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Abstract—Autonomous mobile sensor networks are employed
to measure large scale environmental scalar fields. Yet an optimal
strategy for mission design addressing both the cooperative
motion control and the collaborative sensing is still under
investigation. We develop one strategy which uses four moving
sensor platforms to explore a noisy scalar field defined in the
plane; each platform can only take one measurement at a time.
We derive a Kalman filter in conjunction with a nonlinear filter
to produce estimates for the field value, the gradient and the
Hessian along the averaged trajectories of the moving platforms.
The shape of the platform formation is designed to minimize
error in the estimates, and a cooperative control law is designed
to asymptotically achieve the optimal formation. We develop a
motion control law to allow the center of the platform formation
to move along level curves of the averaged field. Convergence of
the control laws are proved, and performance of both the filters
and the control laws are demonstrated in simulated ocean fields.

I. INTRODUCTION

The mission of measuring a scalar field, such as a tem-
perature or salinity field, is encountered in ocean science and
meteorology. Since the scalar field is often distributed across a
large area, it would take too many sensors to obtain a snapshot
of the field if the sensors are installed at fixed locations.
Mobile sensor networks are ideal candidates for such missions:
a small number of moving sensor platforms can patrol a large
area, taking measurements along their motion trajectories.

Mission design for a mobile sensor network requires com-
bination of cooperative control and collaborative sensing. This
is because the quality of collected information is coupled
with the motion of sensor platforms. Recent theoretical and
experimental developments suggest that a balance between
data collection and feasible motion is key to mission success
[1], [2]. Finding an optimal strategy is a challenging task.

In this paper, we design a mission for a mobile sensor
network to track level curves of a noisy scalar field. We study
scalar fields defined in the plane with spatially correlated
noise. Combining the sensor measurements from different
platforms along their trajectories, we develop a Kalman filter
and a nonlinear filter that provide estimates for the scalar field,
its gradient, and its Hessian. A cooperative control law then
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uses these estimates to control the center of the mobile sensor
network to move along a level curve of the scalar field.

Related to our work, mobile sensor networks can also be
applied to climb gradients of a scalar field [3], to monitor
environmental boundaries such as oil spills or chemical plumes
in the ocean [4]–[7], to patrol the perimeter of an object or a
region [8]–[12], or to provide coverage over a large area [2],
[13].

II. PARTICLE MOTION IN A SCALAR FIELD

Suppose a Newtonian particle with unit mass is free to move
in the plane with its position represented by rc. The system
equation for such particle is r̈c = fc where fc represents the
total force on this particle. This Newton’s equation can be
written in an equivalent Frenet-Serret form which is more
convenient for tracking purposes [2], [13].

We define a unit velocity vector x2 as x2 = ṙc
α

where α =
‖ ṙc ‖, and define a unit vector y2 as the vector perpendicular
to x2 but forming a right handed frame with x2 so that x2
and y2 lie in the plane of the page and the vector x2 × y2
points towards the reader. Then the steering control can be
defined as uc = 1

α2 fc ·y2 and the speed control can be defined
as vc = fc ·x2. We have the following equations:

ẋ2 = ucαy2

ẏ2 =−ucαx2 . (1)

The equation for speed control is

α̇ = vc . (2)

The equations (1) and (2) describe the particle motion in the
Frenet-Serret form.

We let vc =−k1(α−1). As time t →∞, α converges to unit
speed exponentially with a rate determined by k1 > 0.

Let z(r) be an unknown smooth scalar function in the plane.
With the speed of the particle under control, we design a
steering control uc for the particle so that it will track a level
curve of z(·). The procedure can be found in our previous
works [2], [13]. Here we briefly summarize and explain the
results.

At any time instant t, there is a level curve of z(·) passing
through rc. At this position rc, we let y1 be the unit vector in
the direction of the gradient of the field z(·), and let x1 be the
unit tangent vector to the level curve. By convention, x1 and
y1 form a right handed coordinate frame with x1×y1 pointing
to the reader.



For convenience, we introduce a variable θ ∈ (−π,π] such
that

cosθ = x1 ·x2

sinθ =−y1 ·x2 . (3)

Along the trajectory of the center, it can be shown that

θ̇ = α(κ1 cosθ +κ2 sinθ −uc) (4)

where

κ1 =−xT
1 ∇2zx1

‖∇z‖
and κ2 =

xT
1 ∇2zy1

‖∇z‖
, (5)

and ∇2z represents the Hessian of the scalar field z(·). Mean-
while, along the trajectory of the center, the value of z satisfies

ż =−α ‖∇z‖sinθ . (6)

Our goal is to design the tracking control uc so that θ → 0
and z→C asymptotically where C is a given constant.

Let f̃ (z) be the derivative function of a function }(z) that
satisfies certain technical conditions as in [14]. We design the
control law to be

uc = κ1 cosθ +κ2 sinθ −2 f̃ (z)‖∇z‖cos2(
θ

2
)+ sin(

θ

2
) . (7)

The proof of the convergence of this steering control law is
similar to those in our previous works [14], [13], and [2].

III. KALMAN FILTER DESIGN

In the steering control law (7), we observe that the field
value z, the gradient ∇z, and the curvatures κ1 and κ2—which
depend on the Hessian ∇2z—are required by the particle to
track a level curve of the scalar field z(·). In most practical
situations, since the field is noisy and the sensing devices are
imperfect, it is difficult to estimate the field value, the gradient,
and the Hessian using a single sensor platform. The key idea
here is to employ multiple moving sensor platforms to obtain
the necessary estimates cooperatively to reduce noise. This
requires the platforms to be in a formation. The center of the
formation as well as each moving platform are modeled as
Newtonian particles. The center will be controlled to travel at
unit speed and be steered to follow a level curve using the
steering control law (7).

Let the positions of the sensor platforms at time t be
ri(t) ∈ R2 where i = 1,2, ...,N. Let rc be the center of the
platform formation i.e. rc(t) = 1

N ∑
N
i=1 ri(t). We assume that

the measurement taken by the ith platform is modeled as

yi(ri) = z(ri)+w(ri)+ni (8)

where ni ∼N (0,σ2
i ) are i.i.d. Gaussian noise and w(ri) are

spatially correlated Gaussian noise. We define the following
N×1 vectors:

y = [yi] , z = [z(ri)] , n = [ni] , w = [w(ri)] , (9)

and assume that n and w are stationary, i.e., their statistics
are time invariant. These assumptions are idealizations for
physical scalar fields in the ocean or atmosphere.

Let the moment when new measurements are available be
tk where k is an integer index. To simplify the derivation, we
will not consider the asynchronicity in the measurements; we
assume that all platforms will have new measurements at time
tk.

Let ri,k = ri(tk) and rc,k = rc(tk). The function z(ri,k) can
be locally approximated by a Taylor series. If ri,k is close to
rc,k, then it is sufficient to use the Taylor series up to second
order. Let zi,k = z(ri,k), then

zi,k = z(rc,k)+(ri,k− rc,k)T
∇z(rc,k)

+
1
2
(ri,k− rc,k)T

∇
2z(rc,k)(ri,k− rc,k) (10)

for i = 1,2, ...,N. We are interested in estimates of z(rc,k),
∇z(rc,k), and ∇2z(rc,k). Other than providing insights on the
structure of the scalar field, these estimates are also used in
the steering control for the center of the formation.

In order to solve for the field value, the gradient, and
the Hessian—altogether six unknowns, we must let N ≥ 6 if
the sensor platforms are not moving. We are able to reduce
the number of sensor platforms by utilizing cooperatively
controlled motion of the platforms. The intuition is that
measurements from different time instances can be combined
in the estimation process—a key idea for filter designs. In this
paper we show the case N = 4. We develop discrete filters to
find an estimate zc,k for z(rc,k), an estimate dc,k for ∇z(rc,k),
and an estimate Hc,k for the Hessian ∇2z(rc,k).

Let sk = [z(rc,k),∇z(rc,k)T ]T . Let Ck be the N × 3 matrix
where its ith row vector is defined by (Ck)i =

[
1 (ri,k− rc,k)T

]
for i = 1,2, ...,N. Let Dk be the N×4 matrix with its ith row
vector defined by 1

2 ((ri,k − rc,k)⊗ (ri,k − rc,k))T where ⊗ is
the Kronecker product. For any 2× 2 matrix H, we use the
notation ~H to represent a column vector defined by rearranging
the elements of H as follows

~H = [H11,H21,H12,H22]T . (11)

Then the Taylor expansions for all sensor platforms near rc,k
can be re-written in a vector form as

zk = Cksk +Dk
~∇2z(rc,k) (12)

where zk = z(tk), and ~∇2z(rc,k) is a 4× 1 column vector
obtained by rearranging elements of the Hessian ∇2z(rc) as
defined by (11).

Let C̃k be the N × 3 matrix with its ith row defined by
(C̃k)i =

[
1 (ri,k− rc,k−1)T

]
for i = 1,2, ...,N. Let D̃k be the

N × 4 matrix with its ith row vector defined as 1
2 ((ri,k −

rc,k−1)⊗ (ri,k − rc,k−1))T . Then the Taylor expansion near
rc,k−1 is

zk = C̃ksk−1 + D̃k
~∇2z(rc,k−1). (13)

Equating (12) and (13), we can solve for the relationship
between sk and sk−1 as

sk = As
k−1sk−1− (CT

k Ck)−1CT
k (Dk

~∇2z(rc,k)− D̃k
~∇2z(rc,k−1))

(14)
where

As
k−1 = (CT

k Ck)−1(CT
k C̃k). (15)



We formulate the problem into the framework of Kalman
filters. Suppose that ~Hc,k is an estimate for the Hessian
~∇2z(rc,k) in vector form. Let

hk−1 =−(CT
k Ck)−1CT

k (Dk~Hc,k− D̃k~Hc,k−1). (16)

We then rewrite (14) as

sk = As
k−1sk−1 +hk−1 +εk−1 (17)

where we have introduced the N×1 noise vector εk−1 which
accounts for positioning errors, estimation errors for the Hes-
sians, and errors caused by higher order terms omitted from
the Taylor expansion. We assume that εk−1 are i.i.d Gaussian
with zero mean and covariance matrix Mk−1.

Equation (8) can also be written in vector form as

yk = Cksk +Dk~Hc,k +wk +Dkek +nk (18)

where ek represents the error in the estimate of the Hessian.
Let Wk = E[wkwT

k ], Uk = E[ekeT
k ], and Rk = E[nknT

k ]. The noise
wk is “colored” because it models the spatial correlation of
the field. Let E[wkwT

k−1] = Vk. We suppose that Wk, Rk and
Vk are known once the positions of the platforms are known.
This assumption is reasonable since the statistical property
of ocean field and atmospheric field are usually known from
accumulated observational data over a long period of time.

Instead of using (18) directly as the system output equation,
we define Fk = (CT

k Ck)−1CT
k and let ỹk = Fkyk so that

ỹk = sk +Fkwk +Fk(Dk~Hc,k +Dkek +nk). (19)

This ỹk is a combination of the platform measurements yk and
has the same dimension as sk.

In order to design a Kalman filter with colored noise wk,
we model wk as

wk = Aw
k−1wk−1 +ηk−1 (20)

where ηk−1 is white noise with correlation matrix Qk =
E[ηkη

T
k ]. Then, because

Vk = E[wkwT
k−1] = Aw

k−1E[wk−1wT
k−1] = Aw

k−1Wk−1

Wk = E[wkwT
k ] = Aw

k−1Wk−1(Aw
k−1)

T +Qk−1, (21)

we have

Aw
k−1 = VkW−1

k−1

Qk−1 = Wk−Aw
k−1Wk−1(Aw

k−1)
T . (22)

The equations (17), (20), and (19) are the system and output
equations for the mobile sensor network with N platforms.
The states are [sT

k ,wT
k ]T , the output is ỹk, the state noise

are [εT
k ,ηT

k ]T , and the observation noise are Dkek + nk. The
equations for Kalman filters are obtained by canonical proce-
dures. We may derive formulas for the Kalman filter following
standard textbooks such as [15]. Here we omit this procedure
due to space limit. The rest of the paper does not depend on
specific forms for the Kalman filter.

IV. ESTIMATING THE HESSIAN

An estimate of the Hessian, Hc,k, is needed to enable the
Kalman filter. At the end of the (k−1)th time step, we have
obtained an estimate sk−1(+) from the Kalman filter. This
includes an estimate zc,k−1 for z(rc,k−1) and an estimate dc,k−1
for ∇z(rc,k−1). We outline the procedure to compute Hc,k as
follows:

1) Start with an estimate or an initial guess Hc,k−1.
2) Use a one-step filter to reduce noise in the new mea-

surements.
3) Determine a level curve passing through the center of

the platform formation and estimate its curvature.
4) Compute Hc,k.

A. Curvature and Hessian

The level curve passing through the center of the formation
rc can be parametrized by its arc-length s, hence z(r(s)) is
constant for all values of s. Suppose the gradient ∇z does not
vanish along the curve. We recall that the unit normal vector
to the level curve is defined as y1(s) = ∇z(r(s))

‖∇z(r(s))‖ , and at any
given point, the unit tangent vector to the curve, denoted by
x1(s), satisfies x1(s) · y1(s) = 0. Then we have the following
Frenet-Serret equations [16]:

dx1(s)
ds

= κ(s)y1(s)

dy1(s)
ds

=−κ(s)x1(s) , (23)

where κ(s) is defined as the Frenet-Serret curvature of the
level curve.

With this configuration, because ∇z(rc) · x1 = 0 along the
level curve, the derivative with respect to s is

d
ds

∇z(rc) ·x1 +∇z(rc) ·
dx1

ds
= 0 (24)

which implies

xT
1 ∇

2z(rc)x1 +‖∇z(rc)‖y1 ·κ(s)y1 = 0 (25)

where ∇2z(rc) is the Hessian of z at rc. Because x1 is the unit
vector along the x1-axis, in the Frenet-Serret frame we have

∂xxz(rc)+‖∇z(rc)‖κ(s) = 0. (26)

This suggests that we can obtain Hxx,k, the estimate for
∂xxz(rc), by

Hxx,k =−
∥∥dc,k

∥∥κc,k (27)

where dc,k is the estimate for the gradient ∇z(rc,k) and κc,k is
the estimate for the curvature κ(rc,k).

On the other hand, we have ∇z(rc) ·y1 = ‖∇z(rc)‖ . Taking
derivatives on both sides of this equation with respect to s, we
get

xT
1 ∇

2z(rc)y1−‖∇z(rc)‖y1 ·κ(s)x1 =
d
ds
‖∇zc ‖ . (28)



This implies that ∂xyz(rc) = d
ds ‖∇zc ‖. Therefore, the estimate

Hxy,k for ∂xyz(rc,k) is

Hxy,k =
d
ds

∥∥dc,k
∥∥ . (29)

The estimates Hxx,k and Hxy,k are elements of Hc,k in the
Frenet-Serret coordinate system. Since the field z(·) is smooth,
we require Hyx,k = Hxy,k. We also need to find out Hyy,k to
determine Hc,k.

B. A One-step Filter to Reduce Noise

Using the known estimates at time k− 1, we can make
predictions for the field value at the positions of the sensor
platforms at the kth step when the platforms will move from
ri,k−1 to ri,k as

zP
k = C̃ksk−1(+)+ D̃k~Hc,k−1. (30)

The error of the prediction zP
k compared to the true value zk

is Gaussian i.e. zP
k = zk +ψk. From properties of the Kalman

filter, the covariance of zP
k is Gk = E[ψkψ

T
k ] = C̃kPs

k−1(+)C̃T
k

where Ps
k−1(+) is the error covariance in the estimate sk−1(+).

Using the estimate of Hessian Hc,k−1 from the previous step,
we also make a prediction HP

c,k that satisfies HP
c,k = Hc,k−1.

Using the Kalman filter, we may obtain a prediction for the
sk as

sP
k = As

k−1sk−1(+)+hP
k−1 (31)

where

hP
k−1 =−(CT

k Ck)−1CT
k (Dk~HP

c,k− D̃k~Hc,k−1). (32)

Note the difference between hP
k−1 and hk−1 in (16).

We then take new measurements at the kth step using all
four platforms. Let yk be the vector of the measurements
and zP

k be the vector of the predictions. Let the updated
measurements ẑk be

ẑk = (I +Gk(Wk +Rk)−1)−1zP
k +(I +(Rk +Wk)G−1

k )−1yk.
(33)

Such ẑk minimizes the cost function

Jk =
1
2

[
(ẑk− zP

k )
T G−1

k (ẑk− zP
k )

+(yk− ẑk)(Wk +Rk)−1(yk− ẑk)
]
. (34)

As we can see, Gk serves as the weighting matrix that
balances using the information from previous estimates and
from current measurements.

Claim 4.1: The estimator given in equation (33) is unbiased
with the error covariance matrix (I +Gk(Wk +Rk)−1)−1Gk.

Proof: For simplicity we drop the subscripts k in Wk, Rk
and Gk. Because zP

k = zk +ψk and yk = zk +wk +nk, we have

ẑk = (I +G(W +R)−1)−1zP
k +(I +(R+W )G−1)−1yk

= (I +G(W +R)−1)−1(zk +ψk)

+(I +G(W +R)−1)−1G(W +R)−1(zk +wk +nk)

= zk +(I +G(W +R)−1)−1(ψk

+G(W +R)−1(wk +nk)) . (35)

Fig. 1. Detection of a level curve using four sensor platforms. rc denotes the
center of the entire formation. rE denotes the center of the formation formed
by r1, r3 and r4. rF denotes the center of the formation formed by r2, r3 and
r4. rJ and rK are located on the same level curve with rc.

Therefore E(ẑk) = E(zk) because ψk, wk and nk have zero
mean. The error covariance can be directly computed to be
(I +G(W +R)−1)−1G.

C. Estimation of Curvature

We are ready to estimate the curvature of the level curve
passing through rc,k. Since the procedure only involves infor-
mation for step k, we drop the subscript k in this section for
simplicity.

With a formation of four moving sensor platforms, we are
able to estimate κ(s) for the level curve at the center of the
formation by the following steps:

1) Compute an estimate of the field value and gradient at
the center rc using (31).

2) Considering the formation formed by r1, r3 and r4,
obtain the estimates zE and dE at the center rE of
this three platform formation (Fig. 1) by solving the
following equations for i = 1,3,4:

ẑi = zE +dE · (ri− rE)+
1
2
(ri− rE)T HP(ri− rE). (36)

Let ẑE = [ẑ1, ẑ3, ẑ4]T , sE = [zE,dT
E ]T , and

CE =

 1 (r1− rE)T

1 (r3− rE)T

1 (r4− rE)T

 . (37)

Let DE be the 4× 3 matrix with its three row vectors
given by 1

2 ((ri− rE)⊗ (ri− rE))T for i = 1,3,4. Then
ẑE = CEsE + DE ~HP which implies that sE = C−1

E [̂zE −
DE ~HP].

3) Along the positive or negative direction of dE, we may
find the point rJ (Fig. 1) where zJ = zP

c using

rJ = rE +(zP
c − zE)

dE

‖dE ‖
. (38)

4) Estimate dJ,k by solving the following equations for i =
1,3,4:

ẑi = zJ +dJ · (ri− rJ)+
1
2
(ri− rJ)T HP(ri− rJ). (39)



5) Repeat the steps 2), 3) and 4) for the formation con-
sisting r2, r3 and r4 with appropriate changes in the
subscripts for points rF and rK (Fig. 1).

6) Let y1J, y1K and y1c denote the unit vectors along the
directions of the gradient dJ, dK and dc. Define δθL =
arccos(y1J · y1c), δ sL = ‖rJ− rc ‖, δθR = arccos(y1K ·
y1c), and δ sR = ‖rK− rc ‖. Obtain the estimate for κ(s)
at rc as

κc =
1
2

(
δθL

δ sL
+

δθR

δ sR

)
. (40)

Obtain the estimate for Hxx according to (27).
7) Approximate d

ds ‖∇zc ‖ by

d
ds
‖∇zc ‖=

‖dK ‖−‖dJ ‖
δ sL +δ sR

. (41)

Then using (29), the estimate Hxy is

Hxy =
‖dK ‖−‖dJ ‖

δ sL +δ sR
. (42)

8) Solve

ẑi = zc +dc · (ri− rc)+
1
2
(ri− rc)T Hc(ri− rc) (43)

for Hyy where i = 1,2,3,4.
The resulting matrix Hc,k can be used directly as the estimate

for the Hessian at the kth step. Or we may repeat steps 1)-8)
starting from Hc,k to get a new estimate for the curvature and
then to improve the estimate Hc,k. The procedure becomes an
iterative numerical algorithm that solves the set of nonlinear
equations that zc, Hxx,k, Hxy,k and Hyy,k satisfy given ẑi,k for i =
1,2,3,4. The prediction from step k−1 provides a reasonable
initial value for this iterative algorithm.

V. FORMATION AND CONTROL

The estimation process imposes constraints on feasible
platform formations, and the shape of the formation affects
error in the estimates. We may design special formations to
reduce complexity in theoretical analysis, computation, and
operation.

A. The Cross Formation

As an example of such special formations, we arrange the
four platforms in a symmetric formation as shown in Figure
2 and choose a coordinate frame attached to the formation
so that

∥∥r2,k− rc,k
∥∥ =

∥∥rc,k− r1,k
∥∥ = a and

∥∥r3,k− rc,k
∥∥ =∥∥rc,k− r4,k

∥∥ = b. Then, in the Frenet-Serret coordinate frame,
Ck and Dk have very simple form because of the symmetry.
However, we do need control laws to stabilize this special
formation.

B. Formation Control

We view the entire formation as a deformable body. The
shape and orientation of this deformable body can be described
using a special set of Jacobi vectors, c.f. [17]–[21] and the
references therein. Here, assuming that all platforms have unit
mass, we define the set of Jacobi vectors as q1 = 1√

2
(r2−r1),

q2 = 1√
2
(r3− r4), and q3 = 1

2 (r4 + r3− r2− r1).

Fig. 2. A symmetric arrangement of the formation to simplify the equations
for estimates.

Fig. 3. Tracking the temperature level curve of 14.25°C in an estimated
temperature field near Monterey Bay, CA on August 13, 2003. For visualization
purpose, the level curve is accentuated. The trajectory of the center of
formation is plotted with status of the formation shown along the trajectory.
The horizontal axis corresponds to longitude and the vertical axis to latitude.

Lagrange’s equations for the formation in the lab frame are
simply the set of Newton’s equations: r̈i = fi where fi is the
control force for the ith platform for i = 1,2,3,4. In terms of
the Jacobi vectors, these equations are equivalent to

q̈ j = u j

r̈c = fc (44)

where j = 1,2,3 and u j and fc are equivalent forces satisfying
f1 = fc− 1√

2
u1− 1

2 u3, f2 = fc + 1√
2
u1− 1

2 u3, f3 = fc + 1√
2
u2 +

1
2 u3, and f4 = fc− 1√

2
u2 + 1

2 u3.
We now design the control forces u1, u2 and u3 so that as

t → ∞, q1(t)→ a∗√
2
x1, q2(t)→− b∗√

2
y1, and q3(t)→ 0 where

x1 and y1 are tangent and normal vectors for the level curve
at point rc, and a∗ and b∗ are desired values for a and b. As-
suming that x1 and y1 are slowly varying, a simple controller
is u1 =−k2(q1− a∗√

2
x1)− k3q̇1, u2 =−k2(q2 + b∗√

2
y1)− k3q̇2,

and u3 = −k2q3 − k4q̇3, where k2, k3 and k4 are positive,
constant, scalar gains. We have proved that this controller
achieves the formation asymptotically with an exponential rate
of convergence by following an approach suggested in [22].
We design fc to implement the speed and steering control as
in Section II so that the center of the formation tracks a level
curve.



Fig. 4. The estimate zc (°C) versus time (hour).

VI. SIMULATION RESULTS

The level curve tracking algorithm is applicable to adaptive
sampling using sensor networks in the ocean. Adaptive ocean
sampling is a central goal of our collaborative Adaptive
Sampling and Prediction (ASAP) project [23]. The latest
ASAP field experiment took place in August 2006 in Monterey
Bay, California. Ten gliders and other propelled underwater
vehicles were employed to carry on a series of scientific
experiments for oceanographic research for one month. A level
curve tracking mission may be carried out in future ASAP
experiments.

In order to test our current algorithms on realistic ocean
fields, we use a snapshot of the temperature field near
Monterey Bay produced by the Harvard Ocean Prediction
System (HOPS) [24]. This field reflects the temperature at
20 meters below sea surface on 00:00 August 13th, 2003. It
has incorporated glider measurements during the Autonomous
Ocean Sampling Network (AOSN) field experiment [1]. We
have added spatially correlated noise to the HOPS field.

Four platforms are employed to track a level curve with
temperature 14.25 °C. The trajectory of the formation center
and the shape of the formation are plotted in Figure 3. We
control the center of the formation to travel at 1 km per hour.
Figure 4 shows the estimates of the temperature at the center of
the formation versus time. One can see the estimates centered
around 14.25°C with small error. In the real environment, the
ocean field will be time varying. The rate of the changing
ocean field is usually slower as compared to the speed of
the platforms. Although we have used a static field in our
simulation, the algorithm will be applicable to a slowly varying
ocean field.
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