length of the longer path, that is, n = m + d for

some d ≥ 0, (5.43) becomes

rk,j = 2d+ 23−2m−d
bm+1

2 c∑
i=1

i

(
2m+ d+ 2

m+ d+ 2i+ 1

)
=: 2d+ e(m, d). (5.44)
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Then, using (2.6), we can write

e(m, d+ 1) = 23−2m−d
bm+1

2 c∑
i=1

i
2m+ d+ 3

2m+ 2d+ 4i+ 4

(
2m+ d+ 2

m+ d+ 2i+ 1

)
<

2m+ d+ 3

2m+ 2d+ 4
e(m, d), (5.45)

and hence conclude that lim
d→∞

e(m, d) = 0. Thus, when the connection subgraph

between two nodes is a directed tree, the resistance between them is twice the differ-

ence between the lengths of the paths connecting each node to their closest mutually

reachable node, plus some “excess” that disappears as this difference becomes large.

Conversely, the excess is significant when the path length difference is small, leading

to a resistance that is greater than twice the difference.

One common approach to the analysis of resistive circuits is to replace a section of

the network that connects to the rest through a single pair of nodes by a single resistor

with an equivalent resistance. The simplest example of this is the replacement of a

path with a single edge. If this principle were to extend to the calculation of effective

resistance in directed graphs, then r2,3 in Gstar3 (as shown in Figure 5.2) would match

the formula from Theorem 5.3. However, a simple calculation shows that in Gstar3 ,

r2,3 = 2 (n+m)− 2nm

n+m
,

which only matches (5.43) for n = m = 1. Thus in more general cases of connection

subgraphs like Gtreen,m but with arbitrary weights on every edge, the resistance between

the leaves does not depend only on the equivalent resistance of each path.

Theorems 5.1, 5.2 and 5.3 by no means characterise all the possible connection

subgraphs in a directed graph. Other connection subgraphs include multiple paths

from k to j (some of which could coincide over part of their length), multiple paths

from k to j and multiple paths from j to k (again, some of which could partially
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Figure 5.2: A simple 3-node directed graph, Gstar3 , with resistances of 2n and 2m on
each edge.

coincide), multiple indirect connections of the type analysed in Theorem 5.3 (which

could partially coincide) and a combination of indirect and direct (i.e. path) con-

nections. Further analysis is needed to completely describe how to compute effective

resistances in these situations.

5.4 Conclusions

The results of Lemma 5.6 and Theorems 5.1 and 5.2 demonstrate that in some sit-

uations our definition of effective resistance for directed graphs behaves as an intu-

itive extension of effective resistance in undirected graphs. In contrast, Theorem 5.3

demonstrates a fundamental difference between effective resistances in directed and

undirected graphs that arises from the indirect connections that are only possible in

directed graphs. Nevertheless, the results presented above show that our notion of

effective resistance for directed graphs provides an approach that can relate the local

structure of a directed graph to its global properties. The familiar properties of ef-

fective resistance allow for a firm analysis of directed graphs that behave similarly to

undirected graphs, while the unfamiliar properties can provide insight for the design

of directed networks which exhibit essential differences to undirected networks.
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Chapter 6

Rearranging Trees for Optimal

Robustness

In this chapter, we study the robustness of a particular family of graphs, namely trees,

according to theirH2 norms. We develop a partial ordering among trees that allows us

to find a tree with minimal H2 norm, given certain constraints. For undirected trees,

most of this partial ordering has already been developed in the literature on Wiener

indices [30, 31, 32, 104]. Despite this, our methods of proof are new. In particular,

we rely only on local changes in which one or more leaf nodes are moved from a single

location in the tree to a new location. This approach allows for the development of

a decentralised algorithm on trees to improve their robustness. Additionally, we use

the results of Chapters 4 and 5 to derive a similar ordering for directed trees that

could not be done using the Wiener index literature.

There are a number of reasons to focus our investigation on trees. First, trees con-

tain the minimum number of edges required for connectivity. Thus, if communication

is very costly, a tree graph requires the minimum amount of communication possible

to maintain group behaviour. Second, every connected graph contains a spanning

tree as a subgraph [1, 69]. In undirected graphs, adding an edge can only decrease
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effective resistance, and so the Kirchhoff index (and hence H2 norm) of any spanning

tree will provide an upper bound on the Kirchhoff index (respectively, H2 norm) of

the entire graph [45]. Although we cannot make the same claim for directed graphs,

any directed tree can be labelled in such a way as to make its Laplacian matrix lower

triangular. Thus the edge weights of a directed tree (along with 0) form the eigen-

values of the graph Laplacian and so a normalised directed tree graph will have a

convergence speed of 1. This means that (for large N), directed trees have close to

the maximum possible convergence speed for any directed graph (see Lemma 3.5).

This chapter is organised as follows. In §6.1 we discuss the relationship between

the H2 norm and other graph indices. In §6.2 we introduce a system of terminology

to describe tree graphs. In §6.3 we derive our partial ordering for undirected trees

and develop a decentralised algorithm for rearranging them in §6.4. In §6.5 we derive

a similar partial ordering for directed trees. Finally, in §6.6 we discuss a decentralised

algorithm for rearranging directed trees. Some of the material presented in §6.1, §6.2,

§6.3 and §6.4 has been published in [115].

6.1 The H2 Norm and Other Graph Indices

From Proposition 4.1, we know that the H2 norm of any connected graph, whether

directed or undirected, can be directly related to the Kirchhoff index of the graph.

In particular, any ordering imposed by the Kirchhoff index on graphs with the same

number of nodes will be the same ordering imposed by the H2 norm.

Although computing effective resistances can be difficult for most graphs, it is

very straightforward for undirected trees. In a tree with unit weights on every edge,

the effective resistance between two nodes is given by the length of the path between

127



them [56]. Hence, the effective resistance of a tree with unit edge weights is

Kf =
∑
i<j

ri,j =
∑
i<j

di,j, (6.1)

where di,j is the shortest-path distance between nodes i and j, that is, the smallest

sum of the edge weights along any path joining nodes i and j.

In addition to the Kirchhoff index, many other “topological” indices of graphs

have arisen out of the mathematical chemistry literature [87]. One of the earliest to

arise was the Wiener index, ω [87]. The Wiener index for any (undirected) graph is

defined as

ω :=
∑
i<j

di,j. (6.2)

Thus, for undirected trees with unit edge weights, the Kirchhoff and Wiener indices

are identical. However, the two indices differ for any other graph. Hence, while the

results in §6.3 apply equally to Wiener indices, we choose to interpret them only in

terms of the Kirchhoff index and H2 norm.

Much work has already been done on comparing undirected trees based on their

Wiener indices. It is already well-known that the Wiener index of an undirected

tree will fall between that of the undirected star and that of the undirected path

[31, 39, 45]. For undirected trees with a fixed number of nodes, the 15 trees with

smallest Wiener index and the 17 trees with largest Wiener index have been identified

[30, 32]. Further, for undirected trees with a fixed number of nodes and a fixed

diameter, the tree with smallest Wiener index has been found [104]. Therefore, most

of the main results in §6.3 have already been derived. Our contribution in this section

includes new methods of proof that rely on local changes of topology and provide

constructive means to order undirected trees and derive decentralised strategies for

improving robustness. We follow this in §6.5 by deriving a similar partial ordering of

directed trees that, to our knowledge, has not been reported previously.
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A different graph index, developed in the mathematical literature, is the maxi-

mum eigenvalue of the adjacency matrix A [91]. Simić and Zhou developed a partial

ordering of trees with fixed diameter according to this index in [91]. Their work, in

particular the families of trees they considered and the order in which they proved

their results, has motivated the approach taken in this chapter.

6.2 A System of Terminology for Trees

We first introduce a system of terminology relating to trees. Much of our terminology

for undirected trees corresponds to that in [91] and earlier papers. We have tried to

be as consistent as possible in using similar terminology for directed trees. Let T un
N,d̂

be

the set of all undirected trees containing N nodes and with diameter d̂. For N ≥ 3,

an undirected tree must have a diameter of at least 2, and T un
N,2 contains only one

tree. This tree is the undirected star, and is denoted Sun
N . For all positive N , the

maximum diameter of a tree is N − 1, and T un
N,N−1 contains only one tree. This tree

is the undirected path, and is denoted Pun
N .

Let T dir
N,d̂

be the set of all directed trees containing N nodes and with depth d̂.

For N ≥ 2, a directed tree must have a depth of at least 1, and T dir
N,1 contains only

one tree. This tree is the directed star, and is denoted Sdir
N . For all positive N , the

maximum depth of a tree is N − 1, and T dir
N,N−1 contains only one tree. This tree is

the directed path, and is denoted Pdir
N .

Recall that a leaf (or pendant) in an undirected tree is a node with degree 1, and

that a leaf in a directed tree is a node with zero in-degree. A bouquet is a non-empty

set of leaf nodes, all adjacent to the same node. A node which is not a leaf is called

an internal node. Note that the root of a directed tree is also an internal node. In a

directed tree, any node with multiple children is referred to as a branch node.
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(a)

(b)

Figure 6.1: General form of a caterpillar in (a) Cun
N,d̂

and (b) Cdir
N,d̂

. Each caterpillar has

nj ≥ 0 additional leaf nodes attached to each internal node j in the path of length d̂.

A caterpillar is a tree for which the removal of all leaf nodes would leave a path.

The set of all undirected caterpillars with N nodes and diameter d̂ is denoted by Cun
N,d̂

(see Figure 6.1(a)). The set of all directed caterpillars with N nodes and depth d̂

is denoted by Cdir
N,d̂

(see Figure 6.1(b)). Any caterpillar in Cun
N,d̂

(respectively, Cdir
N,d̂

)

contains an undirected (respectively, directed) path of length d̂, with all other nodes

adjacent to internal nodes of this path. In particular, we refer to the caterpillar that

contains a single bouquet attached to the ith internal node along this path as Pun
N,d̂,i

in the undirected case and Pdir
N,d̂,i

in the directed case (see Figure 6.2). To avoid

ambiguity, in Pun
N,d̂,i

we require 1 ≤ i ≤ b d̂
2
c. In contrast, in Pdir

N,d̂,i
, we can have

1 ≤ i ≤ d̂ (we exclude i = d̂+ 1 since this would increase the depth of the tree).

The undirected tree formed from Pun

N−1,d̂,b d̂
2
c

by attaching an additional node to

one of the leaves in the central bouquet is denoted by N un
N,d̂

(see Figure 6.3).
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(a)

(b)

Figure 6.2: Caterpillar graphs (a) Pun
N,d̂,i

and (b) Pdir
N,d̂,i

. Each contains a path of length

d̂ with a bouquet containing N − d̂ − 1 leaf nodes attached to the ith internal node
on the path.

A double palm tree (also referred to as a dumbbell in [31]) is a caterpillar with two

bouquets, one at each end of the path (see Figure 6.4). We use Dun
N,p,q to denote the

undirected double palm tree on N nodes, with bouquets of sizes p and q. Similarly,

we use Ddir
N,p,q to denote the directed double palm tree on N nodes, with bouquets of

sizes p and q. Note that the two ends of a directed path are non-identical (one end is

the root while the other is the leaf). In Ddir
N,p,q, the bouquet of size p will be attached

to the root.

If we take an undirected tree T and attach two separate paths containing ` and k

nodes to node r in T , we call the resulting tree a vine and denote it by T r`,k (see Figure

6.5). Note that by a judicious choice of T , any undirected tree can be considered to

be a vine.
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Figure 6.3: The tree N un
N,d̂

, formed from Pun

N−1,d̂,b d̂
2
c

by attaching an additional node to

one of the leaves in the central bouquet. Note that N − d̂− 3 must be greater than
or equal to 0.

(a)

(b)

Figure 6.4: Double palm tree graphs (a) Dun
N,p,q and (b) Ddir

N,p,q. Each double palm tree
contains bouquets of sizes p and q at each end of a path.

6.3 Manipulations to Reduce the Effective Resis-

tance of Undirected Trees

We can now start to describe a partial ordering on undirected trees based on their H2

norms. Every tree is assumed to have a unit weight on every edge. First, we determine

the effect of moving a leaf from one end of a double palm tree to the other, and use

this to derive a complete ordering of all trees in T un
N,3 (Theorem 6.1). Second, we

consider moving a leaf from one end of a vine to the other, and use this to prove that

the path has the largest H2 norm of any undirected tree with N nodes (Theorem 6.2),
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Figure 6.5: The vine T r`,k, formed from any undirected tree T by separately connecting
paths containing ` and k nodes to node r.

and to derive a complete ordering of T un
N,N−2 (Theorem 6.3). Finally, by moving all

(or almost all) nodes in a bouquet to an adjacent node, we show that Pun

N,d̂,b d̂
2
c

has

the smallest H2 norm of any undirected tree with diameter d̂ (Theorem 6.4) and that

for any tree that is not a star, we can find a tree of smaller diameter with a smaller

H2 norm (Theorem 6.5). From Theorem 6.5 we also conclude that the star has the

smallest H2 norm of any undirected tree with N nodes.

The same ordering will apply to the set of trees with a given constant edge weight,

as all effective resistances will be proportional to those in the corresponding tree with

unit weights.

6.3.1 Double Palm Trees

We begin our partial ordering by showing that the H2 norm of an undirected double

palm tree is reduced when we move a single node from the smaller bouquet to the

larger one.

Lemma 6.1. Let 1 < p ≤ q and p+ q ≤ N − 2. Then η
(
Dun
N,p,q

)
> η

(
Dun
N,p−1,q+1

)
.

Proof. InDun
N,p,q, let one of the nodes in the bouquet of size p be node 1. The remaining

nodes are labelled 2 through N . To form Dun
N,p−1,q+1, we take node 1 and move it to

the other bouquet. Since all other nodes remain unchanged, we can use (6.1) to write
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Kf

(
Dun
N,p,q

)
−Kf

(
Dun
N,p−1,q+1

)
=

(
N∑
j=2

d1,j

)
Dun
N,p,q

−

(
N∑
j=2

d1,j

)
Dun
N,p−1,q+1

.

Now, in Dun
N,p,q, the path length between node 1 and any of the remaining p − 1

nodes in the bouquet of size p is 2. Similarly, the path length between node 1 and

any node in the bouquet of size q is N − p− q+ 1. Finally, the path lengths between

node 1 and the internal nodes take on each integer value from 1 to N − p− q.

In Dun
N,p−1,q+1, the path length between node 1 and any of the nodes in the bouquet

of size p − 1 is now N − p − q + 1. The path length between node 1 and any of the

remaining q nodes in the bouquet of size q + 1 is now 2. Again, the path lengths

between node 1 and the internal nodes take on all integer values from 1 to N − p− q.

Thus, Dun
N,p−1,q+1 (compared to Dun

N,p,q) has more nodes at a distance 2 from node 1

and fewer nodes at a distance N −p− q+ 1, while the sum of distances to all internal

nodes remains the same. Therefore Kf

(
Dun
N,p,q

)
> Kf

(
Dun
N,p−1,q+1

)
. Hence, by (4.11),

the result holds.

Although Lemma 6.1 applies to double palm trees with any diameter, we can

apply it to trees with d̂ = 3 in order to prove our first main result of the chapter.

Theorem 6.1. For N ≥ 4, we have a complete ordering of T un
N,3, namely

η
(
Dun
N,1,N−3

)
< η

(
Dun
N,2,N−4

)
< . . . < η

(
Dun
N,bN−2

2
c,dN−2

2
e

)
.

Proof. Any undirected tree with diameter d̂ = 3 must have a longest path of length

3. Any additional nodes in the tree must be connected through some path to one of

the two internal nodes on this longest path. In addition, any node adjacent to one

of the internal nodes of the longest path forms a path of length 3 with the node at

the far end of the path. Hence all such nodes must be leaves and so every undirected

tree with d̂ = 3 is a double palm tree. The ordering follows from Lemma 6.1.
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6.3.2 Vines

Our next task is to find an ordering of undirected trees with the largest possible

diameter. Lemma 6.2 applies to trees of any diameter, but again we can specialise it

to give the results we need.

Lemma 6.2. Let T be an undirected tree containing more than one node, including

node r, and let `, k be any positive integers such that 1 ≤ ` ≤ k. Then η
(
T r`,k
)
<

η
(
T r`−1,k+1

)
.

Proof. Let the total number of nodes in T r`,k be N (so N − k− ` > 1), and let the leaf

at the end of the path containing ` nodes be node 1. Let the remaining nodes in the

two paths be nodes 2 through l + k, and let node r in T be node ` + k + 1 in T r`,k.

The remaining nodes from T are labelled `+ k + 2 through N . To form T r`−1,k+1, we

take node 1 and move it to the end of the other path. Since all other nodes remain

unchanged, we can use (6.1) to write

Kf

(
T r`−1,k+1

)
−Kf

(
T r`,k
)

=

(
N∑
j=2

d1,j

)
T r`−1,k+1

−

(
N∑
j=2

d1,j

)
T r`,k

.

Now, in both T r`,k and T r`−1,k+1, the path lengths between node 1 and all nodes

along the paths (including the root of T ) take on each integer value between 1 and

` + k. Hence the sum of these path lengths does not change between the two trees.

Furthermore, since node r of T lies on every path between node 1 and any other node

in T , we can write

d1,j = d1,`+k+1 + d`+k+1,j, j ≥ `+ k + 2.

Therefore, for T r`,k, the sum of the distances from node 1 to all the nodes in T is

(N − ` − k + 1)` plus the sum of the distances from node r to each node in T .

However, in T r`−1,k+1, the sum of the distances from node 1 to all the nodes in T is
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(N − `− k + 1)(k + 1) plus the sum of the distances from node r to each node in T .

Thus Kf

(
T r`−1,k+1

)
> Kf

(
T r`,k
)

and so by (4.11), the result holds

The first consequence of Lemma 6.2 is that the undirected tree with largest diam-

eter (i.e. d̂ = N − 1) also has the largest H2 norm.

Theorem 6.2. The path Pun
N has the largest H2 norm of any undirected tree with N

nodes.

Proof. Any undirected tree T1 which is not a path will contain a node with degree

greater than 2. We can locate one such node that has two paths (each with fewer than

N nodes; one of length ` and one of length k) attached. Let T be the tree formed by

removing these two paths from T1, and let this node be node r in T . Then T1 = T r`,k,

and by Lemma 6.2 we can find a tree with larger H2 norm.

We can also use Lemma 6.2 to derive an ordering of the undirected trees with

diameter one less than its maximum value (i.e. d̂ = N − 2). In this case, a tree will

consist of a path of length N − 2 with one leaf attached to an internal node. Thus

these trees are both vines and caterpillars.

Theorem 6.3. For N ≥ 4, we have a complete ordering of T un
N,N−2, namely

η
(
Pun
N,N−2,bN−2

2
c

)
< η

(
Pun
N,N−2,bN−2

2
c−1

)
< . . . < η

(
Pun
N,N−2,1

)
.

Proof. Every tree in T un
N,N−2 must contain a path of length N − 2 (which contains

N − 1 nodes), and one additional node. This node must be adjacent to an internal

node of the path, since otherwise we would have a path of length N − 1. Thus every

tree in T un
N,N−2 is of the form Pun

N,N−2,i, for some 1 ≤ i ≤ bN−2
2
c.

Now, if we let T be an undirected path containing 2 nodes (labelled 1 and 2), we

observe that Pun
N,N−2,i = T 1

i,N−i−2. Suppose that i < bN−2
2
c. Then i < N − i− 2, and

so by Lemma 6.2, η
(
Pun
N,N−2,i

)
= η

(
T 1
i,N−2−i

)
> η

(
T 1
i+1,N−3−i

)
= η

(
Pun
N,N−2,i+1

)
.
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The only difference between trees in T un
N,N−2 is which internal node has the addi-

tional leaf attached. Theorem 6.3 ensures that the H2 norm is smallest when this

internal node is at the centre of the path.

6.3.3 Caterpillars

We now have complete orderings for T un
N,2 (trivial, since T un

N,2 contains only the undi-

rected star), T un
N,3 (by Theorem 6.1), T un

N,N−2 (by Theorem 6.3) and T un
N,N−1 (trivial,

since T un
N,N−1 contains only the undirected path). We next consider the remaining

families of trees with diameters in the range 4 ≤ d̂ ≤ N − 3 (and hence, N ≥ 7).

Rather than deriving complete orderings, the main goal of the next two lemmas

is to find the tree in T un
N,d̂

with lowest H2 norm. However, we use two steps to attain

our result since this provides greater insight into the ordering amongst the remaining

trees. Lemma 6.5 then allows us to combine the results to prove (in Theorem 6.4)

that among trees of diameter d̂, the one with lowest H2 norm is P
N,d̂,b d̂

2
c. Theorem 6.5

then provides a comparison of trees with different diameters.

Lemma 6.3. Suppose N ≥ 7 and 4 ≤ d̂ ≤ N − 3. If T ∈ Cun
N,d̂

, then η (T ) ≥

η

(
Pun

N,d̂,b d̂
2
c

)
, with equality if and only if T = Pun

N,d̂,b d̂
2
c
.

Proof. Since d̂ ≤ N − 3 and T ∈ CN,d̂, a longest path in T contains N − d̂ − 1 ≥ 2

leaves attached to internal nodes (other than the two leaves in the longest path).

Suppose that PT is a longest undirected path subgraph of T . For the rest of this

proof, when we refer to leaf nodes and bouquets, we mean leaves not part of PT , and

bouquets made up of these leaves.

Suppose T contains a single bouquet. Thus T = Pun
N,d,i for some 1 ≤ i ≤ bd

2
c. If

i 6= bd
2
c, then by Lemma 6.2, η

(
Pun
N,d,i

)
> η

(
Pun
N,d,i+1

)
.

Suppose T contains multiple bouquets. Locate a bouquet furthest from the centre

of PT , and move every leaf in this bouquet one node further from the closest end of
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PT . Call this new tree T ′, and label the nodes that were moved 1 through n. Then

between T and T ′, the path lengths between each of these leaves and any other leaf

decrease by 1. The path lengths between each of these leaves and ≤ b d̂+1
2
c nodes on

PT increase by 1, and the path lengths between each of these leaves and ≥ b d̂+1
2
c

nodes on PT decrease by 1. Thus the sum of the path lengths in T ′ is less than the

sum in T , and so by (6.1) and (4.11), η (T ′) < η (T ).

Thus, if T is not Pun
N,d̂,b d

2
c, there is a tree in CunN,d with strictly smaller H2 norm.

Lemma 6.4. Suppose that N ≥ 7 and 4 ≤ d̂ ≤ N − 3. Let T be a tree in T un
N,d̂
\ Cun

N,d̂
.

Then η (T ) ≥ η
(
N un
N,d̂

)
, with equality if and only if T = N un

N,d̂
.

Proof. Let PT be a longest undirected path subgraph of T (of length d̂), and let m

be the number of nodes with distances to PT greater than 1 (the distance between a

node and PT is given by the shortest distance between that node and any node on

the path).

If m > 1, locate a bouquet with the greatest distance from PT , label the leaves

in this bouquet 1 through n, and label the adjacent node n+ 1. Suppose that either

the distance between this bouquet and PT is greater than 2, or the distance is 2 and

another bouquet exists at the same distance from PT . Let T ′ be the tree formed

by moving all leaves in this bouquet one node closer to PT . By our assumptions,

T ′ ∈ T un
N,d̂
\Cun

N,d̂
. Then di,n+1 increases by 1 for i = 1, . . . , n. Conversely, di,j decreases

by 1 for i = 1, . . . , n and j > n + 1. Since there must be at least d̂ + 2 ≥ 6 of these

other nodes (with labels above n + 1), the sum of all distances in T ′ is smaller than

the sum of all distances in T . Thus η (T ′) < η (T ).

If the bouquet we found has a distance of 2 to PT , and is the only such bouquet,

form T ′ by moving leaves 1 through n−1 one node closer to PT . Then T ′ ∈ T un
N,d̂
\Cun

N,d̂
.

Now, di,n and di,n+1 both increase by 1 for i = 1, . . . , n − 1. However, di,j decreases

by 1 for i = 1, . . . , n − 1 and j one of the remaining ≥ d̂ + 1 ≥ 5 nodes. Thus

η (T ′) < η (T ).
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If m = 1, then T contains a single node at a distance 2 from PT , and all other

nodes in T are either on PT or adjacent to nodes on PT . Locate a node on PT with

additional nodes attached that is furthest from the centre of the path. Label all nodes

attached to this node 1 through n (including the node at distance 2 from PT if it is

connected to PT through this node), and label this node n+1. If n+1 is not the b d̂
2
cth

internal node on the path (i.e. if T 6= N un
N,d̂

), then form T ′ by moving all nodes not

on PT that are adjacent to n + 1 (carrying along the node at distance 2, if present)

one node further from the closest end of PT . Then T ′ ∈ T un
N,d̂
\ Cun

N,d̂
. Furthermore, for

i = 1, . . . , n, di,j decreases by 1 for any j not on PT , increases by 1 for ≤ b d̂
2
c nodes

on PT and decreases by 1 for ≥ d d̂
2
e+ 1 nodes on PT . Thus the sum of the distances

in T ′ is less than the sum in T , and so η (T ′) < η (T ).

Hence for every tree in T un
N,d̂
\ Cun

N,d̂
other than N un

N,d̂
, there exists another tree in

T un
N,d̂
\ Cun

N,d̂
with smaller H2 norm.

Lemma 6.5. Suppose that N ≥ 7 and 4 ≤ d̂ ≤ N−3. Then η

(
Pun

N,d̂,b d̂
2
c

)
< η

(
N un
N,d̂

)
.

Proof. Label the node in N un
N,d̂

that is a distance 2 from the longest path as node 1,

and label the node it is adjacent to as node 2. Then we can form Pun

N,d̂,b d̂
2
c

from N un
N,d̂

by moving node 1 one node closer to the longest path. Then d1,j decreases by 1 for

j = 3, . . . , N , and d1,2 increases by 1. Since N ≥ 7, the sum of all path lengths in

Pun

N,d̂,b d̂
2
c

is less than in N un
N,d̂

. Thus, by (6.1) and (4.11), η
(
P
N,d̂,b d̂

2
c

)
< η

(
NN,d̂

)
.

Now, we have enough to determine the tree in T un
N,d̂

with smallest H2 norm.

Theorem 6.4. Let N ≥ 4 and 2 ≤ d̂ ≤ N − 2. The tree in T un
N,d̂

with smallest H2

norm is Pun

N,d̂,b d̂
2
c
.

Proof. For d̂ = 2, T un
N,d̂

only contains Sun
N , which is the same as Pun

N,2,1. For d̂ = 3, the

result follows from Theorem 6.1 since Dun
N,1,N−3 = Pun

N,3,1. For 4 ≤ d̂ ≤ N − 3, this is

a simple consequence of Lemmas 6.3, 6.4 and 6.5. For d̂ = N − 2, the result follows

from Theorem 6.3.
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Finally, we can combine several of our earlier results to obtain a basic comparison

between undirected trees of different diameters.

Theorem 6.5. Let 3 ≤ d̂ ≤ N − 1. For any tree in T un
N,d̂

, there is a tree in T un
N,d̂−1

with a smaller H2 norm. Hence, the star Sun
N has the smallest H2 norm of any tree

with N nodes.

Proof. By Lemma 6.2, η
(
Pun
N,N−2,i

)
< η (Pun

N ) (for any 1 ≤ i ≤ bN−2
2
c).

Let 4 ≤ d̂ ≤ N − 2. Suppose T ∈ T un
N,d̂

. Then by Theorem 6.4, η(T ) ≥

η

(
Pun

N,d̂,b d̂
2
c

)
. But by Lemma 6.2, η

(
Pun

N,d̂,b d̂
2
c

)
> η

(
Pun

N,d̂−1,b d̂−1
2
c

)
. Thus

η

(
Pun

N,d̂−1,b d̂−1
2
c

)
< η(T ).

Let T ∈ T un
N,3. Then by Theorem 6.1, η(T ) ≥ η

(
Dun
N,1,N−3

)
. But by Lemma 6.2,

η (Sun
N ) < η

(
Dun
N,1,N−3

)
. Thus η (Sun

N ) < η(T ).

6.4 A Decentralised Algorithm For Rearranging

Undirected Trees

We were mostly able to derive the results in §6.3 by determining the effect of moving

leaves on effective resistances. In particular, we showed that for a non-star tree, the

H2 norm can always be reduced either by moving a single node to somewhere else in

the tree, or by moving a bouquet of nodes to an adjacent node. These manipulations

are “local” in the sense that nodes are moved only from a single location in the tree

at a time, and the rest of the nodes in the tree are not required to take any additional

action.

In order for agents interacting over a network to make changes to their neigh-

bours that will be guaranteed to improve the H2 norm of the graph, each agent

must have some knowledge about the network. However, requiring total knowledge
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of the network structure is inefficient (due to the time required to learn such informa-

tion) and does not scale well - knowing an entire undirected network is equivalent to

knowing the N(N−1)
2

elements below the diagonal in the graph adjacent matrix, while

knowing an entire undirected tree requires the knowledge of N − 1 undirected edges.

Therefore, an efficient algorithm for rearranging a network should ideally only rely

on information about an agent’s neighbours.

Based the approach taken in §6.3, we are able to propose a decentralised algorithm

for rearranging undirected trees that only requires three pieces of information to be

transmitted between neighbours - node degrees, node locations (note that location in-

formation might already be transmitted for the purposes of collective behaviour) and

number of new neighbours. Furthermore, our algorithm can proceed asynchronously,

with each agent proceeding through the steps as its own rate. As above, we assume

that all edge weights in the communication graph are 1.

Algorithm 6.1. 1. Each agent transmits its degree and location to each of its

neighbours and then proceeds to step 2.

2. If an agent has n > 1 neighbours, and has precisely one neighbour with degree

greater then 1 (neighbour m) then it informs neighbour m to expect n − 1 new

neighbours and instructs its neighbours with degree equal to 1 to connect to

neighbour m. Otherwise, the agent should wait for new information from its

neighbours and then proceed to step 3.

3. If an agent has been instructed to make a new connection, it breaks its current

connection, changes its location (if necessary) and forms a connection with its

new neighbour. Otherwise, proceed to step 4.

4. If an agent is expecting new neighbours, it maintains its current location until

all expected connections have formed. Any agent not expecting new connections

can return to step 1.
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Before we analyse the effects of Algorithm 6.1, we must first verify that it cannot

give rise to conflicting instructions or lead to the graph becoming disconnected (except

temporarily, as connections are rearranged). The only step in the algorithm that

results in changes to the graph is step 3, which (by step 2) will only be undertaken by

agents that are currently leaf nodes. Since leaf nodes only have one neighbour, they

can only receive one instruction to form a new connection at a time. Furthermore,

since the only edges in the graph that become broken are those between a leaf and an

internal node, any disconnections that occur will break the graph into a tree and one

or more isolated nodes. Then, by the instructions sent in step 2, the isolated nodes

will know where to find their target node to reconnect to the graph, and the target

node will not change its location until all isolated nodes seeking it have found it.

In addition, since one connection is formed for every one broken, the graph will

always remain an undirected tree.

Finally, we observe that any agent that satisfies the conditions of step 2 will

subsequently become a leaf node. In this case the remaining neighbour will wait for

all of its new connections in step 4 before it can issue any instructions to this new

leaf node.

A potential flaw with implementing Algorithm 6.1 in a physical system (e.g. a

group of mobile robots) is that a leaf node could experience a failure during step 3

and be unable to reconnect to the network. In this case, the algorithm as written

would cause its target node to wait indefinitely for an additional node. One solution

to this issue could be to include a time limit in step 4, and assume that any nodes

which do not connect in that time have been permanently lost.

We are now in a position to determine the effect of Algorithm 6.1 on the H2 norm

of the tree.
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Proposition 6.1. Suppose a network of agents that are connected by an undirected

tree graph T carries out Algorithm 6.1. If this causes the graph to change to the

undirected tree T ′, then

η (T ′) < η (T ) .

Proof. Due to the asynchronous nature of Algorithm 6.1 and the discussion above,

we can assume that the only difference between T and T ′ is the result of a single

node in T issuing instructions according to step 2 in the algorithm. Suppose that

in T this node is labelled as node 1, its leaf neighbours are nodes 2, . . . , n and its

non-leaf neighbour is node n + 1. Note that since node n + 1 is not a leaf, it must

have at least one additional neighbour and so N > n+ 1.

By step 2 of Algorithm 6.1, T ′ is formed from T by nodes 2, . . . , n changing their

neighbour from node 1 to node n + 1. Thus for i = 2, . . . , n, di,j decreases by 1 for

any j > n, increases by 1 for j = 1 and remains the same for j = 2, . . . , n. All other

distances in the graph are unchanged. Since there are at least 2 nodes j with j > n,

the sum of all distances in T ′ is less than the sum of all distances in T . The result

follows by (6.1) and (4.11).

Corollary 6.1. If Algorithm 6.1 is implemented on an undirected tree of finite size,

that tree will become an undirected star after a finite number of steps.

Proof. By Proposition 6.1, any changes that occur as a result of Algorithm 6.1 will

strictly decrease the H2 norm of the graph, and hence produce a tree that has not

arisen before. Since the number of trees with N nodes is finite, Algorithm 6.1 must

converge in a finite number of steps.

The only time when Algorithm 6.1 will not lead to changes in the graph is when

there are no nodes in the tree that satisfy the conditions of step 2. That is, any node

that is not a leaf in a limiting undirected tree of Algorithm 6.1 must have either zero

or more than one non-leaf neighbours. But if all the leaves of a tree are removed,

143



the resulting graph (containing the non-leaf nodes of the original tree) is still a tree

and so it must either contain leaves (that is, non-leaf nodes in the original tree that

only have one non-leaf neighbour) or it must be a single isolated node. Since the only

undirected tree containing one non-leaf node with all other nodes being leaves is the

undirected star, Algorithm 6.1 must converge to Sun
N .

From Proposition 6.1 and Corollary 6.1, we see that Algorithm 6.1 is a decen-

tralised algorithm that will monotonically improve the H2 norm of an undirected tree

until it reaches its lowest possible value. However, situations can be envisioned where

agents would not have complete freedom over which other agents to connect with. For

example, a spanning tree of minimal H2 norm might be sought for a fixed network,

some agents may have a maximum number of neighbours they can connect with at

any one time, or certain connections in the network may need to be maintained for

other reasons. In these cases, it should be possible to modify Algorithm 6.1 to satisfy

such constraints while still monotonically improving the H2 norm. For example, a

node satisfying the conditions in step 2 only needs to send n−2 of its leaf neighbours

to its non-leaf neighbour to guarantee improvement in the H2 norm. Alternatively,

with more knowledge about the network, it could be possible to make even fewer

changes at once.

6.5 Manipulations to Reduce the Effective Resis-

tance of Directed Trees

We now return our attention to directed trees with unit edge weights and seek a partial

ordering similar to that derived in §6.3. However, effective resistances in directed trees

are not necessarily equivalent to path lengths between nodes, but instead are given by

(5.43). Throughout this section we will use r(n,m) to denote the effective resistance

between two nodes in a directed tree with unit edge weights and connected to their
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closest mutually reachable node by paths of length n and m (as in §5.3). Then r(n,m)

can be computed using (5.43). This formula is difficult to evaluate in general, but

any two nodes in a directed caterpillar will either have a direct connection between

them, or one node will be joined to their closest mutually reachable node by a path

of length 1. Therefore, (5.43) can be evaluated explicitly for all effective resistances

in a directed caterpillar graph. This allows us to derive results for directed trees that

are similar to Lemma 6.1 and Lemma 6.3.

Lemma 6.6. Let p ≥ 0, q > 1 and p+ q ≤ N − 2. Then

η
(
Ddir
N,p,q

)
− η

(
Ddir
N,p+1,q−1

)


= 0 if q = p+ 3

> 0 if q < p+ 3

< 0 if q > p+ 3.

(6.3)

Proof. InDdir
N,p,q, let one of the nodes in the bouquet of size q be node 1. The remaining

nodes are labelled 2 through N . To form Ddir
N,p+1,q−1, we take node 1 and move it to

the other bouquet. Since all other nodes and edges remain unchanged, we can use

(4.10) to write

Kf

(
Ddir
N,p,q

)
−Kf

(
Ddir
N,p+1,q−1

)
=

(
N∑
j=2

r1,j

)
Ddir
N,p,q

−

(
N∑
j=2

r1,j

)
Ddir
N,p+1,q−1

.

Now, in Ddir
N,p,q, the effective resistance between node 1 and any of the remaining

q − 1 nodes in the bouquet of size q is, by (5.43),

r(1, 1) = 2.

In addition, the effective resistance between node 1 and any node in the bouquet of
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size p is

r(N − p− q, 1) = 2 (N − p− q − 1) + 22+p+q−N .

Finally, by Theorem 5.1, the effective resistances between node 1 and the internal

nodes take on each even integer value from 2 to 2 (N − p− q). Thus, using (B.26),

we find that

(
N∑
j=2

r1,j

)
Ddir
N,p,q

= 2 (q − 1) + p
[
2 (N − p− q − 1) + 22+p+q−N]

+ (N − p− q) (N − p− q + 1) . (6.4)

Conversely, in Ddir
N,p+1,q−1, the effective resistance between node 1 and any of the

nodes in the bouquet of size q− 1 is 2 (N − p− q − 1) + 22+p+q−N , while the effective

resistance between node 1 and any of the remaining p nodes in the bouquet of size

p + 1 is 2. This time, the path lengths between node 1 and the internal nodes take

on the values

r(n, 1) = 2(n− 1) + 22−n

for all integer values of n from 0 to N − p − q − 1. Therefore, by using (B.26) and

(B.28), we obtain

(
N∑
j=2

r1,j

)
Ddir
N,p+1,q−1

= 2p+ (q − 1)
[
2 (N − p− q − 1) + 22+p+q−N]

+ (N − p− q) (N − p− q − 3) + 8− 23+p+q−N . (6.5)

Taking the difference between (6.4) and (6.5) gives us

Kf

(
Ddir
N,p,q

)
−Kf

(
Ddir
N,p+1,q−1

)
= (p− q + 3)

[
2 (N − p− q)− 4 + 22+p+q−N] . (6.6)
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Now, we know that N−p−q ≥ 2 by assumption, and so 2 (N − p− q)−4+22+p+q−N

must be strictly positive. Hence, by (4.11), the result holds.

Lemma 6.6 implies that moving a node from the “lower” bouquet (i.e. the one

not attached to the root) of a directed double palm tree to the “upper” bouquet will

improve the H2 norm if q < p + 3. Conversely, it also implies that moving a node

from the upper bouquet to the lower one will improve the H2 norm if q > p+1. Thus

if q = p + 2, the H2 norm can be improved by moving a node in either direction.

It is interesting to note that the robustness of an undirected double palm tree could

always be improved by moving a node from the smaller bouquet to the larger one. This

principle still holds for directed double palm trees if we treat the bouquet attached

to the root as if it always contains two additional nodes.

We can now derive a result for directed trees that is similar to Lemma 6.3.

Lemma 6.7. Suppose N ≥ 4 and 2 ≤ d̂ ≤ N − 2. If T ∈ Cdir
N,d̂

, then η (T ) ≥

η

(
Pdir

N,d̂,b d̂+1
2
c

)
, with equality if and only if T = Pdir

N,d̂,b d̂+1
2
c
.

Proof. Since d̂ ≤ N − 2 and T ∈ CN,d̂, a longest path in T contains N − d̂ − 1 ≥ 1

leaves attached to internal nodes (other than the leaf in the longest path). Suppose

that PT is a longest directed path subgraph of T , and suppose that the nodes in PT

are labelled from 1 to d̂+1 in the order they appear along the path, starting with the

root. For the rest of this proof, when we refer to leaf nodes and bouquets, we mean

leaves not part of PT , and bouquets made up of these leaves.

Let i be the closest node in PT to the root that has a bouquet attached in T , and

suppose that

i <

⌊
d̂+ 1

2

⌋
. (6.7)

Now, let T ′ be the tree formed by taking the bouquet attached to node i and moving

it to node i + 1. Then by Theorem 5.1 the effective resistances between a node

in this bouquet and nodes 1, . . . , i will all increase by 2. However, by (5.43), the
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effective resistance between a node in this bouquet and node j ∈
{
i+ 2, . . . , d̂+ 1

}
will decrease by 2 (1− 21+i−j), while the effective resistance between a node in the

bouquet and node i+ 1 will be unchanged. Thus the sum of the effective resistances

between a node in the bouquet and all nodes in PT will change by

2i− 2
d̂+1∑
j=i+2

(
1− 21+i−j) = 2i− 2

(
d̂− i

)
+ 2

d̂−i∑
k=1

2−k

= 2
(

2i− d̂+ 1− 2i−d̂
)

(by (B.28)),

which is negative since (6.7) implies 2i ≤ d̂ − 1. In addition, the effective resistance

between nodes in this bouquet and any other leaf nodes will decrease since these

leaves are all attached to PT at a node further from the root than node i. Thus

Kf (T ′) < Kf (T ) .

Alternatively, let i be the furthest node in PT from the root that has a bouquet

attached in T , and suppose that

d̂+ 1 > i >

⌊
d̂+ 1

2

⌋
. (6.8)

Now, let T ′ be the tree formed by taking the bouquet attached to node i and moving

it to node i − 1. Then by Theorem 5.1 the effective resistances between a node in

this bouquet and nodes 1, . . . , i − 1 will all decrease by 2. However, by (5.43), the

effective resistance between a node in this bouquet and node j ∈
{
i+ 1, . . . , d̂+ 1

}
will increase by 2 (1− 2i−j), while the effective resistance between a node in the

bouquet and node i will be unchanged. Thus the sum of the effective resistances
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between a node in the bouquet and all nodes in PT will change by

−2 (i− 1) + 2
d̂+1∑
j=i+1

(
1− 2i−j

)
= −2i+ 2 + 2

(
d̂− i+ 1

)
− 2

d̂−i+1∑
k=1

2−k

= 2
(
d̂− 2i+ 1 + 2i−d̂−1

)
(by (B.28)),

which is negative since (6.8) implies 2i ≥ d̂+ 2 and 2i−d̂−1 < 1. In addition, the effec-

tive resistance between nodes in this bouquet and any other leaf nodes will decrease

since these leaves are all attached to PT at a node closer to the root than node i.

Thus

Kf (T ′) < Kf (T ) .

The only case where neither of the two above assumptions can hold is when

the only node on PT with a bouquet attached is node i =
⌊
d̂+1
2

⌋
, that is, when

T = Pdir

N,d̂,b d̂
2
c
. Thus, by (4.11), the result holds.

In order to analyse non-caterpillar directed trees, we must gauge the effects of

changing path lengths by 1 in arbitrary connections in directed trees. Based on

(5.43), we make the following conjecture.

Conjecture 6.1. Let r(n,m) denote the effective resistance between two nodes in

a directed tree with unit edge weights that are connected to their closest mutually

reachable node by paths of length n ≥ 0 and m ≥ 0, as given by Theorem 5.3. Then

r(n+ 1, n+ 1) = r(n, n+ 1), (6.9)

0 < r(n+ 1,m)− r(n,m) ≤ 2 if m < n+ 1, (6.10)

−2 < r(n+ 1,m)− r(n,m) < 0 if m > n+ 1, and (6.11)

r(n+ 1,m+ 1)− r(n,m) > 0. (6.12)
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Justification. The upper bound in (6.10) and the lower bound in (6.11) follow from

the observation made in (5.45) about the “excess” term e(m, d), as defined in (5.44).

By the same argument, the lower bound in (6.10) will hold for n� m and the upper

bound in (6.11) will hold for m � n. (6.9) occupies a “middle ground” between

(6.10) and (6.11). We can verify these inequalities numerically in other cases.

(6.12) is equivalent to the statement that e(m + 1, d) > e(m, d). We can verify

this numerically.

Note that by Theorem 5.3, for m = 0 (6.10) and (6.12) reduce to

0 < 2 ≤ 2, and

21−n > 0,

which clearly hold. Similarly, for m = 1 (6.10) and (6.12) (with n > 0) reduce to

0 < 2
(
1− 2−n

)
≤ 2, and

n2−n > 0,

which are also both clearly true.

(6.9), (6.10) and (6.11) together imply that increasing the length of the longer

path in an indirect connection will increase the resistance between the two leaves by

somewhere between 0 and 2. If the two paths in an indirect connection have equal

lengths, then decreasing the length of either path by 1 will not change the resistance

between the two leaves. Finally, (6.12) implies that simultaneously moving two nodes

closer to their mutually reachable node will decrease the resistance between them.

Assuming that Conjecture 6.1 holds, we can continue our ordering of directed trees.
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Lemma 6.8 (Dependent on Conjecture 6.1). Suppose that N ≥ 5 and 2 ≤ d̂ ≤ N−3.

Let T be a tree in T dir
N,d̂
\ Cdir

N,d̂
. Then there is another tree in T dir

N,d̂
with smaller H2

norm than T .

Proof. Let PT be a longest directed path subgraph of T (of length d̂), and let the

nodes in PT be labelled from 1 to d̂ + 1 in the order they appear along the path,

starting with the root.

Let i be the closest node in PT to the root that has multiple children attached in

T , and suppose that

i <

⌊
d̂+ 1

2

⌋
.

If node i only has a bouquet attached, let T ′ be the tree formed by taking the bouquet

attached to node i and moving it to node i + 1. Then by the proof of Lemma 6.7,

Kf (T ′) < Kf (T ). Alternatively, node i must be a branch node with a child (say node

j) that is not a leaf. Then let T ′ be the tree formed by taking all children of node

j in T and attaching them to node i+ 1. Then the effective resistance is unchanged

between any node in the branch of T below j and any node along PT up to node i,

or any leaf node attached to node i. By (5.43), the effective resistance between any

node in the branch of T below j and node j will increase by the same amount that

the effective resistance will decrease between that node and node i+ 1. However, by

(6.12), the effective resistance will decrease between any node in this branch and any

node that is connected to PT somewhere below node i. Thus Kf (T ′) < Kf (T ).

Alternatively, suppose that `max >
⌊
d̂+1
2

⌋
is the length of a longest path in T

other than PT and let node i be the parent of the leaf of this path. Note that all the

children of node i must be leaves, since otherwise there would be a longer path in T .

Let T ′ be the tree formed by taking the bouquet attached to node i and moving it

to the parent of node i. Then, since every node not part of PT must be no further

from the root than the children of node i, (6.10) and (6.9) imply that the effective
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resistance will not increase between any node in this bouquet and any node not in

PT . By the same argument, the effective resistance will not increase between any

node in this bouquet and any node in PT from 1 to `max. In addition, the effective

resistances between any node in this bouquet and the `max − 1 nodes between node

i and node 1 will all decrease by 2. Conversely, by (6.11) the effective resistances

between any node in this bouquet and the d̂ − `max nodes at the end of PT will all

increase by somewhere between 0 and 2. Thus by the assumption on `max, we know

that Kf (T ′) < Kf (T ).

If neither of the above assumptions hold, then T contains no nodes attached to PT

above node
⌊
d̂+1
2

⌋
, and no nodes not on PT at a greater depth than this node. The

only tree which satisfies these assumptions is Pdir

N,d̂,b d̂
2
c
, which is a caterpillar. Then

the result follows by (4.11).

In a similar way to §6.3, Lemmas 6.7 and 6.8 allow us to identify the tree in T dir
N,d̂

with smallest H2 norm.

Proposition 6.2 (Dependent on Conjecture 6.1). Let N ≥ 3 and 1 ≤ d̂ ≤ N − 2.

The tree in T dir
N,d̂

with smallest H2 norm is Pdir

N,d̂,b d̂+1
2
c
.

Proof. For d̂ = 1, T dir
N,d̂

only contains Sdir
N , which is the same as Pdir

N,1,1. For d̂ = N − 2,

every tree in T dir
N,d̂

is of the form Pdir
N,d̂,i

, and so the result follows from Lemma 6.7. For

2 ≤ d̂ ≤ N − 3, this is a simple consequence of Lemmas 6.7 and 6.8.

Finally, we can obtain an equivalent result to Theorem 6.5.

Proposition 6.3 (Dependent on Conjecture 6.1). Let 2 ≤ d̂ ≤ N − 1. For any tree

in T dir
N,d̂

, there is a tree in T dir
N,d̂−1 with a smaller H2 norm. Hence, the star Sdir

N has

the smallest H2 norm of any tree with N nodes.

Proof. Let T be a tree in T dir
N,d̂

. Then by Proposition 6.2, Pdir

N,d̂,b d̂+1
2
c

has a H2 norm

that is less than η (T ) (or equal to η (T ) if T = Pdir

N,d̂,b d̂+1
2
c
).
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Let T ′ be the tree formed by taking the leaf node of the longest path in Pdir

N,d̂,b d̂+1
2
c

and moving it to the parent of its parent in Pdir

N,d̂,b d̂+1
2
c
. Then the effective resistance

between this node and every node in Pdir

N,d̂,b d̂+1
2
c

other than its original parent will

decrease, by (5.43). Conversely, the resistance between this node and its original

parent will be unchanged. Since the leaves in the bouquet attached to the middle of

Pdir

N,d̂,b d̂+1
2
c

have depth b d̂+1
2
c < d̂, T ′ will have a depth of d̂− 1 and also (by (4.11)) a

smaller H2 norm than both Pdir

N,d̂,b d̂+1
2
c

and T .

Since the star is the only directed tree with a depth of 1, it must have the smallest

H2 norm of any tree on N nodes.

6.6 A Decentralised Algorithm For Rearranging

Directed Trees

In much the same way as §6.3, we were able to derive the results in §6.5 by determining

the effect of moving individual nodes on effective resistances. In particular, we showed

that for a non-star tree, the H2 norm can always be reduced either by moving a single

node to somewhere else in the tree, or by moving a group of sibling nodes to a nearby

node. These manipulations are still “local”, as was the case for undirected trees.

Designing a decentralised algorithm to rearrange directed trees poses something of

a problem, since we are forced to (at least temporarily) break either the directedness

of the communication or the tree structure of the graph. If we were to completely

respect the direction of all edges, then each node would only be able to observe its

parent and could only transmit information to its children. Since the root node would

know it had no parent, every node could transmit an estimate of their depth in the

tree and update their value when they learned their parent’s depth. Thus each node

in the tree could learn their depth, but no other structural information would be

available. Due to this, the design of a decentralised rearrangement algorithm for
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directed trees must consider not only how much information to share, but how to

do so in a way that respects the directed nature of the network as much as possible.

In order to proceed, therefore, we will assume that each directed link in the graph

permits a limited amount of communication in both directions for a small fraction of

the time.

An alternative to our approach could be to consider the directed tree to be a

spanning tree of a strongly connected digraph. In this case, it is possible to transmit

information throughout the network, while maintaining the directed tree for consensus

behaviour.

If we assume that limited bidirectional communication is possible, then it is plau-

sible that every node could learn the number of its children (i.e., its in-degree) and

(eventually) the maximum depth of any node in the tree. Although this last piece of

information is a piece of global knowledge and would require some time to learn, we

saw in §6.5 that knowing the relative depth of nodes in a directed tree is critical to

ensuring that robustness is improved by any rearrangement. In addition, we assume

that (due to the original directed tree graph), every node can learn its own depth and

its parent’s location. As in §6.4, we assume that all edge weights in the graph are 1

and that the algorithm proceeds asynchronously.

Algorithm 6.2. 1. Each agent learns its in-degree and the maximum depth of any

node in the tree, then proceeds to step 2.

2. If the depth of a non-root agent is one less than the depth of the tree, and the

in-degree of the agent is n > 0, then it contacts its parent (when possible) and

informs it to expect n new children. Following this, it broadcasts to its children

an instruction to connect to its parent at a given location. Otherwise, the agent

should wait for new information from its parent or children and then proceed to

step 3.
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3. If an agent has been instructed to make a new connection, it breaks its current

connection, changes its location (if necessary) and forms a connection with its

new parent by observing its parent and, when possible, informing the parent of

the new connection. Otherwise, proceed to step 4.

4. If an agent is expecting new children, it maintains its current location until all

expected connections have formed. Any agent not expecting new connections can

return to step 1.

Once again, we must now verify that Algorithm 6.2 cannot give rise to conflict-

ing instructions or lead to the graph becoming disconnected (except temporarily, as

connections are rearranged). As before, the only step in the algorithm that results

in changes to the graph is step 3, which (by step 2) will only be undertaken upon

instruction by a parent. Since each node has no more than one parent, it can receive

at most one instruction to form a new connection at a time. Furthermore, since the

only nodes that receive instructions to move are at a depth equal to the depth of the

tree, they must all be leaf nodes. Therefore, the only edges in the graph that become

broken are those between a leaf and an internal node, and so any disconnections that

occur will break the graph into a tree and one or more isolated nodes. Then, by the

instructions sent in step 2, the isolated nodes will know where to find their target

node to reconnect to the graph, and the target node will not change its location until

all isolated nodes seeking it have found it.

In addition, since one edge is formed for every one broken, the graph will always

remain a directed tree.

Finally, we observe that any agent that satisfies the conditions of step 2 will

subsequently become a leaf node. In this case the parent of this node will wait for all

of its new connections in step 4 as well as the current value of the depth of the tree

in step 1 before it can issue any instructions to this new leaf node.
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As above, a potential flaw in implementing Algorithm 6.2 in a physical network is

that a leaf node could experience a failure during step 3 and be unable to reconnect

to the network. In this case, its target node would wait indefinitely for an additional

child. Again, a solution to this issue could be to include a time limit in step 4, and

assume that any nodes which do not connect in that time have been permanently

lost.

We are now in a position to determine the effect of Algorithm 6.2 on the H2 norm

of the tree.

Proposition 6.4 (Dependent on Conjecture 6.1). Suppose a network of agents that

are connected by a directed tree graph T carries out Algorithm 6.2. If this causes the

graph to change to the directed tree T ′, then

η (T ′) < η (T ) .

Proof. Due to the asynchronous nature of Algorithm 6.2 and the discussion above,

we can assume that the only difference between T and T ′ is the result of a single

node in T issuing instructions according to step 2 in the algorithm. Suppose that in

T this node is labelled as node 1, its children are nodes 2, . . . , n+ 1 and its parent is

node n+ 2. Note that this implies that N > n+ 1.

By step 2 of Algorithm 6.2, T ′ is formed from T by nodes 2, . . . , n + 1 changing

their parent from node 1 to node n+ 2. Suppose that the depth of T is d̂ (and so this

is also the depth of nodes 2, . . . , n + 1 in T ). Since every node in T has a depth no

greater than d̂, we can say by (6.10) and (6.9) that for i = 2, . . . , n+ 1, ri,j decreases

for any node j 6= 1 at a depth lower than d̂ and remains the same for any node j

at a depth of d̂. By (5.43), the effective resistance between node 1 and any of the

nodes 2, . . . , n+ 1 remains unchanged. All other effective resistances in the graph are

also unchanged. Since there is at least 1 node with a depth less than d̂− 1 (i.e., the
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parent of node 1), the sum of all effective resistances in T ′ is less than the sum of all

effective resistances in T . The result follows by (4.11).

Corollary 6.2 (Dependent on Conjecture 6.1). If Algorithm 6.2 is implemented on

a directed tree of finite size, that tree will become a directed star after a finite number

of steps.

Proof. By Proposition 6.4, any changes that occur as a result of Algorithm 6.2 will

strictly decrease the H2 norm of the graph, and hence produce a tree that has not

arisen before. Since the number of trees with N nodes is finite, Algorithm 6.2 must

converge in a finite number of steps.

The only time when Algorithm 6.2 will not lead to changes in the graph is when

there are no nodes in the tree that satisfy the conditions of step 2. That is, if d̂ is

the depth of the tree, then any node at depth d̂− 1 must be the root, and so d̂ = 1.

Since the only directed tree with a depth of 1 is the directed star, Algorithm 6.2 must

converge to Sdir
N .

From Proposition 6.4 and Corollary 6.2, we see that Algorithm 6.2 is a decen-

tralised algorithm that will monotonically improve the H2 norm of a directed tree

until it reaches its lowest possible value. However, convergence will happen very

slowly since each iteration of the algorithm cannot proceed until the entire network

has learnt the depth of the tree. It would be interesting to investigate whether it is

possible to monotonically improve the robustness of a directed tree without the need

for such global knowledge.

157



Chapter 7

Robustness of Starling Flocks

In this chapter, we investigate the connection between the number of neighbours used

by each bird within a flock of starlings (Sturnus vulgaris) for social information and

the robustness of the flock as a whole. We evaluate robustness for starling flocks

using three-dimensional positions of birds studied in [4, 11] and the H2 norm of the

interaction graph, as described in Chapter 3.

Our approach makes it possible to evaluate robustness to uncertainty over a pa-

rameterised family of hypothesised individual sensing strategies, given observations

of the group. For the starling flocks we evaluate the set of strategies corresponding

to each individual sensing and responding to a fixed number of closest neighbours.

Since the interaction structure of each starling flock network is determined by the

measured spatial distribution of the birds and the strategy that each bird uses to

determine which neighbours it senses, we can apply our measure to the starling flock

data to distinguish which strategy (i.e., which number of neighbours), among a param-

eterised family of strategies (i.e., the family parameterised by number of neighbours),

minimises the influence of uncertainty on how close the birds come to consensus.

Assuming that every bird in a flock responds to a fixed number of neighbours

(m) and that each interaction poses some cost in effort to the bird, we compute the
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per-neighbour contribution to robustness as a function of m. The interaction cost,

accounted for by the per-neighbour calculation, is associated with the understanding

that achieving consensus is not the only behaviour undertaken by the birds: in addi-

tion to remaining with the flock, each bird must watch for and avoid predators, seek

food or a roosting site, etc. Thus, the flock must be responsive to external signals

in addition to remaining cohesive, and this requires that each individual use as little

effort as possible for maintaining cohesion. We show that across all flocks in the data

set, interaction networks with six or seven neighbours maximise the per-neighbour

contribution to robustness. These networks match the observed interactions among

the same starling flocks [4, 11].

By analysing variations between different flocks, we show further that for the

range of flocks observed the optimal number of neighbours (m*) does not depend on

the size of a flock (N). Instead, both the optimal number of neighbours and the peak

value of robustness per neighbour depend on the shape (in particular the thickness)

of the flock. The results presented in this chapter have been published in [116].

7.1 Robustness Analysis of Starling Flocks

Most models of flocking are based on consensus behaviour [26, 27, 28, 51, 59, 99].

Accordingly, we are able to apply our robustness measure to a flock carrying out linear

consensus dynamics [54, 70, 75] on some quantity of interest, such as a direction of

travel.

Recent work has shown that (3.1) is the minimal model consistent with experimen-

tal correlations in natural flocks of birds [11]. Even though directions are inherently

nonlinear quantities, linear consensus is a good model for consensus on direction of

travel when the relative differences in directions are small [70].
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Given an interaction network, encoded by a graph Laplacian L, the reduced Lapla-

cian L can be computed from (3.6) and the steady-state disagreement covariance

metric Σ determined from (3.12). The steady-state dispersion is then computed from

(3.19) in the case that every agent’s response is corrupted by noise with intensity 1.

If the noise has some intensity other than 1, the resulting H2 norm is simply scaled

by the intensity of the noise.

The H2 norm depends on N since it is a distance in N -dimensional space. This

dependence is removed by dividing by the square root of N , to obtain the expected

disagreement due to each individual. By inverting this quantity, we obtain the “nodal

H2 robustness” which is small (large) when individuals contribute a large (small)

amount of disagreement (see Definition 3.5). The robustness is zero precisely when

the graph is not connected, and the individuals are unable to reach consensus even

in the absence of noise (see §3.2.1).

Our robustness measure is most suitable to our purposes: since the H2 norm

only depends on the sensing graph, we can evaluate robustness for different sensing

strategies (e.g., choice of m neighbours), provided we can construct the resulting

graphs.

Previous analysis of the observed positions of starlings within large flocks (con-

taining 440 to 2600 birds) has shown that the birds interact with approximately seven

nearest neighbours, irrespective of flock density [4, 11]. Since the starling data were

collected during flocking events with no apparent direct targets or threats to the birds

[4], we assume that a primary goal of each bird was to remain with the flock, i.e.,

to maintain consensus on a direction of flight. In more complicated scenarios, such

as goal-oriented behaviour, different metrics may be used to evaluate individual per-

formance, such as an individual’s average speed in the direction of the goal [23]. In

addition, other robustness measures, such as the H∞ norm, may be more relevant

if the disturbances in the system are non-random. However, in our scenario, it is
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most natural to use the nodal H2 robustness to obtain a measure of how well the

starling flock networks managed uncertainty: first we re-construct the sensing graph

by applying to the three-dimensional positions of birds the strategy in which each

bird uses information from its seven closest neighbours, and then we compute the

robustness metric for that graph. We can likewise compute and compare the sensing

graph and robustness metric corresponding to any interaction strategy by applying it

to the same position data; here we focused on the strategies in which each bird uses

information from its m closest neighbours, and we examined the set with m ranging

from 1 to 11.

The cost for an individual starling to sense the behaviour of each neighbour comes

from sensory and neurological requirements as well as time lost for the purpose(s) of

watching for predators or searching for a roosting site, etc. It is known that birds have

a limited and thus costly capability for tracking multiple objects [38]. To account for

these costs, which increase with increasing m, we evaluated the “nodal robustness per

neighbour” for each value of m, which is computed as the nodalH2 robustness divided

by the number of neighbours m. This allows us to identify ranges of m of increasing

(decreasing) return, where the robustness per neighbour increases (decreases) with

m. We define the optimum m for robustness, m*, as the value that maximises the

robustness per neighbour.

It is possible that the birds weigh information from different neighbours differ-

ently, for example, depending on their distance or how well they are sensed. To be

conservative and consistent, our basic assumption is that each individual uses an un-

weighted average of the information from its m nearest neighbours, so ai,j equals 1
m

when an edge is present. However, a plausible alternative is that greater weight is

given to closer neighbours. To test the effects of alternative edge weighting schemes,

we computed the average nodal H2 robustness per neighbour for two different starling

flocks under three different weighting schemes (as shown in Figure 7.1). In each case,
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the edge weights in the sensing graph were normalised so that the sum of all weights

used by any individual bird was 1 (i.e. the out-degree of every node in the graph was

1). The first scheme was our equal weight assumption - that is,

ai,j =
1

m

when an edge was present. The second scheme took weights to be inversely propor-

tional to the distance between birds - that is,

ai,j ∝
1

di,j

when an edge was present, where di,j was the physical distance between birds i and

j. The third scheme took weights to be decreasing linearly according to the ordering

of the neighbours from closest to furthest, such that the (m + 1)st neighbour had a

weight of 0. Both additional weighting schemes decreased the importance of neigh-

bours that were further away, although the order-based scheme was more “radical”

since neighbours tended to be spaced closer than in a geometric progression. In every

case shown in Figure 7.1, decreasing the weight given to further neighbours tended

to decrease the overall robustness, but the location of the peak remained unchanged

except for the order-based scheme in flock 17-06. These results suggest that a sub-

stantial variation in edge weights is required to move the peak of the robustness per

neighbour curve, and furthermore that overall robustness is decreased by doing so.

For these reasons, the equal-weight assumption was used in the rest of the analysis

presented in this chapter.

We realise that our calculations evaluate robustness at steady-state for fixed sens-

ing graphs, while in flocks of starlings the graph is dynamic and no steady state is

reached. However, as we saw in Proposition 3.1, the steady-state assumption in our

computation is only required to remove transient dependence on initial conditions.
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Figure 7.1: Average nodal H2 robustness per neighbour as a function of the number
of nearest neighbours (m) used to form the graph for two different flocks, with the
edge weights computed in three different ways. Although equal edge weights were
used throughout this chapter, a plausible alternative is that greater weight is given to
closer neighbours. The blue curves show results with equal edge weights. The green
curves show results with edge weights inversely proportional to the distance between
birds. The red curves show results with edge weights decreasing linearly according to
the ordering of the neighbours from closest to furthest.

Hence for a group already close to consensus but with a time-varying graph, our

steady-state calculation reflects the instantaneous performance of the flock.

We computed robustness per neighbour (nodal H2 robustness divided by m, num-

ber of neighbours sensed by each bird) for data sets from twelve starling flocks: all

ten flocks that were studied in [4] and two additional flocks that were studied in [11].

From each flock there were between 16 and 80 snapshots over time, for a total of 394

snapshots. The number of birds in these flocks ranged from 440 to 2600.

7.2 Results

For small values of m, robustness will be zero since the sensing graph will not be

connected [113]. Robustness per neighbour will increase with increasing m to non-zero

values when m is sufficiently large for the graph to be connected. Further, robustness

is bounded above by the value for the complete graph (by Proposition 3.6), and so

robustness per neighbour can be expected to be a decreasing function of m for large
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values of m. Thus, a priori we can expect a peak in robustness per neighbour as a

function of m.

For all ten flocks studied in [4] and two additional flocks studied in [11], we com-

puted the robustness per neighbour for each snapshot for m = 1, . . . , 11. In every

case, the graphs remained disconnected for m equal to 1 and 2, but almost all graphs

were connected when m was equal to 5. Each flock attained its peak robustness per

neighbour value for m between 5 and 9 (Figure 7.2), i.e., at higher values of m than

were required for connectivity; this demonstrates that our robustness measure is not

simply recording the onset of connectivity. The average robustness per neighbour

across all flocks reached its peak value at either m = 7 or m = 6 (Figure 7.2). There-

fore, the observed behaviour of the starlings (m = 7) from [4, 11] places them at a

point that maximises the robustness per neighbour.

We further investigated observed variation in the value of m* for different flocks.

When the average robustness per neighbour was computed by averaging every snap-

shot from every flock, rather than by averaging the flock averages, we obtained almost

identical results, as seen in Figure 7.3. Since the results of the two averages match so

closely while the number of snapshots taken of each flock varied between 16 and 80,

this suggested that we could treat all 394 snapshots as independent data points and

strengthened the generality of the result compared to the case in which we treated

the flocks as the independent observations. Furthermore, treating the snapshots as

the independent observations greatly reduced the standard error of our average ro-

bustness per neighbour curve, as seen in Figure 7.4. Thus, despite the variation seen

between different snapshots and different flocks, we can be confidant that on average,

robustness per neighbour peaks for starling flocks at m = 6 or m = 7.

In a fully random group, the number of neighbours required for connectivity, and

hence m*, grows weakly with the size of the group (on the order of logN [113]).

However, even when connectivity is attained, noise has a crucial role in determining
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Figure 7.2: H2 nodal robustness per neighbour as a function of the number of nearest
neighbours (m) used to form the graph, for twelve separate flocks as well as an overall
average. For each flock the curve shown is the average of all snapshots taken of that
flock, with error bars showing the standard deviation. The overall average, shown as
the blue curve, is an average of the twelve flocks, with error bars showing the standard
deviation. On the left is shown a snapshot of starling flock 25-08 in flight and the
corresponding tracked positions, rotated to fit inside a rectangular bounding box.

whether or not global order can be reached. First, above a certain noise threshold

(critical temperature), global order is lost, whether or not the network is connected.

Second, even in the low noise phase and on a connected static network, depending

on the physical dimension of space and on the topology of the network [18, 68] there

are cases where order can be reached only if the number of neighbours scales with

N . Given that our method is static in nature (it does not take into account birds’

motion) and that the topology of flocks’ network is nontrivial, the dependence of

m* on N may be a concern. However, the variation observed here in m* was not

a result of varying flock size since neither the value of m* nor the peak robustness

per neighbour showed a significant dependence on the number of birds in the flock,

as shown in Figures 7.5 and 7.6. In both cases, the best linear fit to the data has
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Figure 7.3: Average nodal H2 robustness per neighbour as a function of the number
of nearest neighbours (m) used to form the graph, with the average taken in two
different ways. The blue curve shows the average of the twelve flock averages (as in
Figure 7.2), while the red curve shows the average of the 394 snapshots taken across
all flocks. In each case, the error bars show standard deviation.

negligible slope with an R2 value‡ of 0.0178 in the case of m* and 0.0230 in the case

of peak robustness per neighbour.

Instead we observed a strong dependence of both m* and peak robustness per

neighbour on flock thickness, as seen in Figures 7.7 and 7.8. We measured flock

thickness as the ratio of smallest to largest dimension of an ellipsoid having the same

principal moments of inertia as the flock. Thus a two-dimensional flock has a thickness

of 0 while a flock with an equal distribution of birds in all directions has a thickness of

1. We found that the starling flocks had thicknesses between 0.13 and 0.44, with most

‡In our case, R2 measures how well a linear model fits the data, and can be thought of as the
fraction of the variation in the data that is captured by the linear fit.
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Figure 7.4: Average nodal H2 robustness per neighbour with standard error as a
function of the number of nearest neighbours (m) used to form the graph, with the
average taken in two different ways. The blue curve shows the average of the twelve
flock averages (as in Figure 7.2), while the red curve shows the average of the 394
snapshots taken across all flocks. In each case, the error bars show standard error.

between 0.13 and 0.27. Across this range, both the variation in m* and the average

value of m* decreased significantly with thickness (Figure 7.7). The best linear fit

to the data displays a negative slope with an R2 value of 0.1816, which is relatively

low due to the changing variance. Furthermore, the peak robustness per neighbour

increased significantly with thickness (Figure 7.8). The best linear fit to the data has

a positive slope and an R2 value of 0.6435.

To further understand the dependence on thickness, we generated random flocks

of varying thicknesses (each containing 1200 individuals) within a square prism as de-

scribed below. For uniformly distributed flocks, m* initially decreased with thickness

before levelling out, while peak robustness per neighbour showed an increase with
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Figure 7.5: Dependence of the optimum number of neighbours (m*) on the number of
birds in the flock (N). Different snapshots from the same flock have different numbers
of birds due to occlusions. Results for each snapshot are shown rather than averaged
across flocks since we can take each snapshot to be an independent observation (see
Figure 7.3). Under the plot are the bird positions (rotated to fit inside a rectangular
bounding box) for two snapshots corresponding to the smallest and largest flocks
studied.

thickness according to a sigmoidal shape, as seen in Figures 7.7 and 7.8. Starling

flocks, however, cannot be uniformly distributed since (at least) two birds cannot

be positioned arbitrarily close together. We therefore also generated random flocks

with non-uniform, more ordered distributions. For a “medium” amount of ordering,

we drew points from three-dimensional Halton sequences [49] with random starting

points, while for a “large” amount of ordering we placed points in a three-dimensional

grid and perturbed them by Gaussian noise. As the random flocks become more or-

dered, the m* values tended to decrease and there was less of a dependence on thick-

ness, with the most ordered flocks showing no thickness dependence in m*, as seen in
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Figure 7.6: Dependence of the peak value of robustness per neighbour on the number
of birds in the flock (N). Different snapshots from the same flock have different
numbers of birds due to occlusions. Results for each snapshot are shown rather
than averaged across flocks since we can take each snapshot to be an independent
observation (see Figure 7.3). Under the plot are the bird positions (rotated to fit
inside a rectangular bounding box) for two snapshots corresponding to the smallest
and largest flocks studied.

Figure 7.9. Additionally, as the random flocks become more ordered, the peak values

of robustness increased but the same thickness trends were apparent, i.e., the curves

all showed a sigmoidal shape in the increase in peak value with increasing thickness,

as seen in Figure 7.10. Compared to these three distributions, the starling flocks ap-

pear closest to uniform, with slightly more “order.” This is consistent with the fact

that starlings have a more regularly separated distribution than uniformly distributed

points, although it suggests that a uniform random flock is not too dissimilar to an

actual starling flock.
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Figure 7.7: Dependence of the optimum number of neighbours (m*) on the thickness
of the flock. Results are shown in blue from each snapshot of starling data and in
red from flocks randomly generated from a uniform distribution within a rectangular
prism. Each data point shown from the random flocks is the average result from
generating 100 separate flocks, each containing 1200 individuals. The error bars show
the range of values for which the robustness per neighbour is within 90% of the peak.
Under the plot are the positions of two randomly generated flocks, with thicknesses
of 0.15 and 0.85.

We compared the optimum number of neighbours and peak robustness per neigh-

bour to the width of the flock, as shown in Figure 7.11 and Figure 7.12. Flock width

is defined as the ratio of intermediate to largest dimension of an ellipsoid having the

same principal moments of inertia as the flock. In the case of m*, no significant

dependence on width was observed, with the best linear fit having negligible slope

and an R2 value of 0.0064. Similarly, no significant dependence of peak robustness

on width was observed, with the best linear fit having a slight positive slope and an

R2 value of 0.0635.
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Figure 7.8: Dependence of the peak value of robustness per neighbour on the thickness
of the flock. Results are shown in blue from each snapshot of starling data and in
red from flocks randomly generated from a uniform distribution within a rectangular
prism. Each data point shown from the random flocks is the average result from
generating 100 separate flocks, each containing 1200 individuals. The error bars
shown are the standard deviation. Under the plot are the positions of two randomly
generated flocks, with thicknesses of 0.15 and 0.85.

7.3 Discussion

Our analysis shows that the size (seven) of each starling’s neighbourhood [4, 11]

optimally trades off gains from robustness with costs associated with sensing and

attention; this suggests that robustness to uncertainty may have been a factor in the

evolution of flocking. The fact that the same number of neighbours is optimal over a

range of flock sizes and densities (as well as, to a certain extent, typical flock thick-

nesses) suggests that the number of neighbours that a bird interacts with could be an

evolved trait. This is consistent with the fact that the ability to follow more neigh-
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bours requires additional sensory and cognitive apparatus. A bird that fully utilises

whatever capability it has will contribute most to maximising the absolute robust-

ness of the group; however, our results provide an explanation for why the evolved

capacity of starlings should be limited to seven neighbours. Further investigation is

required to discern whether evolutionary processes could lead to the optimisation of

efficient robustness at the level of the group.

The trade-off seen here between robustness and sensing cost was not observed for

performance metrics related to responsiveness, such as the speed of convergence to

consensus, as seen in Figure 7.13. Recall that by Lemma 3.5, the maximum possible

speed for a graph with a normalised Laplacian is approximately 1 for large values of

N . On average, speed per neighbour increased with m, with no maximum observed for

m < 20. In fact, when m is equal to the number of birds in the flock, the interaction

graph will be a complete graph and so by (3.41) the speed per neighbour will be

1
N−1 , approximately 7.7× 10−4 for this flock. This number is significantly larger than

the values for small m, implying that the speed per neighbour can be expected to

continue increasing for values of m larger than those shown in Figure 7.13. Although

responsiveness is an important property of group behaviour, our results correspond

with the previous observation [4] that the primary benefit of the observed interaction

rule within starling flocks is to improve robustness. Other aspects of behaviour, such

as the way in which individuals respond to external signals, may be required for an

analysis that seeks to explain the responsiveness of flocks.

Although we observed variability in our computed values of m* across different

flocks, and variability was also observed in the estimated number of interacting neigh-

bours for each flock in [4] (called “topological range” in [4] and denoted by nc), no

correlation can be seen between these two values across flocks, as shown in Figure 7.14.

The correlation coefficient between the two values was approximately −0.24, with a

p-value of approximately 0.46. This is not surprising since it seems unlikely that indi-
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vidual starlings would interact with more or fewer neighbours based on the thickness

of the flock (or any other bulk flock parameter). In addition, this suggests that the

two analyses are independent and there is no underlying mathematical reason why

m* should be so close to nc.

Although here we have focussed on the sensing strategy of interacting with m

nearest neighbours, our methods can also be applied to networks resulting from any

sensing strategy. For example, our methods could be used to evaluate the robustness

to noise of zonal sensing strategies like those used in [26, 51, 99] as a function of a

parameter such as zone size. Provided that a real or hypothesised sensing network

can be constructed, its robustness can be calculated. However, care must be taken

when comparing different strategies. For consistency, the weights in the graph should

be scaled so that the sum of ai,j over all the neighbours of any individual (when

neighbours are present) is equal to 1.

The nonlinear dependence on thickness observed in the random flocks suggests

that a transition between “2-d” and “3-d” behaviour takes place as thickness increases,

with a flock behaving as fully 3-d when its thickness is above about 0.4. There

appear to be aerodynamic reasons why starling flocks should be thin and sheet-like

[51], and it is telling that the observed thicknesses lie near the transition point to

fully three-dimensional behaviour in terms of robustness. This suggests that groups

with different characteristic thicknesses, such as schools of fish, swarms of insects,

and herds of animals (with a thickness of zero), should interact with more (fewer)

neighbours if they have a smaller (larger) thickness. Testing this hypothesis would

provide important insight into the generality of this work for the analysis of animal

groups. It should be noted, however, that factors that were not significant for starling

flocks, such as flock width (Figures 7.11 and 7.12) or distribution (Figures 7.9 and

7.10) could play a larger role in 2-d groups.

More generally, our work demonstrates the significant role of who is interacting
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with whom in the ability of a network to efficiently manage uncertainty when seeking

to maintain consensus. This suggests possibilities for understanding and evaluating

uncertainty management in other social and technological networks. Our approach

to evaluating robustness to uncertainty in consensus can be applied to interaction

networks in these other contexts; distinguishing interaction strategies that yield net-

works that optimise robustness can be useful both for better understanding observed

group behaviour and, when control is available, for designing high performing groups.

174



Figure 7.9: Dependence of the optimum number of neighbours (m*) on the thickness
of the flock. In addition to starling data plotted in blue, results are shown from flocks
randomly generated from three different distributions within a rectangular prism.
These distributions are as follows: points arranged in a grid and then perturbed
with Gaussian noise (in magenta), points generated from Halton sequences (in green)
and points taken from a uniform distribution (in red). Each data point shown from
the random flocks is the average result from generating 100 separate flocks, each
containing approximately 1200 individuals. The error bars show the range of values
for which the robustness per neighbour is within 90% of the peak.
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Figure 7.10: Dependence of the peak value of robustness per neighbour on the thick-
ness of the flock. In addition to starling data plotted in blue, results are shown
from flocks randomly generated from three different distributions within a rectan-
gular prism. These distributions are as follows: points arranged in a grid and then
perturbed with Gaussian noise (in magenta), points generated from Halton sequences
(in green) and points taken from a uniform distribution (in red). Each data point
shown from the random flocks is the average result from generating 100 separate
flocks, each containing approximately 1200 individuals. The error bars show stan-
dard deviation.
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Figure 7.11: Dependence of the optimum number of neighbours (m*) on the width
of the flock for 394 snapshots of starling flocks.
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Figure 7.12: Dependence of the peak value of robustness per neighbour on the width
of the flock for 394 snapshots of starling flocks.
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Figure 7.13: Speed of convergence to consensus per neighbour as a function of the
number of nearest neighbours (m) used to form the graph, for one starling flock
containing approximately 1300 birds. The thin lines show results for each snapshot,
while the thick blue line shows the average over all snapshots.
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Figure 7.14: A comparison between the optimal number of neighbours (m*) and the
observed topological range (nc) [4] for each flock studied in this chapter. The vertical
error bars show the range of values for which the robustness per neighbour was within
90% of the peak and the horizontal error bars show the error in the estimates of nc.
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Chapter 8

Conclusions and Future Directions

This dissertation presented an analysis of the robustness of consensus to noise on

directed networks and demonstrated some cases in which the network can be chosen

to optimise its robustness. We investigated how the robustness of consensus depends

on the eigenvalues of the graph Laplacian, and presented a generalisation of the

notion of effective resistance to directed graphs. We used our new notion of effective

resistance to explore some of the fundamental connections that occur in directed

graphs. This understanding was then applied to the study of tree graphs, allowing

for the development of methods to rearrange trees in ways that improve robustness.

Finally, we validated our approach with an investigation of the robustness of starling

flocks that demonstrated that the observed interactions between starlings optimise

the tradeoff between robust group performance and individual sensing cost.

In Chapter 3, we described how the robustness of consensus to noise is naturally

characterised by a H2 norm that can be computed from the graph Laplacian ma-

trix. We were able to show that for a certain class of graphs, namely those with

normal reduced Laplacian matrices, this H2 norm can be computed directly from

the eigenvalues of the Laplacian. The H2 norm of any graph was then shown to be

lower bounded by the same eigenvalue expression. For graphs with positive algebraic
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connectivity, we were able to derive an upper bound on the H2 norm from the eigen-

values of the symmetric part of the reduced Laplacian. Finally, we examined the

performance of several graph families and demonstrated that although the complete

graph achieves the best possible robustness and speed of convergence, its performance

can be approached by directed graphs containing many fewer edges.

Motivated by the connection between theH2 norm and Kirchhoff index of a graph,

in Chapter 4 we presented a generalisation of the notion of effective resistance that

applied to directed graphs. Although our definition was an algebraic one, we pro-

ceeded to show that it is a well-defined pairwise property of nodes in a graph, that it

depends only on the connections between nodes in a graph and that its square root is

a metric. Since our new notion of effective resistance has been shown to be applicable

in some situations other than measuring the robustness of consensus, we are hopeful

that it will prove to be useful in others as well.

In order to gain insight into the ways in which effective resistance depends on

the structure of a directed graph, in Chapter 5 we computed the effective resistance

of several fundamental directed graphs. We were first able to derive three sets of

sufficient conditions for effective resistances in a directed graph to be equal to those

in an equivalent undirected graph. The first set of conditions indicated that graphs

with normal Laplacian matrices have the same effective resistances as their under-

lying undirected graphs, suggesting (along with the results of §3.2.2) that digraphs

satisfying this normality condition behave in many essential respects as if they were

undirected. We proceeded to demonstrate that the familiar rules for combining resis-

tances in series and parallel still apply to the computation of effective resistance in

directed path and cycle graphs. However, by examining the indirect connections that

are only possible in directed graphs, we derived a formula for effective resistance in

directed trees that has no analogue in the study of effective resistance in undirected

graphs.
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In Chapter 6, we used effective resistance to examine how local changes to the

structure of tree graphs affects their H2 norms. From this, we were able to derive a

partial ordering of both undirected and directed trees according to their robustness.

Our ordering for directed trees was, in part, dependent on Conjecture 6.1. Although

we can prove some of the bounds in this conjecture, and verify the others numerically,

a complete proof is still needed. Furthermore, we were able to translate our under-

standing into decentralised algorithms for rearranging trees that are guaranteed to

improve robustness and, without additional constraints, converge to the most robust

tree graph.

Finally, in Chapter 7, we examined the robustness of interaction networks derived

from the measured positions of individuals within flocks of starlings. By comparing

the network performance across a family of sensing strategies (parameterised by the

number of nearest neighbours each bird interacted with), we were able to demonstrate

that the observed interactions between starlings optimise the tradeoff between max-

imising robustness and minimising sensing cost. Furthermore, we were able to show

that the optimal behaviour for starling-like flocks depends most strongly on the thick-

ness of the flock and not (over the observed conditions) on the size or width of the

flock. By examining randomly-generated flocks we observed that as flock thickness

increases, a transition takes place between two-dimensional and three-dimensional

behaviour. Interestingly, the starling flocks tended to have thicknesses that placed

them precisely within this region of transition. These results demonstrated the appli-

cability of our approach to measuring the performance of real-world groups and also

suggest that a reason for the observed interactions between starlings is the need to

efficiently maintain consensus in a noisy environment.

The work presented in this dissertation was inspired by the desire to design robotic

groups capable of performing sophisticated tasks in variable and uncertain environ-

ments. Although we have focused on only a small part of this larger problem, we
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have made progress in understanding the role of the communication network in the

group’s performance and in developing strategies that each individual could follow in

order to maximise the robustness of the group.

8.1 Future Directions

Although we have attempted throughout this dissertation to answer some of the

open questions identified in §1.1, §1.2 and §1.3, there are many questions that remain

unanswered. Here we attempt to summarise some of the topics that, in our opinion,

would be particularly useful and enlightening to address.

The work presented in this dissertation focussed on static communication graphs.

In most real-world multi-agent systems, the interactions will change over time, leading

to a dynamic network. Thus an important generalisation of this work will be to

investigate robustness of consensus to noise in dynamic networks. In particular, it

has been shown that periodic motion can enhance group performance [96], and so a

starting point could be the analysis of periodic networks. Furthermore, some of the

graphs identified in this dissertation as being particularly robust to noise (e.g. the

directed star graph, as shown in §3.3.4) are not robust to other kinds of uncertainty,

such as link or node failures. In a periodic system, however, it is possible that

switching between graphs that are robust to noise could maintain this robustness while

adding other kinds of robustness as well. Mathematically, a periodically time-varying

stochastic system is unlikely to converge to a stationary distribution, but rather to

a periodic one. Thus in order to proceed in this direction, the basic definition of

robustness will need to be adjusted to account for this kind of behaviour. Ultimately,

a theory of general time-varying systems is desirable, although the analysis of time-

varying consensus networks becomes progressively more challenging as assumptions

on the graph are relaxed [70]. An alternative could be to provide a more rigorous
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understanding of instantaneous performance in dynamic networks.

In several results in this dissertation, the assumption of normal matrices allowed

directed graphs to be closely linked to their undirected counterparts. However, nor-

mality is an algebraic condition and we have obtained little insight into how the

normality of the Laplacian matrix depends on the structure of the graph (other than

Lemma 3.3, for which the converse does not hold), or whether a group may be able

to ensure that their communication graph has a normal Laplacian. Based on bounds

such as Proposition 3.4, insight of this nature could lead to an ability to maximise

the performance of directed networks.

Our definition of effective resistance has proved to be useful in our study of robust

consensus and in the analysis of networks of stochastic decision-makers. However,

the concept of effective resistance is widely used for undirected graphs in many fields,

including other areas of control theory. Therefore, it is our hope that more applica-

tions can be found for our directed graph version of effective resistance, particularly

in areas where the assumption of undirected graphs is not fundamental to the prob-

lem. On the theoretical side, there is more work to be done in understanding which

connections in directed graphs affect the effective resistance between node pairs and

determining how the effective resistances from multiple connections combine together.

In Chapter 6 we demonstrated how effective resistance can be used to derive

analytical results for improving the robustness of graphs. However, our results are

incomplete. Firstly, we have not fully explored the implications of our expression for

effective resistance in directed trees and secondly, we have not yet analysed any more

complicated graphs. Both directions are important if we hope to derive more general

design rules for robust directed networks.

Finally, the analysis of starling flocks presented in Chapter 7 offered an explanation

of the observed behaviour in starlings from an optimisation perspective. However,

it is unclear exactly how a robust flock translates to a benefit for each individual
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within the flock, and how evolutionary pressures could drive this optimisation. From

a biological perspective, this work is necessary to determine whether the robustness-

cost tradeoff is the true reason for the starlings’ behaviour or if it is the result of

other factors. For engineers, such individual-focused work could provide a guide to

strategies that could be implemented by individual robots in order to improve the

performance of the entire group.
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Appendix A

Eigenvalues of Laplacian Matrices

A.1 Cycle Graphs

A.1.1 Proof of Lemma 3.6

Proof. From (3.43), the Laplacian matrix of the directed cycle graph is

Lcycle
N =



1 0 · · · 0 −1

−1 1 · · · 0 0

0 −1
. . .

...
...

...
...

. . . 1 0

0 0 · · · −1 1


.
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Now, the characteristic equation of Lcycle
N may be easily derived by observing that

det
(
λIN − Lcycle

N

)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− 1 0 · · · 0 1

1 λ− 1 · · · 0 0

0 1
. . .

...
...

...
...

. . . λ− 1 0

0 0 · · · 1 λ− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
N×N

= (λ− 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− 1 · · · 0 0

1
. . .

...
...

...
. . . λ− 1 0

0 · · · 1 λ− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
(N−1)×(N−1)

− (−1)N

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 λ− 1 · · · 0

0 1
. . .

...

...
...

. . . λ− 1

0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
(N−1)×(N−1)

= (λ− 1)N − (−1)N ,

since the two (N − 1)× (N − 1) submatrices on the second line are triangular. Thus

the characteristic equation of Lcycle
N is

(λ− 1)N − (−1)N = 0, (A.1)

and so the eigenvalues of Lcycle
N are equal to 1 plus the N th roots of −1. We can

therefore write the solutions to (A.1) as

λj = 1 + eiπ(1−
2j
N ), j = 0, 1, . . . , N − 1. (A.2)

Then, if we use our regular convention of labelling the eigenvalues of Lcycle
N in

ascending order of real part, we obtain (3.44)
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A.1.2 Proof of Lemma 3.7

Proof. Let Lcycle
N be the Laplacian matrix of the directed cycle graph, as given by

(3.43), and let Lu cycle
N be the Laplacian matrix of the undirected cycle graph, as

given by (3.45). Since Lcycle
N is circulant, and hence normal [46, §3.1], by the Spectral

Theorem we can find a unitary matrix U ∈ CN×N such that

Lcycle
N = UΛU∗,

where Λ is the diagonal matrix containing the eigenvalues of Lcycle
N . Furthermore, as

Lcycle
N is real we know that

Lcycle
N

T
= Lcycle

N

∗
= UΛ∗U∗.

Then, using (3.43) and (3.45), we can see that

Lu cycle
N =

1

2

(
Lcycle
N + Lcycle

N

T
)

=
1

2
U (Λ + Λ∗)U∗,

and since the eigenvalues of a matrix are unchanged under similarity transforms [52,

Corollary 1.3.4], the eigenvalues of Lu cycle
N are the real parts of the eigenvalues of

Lcycle
N , as given by (3.44).

A.2 Undirected Path Graphs

In order to prove Lemma 3.8, the following lemma will prove useful.
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Lemma A.1. Let Mn be the tridiagonal matrix

Mn :=



1 −1
2

0 · · · 0

−1
2

1 −1
2
· · · 0

...
. . . . . . . . .

...

0 · · · −1
2

1 −1
2

0 · · · 0 −1
2

1


. (A.3)

Then the eigenvalues of Mn are given by

λk (Mn) = 2 sin2

(
kπ

2(n+ 1)

)
, (A.4)

for k = 1, 2, . . . , n.

Proof. Suppose v ∈ Cn is an eigenvector of Mn with eigenvalue λ, that is

Mnv = λv, (A.5)

and let

v0 := 0 =: vn+1. (A.6)

Then, since Mn is tridiagonal with equal entries along each diagonal, (A.5) (along

with (A.6)) gives us

(1− λ) vk −
1

2
vk−1 −

1

2
vk+1 = 0, 1 ≤ k ≤ n. (A.7)

Now, (A.7) and (A.6) form a second-order, linear, constant-coefficient difference

equation boundary value problem. We will hypothesise that a solution exists of the

form

vk = ν1e
kγ + ν2e

kδ,
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with ν1, ν2, γ and δ ∈ C. However, in order to satisfy the condition that v0 = 0, we

must have ν1 = −ν2 = ν for some ν ∈ C. Therefore, our expression for vk becomes

vk = ν
(
ekγ − ekδ

)
.

Note that we must have γ 6= δ, eγ 6= eδ and ν 6= 0 for vk to not be identically 0. With

this hypothesis, (A.7) becomes

(1− λ) ν
(
ekγ − ekδ

)
− 1

2
ν
(
e(k−1)γ − e(k−1)δ

)
− 1

2
ν
(
e(k+1)γ − e(k+1)δ

)
= 0

⇒ ekγ
(

1− λ− 1

2
e−γ − 1

2
eγ
)
− ekδ

(
1− λ− 1

2
e−δ − 1

2
eδ
)

= 0

⇒ ek(γ−δ) (1− λ− cosh γ) = (1− λ− cosh δ) . (A.8)

But the left hand side of (A.8) is a function of k (since eγ 6= eδ) while the right

hand side is not, so the terms in parentheses on each side of (A.8) must be both equal

to 0. Thus

λ = 1− cosh γ = 1− cosh δ, (A.9)

and so

cosh γ = cosh δ. (A.10)

But since γ 6= δ and eγ 6= eδ, the only way that (A.10) can hold is if

δ = −γ + 2`πi

for some ` ∈ Z. However, since vk only depends on δ through the exponential function,

without loss of generality we can take

δ = −γ.
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Thus we can write vk as

vk = νe−kγ
((

e2γ
)k − 1

)
. (A.11)

The final condition that vk must satisfy is that vn+1 = 0. Since ν 6= 0 and e−(n+1)γ

cannot equal 0, this implies that

(
e2γ
)n+1

= 1,

and so

e2γ = ei
2kπ
n+1 , 1 ≤ k ≤ n. (A.12)

Note that k cannot equal 0 in (A.12) since that would imply γ = δ. From (A.12), we

can see that

γ = ±i
kπ

n+ 1
, 1 ≤ k ≤ n,

and so

cosh γ = cos

(
kπ

n+ 1

)
, 1 ≤ k ≤ n.

Finally, since 1− cos
(
kπ
n+1

)
= 2 sin2

(
kπ

2(n+1)

)
, (A.9) simplifies to (A.4).

A.2.1 Proof of Lemma 3.8

Proof. From (3.48), the Laplacian matrix of the undirected path is

Lu path
N =



1
2
−1

2
0 · · · 0

−1
2

1 −1
2
· · · 0

...
. . . . . . . . .

...

0 · · · −1
2

1 −1
2

0 · · · 0 −1
2

1
2


.
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Now, let pN(λ) := det
(
λIN − Lu path

N

)
be the characteristic polynomial of Lu path

N .

Also, let MN be the matrix given by (A.3) with n = N and let

qN(λ) := det (λIN −MN) be the characteristic polynomial of MN . Note that MN is

closely related to Lu path
N by the fact that

Lu path
N = MN −

1

2
e
(1)
N e

(1)T
N − 1

2
e
(N)
N e

(N)T
N .

Then we can see that for N ≥ 3,

qN(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− 1 1
2

0 · · · 0

1
2

λ− 1 1
2

· · · 0

...
. . . . . . . . .

...

0 · · · 1
2

λ− 1 1
2

0 · · · 0 1
2

λ− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
N×N

= (λ− 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− 1 1
2

· · · 0

1
2

. . . . . .
...

· · · . . . λ− 1 1
2

· · · 0 1
2

λ− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
(N−1)×(N−1)

−1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2

1
2

0 · · · 0

0 λ− 1 1
2

· · · 0

... 1
2

. . . . . .
...

0 · · · . . . λ− 1 1
2

0 · · · 0 1
2

λ− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
(N−1)×(N−1)

= (λ− 1) qN−1(λ)− 1

4

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− 1 1
2

· · · 0

1
2

. . . . . .
...

· · · . . . λ− 1 1
2

· · · 0 1
2

λ− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
(N−2)×(N−2)

= (λ− 1) qN−1(λ)− 1

4
qN−2(λ). (A.13)
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Furthermore, we can say that for N ≥ 5,

λqN−1(λ) =
(
λ2 − λ

)
qN−2(λ)− 1

4
λqN−3(λ)

=

(
λ− 1

2

)2

qN−2(λ)− 1

4
qN−2(λ)− 1

4
λqN−3(λ)

=

(
λ− 1

2

)2

qN−2(λ)− 1

2

(
λ− 1

2

)
qN−3(λ) +

1

16
qN−4(λ) (by (A.13)).

(A.14)

Next, we can compute pN(λ) for N ≥ 5 as

pN(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− 1
2

1
2

0 · · · 0

1
2

λ− 1 1
2

· · · 0

...
. . . . . . . . .

...

0 · · · 1
2

λ− 1 1
2

0 · · · 0 1
2

λ− 1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
N×N

=

(
λ− 1

2

)
∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− 1 1
2

· · · 0

1
2

. . . . . .
...

· · · . . . λ− 1 1
2

· · · 0 1
2

λ− 1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
(N−1)×(N−1)

−1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2

1
2

0 · · · 0

0 λ− 1 1
2

· · · 0

... 1
2

. . . . . .
...

0 · · · . . . λ− 1 1
2

0 · · · 0 1
2

λ− 1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
(N−1)×(N−1)

=

(
λ− 1

2

)2

qN−2(λ)− 1

2

(
λ− 1

2

)
∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− 1 1
2

· · · 0

1
2

. . . . . .
...

· · · . . . λ− 1 1
2

· · · 0 1
2

1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
(N−2)×(N−2)
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− 1

4

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− 1 1
2

· · · 0

1
2

. . . . . .
...

· · · . . . λ− 1 1
2

· · · 0 1
2

λ− 1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
(N−2)×(N−2)

=

(
λ− 1

2

)2

qN−2(λ)− 1

4

(
λ− 1

2

)
qN−3(λ)− 1

4

(
λ− 1

2

)
qN−3(λ)

+
1

8

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− 1 1
2

· · · 0

1
2

. . . . . .
...

· · · . . . λ− 1 0

· · · 0 0 1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
(N−3)×(N−3)

=

(
λ− 1

2

)2

qN−2(λ)− 1

2

(
λ− 1

2

)
qN−3(λ) +

1

16
qN−4(λ). (A.15)

Comparing (A.15) and (A.14) reveals that

pN(λ) = λqN−1(λ)

for N ≥ 5. Furthermore, by direct computation we can see that

p2(λ) = λ2 − λ = λq1(λ),

p3(λ) = λ3 − 2λ2 +
3

4
λ = λq2(λ), and

p4(λ) = λ4 − 3λ3 +
5

2
λ2 − 1

2
λ = λq3(λ).

Thus pN(λ) = λqN−1(λ) for all N ≥ 2, and so the eigenvalues of the undirected path

are 0 and the eigenvalues of MN−1. Then (A.4) from Lemma A.1 gives us (3.49).
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A.3 Undirected Star Graphs

A.3.1 Proof of Lemma 3.9

Proof. From (3.48), the Laplacian matrix of the undirected star is

Lu star
N =



1
2

0 · · · 0 −1
2

0 1
2
· · · 0 −1

2

...
...

. . .
...

...

0 0 · · · 1
2
−1

2

−1
2
−1

2
· · · −1

2
N−1
2


.

Now, suppose v ∈ CN is an eigenvector of Lu star
N with eigenvalue λ, that is

Lu star
N v = λv. (A.16)

Then multiplying out (A.16) gives us

1

2
(1− 2λ) vi =

1

2
vN , 1 ≤ i ≤ N − 1 and (A.17)(

N − 1

2
− λ
)
vN =

1

2

N−1∑
i=1

vi. (A.18)

If λ = 1
2
, (A.17) becomes

vN = 0,

and so (A.18) reduces to
N−1∑
i=1

vi = 0. (A.19)

Now (A.19) has N−2 free parameters, and so we can find N−2 linearly independent

vectors that satisfy (A.16) for λ = 1
2
. Thus Lu star

N has an eigenvalue of 1
2

with algebraic

multiplicity N − 2.
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To find the remaining 2 eigenvalues of Lu star
N , we assume that λ 6= 1

2
. Then (A.17)

gives us

vi =
1

1− 2λ
vN , 1 ≤ i ≤ N − 1, (A.20)

which, when substituted into (A.18), produces

(
N − 1

2
− λ
)
vN =

N − 1

2

1

1− 2λ
vN

⇒
(
N − 1

2
− λ− N − 1

2− 4λ

)
vN = 0. (A.21)

Now, if vN = 0, (A.20) implies that vi = 0 ∀ i, which is the trivial solution to

(A.16). Thus, we must have

N − 1

2
− λ− N − 1

2− 4λ
= 0

⇒ 4λ2 − 2Nλ

2− 4λ
= 0

⇒ λ (2λ−N) = 0,

which holds for λ = 0 and λ =
N

2
. Hence (3.53) defines the complete set of eigenvalues

of Lu star
N .
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Appendix B

Technical Results for Computing

Effective Resistances

B.1 Proofs for §5.1

B.1.1 Proof of Lemma 5.1

Proof. (i) (5.5) follows from the fact that the rows (or columns) of P form an

orthonormal set. See, e.g., Theorem 2.1.4 in [52].

(ii) Since P contains precisely one 1 in each row and column, P1n = 1n and

1Tn = 1TnP . Thus, using (2.2), we find that

PΠ = P − 1

n
P1n1

T
n

= P − 1

n
1n1

T
nP = ΠP.

(iii) The first part of (5.7) follows directly from (5.6). Then by (2.2), and again
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using the fact that P1n = 1n, we have

(P − In)Π = P − In −
1

n
P1n1

T
n +

1

n
1n1

T
n

= P − In.

B.1.2 Proof of Lemma 5.2

Proof. (i) Let D := AP , which is diagonal by assumption. Then, by Lemma 5.1,

we can see that A = DP T . Thus PA = PDP T , which implies that PA

is formed by permuting the rows and columns of a diagonal matrix, and is

therefore diagonal.

(ii) Since AP and PA are diagonal, they are both symmetric. Thus ATP T ( =

(PA)T = PA) is symmetric too. Since
(
−A− AT

)
is also symmetric, the

result follows.

(iii) Recall (2.5), that M = QMQT for any matrix M ∈ Rn×n and some Q ∈

R(n−1)×n that satisfies (2.3). Now, we recognise that since AP is diagonal, it is

symmetric and commutes with its transpose (i.e. itself). Thus

P TATAP = APP TAT

= AAT (by (5.5)).

Similarly, by part (i), PA is also diagonal and so it too is symmetric and

commutes with its transpose. Hence

PAATP T = ATP TPA

199



= ATA (by (5.5)).

Using these facts, we can observe that

(
P T − In

)
ATA (P − In) = (P − In)AAT

(
P T − In

)
.

Now, adding (P − In)A2 (P − In) to both sides gives us

[
(P − In)A+

(
P T − In

)
AT
]
A (P − In) =

(P − In)A
[
A (P − In) + AT

(
P T − In

)]
.

But we can use (5.8) to write this as

A (P − In)A (P − In) + AT
(
P T − In

)
A (P − In) =

(P − In)A (P − In)A+ (P − In)A
(
P T − In

)
AT . (B.1)

Now, by (5.7), we can pre- or post-multiply any factor of (P − In) or(
P T − In

)
by Π without changing the matrix. Therefore, we can subtract

(P − In)AΠA (P − In) from both sides of (B.1), obtain a common factor of

ΠA (P − In) on the left hand side and (P − In)AΠ on the right hand side,

then use (5.8) to obtain

(
P T − In

)
ATΠA (P − In) = (P − In)AΠAT

(
P T − In

)
,

which is equivalent to (using (5.7) again)

(
P T − In

)
ΠATΠAΠ (P − In) = (P − In) ΠAΠATΠ

(
P T − In

)
.
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Finally, pre-multiplying by Q, post-multiplying by QT and using (2.3) gives us

our desired result.

B.1.3 Proof of Lemma 5.3

Proof. (i) We know that J = [̂i,j] where ̂i,j = δn+1−i,j and δ is the Kronecker

delta. If JT = [̃i,j], then ̃i,j = ̂j,i = δn+1−j,i = δn+1−i,j = ̂i,j. Thus JT = J .

(ii) Let J2 = K = [ki,j]. Then ki,j =
n∑
`=1

̂i,` ̂`,j =
n∑
`=1

δn+1−i,` δn+1−`,j = δi,j. Thus

J2 = In and so J−1 = J .

(iii) Now, J contains precisely one 1 in each row and column, so J1n = 1n and

1Tn = 1TnJ . Thus

JΠ = J − 1

n
J1n1

T
n

= J − 1

n
1n1

T
nJ

= ΠJ.

(iv) By (2.5), J = QJQT for some matrix Q ∈ R(n−1)×n that satisfies (2.3). Thus

J
T

= QJTQT . But by (5.11), JT = J . Thus J
T

= J .

(v) Using (2.5) again, J
2

= QJQTQJQT = QJΠJQT . By (5.13), we can exchange

the order of either J and the Π. Furthermore, by (5.12), J2 = In. Thus

J
2

= QQTQQT = In−1,

and so J
−1

= J .
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B.1.4 Proof of Lemma 5.4

Proof. By assumption, we have

JLTΠL = LTΠLJ.

Since L is a Laplacian matrix, we know that LΠ = L (and ΠLT = LT ). Thus, we can

say

JΠLTΠL = LTΠLΠJ.

Pre-multiplying by Q and post-multiplying by QT gives us

QJQTQLTQTQLQT = QLTQTQLQTQJQT ,

that is

J L
T
L = L

T
LJ.

By pre- and post-multiplying by L
−1

(which exists since the graph is connected), we

find

L
−T
J L

T
= LJ L

−1
.

Hence

IN−1 + L
−T
J L

T
J = IN−1 + LJ L

−1
J.

B.1.5 Proof of Lemma 5.5

Proof. By (2.5), Lu = QLuQ
T . Thus

Lu =
1

2

(
QLQT +QJLJQT

)
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=
1

2

(
L+QQTQJLQTQJQT

)
since QQT = I and L = LΠ = LQTQ. But by (5.13), QTQJ = JQTQ. Thus

Lu =
1

2

(
L+QJQTQLQTQJQT

)
=

1

2

(
L+ J LJ

)
.

B.2 Proof of Lemma 5.10

Proof. As stated in the lemma, we will assume that n and ` are positive integers

throughout this proof. Let Nn,` be the number of nodes in Gtreen,` . The branch of

length n contains n nodes (excluding the root), while the other branch contains `

nodes (excluding the root). Therefore, we have Nn,` = n + ` + 1. Let us label the

nodes in Gtreen,` from 1 to n + 1 along the branch of length n, in reverse order of the

edge directions and starting with the root (thus the leaf of this branch is node n+ 1).

Then let us label the nodes in the branch of length ` from n+ 2 to Nn,` = n+ `+ 1

in reverse order of the edge directions. Thus the second leaf is node Nn,`.

In the following, we will denote the adjacency matrix of Gtreen,` by An,`, its matrix

of node out-degrees by Dn,` and its Laplacian matrix by Ln,`. Furthermore, we will

let Qn,` be a (Nn,` − 1) × Nn,` matrix that satisfies (2.3) and Ln,` and Σn,` be the

corresponding matrices from (3.6) and (3.12) using Ln,` and Qn,`. Finally, Xn,` will

be the matrix from (4.7), computed using Σn,` and Qn,`. Then, by Lemma 5.7, the

entries of Xn,` are related to the resistances in Gtreen,` by (5.20).

As in the proof of Lemma 5.9, let Apath
Np

, Dpath
Np

and Lpath
Np

denote the adjacency

matrix, matrix of out-degrees and Laplacian matrix of a directed path containing Np
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nodes and unit weights on every edge. Let the nodes in this path be labelled from 1

to Np in the order in which they appear, starting with the root. Then we can write

An,`, Dn,` and Ln,` in terms of Apath
Np

, Dpath
Np

and Lpath
Np

as follows:

An,` =

 Apath
n+1 0/

e
(1)
` e

(1)T
n+1 Apath

`

 ,

Dn,` =

Dpath
n+1 0/

0/ Dpath
` + e

(1)
` e

(1)T
`

 and

Ln,` =

 Lpath
n+1 0/

−e
(1)
` e

(1)T
n+1 Lpath

` + e
(1)
` e

(1)T
`

 .
Using these expressions as well as (5.29) and (5.30), we can observe that

1TNn,`Ln,` = −2e
(1)T
Nn,`

+ e
(n+1)T
Nn,`

+ e
(Nn,`)T
Nn,`

, and (B.2)

e
(i)T
Nn,`

Ln,` =


e
(i)T
Nn,`
− e

(i−1)T
Nn,`

if 1 < i ≤ Nn,`, i 6= n+ 2,

e
(n+2)T
Nn,`

− e
(1)T
Nn,`

if i = n+ 2,

0T if i = 1.

(B.3)

Let us now consider Gtreen,`+1. By our labelling convention, the resistance between

the two leaves of Gtreen,`+1 is given by

r(n, `+ 1) = rn+1,n+`+2.
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Now, we can write the adjacency matrix of Gtreen,`+1 in terms of An,` as

An,`+1 =

 An,` 0

e
(Nn,`)T
Nn,`

0

 .
In a similar fashion, we can write the matrix of node out-degrees for Gtreen,`+1 as

Dn,`+1 =

Dn,` 0

0T 1

 ,
and the Laplacian matrix as

Ln,`+1 =

 Ln,` 0

−e
(Nn,`)T
Nn,`

1

 .
Now, let

Qn,`+1 =

 Qn,` 0

α1TNn,` −β

 ,
where

α =
1√

Nn,`(Nn,` + 1)
=

1√
(n+ `+ 1)(n+ `+ 2)

and

β =

√
Nn,`

Nn,` + 1
=

√
n+ `+ 1

n+ `+ 2
.

Then Qn,`+1 satisfies (2.3). We can therefore use (3.6), (B.2) and the facts that

Ln,`1Nn,` = 0Nn,` and β (α + β) = 1 to compute Ln,` as

Ln,` =

 Ln,` 0

−2αe
(1)T
Nn,`

QT
n,` + αe

(n+1)T
Nn,`

QT
n,` + (α + β) e

(Nn,`)T
Nn,`

QT
n,` 1

 .
In order to compute resistances in Gtreen,`+1, we must find the matrix Σn,`+1 which
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solves (3.12). Since we have partitioned Ln,`+1 into a 2× 2 block matrix, we will do

the same for Σn,`+1. Let

Σn,`+1 =

S t

tT u

 ,
where S ∈ R(Nn,`−1)×(Nn,`−1) is a symmetric matrix, t ∈ RNn,`−1 and u ∈ R. Then

multiplying out the matrices in (3.12) and equating blocks in this matrix equation

gives us

Ln,`S + SL
T

n,` = INn,`−1, (B.4)

Ln,`t + t− 2αSQn,`e
(1)
Nn,`

+ αSQn,`e
(n+1)
Nn,`

+ (α + β)SQn,`e
(Nn,`)
Nn,`

= 0, and (B.5)

2u− 4αe
(1)T
Nn,`

QT
n,`t + 2αe

(n+1)T
Nn,`

QT
n,`t + 2 (α + β) e

(Nn,`)T
Nn,`

QT
n,`t = 1. (B.6)

From (B.4), it is clear that S = Σn,`. In addition, we can rewrite (B.6) as

u =
1

2
+ 2αe

(1)T
Nn,`

QT
n,`t− αe

(n+1)T
Nn,`

QT
n,`t− (α + β) e

(Nn,`)T
Nn,`

QT
n,`t. (B.7)

Thus in order to find a complete solution for Σn,`+1, we must solve (B.5) for t.

However, resistances are computed from the entries of Xn,`+1, which, if we let v :=

QT
n,`t = [vi] and use (4.7), can be written as

Xn,`+1 =

Xn,` + 2αv1TNn,` + 2α1Nn,`v
T + 2α2u1Nn,`1

T
Nn,`

−2βv − 2αβu1Nn,`

−2βvT − 2αβu1TNn,` 2β2u

 .
Hence, in order to compute resistances in Gtreen,`+1, we need only compute v, not t.

We should also note that as Xn,`+1 does not depend on our choice of Qn,`+1 (by

Lemma 4.1), neither does v. In fact, we can write (B.7) as

u =
1

2
+ 2αv1 − αvn+1 − (α + β) vNn,` ,
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and the resistance we seek as

r(n, `+ 1) = xn,` n+1,n+1 + (α + β)2 + 4α (α + β)2 v1

+ 2 (α + β) [2− α (α + β)] vn+1 − 2(α + β)3vNn,` . (B.8)

Thus we only need to find v1, vn+1 and vNn,` in order to compute r(n, `+ 1).

Now, vi = e
(i)T
Nn,`

v = e
(i)T
Nn,`

QT
n,`t. We will therefore proceed by left-multiplying (B.5)

by e
(i)T
Nn,`

QT
n,`. Using the fact that S = Σn,`, we obtain

e
(i)T
Nn,`

QT
n,`Qn,`Ln,`v + vi − αe

(i)T
Nn,`

Xn,`e
(1)
Nn,`

+
α

2
e
(i)T
Nn,`

Xn,`e
(n+1)
Nn,`

+
α + β

2
e
(i)T
Nn,`

Xn,`e
(Nn,`)
Nn,`

= 0. (B.9)

But e
(i)T
Nn,`

QT
n,`Qn,` = e

(i)T
Nn,`

(
INn,` − 1

Nn,`
1Nn,`1

T
Nn,`

)
= e

(i)T
Nn,`
− 1

Nn,`
1TNn,` by (2.3), and so

by using (B.2) and (B.3), we find

e
(i)T
Nn,`

QT
n,`Qn,`Ln,`v =

2

Nn,`

v1 −
1

Nn,`

vn+1 −
1

Nn,`

vNn,`

+


vi − vi−1 if 1 < i ≤ Nn,`, i 6= n+ 2,

vn+2 − v1 if i = n+ 2,

0 if i = 1.

Furthermore, we observe that

e
(i)T
Nn,`

Xn,`e
(1)
Nn,`

= xn,` i,1,

e
(i)T
Nn,`

Xn,`e
(n+1)
Nn,`

= xn,` i,n+1 and

e
(i)T
Nn,`

Xn,`e
(Nn,`)
Nn,`

= xn,` i,Nn,` .
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Substituting these expressions into (B.9) gives us

vi =
1

2
vi−1 −

1

Nn,`

v1 +
1

2Nn,`

vn+1 +
1

2Nn,`

vNn,` +
α

2
xn,` i,1 −

α

4
xn,` i,n+1

− α + β

4
xn,` i,Nn,` if 1 < i ≤ Nn,`, i 6= n+ 2, (B.10)

vn+2 =
1

2
v1 −

1

Nn,`

v1 +
1

2Nn,`

vn+1 +
1

2Nn,`

vNn,` +
α

2
xn,` n+2,1 −

α

4
xn,` n+2,n+1

− α + β

4
xn,` n+2,Nn,` , and (B.11)

v1 =
1

Nn,` + 2
vn+1 +

1

Nn,` + 2
vNn,` +

αNn,`

Nn,` + 2
xn,` 1,1 −

αNn,`

2 (Nn,` + 2)
xn,` 1,n+1

− (α + β)Nn,`

2 (Nn,` + 2)
xn,` 1,Nn,` . (B.12)

We can now recursively apply (B.10) n times, starting with i = n+ 1, to find

vn+1 = 2−nv1 −
2v1
Nn,`

n∑
k=1

2−k +
vn+1

Nn,`

n∑
k=1

2−k +
vNn,`
Nn,`

n∑
k=1

2−k + α
n∑
k=1

xn,` n+2−k,12
−k

− α

2

n∑
k=1

xn,` n+2−k,n+12
−k − α + β

2

n∑
k=1

xn,` n+2−k,Nn,`2
−k,

which simplifies (using (B.28)) to

Nn,` − 1 + 2−n

Nn,`

vn+1 =
[−2 + (Nn,` + 2) 2−n]

Nn,`

v1 +
1− 2−n

Nn,`

vNn,` + α
n∑
k=1

xn,` n+2−k,12
−k

− α

2

n∑
k=1

xn,` n+2−k,n+12
−k − α + β

2

n∑
k=1

xn,` n+2−k,Nn,`2
−k. (B.13)

Similarly, we can recursively apply (B.10) ` − 1 times, starting with i = N`,n =

n+ `+ 1, to find

vNn,` = 21−`vn+2−
2v1
Nn,`

`−1∑
k=1

2−k +
vn+1

Nn,`

`−1∑
k=1

2−k +
vNn,`
Nn,`

`−1∑
k=1

2−k +α

`−1∑
k=1

xn,`Nn,`+1−k,12
−k

− α

2

`−1∑
k=1

xn,`Nn,`+1−k,n+12
−k − α + β

2

`−1∑
k=1

xn,`Nn,`+1−k,Nn,`2
−k,
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and then substitute in (B.11) to get

vNn,` = 2−`v1 −
2v1
Nn,`

∑̀
k=1

2−k +
vn+1

Nn,`

∑̀
k=1

2−k +
vNn,`
Nn,`

∑̀
k=1

2−k + α
∑̀
k=1

xn,`Nn,`+1−k,12
−k

− α

2

∑̀
k=1

xn,`Nn,`+1−k,n+12
−k − α + β

2

∑̀
k=1

xn,`Nn,`+1−k,Nn,`2
−k.

Using (B.28) again, we obtain

Nn,` − 1 + 2−`

Nn,`

vNn,` =

[
−2 + (Nn,` + 2) 2−`

]
Nn,`

v1 +
1− 2−`

Nn,`

vn+1 +α
∑̀
k=1

xn,`Nn,`+1−k,12
−k

− α

2

∑̀
k=1

xn,`Nn,`+1−k,n+12
−k − α + β

2

∑̀
k=1

xn,`Nn,`+1−k,Nn,`2
−k. (B.14)

Note that (B.14) reduces to (B.11) when ` = 1.

But now (B.12), (B.13) and (B.14) form a set of three of simultaneous linear

equations in v1, vn+1 and vNn,` . Their solution is given by

v1 =
α

Nn,`

(
Nn,` − 2 + 2−n + 2−`

)
xn,` 1,1 −

α

2Nn,`

(
Nn,` − 2 + 2−n + 2−`

)
xn,` 1,n+1

− α + β

2Nn,`

(
Nn,` − 2 + 2−n + 2−`

)
xn,` 1,Nn,` +

α

Nn,`

n∑
k=1

xn,` n+2−k,12
−k

+
α

Nn,`

∑̀
k=1

xn,`Nn,`+1−k,12
−k − α

2Nn,`

n∑
k=1

xn,` n+2−k,n+12
−k

− α

2Nn,`

∑̀
k=1

xn,`Nn,`+1−k,n+12
−k − α + β

2Nn,`

n∑
k=1

xn,` n+2−k,Nn,`2
−k

− α + β

2Nn,`

∑̀
k=1

xn,`Nn,`+1−k,Nn,`2
−k, (B.15)

vn+1 =
α

Nn,`

(
−2 + (Nn,` + 1) 2−n + 2−`

)
xn,` 1,1
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− α

2Nn,`

(
−2 + (Nn,` + 1) 2−n + 2−`

)
xn,` 1,n+1

− α + β

2Nn,`

(
−2 + (Nn,` + 1) 2−n + 2−`

)
xn,` 1,Nn,` +

α (Nn,` + 1)

Nn,`

n∑
k=1

xn,` n+2−k,12
−k

+
α

Nn,`

∑̀
k=1

xn,`Nn,`+1−k,12
−k − α (Nn,` + 1)

2Nn,`

n∑
k=1

xn,` n+2−k,n+12
−k

− α

2Nn,`

∑̀
k=1

xn,`Nn,`+1−k,n+12
−k − (α + β) (Nn,` + 1)

2Nn,`

n∑
k=1

xn,` n+2−k,Nn,`2
−k

− α + β

2Nn,`

∑̀
k=1

xn,`Nn,`+1−k,Nn,`2
−k, and (B.16)

vNn,` =
α

Nn,`

(
−2 + 2−n + (Nn,` + 1) 2−`

)
xn,` 1,1

− α

2Nn,`

(
−2 + 2−n + (Nn,` + 1) 2−`

)
xn,` 1,n+1

− α + β

2Nn,`

(
−2 + 2−n + (Nn,` + 1) 2−`

)
xn,` 1,Nn,` +

α

Nn,`

n∑
k=1

xn,` n+2−k,12
−k

+
α (Nn,` + 1)

Nn,`

∑̀
k=1

xn,`Nn,`+1−k,12
−k − α

2Nn,`

n∑
k=1

xn,` n+2−k,n+12
−k

− α (Nn,` + 1)

2Nn,`

∑̀
k=1

xn,`Nn,`+1−k,n+12
−k − α + β

2Nn,`

n∑
k=1

xn,` n+2−k,Nn,`2
−k

− (α + β) (Nn,` + 1)

2Nn,`

∑̀
k=1

xn,`Nn,`+1−k,Nn,`2
−k. (B.17)

Substituting (B.15), (B.16) and (B.17) into (B.8) then multiplying by Nn,` (and

using the definitions of α and β) gives us

Nn,` r(n, `+ 1) = Nn,` + 1 +
(
22−n − 21−`)xn,` 1,1 +

(
2−` − 21−n)xn,` 1,n+1

+ (Nn,` + 1)
(
2−` − 21−n)xn,` 1,Nn,` +Nn,`xn,` n+1,n+1 + 4

n∑
k=1

xn,` n+2−k,12
−k

− 2
∑̀
k=1

xn,`Nn,`+1−k,12
−k − 2

n∑
k=1

xn,` n+2−k,n+12
−k +

∑̀
k=1

xn,`Nn,`+1−k,n+12
−k
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− (2Nn,` + 2)
n∑
k=1

xn,` n+2−k,Nn,`2
−k + (Nn,` + 1)

∑̀
k=1

xn,`Nn,`+1−k,Nn,`2
−k. (B.18)

Now, by (4.8), we can write xn,` k,j = 1
2
xn,` k,k + 1

2
xn,` j,j − 1

2
rk,j. Furthermore, by

Theorem 5.1 we know that

rk,j = 2 |k − j| if 1 ≤ k, j ≤ n+ 1, or n+ 2 ≤ k, j ≤ Nn,`, and (B.19)

r1,j = 2 (j − n− 1) if n+ 2 ≤ j ≤ Nn,`. (B.20)

Finally, by the definition of r(·, ·), we can say that

rk,j = r(k − 1, j − n− 1) if 1 < k ≤ n+ 1 and n+ 2 ≤ j ≤ Nn,`. (B.21)

Therefore, we can make the following substitutions for the xn,` k,j terms in (B.18):

xn,` 1,n+1 =
1

2
xn,` 1,1 +

1

2
xn,` n+1,n+1 − n,

xn,` 1,Nn,` =
1

2
xn,` 1,1 +

1

2
xn,`Nn,`,Nn,` − `,

xn,` k,1 =
1

2
xn,` 1,1 +

1

2
xn,` k,k − (k − 1) if 2 ≤ k ≤ n+ 1,

xn,` k,1 =
1

2
xn,` 1,1 +

1

2
xn,` k,k − (k − n− 1) if n+ 2 ≤ k ≤ Nn,`,

xn,` k,n+1 =
1

2
xn,` n+1,n+1 +

1

2
xn,` k,k − (n+ 1− k) if 2 ≤ k ≤ n+ 1,

xn,` k,n+1 =
1

2
xn,` n+1,n+1 +

1

2
xn,` k,k −

1

2
r(n, k − n− 1) if n+ 2 ≤ k ≤ Nn,`,

xn,` k,Nn,` =
1

2
xn,`Nn,`,Nn,` +

1

2
xn,` k,k −

1

2
r(k − 1, `) if 2 ≤ k ≤ n+ 1, and

xn,` k,Nn,` =
1

2
xn,`Nn,`,Nn,` +

1

2
xn,` k,k − (Nn,` − k) if n+ 2 ≤ k ≤ Nn,`.

This, along with the fact that Nn,` = n+ `+ 1, gives us
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(n+ `+ 1) r(n, `+ 1) = n+ `+ 2− n
(
2−` − 21−n)− ` (n+ `+ 2)

(
2−` − 21−n)

− (4n+ 6)
n∑
k=1

2−k + 6
n∑
k=1

k2−k + (n+ 3`+ 4)
∑̀
k=1

2−k − (n+ `+ 4)
∑̀
k=1

k2−k

− 1

2

∑̀
k=1

r(n, `+ 1− k)2−k + (n+ `+ 2)
n∑
k=1

r(n+ 1− k, `)2−k

+

[
(n+ `− 1)

(
2−1−` − 2−n

)
+ 2

n∑
k=1

2−k −
∑̀
k=1

2−k

]
xn,` 1,1

+

[
n+ `+ 1 + 2−1−` − 2−n −

n∑
k=1

2−k +
1

2

∑̀
k=1

2−k

]
xn,` n+1,n+1

+ (n+ `+ 2)

[(
2−1−` − 2−n

)
−

n∑
k=1

2−k +
1

2

∑̀
k=1

2−k

]
xn,` n+`+1,n+`+1

−(n+ `+ 1)
n∑
k=1

xn,` n+2−k,n+2−k2
−k+

n+ `+ 1

2

∑̀
k=1

xn,` n+`+2−k,n+`+2−k2
−k,

which (using (B.28) and (B.29)) simplifies to

(n+ `+ 1) r(n, `+ 1) = −4n+ 2`+ 4 +
(
`2 + n`+ 2`− 3

)
21−n + (`+ 4) 2−`

+ (n+`+2)
n∑
k=1

r(n+ 1− k, `)2−k− 1

2

∑̀
k=1

r(n, `+ 1− k)2−k +

(
n+`+

1

2

)
xn,` n+1,n+1

+
[
(n+ `+ 1)

(
2−1−` − 2−n

)
+ 1
]
xn,` 1,1 −

n+ `+ 2

2
xn,` n+`+1,n+`+1

− (n+ `+ 1)
n∑
k=1

xn,` n+2−k,n+2−k2
−k +

n+ `+ 1

2

∑̀
k=1

xn,` n+`+2−k,n+`+2−k2
−k,

or, by changing indices inside the sums,

(n+ `+ 1) r(n, `+ 1) = −4n+ 2`+ 4 +
(
`2 + n`+ 2`− 3

)
21−n + (`+ 4) 2−`

+
n+ `+ 2

2

n∑
k=1

r(k, `)2k−n − 1

4

∑̀
k=1

r(n, k)2k−` +

(
n+ `+

1

2

)
xn,` n+1,n+1

+
[
(n+ `+ 1)

(
2−1−` − 2−n

)
+ 1
]
xn,` 1,1 −

n+ `+ 2

2
xn,` n+`+1,n+`+1
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− n+ `+ 1

2

n∑
k=1

xn,` k+1,k+12
k−n +

n+ `+ 1

4

∑̀
k=1

xn,` n+1+k,n+1+k2
k−`. (B.22)

Now, by (5.20) from Lemma 5.7, we know that

xn,` i,i =
1

Nn,`

Nn,`∑
k=1

ri,k −
1

N2
n,`

Nn,`−1∑
k=1

Nn,`∑
j=k+1

rk,j. (B.23)

Using (B.19), (B.20) and (B.21), we can write the first sum in (B.23) as

n+`+1∑
k=1

ri,k =



n+1∑
k=2

2(k − 1) +
n+`+1∑
k=n+2

2(k − n− 1) if i = 1,

n+1∑
k=1

2 |k − i|+
n+`+1∑
k=n+2

r(i− 1, k − n− 1) if 1 < i ≤ n+ 1,

2(i− n− 1) +
n+1∑
k=2

r(k − 1, i− n− 1)

+
n+`+1∑
k=n+2

2 |i− k| if n+ 2 ≤ i ≤ n+ `+ 1,

=



2
n∑
k=1

k + 2
∑̀
k=1

k if i = 1,

2
i−1∑
k=1

k + 2
n+1−i∑
k=1

k +
∑̀
k=1

r(i− 1, k) if 1 < i ≤ n+ 1,

n∑
k=1

r(k, i− n− 1) + 2
i−n−1∑
k=1

k + 2
n+`+1−i∑
k=1

k if n+ 2 ≤ i ≤ n+ `+ 1.

Therefore, by using (B.26) we obtain

n+`+1∑
k=1

ri,k =



n2 + `2 + n+ ` if i = 1,

n2 + (3− 2i)n+ 2(i− 1)2 +
∑̀
k=1

r(i− 1, k) if 1 < i ≤ n+ 1,

2n2 + `2 + 2n`+ (4− 4i)n+ (3− 2i)`

+ 2(i− 1)2 +
n∑
k=1

r(k, i− n− 1) if n+ 2 ≤ i ≤ n+ `+ 1.

(B.24)
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We can note that the double sum in (B.23) is independent of i. Let

f :=

Nn,`−1∑
k=1

Nn,`∑
j=k+1

rk,j.

Then, substituting (B.23) and (B.24) into (B.22) produces

(n+ `+ 1) r(n, `+ 1) = −4n+ 2`+ 4 +
(
`2 + n`+ 2`− 3

)
21−n + (`+ 4) 2−`

+
n+ `+ 2

2

n∑
k=1

r(k, `)2k−n − 1

4

∑̀
k=1

r(n, k)2k−`

+
[
(n+ `+ 1)

(
2−1−` − 2−n

)
+ 1
] [n2 + `2 + n+ `

n+ `+ 1
− f

(n+ `+ 1)2

]
+

(
n+ `+

1

2

)[
n2 + n

n+ `+ 1
+

1

n+ `+ 1

∑̀
k=1

r(n, k)− f

(n+ `+ 1)2

]

− n+ `+ 2

2

[
`2 + `

n+ `+ 1
+

1

n+ `+ 1

n∑
k=1

r(k, `)− f

(n+ `+ 1)2

]

− n+ `+ 1

2

n∑
k=1

[
n2 + (1− 2k)n+ 2k2

n+ `+ 1
+

1

n+ `+ 1

∑̀
j=1

r(k, j)− f

(n+ `+ 1)2

]
2k−n

+
n+ `+ 1

4

∑̀
k=1

[
`2 + (1− 2k)`+ 2k2

n+ `+ 1
+

1

n+ `+ 1

n∑
j=1

r(j, k)− f

(n+ `+ 1)2

]
2k−`,

which, by changing indices and using the results of Lemma B.1, simplifies to

(n+ `+ 1) r(n, `+ 1) =
−3n2 + 3`2 − 2n`− n+ 5`+ 2

2(n+ `+ 1)
+
(
`2 + 2n`+ 2n+ 3`

)
2−n

+
(
n2 + n+ 2

)
2−1−` +

1

4

∑̀
k=1

(
4− 2

n+ `+ 1
− 2k−`

)
r(n, k)

− n+ `+ 2

2

n∑
k=1

(
1

n+ `+ 1
− 2k−n

)
r(k, `)− 1

4

n∑
k=1

∑̀
j=1

(
21+k−n − 2j−`

)
r(k, j).

(B.25)

Finally, dividing (B.25) through by n+ `+ 1 produces our desired result.
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B.3 Finite series

The following series are either well-known or special cases of well-known series. The

first two and the general cases of the third and fourth usually appear in any intro-

ductory mathematical text that covers series (e.g. §4.2 of [86]). The fifth is slightly

more obscure.

Lemma B.1. For integer values of n > 0,

(i)
n∑
k=1

k =
1

2
n(n+ 1), (B.26)

(ii)
n∑
k=1

k2 =
1

6
n(n+ 1)(2n+ 1), (B.27)

(iii)
n∑
k=1

2−k = 1− 2−n, (B.28)

(iv)
n∑
k=1

k2−k = 2− (n+ 2)2−n, and (B.29)

(v)
n∑
k=1

k22−k = 6−
(
n2 + 4n+ 6

)
2−n. (B.30)

Proof. Equations (B.26) and (B.27) are special cases of Equation (6.2.1) in [50], while

(B.28), (B.29) and (B.30) are special cases of Equation (6.9.1) in [50]. All are easily

proved using induction.

B.3.1 Finite series of binomial coefficients

Although there are many interpretations and uses of binomial coefficients, we will

simply assume two basic facts about them, namely Pascal’s rule;

(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
, 1 ≤ k ≤ n− 1, (B.31)
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and the binomial formula;

(x+ y)n =
n∑
i=0

(
n

i

)
xiyn−i, n ≥ 0. (B.32)

Pascal’s rule follows easily from (2.6) while the binomial formula can be inductively

proved using Pascal’s rule. Equations (B.31) and (B.32) can also be found in standard

introductory mathematics texts, such as §1.5–§1.6 in [86].

We can use Pascal’s rule to derive some identities involving binomial coefficients.

These identities include the two in the following lemma.

Lemma B.2. For integer values of n,m and k, with n > 0, m ≥ 0 and 0 ≤ k ≤ m,

(i)
n∑
i=1

(
m+ i

m+ 1

)
=

(
n+m+ 1

m+ 2

)
, and (B.33)

(ii)
n∑
i=1

(
m+ i

k + i

)
=

(
n+m+ 1

n+ k

)
−
(
m+ 1

k

)
. (B.34)

Proof. (i) We will proceed by induction. By direct evaluation, (B.33) holds for

n = 1, as
(
m+1
m+1

)
= 1 =

(
m+2
m+2

)
. Suppose that it holds for n = `. Then

`+1∑
i=1

(
m+ i

m+ 1

)
=
∑̀
i=1

(
m+ i

m+ 1

)
+

(
m+ `+ 1

m+ 1

)
=

(
m+ `+ 1

m+ 2

)
+

(
m+ `+ 1

m+ 1

)
=

(
m+ `+ 2

m+ 2

)
by Pascal’s rule,

and so (B.33) then holds for n = ` + 1 as well. Thus it holds for all n > 0.

Note that all these binomial coefficients are well-defined for m ≥ 0.

(ii) Once again, we will proceed by induction. By direct evaluation, (B.34) holds

for n = 1, as
(
m+1
k+1

)
=
(
m+2
k+1

)
−
(
m+1
k

)
by Pascal’s rule. Suppose that it holds for
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n = `. Then

`+1∑
i=1

(
m+ i

k + i

)
=
∑̀
i=1

(
m+ i

k + i

)
+

(
m+ `+ 1

k + `+ 1

)
=

(
m+ `+ 1

k + `

)
+

(
m+ `+ 1

k + `+ 1

)
−
(
m+ 1

k

)
=

(
m+ `+ 2

k + `+ 1

)
−
(
m+ 1

k

)
by Pascal’s rule,

and so (B.34) then holds for n = `+1 as well. Thus it holds for all n > 0. Note

that all these binomial coefficients are well-defined for m ≥ 0 and 0 ≤ k ≤ m.

A special case of the binomial formula can be found by substituting y = 1 into

(B.32), which gives

(1 + x)n =
n∑
i=0

(
n

i

)
xi, n ≥ 0. (B.35)

Differentiating this expression with respect to x gives us

n (1 + x)n−1 =
n∑
i=0

i

(
n

i

)
xi−1, n ≥ 1. (B.36)

In the following results, we will make use of a few “well-known” series of binomial

coefficients (for example, the first two can be found in Chapter 3 of [93] and all can

be solved by Mathematica). Since they are not as standard as the basic facts stated

above, we will include a brief proof of them for the sake of completeness.

Lemma B.3 (Standard sums of binomial coefficients). For integer values of n,

(i)

bn2 c∑
i=0

(
n

2i

)
= 2n−1, n > 0, (B.37)

(ii)

bn−1
2 c∑
i=0

(
n

2i+ 1

)
= 2n−1, n > 0, (B.38)
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(iii)

bn2 c∑
i=0

2i

(
n

2i

)
= n2n−2, n > 1, and (B.39)

(iv)

bn−1
2 c∑
i=0

(2i+ 1)

(
n

2i+ 1

)
= n2n−2, n > 1. (B.40)

Proof. Substituting x = ±1 into (B.35) gives us

n∑
i=0

(
n

i

)
= 2n and

n∑
i=0

(−1)i
(
n

i

)
= 0

for any n > 0. Equations (B.37) and (B.38) can be found by taking the sum and

difference of these two expressions and dividing by 2. Similarly, substituting x = ±1

into (B.36) gives us
n∑
i=0

i

(
n

i

)
= n2n−1 and

n∑
i=0

(−1)i−1i

(
n

i

)
= 0

for any n > 1. Equations (B.39) and (B.40) can be found by taking the sum and

difference of these two expressions and dividing by 2.

We can now use the results from Lemma B.3 to derive some more specialised

series. These are summarised in the following lemma. As a point of notation, we will

assume that any sum not containing any terms (e.g.
∑−1

i=0 ai) is equal to zero.

Lemma B.4 (Specialised sums of binomial coefficients). For integer values of p ≥ 0,

(i)

p+1∑
i=1

i

(
2p+ 4

2i+ 2

)
= p22p+2 + 1, (B.41)

(ii)

p∑
i=1

i

(
2p+ 2

2i+ 1

)
= p22p, (B.42)
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(iii)

p+1∑
i=1

i

(
2p+ 4

2i+ 1

)
= (p+ 1) 22p+2, (B.43)

(iv)

p∑
i=1

i

(
2p+ 3

2i+ 2

)
= (2p− 1) 22p + 1, (B.44)

(v)

p∑
i=1

i

(
2p+ 3

2i+ 1

)
= (2p+ 1) 22p − p− 1, (B.45)

(vi)

p∑
i=1

2p∑
k=2i−1

i2−k
(
k + 2

2i+ 1

)
= p2 +

1

2
p, (B.46)

(vii)

p∑
i=1

2p−1∑
k=2i−1

i2−k
(
k + 2

2i+ 1

)
= p2 − 1

2
p, and (B.47)

(viii)

p+1∑
i=1

2p+1∑
k=2i−1

i2−k
(
k + 2

2i+ 1

)
= p2 +

3

2
p+

1

2
. (B.48)

Proof. (i) This follows by substituting n = 2p + 4 into (B.39) and (B.37), taking

the difference between the first expression and twice the second, removing the

i = 0 and i = 1 terms, shifting indices by 1, and then dividing by 2. Note that

by the conditions on (B.39) and (B.37), this is true for p ≥ 0.

(ii) This follows by substituting n = 2p+2 into (B.40) and (B.38), taking the differ-

ence between these expressions and dividing by 2. Note that by the conditions

on (B.40) and (B.38), this is true for p ≥ 0.

(iii) This follows by substituting p+ 1 for p in (B.42).

(iv) This follows by substituting p − 1 for p in (B.41), adding this to (B.42), and

using Pascal’s rule to say that

(
2p+ 2

2i+ 1

)
+

(
2p+ 2

2i+ 2

)
=

(
2p+ 3

2i+ 2

)
.

(v) This follows by substituting n = 2p + 3 into (B.40) and (B.38), taking the

difference between these expressions, dividing by 2 and taking the final term
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out of the sum. Note that by the conditions on (B.40) and (B.38), this is true

for p ≥ 0.

(vi) Let s(p) represent the value of this sum, as a function of p. That is,

s(p) :=

p∑
i=1

2p∑
k=2i−1

i2−k
(
k + 2

2i+ 1

)
.

Then we can see that s(0) = 0 and furthermore,

s(p+ 1) =

p+1∑
i=1

2p+2∑
k=2i−1

i2−k
(
k + 2

2i+ 1

)

=

p∑
i=1

2p∑
k=2i−1

i2−k
(
k + 2

2i+ 1

)

+ 2−2p−1
p+1∑
i=1

i

(
2p+ 3

2i+ 1

)
+ 2−2p−2

p+1∑
i=1

i

(
2p+ 4

2i+ 1

)
= s(p) + 2−2p−1 (2p+ 1) 22p + 2−2p−2 (p+ 1) 22p+2

(by (B.45) and (B.43))

= s(p) + 2p+
3

2

= s(p) + 2(p+ 1)− 1

2
.

Thus, we can say that

s(p) =

p∑
k=1

(
2k − 1

2

)

= 2

p∑
k=1

k − 1

2

p∑
k=1

1

= p(p+ 1)− 1

2
p (using (B.26))

= p2 +
1

2
p.
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(vii) We can see that

p∑
i=1

2p−1∑
k=2i−1

i2−k
(
k + 2

2i+ 1

)
=

p∑
i=1

2p∑
k=2i−1

i2−k
(
k + 2

2i+ 1

)
− 2−2p

p∑
i=1

i

(
2p+ 2

2i+ 1

)
,

and then the result follows from (B.46) and (B.42).

(viii) This follows by substituting p+ 1 for p in (B.47).

In addition to these series evaluations, the following series manipulations will prove

to be useful.

Lemma B.5 (Equivalent binomial series). For integer values of p ≥ 0 and n ≥ 0,

(i)

p+1∑
i=1

2p+1∑
k=2i−1

i2−k
(
n+k+3
n+2i+2

)
=

p+1∑
i=1

2p+1∑
k=2i−1

i2−k+1
(
n+k+2
n+2i+1

)
− 2−2p−1

p+1∑
i=1

i
(
n+2p+4
n+2i+2

)
, (B.49)

and

(ii)

p∑
i=1

2p∑
k=2i−1

i2−k
(
n+k+3
n+2i+2

)
=

p∑
i=1

2p∑
k=2i−1

i2−k+1
(
n+k+2
n+2i+1

)
− 2−2p

p∑
i=1

i
(
n+2p+3
n+2i+2

)
. (B.50)

Proof. (i) First, let us suppose that p ≥ 0, n ≥ 0 and i is an integer between 1

and p+ 1 (inclusive). Then, we can use Pascal’s rule with k > 2i− 1 to write

(
n+ k + 3

n+ 2i+ 2

)
=

(
n+ k + 2

n+ 2i+ 2

)
+

(
n+ k + 2

n+ 2i+ 1

)
,

while for k = 2i− 1 we can say

(
n+ k + 3

n+ 2i+ 2

)
=

(
n+ 2i+ 2

n+ 2i+ 2

)
= 1 =

(
n+ 2i+ 1

n+ 2i+ 1

)
=

(
n+ k + 2

n+ 2i+ 1

)
.

With these two facts, we can write

2p+1∑
k=2i−1

2−k
(
n+ k + 3

n+ 2i+ 2

)
=

2p+1∑
k=2i

2−k
(
n+ k + 2

n+ 2i+ 2

)
+

2p+1∑
k=2i−1

2−k
(
n+ k + 2

n+ 2i+ 1

)
.

(B.51)
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By shifting indices by 1, the first sum on the right becomes

2p+1∑
k=2i

2−k
(
n+ k + 2

n+ 2i+ 2

)
=

2p∑
k=2i−1

2−k−1
(
n+ k + 3

n+ 2i+ 2

)

=
1

2

2p+1∑
k=2i−1

2−k
(
n+ k + 3

n+ 2i+ 2

)
− 2−2p−2

(
n+ 2p+ 4

n+ 2i+ 2

)

=
1

2

2p+1∑
k=2i

2−k
(
n+ k + 2

n+ 2i+ 2

)
+

1

2

2p+1∑
k=2i−1

2−k
(
n+ k + 2

n+ 2i+ 1

)
− 2−2p−2

(
n+ 2p+ 4

n+ 2i+ 2

)
(by (B.51)).

Thus

2p+1∑
k=2i

2−k
(
n+ k + 2

n+ 2i+ 2

)
=

2p+1∑
k=2i−1

2−k
(
n+ k + 2

n+ 2i+ 1

)
− 2−2p−1

(
n+ 2p+ 4

n+ 2i+ 2

)
,

and so (B.51) becomes

2p+1∑
k=2i−1

2−k
(
n+ k + 3

n+ 2i+ 2

)
= 2

2p+1∑
k=2i−1

2−k
(
n+ k + 2

n+ 2i+ 1

)
− 2−2p−1

(
n+ 2p+ 4

n+ 2i+ 2

)
.

Substituting this expression into the left hand side of (B.49) produces the de-

sired result.

(ii) Again, let us suppose that p ≥ 0, n ≥ 0 and i is an integer, now between 1 and

p (inclusive). As above, we can use Pascal’s rule to write

2p∑
k=2i−1

2−k
(
n+ k + 3

n+ 2i+ 2

)
=

2p∑
k=2i

2−k
(
n+ k + 2

n+ 2i+ 2

)
+

2p∑
k=2i−1

2−k
(
n+ k + 2

n+ 2i+ 1

)
.

(B.52)

By shifting indices by 1, the first sum on the right becomes

2p∑
k=2i

2−k
(
n+ k + 2

n+ 2i+ 2

)
=

2p−1∑
k=2i−1

2−k−1
(
n+ k + 3

n+ 2i+ 2

)
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=
1

2

2p∑
k=2i−1

2−k
(
n+ k + 3

n+ 2i+ 2

)
− 2−2p−1

(
n+ 2p+ 3

n+ 2i+ 2

)

=
1

2

2p∑
k=2i

2−k
(
n+ k + 2

n+ 2i+ 2

)
+

1

2

2p∑
k=2i−1

2−k
(
n+ k + 2

n+ 2i+ 1

)
− 2−2p−1

(
n+ 2p+ 3

n+ 2i+ 2

)
(by (B.52)).

Thus

2p∑
k=2i

2−k
(
n+ k + 2

n+ 2i+ 2

)
=

2p∑
k=2i−1

2−k
(
n+ k + 2

n+ 2i+ 1

)
− 2−2p

(
n+ 2p+ 3

n+ 2i+ 2

)
,

and so (B.52) becomes

2p∑
k=2i−1

2−k
(
n+ k + 3

n+ 2i+ 2

)
= 2

2p∑
k=2i−1

2−k
(
n+ k + 2

n+ 2i+ 1

)
− 2−2p

(
n+ 2p+ 3

n+ 2i+ 2

)
.

Substituting this expression into the left hand side of (B.50) produces the de-

sired result.

Now, we can use Lemmas B.4 and B.5 to evaluate two more complicated expres-

sions which will be necessary for the proof of Theorem 5.3.

Lemma B.6. Let p and n be non-negative integers, and let

g(n, p) :=
4p2 + 6p+ 2

n+ 2p+ 2
+ 4p+

(
4p2 + 4np+ 4n+ 10p+ 6

)
21−n + 2−2p

+ 2−n−2p
p+1∑
i=1

i

{
2

(
n+ 2p+ 4

n+ 2i+ 1

)
−
(
n+ 2p+ 4

n+ 2i+ 2

)
− (2n+ 4p+ 6)

(
2p+ 4

2i+ 1

)}

+ 22−n
p+1∑
i=1

2p+1∑
k=2i−1

i2−k
{
n+ 2p+ 1

n+ 2p+ 2

(
n+ k + 2

n+ 2i+ 1

)
−
(
n+ k + 2

n+ 2i

)
+

(
k + 3

2i+ 1

)}

+ 2−2p
p+1∑
i=1

n∑
k=1

i2−k
{(

k + 2p+ 4

k + 2i+ 2

)
− 2n+ 4p+ 6

n+ 2p+ 2

(
k + 2p+ 3

k + 2i+ 1

)}
. (B.53)
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Then g(n, p) = 0 ∀ n, p ≥ 0.

Proof. First, we can use (B.43) to simplify the third term in the first sum. In addition,

the third term in the second sum can be written as
(
k+2
2i+1

)
+
(
k+2
2i

)
using Pascal’s rule

for k ≥ 2i− 1. We can then apply (B.48) to the
(
k+2
2i+1

)
term. This gives us

g(n, p) =
4p2 + 6p+ 2

n+ 2p+ 2
+ 4p−

(
2p2 + 7p+ 5

)
21−n + 2−2p

+ 2−n−2p
p+1∑
i=1

i

{
2

(
n+ 2p+ 4

n+ 2i+ 1

)
−
(
n+ 2p+ 4

n+ 2i+ 2

)}

+ 22−n
p+1∑
i=1

2p+1∑
k=2i−1

i2−k
{
n+ 2p+ 1

n+ 2p+ 2

(
n+ k + 2

n+ 2i+ 1

)
−
(
n+ k + 2

n+ 2i

)
+

(
k + 2

2i

)}

+ 2−2p
p+1∑
i=1

n∑
k=1

i2−k
{(

k + 2p+ 4

k + 2i+ 2

)
− 2n+ 4p+ 6

n+ 2p+ 2

(
k + 2p+ 3

k + 2i+ 1

)}
. (B.54)

Next, we will consider the case when p = 0. Then our expression becomes

g(n, 0) =
2

n+ 2
− (5) 21−n + 1 + 2−n

{
2

(
n+ 4

n+ 3

)
−
(
n+ 4

n+ 4

)}
+ 21−n

{
n+ 1

n+ 2

(
n+ 3

n+ 3

)
−
(
n+ 3

n+ 2

)
+

(
3

2

)}
+

n∑
k=1

2−k
{(

k + 4

k + 4

)
− 2n+ 6

n+ 2

(
k + 3

k + 3

)}
=
n+ 4

n+ 2
+

(
−10 + 2 (n+ 4)− 1 +

2n+ 2

n+ 2
− 2 (n+ 3) + 6

)
2−n

− n+ 4

n+ 2

n∑
k=1

2−k

=
n+ 4

n+ 2

{
1− 2−n −

n∑
k=1

2−k

}

= 0 ∀ n ≥ 0 by (B.28). (B.55)

Thus, in the rest of the proof, we will assume that p > 0. Now, when n = 0, our
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expression becomes

g(0, p) =
4p2 + 6p+ 2

2p+ 2
+ 4p− 2

(
2p2 + 7p+ 5

)
+ 2−2p

+ 2−2p
p+1∑
i=1

i

{
2

(
2p+ 4

2i+ 1

)
−
(

2p+ 4

2i+ 2

)}

+ 4

p+1∑
i=1

2p+1∑
k=2i−1

i2−k
{

2p+ 1

2p+ 2

(
k + 2

2i+ 1

)
−
(
k + 2

2i

)
+

(
k + 2

2i

)}

= −4p2 − 8p− 9 + 2−2p + 21−2p
p+1∑
i=1

i

(
2p+ 4

2i+ 1

)
− 2−2p

p+1∑
i=1

i

(
2p+ 4

2i+ 2

)

+
4p+ 2

p+ 1

p+1∑
i=1

2p+1∑
k=2i−1

i2−k
(
k + 2

2i+ 1

)
= 0 by (B.43), (B.41) and (B.48). (B.56)

Next, let us consider g(n+ 1, p). Substituting n+ 1 in for n in (B.54) gives us

g(n+ 1, p) =
4p2 + 6p+ 2

n+ 2p+ 3
+ 4p−

(
2p2 + 7p+ 5

)
2−n + 2−2p

+ 2−n−2p−1
p+1∑
i=1

i

{
2

(
n+ 2p+ 5

n+ 2i+ 2

)
−
(
n+ 2p+ 5

n+ 2i+ 3

)}

+ 21−n
p+1∑
i=1

2p+1∑
k=2i−1

i2−k
{
n+ 2p+ 2

n+ 2p+ 3

(
n+ k + 3

n+ 2i+ 2

)
−
(
n+ k + 3

n+ 2i+ 1

)
+

(
k + 2

2i

)}

+ 2−2p
p+1∑
i=1

n+1∑
k=1

i2−k
{(

k + 2p+ 4

k + 2i+ 2

)
− 2n+ 4p+ 8

n+ 2p+ 3

(
k + 2p+ 3

k + 2i+ 1

)}
.

We can take the k = n + 1 terms out of the final sum and apply (B.31) and (B.49)

to produce

g(n+ 1, p) =
4p2 + 6p+ 2

n+ 2p+ 3
+ 4p−

(
2p2 + 7p+ 5

)
2−n + 2−2p

+ 2−n−2p−1
p+1∑
i=1

i

{
2

(
n+ 2p+ 4

n+ 2i+ 1

)
− 2

(
n+ 2p+ 4

n+ 2i+ 2

)}
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+ 21−n
p+1∑
i=1

2p+1∑
k=2i−1

i2−k
{
n+ 2p+ 1

n+ 2p+ 3

(
n+ k + 2

n+ 2i+ 1

)
−
(
n+ k + 2

n+ 2i

)
+

(
k + 2

2i

)}

+ 2−2p
p+1∑
i=1

n∑
k=1

i2−k
{(

k + 2p+ 4

k + 2i+ 2

)
− 2n+ 4p+ 8

n+ 2p+ 3

(
k + 2p+ 3

k + 2i+ 1

)}
. (B.57)

Now, let us define a new function, a(n, p), as

a(n, p) := (n+ 2p+ 3) g(n+ 1, p)− (n+ 2p+ 2) g(n, p). (B.58)

Then, from (B.54) and (B.57), we obtain

a(n, p) = 4p+
(
4p3 + 2np2 + 16p2 + 7np+ 5n+ 17p+ 5

)
2−n + 2−2p

+ 2−n−2p
p+1∑
i=1

i

{
− (n+ 2p+ 1)

(
n+ 2p+ 4

n+ 2i+ 1

)
−
(
n+ 2p+ 4

n+ 2i+ 2

)}

+ (n+ 2p+ 1) 21−n
p+1∑
i=1

2p+1∑
k=2i−1

i2−k
{
−
(
n+ k + 2

n+ 2i+ 1

)
+

(
n+ k + 2

n+ 2i

)
−
(
k + 2

2i

)}

+ 2−2p
p+1∑
i=1

n∑
k=1

i2−k
{(

k + 2p+ 4

k + 2i+ 2

)
− 2

(
k + 2p+ 3

k + 2i+ 1

)}
. (B.59)

When n = 0, this expression becomes

a(0, p) = 4p+
(
4p3 + 16p2 + 17p+ 5

)
+ 2−2p − (2p+ 1) 2−2p

p+1∑
i=1

i

(
2p+ 4

2i+ 1

)

− 2−2p
p+1∑
i=1

i

(
2p+ 4

2i+ 2

)
− (4p+ 2)

p+1∑
i=1

2p+1∑
k=2i−1

i2−k
(
k + 2

2i+ 1

)
= 0 by (B.43), (B.41) and (B.48). (B.60)

In a similar manner as before, we will next consider a(n+1, p). Substituting n+1

in for n in (B.59) produces

a(n+ 1, p) = 4p+
(
4p3 + 2np2 + 18p2 + 7np+ 5n+ 24p+ 10

)
2−n−1 + 2−2p
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+ 2−n−2p−1
p+1∑
i=1

i

{
− (n+ 2p+ 2)

(
n+ 2p+ 5

n+ 2i+ 2

)
−
(
n+ 2p+ 5

n+ 2i+ 3

)}

+ (n+ 2p+ 2) 2−n
p+1∑
i=1

2p+1∑
k=2i−1

i2−k
{
−
(
n+ k + 3

n+ 2i+ 2

)
+

(
n+ k + 3

n+ 2i+ 1

)
−
(
k + 2

2i

)}

+ 2−2p
p+1∑
i=1

n+1∑
k=1

i2−k
{(

k + 2p+ 4

k + 2i+ 2

)
− 2

(
k + 2p+ 3

k + 2i+ 1

)}
.

As before, we can take the k = n+ 1 terms out of the final sum and apply (B.31) and

(B.49) to obtain

a(n+ 1, p) = 4p+
(
4p3 + 2np2 + 18p2 + 7np+ 5n+ 24p+ 10

)
2−n−1 + 2−2p

+ 2−n−2p−1
p+1∑
i=1

i

{
− (n+ 2p+ 2)

(
n+ 2p+ 4

n+ 2i+ 1

)
− 2

(
n+ 2p+ 4

n+ 2i+ 2

)}

+ (n+ 2p+ 2) 2−n
p+1∑
i=1

2p+1∑
k=2i−1

i2−k
{
−
(
n+ k + 2

n+ 2i+ 1

)
+

(
n+ k + 2

n+ 2i

)
−
(
k + 2

2i

)}

+ 2−2p
p+1∑
i=1

n∑
k=1

i2−k
{(

k + 2p+ 4

k + 2i+ 2

)
− 2

(
k + 2p+ 3

k + 2i+ 1

)}
. (B.61)

Once again, we will define a new function, b(n, p), as

b(n, p) :=
a(n+ 1, p)− a(n, p)

n+ 2p
. (B.62)

Note that b(n, p) is well-defined since its denominator is positive for all p > 0 and

n ≥ 0. Then, from (B.59) and (B.61), we obtain

b(n, p) = −
(
2p2 + 7p+ 5

)
2−n−1 + 2−n−2p−1

p+1∑
i=1

i

(
n+ 2p+ 4

n+ 2i+ 1

)

− 2−n
p+1∑
i=1

2p+1∑
k=2i−1

i2−k
{
−
(
n+ k + 2

n+ 2i+ 1

)
+

(
n+ k + 2

n+ 2i

)
−
(
k + 2

2i

)}
. (B.63)
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When n = 0, this expression becomes

b(0, p) = −p2 − 7

2
p− 5

2
+ 2−2p−1

p+1∑
i=1

i

(
2p+ 4

2i+ 1

)
+

p+1∑
i=1

2p+1∑
k=2i−1

i2−k
(
k + 2

2i+ 1

)
= 0 by (B.43) and (B.48). (B.64)

Finally, we will follow our previous procedure once more and consider b(n+ 1, p).

Substituting n+ 1 in for n in (B.63) and using (B.31) and (B.49) produces

b(n+ 1, p) = −
(
2p2 + 7p+ 5

)
2−n−2 + 2−n−2p−2

p+1∑
i=1

i

(
n+ 2p+ 4

n+ 2i+ 1

)

− 2−n−1
p+1∑
i=1

2p+1∑
k=2i−1

i2−k
{
−
(
n+ k + 2

n+ 2i+ 1

)
+

(
n+ k + 2

n+ 2i

)
−
(
k + 2

2i

)}
=

1

2
b(n, p) by (B.63). (B.65)

Hence, from (B.64) and (B.65) we conclude that

b(n, p) = 0 ∀ n ≥ 0, p > 0.

Substituting this result into (B.62) tells us that

a(n+ 1, p) = a(n, p) ∀ n ≥ 0, p > 0,

which, along with (B.60), allows us to conclude that

a(n, p) = 0 ∀ n ≥ 0, p > 0.

Finally, we can substitute this result into (B.58) to find that

g(n+ 1, p) =
n+ 2p+ 2

n+ 2p+ 3
g(n, p) ∀ n ≥ 0, p > 0,

228



which, along with (B.56), allows us to conclude that

g(n, p) = 0 ∀ n ≥ 0, p > 0. (B.66)

Lemma B.7. Let p and n be non-negative integers, and let

h(n, p) :=
4p2 + 2p

n+ 2p+ 1
+ 4p− 2 +

(
4p2 + 4np+ 2n+ 6p+ 2

)
21−n + 21−2p

−
(
4p2 + 2np+ 2n+ 6p+ 2

)
21−n−2p

+ 21−n−2p
p∑
i=1

i

{
2

(
n+ 2p+ 3

n+ 2i+ 1

)
−
(
n+ 2p+ 3

n+ 2i+ 2

)
− (2n+ 4p+ 4)

(
2p+ 3

2i+ 1

)}

+ 22−n
p∑
i=1

2p∑
k=2i−1

i2−k
{

n+ 2p

n+ 2p+ 1

(
n+ k + 2

n+ 2i+ 1

)
−
(
n+ k + 2

n+ 2i

)
+

(
k + 3

2i+ 1

)}

+ 21−2p
p∑
i=1

n∑
k=1

i2−k
{(

k + 2p+ 3

k + 2i+ 2

)
− 2n+ 4p+ 4

n+ 2p+ 1

(
k + 2p+ 2

k + 2i+ 1

)}
. (B.67)

Then h(n, p) = 0 ∀ n, p ≥ 0.

Proof. First, we can use (B.45) to simplify the third term in the first sum. In addition,

the third term in the second sum can be written as
(
k+2
2i+1

)
+
(
k+2
2i

)
using Pascal’s rule

for k ≥ 2i− 1. We can then apply (B.46) to the
(
k+2
2i+1

)
term. This gives us

h(n, p) =
4p2 + 2p

n+ 2p+ 1
+ 4p− 2−

(
2p2 + 5p+ 2

)
21−n + (p+ 1) 22−n−2p + 21−2p

+ 21−n−2p
p∑
i=1

i

{
2

(
n+ 2p+ 3

n+ 2i+ 1

)
−
(
n+ 2p+ 3

n+ 2i+ 2

)}

+ 22−n
p∑
i=1

2p∑
k=2i−1

i2−k
{

n+ 2p

n+ 2p+ 1

(
n+ k + 2

n+ 2i+ 1

)
−
(
n+ k + 2

n+ 2i

)
+

(
k + 2

2i

)}

+ 21−2p
p∑
i=1

n∑
k=1

i2−k
{(

k + 2p+ 3

k + 2i+ 2

)
− 2n+ 4p+ 4

n+ 2p+ 1

(
k + 2p+ 2

k + 2i+ 1

)}
. (B.68)
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Next, we will consider the case when p = 0. Then our expression becomes

h(n, 0) = 0− 2− 22−n + 22−n + 2

= 0 ∀ n ≥ 0. (B.69)

Thus, in the rest of the proof, we will assume that p > 0. Now, when n = 0, our

expression becomes

h(0, p) =
4p2 + 2p

2p+ 1
+ 4p− 2− 2

(
2p2 + 5p+ 2

)
+ (p+ 1) 22−2p + 21−2p

+ 21−2p
p∑
i=1

i

{
2

(
2p+ 3

2i+ 1

)
−
(

2p+ 3

2i+ 2

)}

+ 4

p∑
i=1

2p∑
k=2i−1

i2−k
{

2p

2p+ 1

(
k + 2

2i+ 1

)
−
(
k + 2

2i

)
+

(
k + 2

2i

)}

= −4p2 − 4p− 6 + (2p+ 3) 21−2p + 22−2p
p∑
i=1

i

(
2p+ 3

2i+ 1

)

− 21−2p
p∑
i=1

i

(
2p+ 3

2i+ 2

)
+

8p

2p+ 1

p∑
i=1

2p∑
k=2i−1

i2−k
(
k + 2

2i+ 1

)
= 0 by (B.45), (B.44) and (B.46). (B.70)

Next, let us consider h(n+ 1, p). Substituting n+ 1 in for n in (B.68) gives us

h(n+ 1, p) =
4p2 + 2p

n+ 2p+ 2
+ 4p− 2−

(
2p2 + 5p+ 2

)
2−n + (p+ 1) 21−n−2p + 21−2p

+ 2−n−2p
p∑
i=1

i

{
2

(
n+ 2p+ 4

n+ 2i+ 2

)
−
(
n+ 2p+ 4

n+ 2i+ 3

)}

+ 21−n
p∑
i=1

2p∑
k=2i−1

i2−k
{
n+ 2p+ 1

n+ 2p+ 2

(
n+ k + 3

n+ 2i+ 2

)
−
(
n+ k + 3

n+ 2i+ 1

)
+

(
k + 2

2i

)}

+ 21−2p
p∑
i=1

n+1∑
k=1

i2−k
{(

k + 2p+ 3

k + 2i+ 2

)
− 2n+ 4p+ 6

n+ 2p+ 2

(
k + 2p+ 2

k + 2i+ 1

)}
.

We can take the k = n + 1 terms out of the final sum and apply (B.31) and (B.50)
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to produce

h(n+ 1, p) =
4p2 + 2p

n+ 2p+ 2
+ 4p− 2−

(
2p2 + 5p+ 2

)
2−n + (p+ 1) 21−n−2p + 21−2p

+ 2−n−2p
p∑
i=1

i

{
2

(
n+ 2p+ 3

n+ 2i+ 1

)
− 2

(
n+ 2p+ 3

n+ 2i+ 2

)}

+ 21−n
p∑
i=1

2p∑
k=2i−1

i2−k
{

n+ 2p

n+ 2p+ 2

(
n+ k + 2

n+ 2i+ 1

)
−
(
n+ k + 2

n+ 2i

)
+

(
k + 2

2i

)}

+ 21−2p
p∑
i=1

n∑
k=1

i2−k
{(

k + 2p+ 3

k + 2i+ 2

)
− 2n+ 4p+ 6

n+ 2p+ 2

(
k + 2p+ 2

k + 2i+ 1

)}
. (B.71)

Next, we will define a new function, c(n, p) as

c(n, p) := (n+ 2p+ 2)h(n+ 1, p)− (n+ 2p+ 1)h(n, p). (B.72)

Then, from (B.68) and (B.71), we obtain

c(n, p) = 4p− 2 +
(
4p3 + 2np2 + 10p2 + 5np+ 2n+ 4p

)
2−n

−
(
2p2 + np+ n+ 2p

)
21−n−2p

+ 21−2p + 2−n−2p
p∑
i=1

i

{
− (2n+ 4p)

(
n+ 2p+ 3

n+ 2i+ 1

)
− 2

(
n+ 2p+ 3

n+ 2i+ 2

)}

+ (n+ 2p) 21−n
p∑
i=1

2p∑
k=2i−1

i2−k
{
−
(
n+ k + 2

n+ 2i+ 1

)
+

(
n+ k + 2

n+ 2i

)
−
(
k + 2

2i

)}

+ 21−2p
p∑
i=1

n∑
k=1

i2−k
{(

k + 2p+ 3

k + 2i+ 2

)
− 2

(
k + 2p+ 2

k + 2i+ 1

)}
. (B.73)

When n = 0, this expression becomes

c(0, p) = 4p− 2 +
(
4p3 + 10p2 + 4p

)
−
(
2p2 + 2p

)
21−2p + 21−2p

− p22−2p
p∑
i=1

i

(
2p+ 3

2i+ 1

)
− 21−2p

p∑
i=1

i

(
2p+ 3

2i+ 2

)
− 4p

p∑
i=1

2p∑
k=2i−1

i2−k
(
k + 2

2i+ 1

)
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= 0 by (B.45), (B.44) and (B.46). (B.74)

In a similar manner as before, we will next consider c(n+1, p). Substituting n+1

in for n in (B.73) produces

c(n+ 1, p) = 4p− 2 +
(
4p3 + 2np2 + 12p2 + 5np+ 2n+ 9p+ 2

)
2−n−1 + 21−2p

−
(
2p2 + np+ n+ 3p+ 1

)
2−n−2p

+ 2−n−2p−1
p∑
i=1

i

{
− (2n+ 4p+ 2)

(
n+ 2p+ 4

n+ 2i+ 2

)
− 2

(
n+ 2p+ 4

n+ 2i+ 3

)}

+ (n+ 2p+ 1) 2−n
p∑
i=1

2p∑
k=2i−1

i2−k
{
−
(
n+ k + 3

n+ 2i+ 2

)
+

(
n+ k + 3

n+ 2i+ 1

)
−
(
k + 2

2i

)}

+ 21−2p
p∑
i=1

n+1∑
k=1

i2−k
{(

k + 2p+ 3

k + 2i+ 2

)
− 2

(
k + 2p+ 2

k + 2i+ 1

)}
.

As before, we can take the k = n+ 1 terms out of the final sum and apply (B.31) and

(B.50) to obtain

c(n+ 1, p) = 4p− 2 +
(
4p3 + 2np2 + 12p2 + 5np+ 2n+ 9p+ 2

)
2−n−1 + 21−2p

−
(
2p2 + np+ n+ 3p+ 1

)
2−n−2p

+ 2−n−2p
p∑
i=1

i

{
− (n+ 2p+ 1)

(
n+ 2p+ 3

n+ 2i+ 1

)
− 2

(
n+ 2p+ 3

n+ 2i+ 2

)}

+ (n+ 2p+ 1) 2−n
p∑
i=1

2p∑
k=2i−1

i2−k
{
−
(
n+ k + 2

n+ 2i+ 1

)
+

(
n+ k + 2

n+ 2i

)
−
(
k + 2

2i

)}

+ 21−2p
p∑
i=1

n∑
k=1

i2−k
{(

k + 2p+ 3

k + 2i+ 2

)
− 2

(
k + 2p+ 2

k + 2i+ 1

)}
. (B.75)

Once again, we will define a new function, d(n, p) as

d(n, p) :=
c(n+ 1, p)− c(n, p)

n+ 2p− 1
. (B.76)
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Note that d(n, p) is well-defined since its denominator is positive for all p > 0 and

n ≥ 0. Then, from (B.73) and (B.75), we obtain

d(n, p) = −
(
2p2 + 5p+ 2

)
2−n−1 + (p+ 1) 2−n−2p + 2−n−2p

p∑
i=1

i

(
n+ 2p+ 3

n+ 2i+ 1

)

− 2−n
p∑
i=1

2p∑
k=2i−1

i2−k
{
−
(
n+ k + 2

n+ 2i+ 1

)
+

(
n+ k + 2

n+ 2i

)
−
(
k + 2

2i

)}
. (B.77)

When n = 0, this expression becomes

d(0, p) = −p2 − 5

2
p− 1 + (p+ 1) 2−2p + 2−2p

p∑
i=1

i

(
2p+ 3

2i+ 1

)
+

p∑
i=1

2p∑
k=2i−1

i2−k
(
k + 2

2i+ 1

)
= 0 by (B.45) and (B.46). (B.78)

Finally, we will follow our previous procedure once more and consider d(n+ 1, p).

Substituting n+ 1 in for n in (B.77) and using (B.31) and (B.50) produces

d(n+ 1, p) = −
(
2p2+5p+2

)
2−n−2 + (p+1) 2−n−2p−1 + 2−n−2p−1

p∑
i=1

i

(
n+ 2p+ 3

n+ 2i+ 1

)

− 2−n−1
p∑
i=1

2p∑
k=2i−1

i2−k
{
−
(
n+ k + 2

n+ 2i+ 1

)
+

(
n+ k + 2

n+ 2i

)
−
(
k + 2

2i

)}
=

1

2
d(n, p) by (B.77). (B.79)

Hence, from (B.78) and (B.79) we conclude that

d(n, p) = 0 ∀ n ≥ 0, p > 0.

Substituting this result into (B.76) tells us that

c(n+ 1, p) = c(n, p) ∀ n ≥ 0, p > 0,
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which, along with (B.74), allows us to conclude that

c(n, p) = 0 ∀ n ≥ 0, p > 0.

Finally, we can substitute this result into (B.72) to find that

h(n+ 1, p) =
n+ 2p+ 1

n+ 2p+ 2
h(n, p) ∀ n ≥ 0, p > 0,

which, along with (B.70), allows us to conclude that

h(n, p) = 0 ∀ n ≥ 0, p > 0. (B.80)

Our final result covers some simplification required for the proof of Theorem 5.3.

Lemma B.8. Suppose n and ` are positive integers, and let

s(n, `) :=
−3n2+ 3`2− 2n`− n+ 5`+ 2

2(n+ `+ 1)2
+
`2+ 2n`+ 2n+ 3`

n+ `+ 1
2−n +

n2+ n+ 2

2(n+ `+ 1)
2−`

+
1

2(n+ `+ 1)
s1(n, `) +

1

n+ `+ 1
s2(n, `)−

n+ `+ 2

n+ `+ 1
s3(n, `)

− n+ `+ 2

n+ `+ 1
s4(n, `)−

1

2(n+ `+ 1)
s5(n, `)−

1

n+ `+ 1
s6(n, `), where

s1(n, `) :=
∑̀
k=1

(
4− 2

n+ `+ 1
− 2k−`

)
(n− k),

s2(n, `) :=
∑̀
k=1

(
4− 2

n+ `+ 1
− 2k−`

)
21−n−k

b k+1
2 c∑
i=1

i

(
n+ k + 2

n+ 2i+ 1

)
,

s3(n, `) :=
n∑
k=1

(
1

n+ `+ 1
− 2k−n

)
(k − `),
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s4(n, `) :=
n∑
k=1

(
1

n+ `+ 1
− 2k−n

)
22−k−`

b `+1
2 c∑
i=1

i

(
k + `+ 2

k + 2i+ 1

)
,

s5(n, `) :=
n∑
k=1

∑̀
j=1

(
21+k−n − 2j−`

)
(k − j), and

s6(n, `) :=
n∑
k=1

∑̀
j=1

(
21+k−n − 2j−`

)
21−k−j

b j+1
2 c∑
i=1

i

(
k + j + 2

k + 2i+ 1

)
.

Then

s(n, `) = 2 (n− `− 1) + 22−n−`
b `+1

2 c∑
i=1

i

(
n+ `+ 3

n+ 2i+ 1

)
+

1

n+ `+ 1

 `2 + `

n+ `+ 1
+ 2`

− 2 + 21−` +
(
`2 + 2n`+ 2n+ 3`+ 2

)
21−n

+ 21−`
b `+1

2 c∑
i=1

n∑
k=1

i2−k
{(

k + `+ 3

k + 2i+ 2

)
− 2n+ 2`+ 4

n+ `+ 1

(
k + `+ 2

k + 2i+ 1

)}

+ 21−n−`
b `+1

2 c∑
i=1

i

{
2

(
n+ `+ 3

n+ 2i+ 1

)
−
(
n+ `+ 3

n+ 2i+ 2

)
− (2n+ 2`+ 4)

(
`+ 3

2i+ 1

)}

+ 22−n
b `+1

2 c∑
i=1

∑̀
k=2i−1

i2−k
{

n+ `

n+ `+ 1

(
n+ k + 2

n+ 2i+ 1

)
−
(
n+ k + 2

n+ 2i

)
+

(
k + 3

2i+ 1

)} .
(B.81)

Proof. Examining each of s1(n, `), s2(n, `), s3(n, `), s4(n, `), s5(n, `) and

s6(n, `) in turn, we find that

s1(n, `) =
4n2`+ 4n`2 + 2n`

n+ `+ 1
− 4n+ 4`+ 2

n+ `+ 1

∑̀
k=1

k − 2
∑̀
k=1

(n+ k − `− 1) 2−k

=
−2`3 + 4n2`+ 2n`2 − 3`2 − `

n+ `+ 1
− 2 (n− `− 1)

∑̀
k=1

2−k

− 2
∑̀
k=1

k2−k (using (B.26))
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=
−2`3 + 4n2`+ 2n`2 − 2n2 − `2 − 4n− `− 2

n+ `+ 1

+ (n+ 1) 21−` (using (B.28) and (B.29)),

s2(n, `) =

(
4− 2

n+ `+ 1

)
21−n

∑̀
k=1

b k+1
2 c∑
i=1

i2−k
(
n+ k + 2

n+ 2i+ 1

)

− 21−n−`
∑̀
k=1

b k+1
2 c∑
i=1

i

(
n+ k + 2

n+ 2i+ 1

)

=

(
4− 2

n+ `+ 1

)
21−n

b `+1
2 c∑
i=1

∑̀
k=2i−1

i2−k
(
n+ k + 2

n+ 2i+ 1

)

− 21−n−`
b `+1

2 c∑
i=1

i
∑̀

k=2i−1

(
n+ k + 2

n+ 2i+ 1

)
(by exchanging indices)

=

(
4− 2

n+ `+ 1

)
21−n

b `+1
2 c∑
i=1

∑̀
k=2i−1

i2−k
(
n+ k + 2

n+ 2i+ 1

)

− 21−n−`
b `+1

2 c∑
i=1

i
`−2i+2∑
k=1

(
n+ 2i+ k

n+ 2i+ 1

)

=

(
4− 2

n+ `+ 1

)
21−n

b `+1
2 c∑
i=1

∑̀
k=2i−1

i2−k
(
n+ k + 2

n+ 2i+ 1

)

− 21−n−`
b `+1

2 c∑
i=1

i

(
n+ `+ 3

n+ 2i+ 2

)
(using (B.33)),

s3(n, `) = − n`

n+ `+ 1
+

1

n+ `+ 1

n∑
k=1

k − 2
n∑
k=1

(n− k − `+ 1) 2−k

=
n2 − 2n`+ n

2 (n+ `+ 1)
− 2 (n− `+ 1)

n∑
k=1

2−k + 2
n∑
k=1

k2−k (using (B.26))

=
−3n2 + 4`2 − 2n`+ n+ 8`+ 4

2 (n+ `+ 1)
− (`+ 1) 21−n (using (B.28) and (B.29)),
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s4(n, `) =
1

n+ `+ 1
22−`

n∑
k=1

b `+1
2 c∑
i=1

i2−k
(
k + `+ 2

k + 2i+ 1

)
− 22−n−`

n∑
k=1

b `+1
2 c∑
i=1

i

(
k + `+ 2

k + 2i+ 1

)

=
1

n+ `+ 1
22−`
b `+1

2 c∑
i=1

n∑
k=1

i2−k
(
k + `+ 2

k + 2i+ 1

)
− 22−n−`

b `+1
2 c∑
i=1

i

n∑
k=1

(
k + `+ 2

k + 2i+ 1

)
(by exchanging indices)

=
1

n+ `+ 1
22−`
b `+1

2 c∑
i=1

n∑
k=1

i2−k
(
k + `+ 2

k + 2i+ 1

)
− 22−n−`

b `+1
2 c∑
i=1

i

(
n+ `+ 3

n+ 2i+ 1

)

+ 22−n−`
b `+1

2 c∑
i=1

i

(
`+ 3

2i+ 1

)
(using (B.34)),

s5(n, `) = 4
n∑
k=1

∑̀
j=1

(n+ 1− k − j) 2−k − 2
n∑
k=1

∑̀
j=1

(k + j − `− 1) 2−j

= 4 (n+ 1) `
n∑
k=1

2−k − 4`
n∑
k=1

k2−k − 4

(∑̀
j=1

j

)(
n∑
k=1

2−k

)

+ 2 (`+ 1)n
∑̀
j=1

2−j − 2n
∑̀
j=1

j2−j − 2

(
n∑
k=1

k

)(∑̀
j=1

2−j

)

= −n2 − 2`2 + 6n`− 3n− 6`+
(
`2 + 3`

)
21−n +

(
n2 + 3n

)
2−`

(using (B.26), (B.28) and (B.29)), and

s6(n, `) = 22−n
n∑
k=1

∑̀
j=1

b j+1
2 c∑
i=1

i2−j
(
k + j + 2

k + 2i+ 1

)
− 21−`

n∑
k=1

∑̀
j=1

b j+1
2 c∑
i=1

i2−k
(
k + j + 2

k + 2i+ 1

)

= 22−n
b `+1

2 c∑
i=1

∑̀
j=2i−1

i2−j
n∑
k=1

(
k + j + 2

k + 2i+ 1

)

− 21−`
b `+1

2 c∑
i=1

n∑
k=1

i2−k
∑̀

j=2i−1

(
k + j + 2

k + 2i+ 1

)
(by exchanging indices)
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= 22−n
b `+1

2 c∑
i=1

∑̀
j=2i−1

i2−j
(
n+ j + 3

n+ 2i+ 1

)
− 22−n

b `+1
2 c∑
i=1

∑̀
j=2i−1

i2−j
(
j + 3

2i+ 1

)

− 21−`
b `+1

2 c∑
i=1

n∑
k=1

i2−k
`−2i+2∑
j=1

(
k + j + 2i

k + 2i+ 1

)
(using (B.34))

= 22−n
b `+1

2 c∑
i=1

∑̀
k=2i−1

i2−k
{(

n+ k + 2

n+ 2i+ 1

)
+

(
n+ k + 2

n+ 2i

)}

− 22−n
b `+1

2 c∑
i=1

∑̀
k=2i−1

i2−k
(
k + 3

2i+ 1

)
− 21−`

b `+1
2 c∑
i=1

n∑
k=1

i2−k
(
k + `+ 3

k + 2i+ 2

)
(using (B.31) and (B.33)).

Substituting our simplified expressions for s1, s2, s3, s4, s5 and s6 into the definition

of s(n, `) gives us our desired result.

238



Bibliography

[1] R Agaev and P Chebotarev. On the spectra of nonsymmetric Laplacian matri-

ces. Linear Algebra and its Applications, 399:157–168, 2005.

[2] D Angeli and PA Bliman. Stability of leaderless discrete-time multi-agent sys-

tems. Mathematics of Control, Signals, and Systems, 18(4):293–322, 2006.

[3] L. Arnold. Stochastic Differential Equations: Theory and Applications. Wiley,

New York, NY, 1974.

[4] M Ballerini, N Cabibbo, R Candelier, A Cavagna, E Cisbani, I Giardina,

V Lecomte, A Orlandi, G Parisi, and A Procaccini. Interaction ruling an-

imal collective behavior depends on topological rather than metric distance:

Evidence from a field study. Proceedings of the National Academy of Sciences

of the United States of America, 105(4):1232–1237, 2008.

[5] B Bamieh, M Jovanovic̀, P. Mitra, and S. Patterson. Effect of topological

dimension on rigidity of vehicle formations: Fundamental limitations of local

feedback. In Proceedings of the IEEE Conference on Decision and Control,

pages 369–74, Cancun, Mexico, 2008.

[6] J Bang-Jensen and G Gutin. Digraphs Theory, Algorithms and Applications.

Springer-Verlag, London, UK, 2007.

[7] P Barooah and JP Hespanha. Graph effective resistance and distributed control:

239



Spectral properties and applications. In Proceedings of the IEEE Conference

on Decision and Control, pages 3479–3485, San Diego, CA, 2006.

[8] P Barooah and JP Hespanha. Estimation on graphs from relative measure-

ments. IEEE Control Systems Magazine, 27(4):57–74, 2007.

[9] P Barooah and JP Hespanha. Estimation from relative measurements: Electri-

cal analogy and large graphs. IEEE Transactions on Signal Processing, 56(6):

2181–2193, 2008.

[10] DS Bernstein. Inequalities for the trace of matrix exponentials. SIAM Journal

on Matrix Analysis and Applications, 9(2):156–158, 1988.

[11] W Bialek, A Cavagna, I Giardina, T Mora, E Silvestri, M Viale, and AM Wal-

czak. Statistical mechanics for natural flocks of birds. Proceedings of the Na-

tional Academy of Sciences of the United States of America, 109:4786–4791,

2012.

[12] VD Blondel, JM Hendrickx, A Olshevsky, and JN Tsitsiklis. Convergence in

multiagent coordination, consensus, and flocking. In Proceedings of the IEEE

Conference on Decision and Control and European Control Conference, pages

2996–3000, Seville, Spain, 2005.

[13] NWF Bode, DW Franks, AJ Wood, JJB Piercy, DP Croft, and EA Codling.

Distinguishing social from nonsocial navigation in moving animal groups. The

American Naturalist, 179:621–632, 2012.

[14] D Bonchev, AT Balaban, X Liu, and DJ Klein. Molecular cyclicity and centric-

ity of polycyclic graphs. I. Cyclicity based on resistance distances or reciprocal

distances. International Journal of Quantum Chemistry, 50(1):1–20, 1994.

240



[15] M Brambilla, E Ferrante, M Birattari, and M Dorigo. Swarm robotics: a review

from the swarm engineering perspective. Swarm Intelligence, 7(1):1–41, 2013.

[16] M Cao, AS Morse, and BDO Anderson. Coordination of an asynchronous

multi-agent system via averaging. In Proceedings of the IFAC World Congress,

Prague, Czech Republic, 2005.

[17] M Cao, AS Morse, and BDO Anderson. Reaching a consensus in a dynamically

changing environment: A graphical approach. SIAM Journal on Control and

Optimization, 47(2):575–600, 2008.

[18] D Cassi. Phase transitions and random walks on graphs: A generalization of

the Mermin-Wagner theorem to disordered latices, fractals, and other discrete

structures. Physical Review Letters, 68:3631–3634, 1992.

[19] AK Chandra, P Raghavan, WL Ruzzo, R Smolensky, and P Tiwari. The electri-

cal resistance of a graph captures its commute and cover times. Computational

Complexity, 6(4):312–340, 1996.

[20] T Charalambous and C Hadjicostis. Distributed formation of balanced and

bistochastic weighted digraphs in multi-agent systems. In Proceedings of the

European Control Conference, Zürich, Switzerland, 2013.
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