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A class of underwater vehicles are modelled as Newtonian particles for navigation and control.

We show a general method that controls cooperative Newtonian particles to generate patterns

on closed smooth curves. These patterns are chosen for good sampling performance using

mobile sensor networks. We measure the spacing between neighbouring particles by the

relative curve phase along the curve. The distance between a particle and the desired curve is

measured using an orbit function. The orbit value and the relative curve phase are then used

as feedback to control motion of each particle. From an arbitrary initial configuration,

the particles converge asymptotically to form an invariant pattern on the desired curves.

We describe application of this method to control underwater gliders in a field experiment in

Buzzards Bay, MA in March 2006.

1. Introduction

Technological advances make it possible today to use

fleets of sensor-equipped autonomous underwater vehi-

cles (AUVs) to collect oceanographic data in efficient

and intelligent ways never before available. For exam-

ple, throughout August 2003, as part of the autonomous

ocean sampling network (AOSN) field experiment, as

many as twelve underwater gliders were used simulta-

neously to collect data near Monterey Bay, California.

This data was assimilated into ocean models that

computed real-time predictions of the coupled physical

and biological dynamics in the Monterey Bay region.

The data set produced in August 2003 is uniquely rich

and revealing, c.f. MBARI (2003).
Adaptive sampling refers to the ability to modify the

design of sampling networks during the course of

operation in response to measurements and real-time

model estimation and predictions. Critical to successful

adaptive sampling is the coordination of the multiple

vehicles (mobile sensors) that make up the network.

For instance, if the vehicles get too close to one another

they take redundant measurements. In order to get the
greatest advantage from the fleet, the vehicles should
share information on their whereabouts and their
observations and cooperate to best meet sampling
objectives. More details can be found in the recent
paper Leonard et al. (2007) and the references therein.
In August 2006 in Monterey Bay, ten gliders were
coordinated to move on patterns that adapted in
response to changes in the ocean. This field experiment
was part of the Adaptive Sampling and Prediction
(ASAP) project, c.f. Princeton University (2006).

In this paper, based on our previous work in Zhang
and Leonard (2006), we present both analytical and
experimental results on achieving desired patterns on
closed curves using a Newtonian particle model for
idealised vehicles. The Newtonian particle model is
adopted because vehicle trajectories are usually mea-
sured in kilometres, whereas the vehicle dimensions are
typically measured in metres. We rigorously define
invariant patterns on closed curves that are smooth
and topologically simple, i.e., on curves that have only
one loop and no self intersections. In an invariant
pattern, all particles are on curves of a certain class, and
the relative curve length between each pair of particles
is constant over time. We design a feedback control law*Corresponding author. Email: naomi@princeton.edu
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to achieve such an invariant pattern from an arbitrary

initial configuration of the particles. The control law can

either be directly applied to control ocean vehicles or

be used to plan paths and waypoints to guide those

vehicles. In the latter case the autopilot on board the

vehicle is responsible for producing appropriate control

commands to follow the prescribed waypoints.
Underwater gliders are a class of autonomous under-

water vehicles (AUVs) that are propelled by changing

buoyancy and pitch in a periodic manner. We have

developed methods for applying the control design to

plan paths and waypoints for coordinating the motion

of underwater gliders. Our methods have been tested on

two gliders in a recent experiment in Buzzards Bay, MA.
Our methods to generate coordinated patterns may

also be used for applications such as the detection and

surveillance of natural boundaries using multiple sensor

platforms. Other recent developments for this purpose

can be found in Bertozzi et al. (2005), Hsieh and Kumar

(2006), Zarzhitsky et al. (2005), Andersson and Park

(2005), Clark and Fierro (2005) and Susca et al. (2006).

In those papers coherent patterns are established using

methods that are different from ours. Results in this

paper provide a general theoretical framework for

developing means for systematic pattern generation on

closed curves.
In x 2, we show that the particle model can be

rewritten as a system under speed and steering control.

In x 3, the relative motion between a controlled particle

and a family of closed curves is studied. We derive a

control law based on a Lyapunov function to achieve

invariant patterns for N particles in x 4, and prove the

convergence of the controlled dynamics to the desired

pattern. In x 5, simulation results are obtained for

adaptive sampling experiments in Monterey Bay. We

present results from the Buzzards Bay experiment in x 6.

2. Particle model

Consider the motion of the centre of mass (COM) of a

vehicle moving in the plane. We view each vehicle as

a Newtonian particle with unit mass that obeys €r ¼ f

where r2R
2 and f is the total external force. The state of

a particle is ðr, _rÞ. If _r does not vanish, then we can define

a unit vector x ¼ _r=k_rk. We also define

y ¼
0 �1

1 0

� �
x: ð1Þ

Such y is a unit vector perpendicular to x. Therefore f

can be expressed as

f ¼ �2uyþ vx, ð2Þ

where we define � ¼ k_rk, �2u¼ f � y and v¼ f �x. On the
other hand, we compute

€r ¼
d

dt
ð�xÞ ¼ _�xþ � _x ð3Þ

which implies that

_�þ � _x � x ¼ f � x ¼ v

� _x � y ¼ f � y ¼ �2u:

)
ð4Þ

Since x is a unit vector, we have _� ¼ f � x ¼ v, and the
time derivative of x can be computed as follows:

_x ¼
d

dt

_r

k_rk
¼

f

�
�
f � x

�
x ¼ �uy: ð5Þ

The time derivative of y is

_y ¼
0 �1

1 0

� �
ð�uyÞ ¼ ��ux: ð6Þ

We conclude that if the speed � of a Newtonian particle
is non-zero, then the motion of the particle can be
described as

_r ¼ �x

_x ¼ �uy

_y ¼ ��ux

_� ¼ v:

9>>>=
>>>;

ð7Þ

The advantage of using these equations instead of €r ¼ f
comes from the fact that u can be viewed as the steering
control, v can be viewed as the speed control, and the
steering dynamics are separated from the speed
dynamics.

We note that even if we let �¼ 0 in equations (7), the
system appears to agree with Newton’s equation €r ¼ f
if f does not vanish i.e., v 6¼ 0. In this case we choose
x¼ f/j f j. However, in this case, there may exist dis-
continuities in the orientation of the frame formed by x
and y.

3. Particle and closed curves

Suppose we are given a family of closed regular curves
Cð�, zÞ with � and z are functions in the plane satisfying
the following conditions.

(AS1) There exists a bounded open set B such that all
curves in C belong to B and any point in B
belongs to a unique curve in C.

(AS2) On the set B, z is a C2 smooth function. The
value of z is bounded below by a real number
zmin and bounded above by zmax> zmin i.e.
z2 ðzmin, zmaxÞ. The closed curves in C are the
level curves of function z. We further assume
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that krzk 6¼ 0 on the set B. We call z the orbit

function.
(AS3) There exists a regular curve � that intersects

each curve in C at a unique point. We call these

intersections the starting points.
(AS4) � is the curve length parameter for a unique

curve in C measured from the starting point.

One example of such a family is the family of

ellipses given by r2x þ er2y ¼ z where e>0 is the

eccentricity of the ellipses (see figure 1). If we select

zmin>0 and zmax to be a finite number greater than

zmin then this family satisfies the conditions (AS1) and

(AS2) with

B ¼ ðrx, ryÞ 2R
2
jzmin < r2x þ er2y < zmax

n o
: ð8Þ

The positive horizontal axis can be viewed as � and �
can be chosen as the curve length parameter of any

ellipse in the family. Hence (AS3) and (AS4) are also

satisfied.
Along the trajectory of a moving particle in the set B,

the value of z is changing with respect to time. We have

_z ¼ rz � _r ¼ ��krzk sin�, ð9Þ

where we define

sin� ¼ �
rz

krzk
� x: ð10Þ

The angle � is the angle between the velocity vector

of the particle and the tangent vector to the curve

determined by z. For convenience we let x1 denote

this tangent vector and y1¼rz/krzk. The direction

of x1 is selected so that x1 and y1 form a right

handed coordinate system with x1� y1 pointing to

the reader as shown in figure 1. Then along the

trajectory of the moving particle, the vector y1

changes as

_y1 ¼
r2z_r

krzk
�

rz � r2z_r
� �

rz

krzk3

� �

¼
�

krzk
r2zx� y1 � r

2zx
� �

y1
� �

, ð11Þ

where r2z is the Hessian matrix of function z(r). Taking

the time derivative of sin�¼ y1 � x yields

cos� _� ¼ � _x � y1 � x � _y1

¼ �ð�uyÞ � y1 � x � _y1

¼ ��u cos��
�

krzk
x � r2zxþ y1 � r

2zx
� �

sin�
� �

:

ð12Þ

Considering that x¼ cos�x1� sin�y1, we know that

x � r2zxþ y1 � r
2zx

� �
sin�

¼ cos2 � x1 � r
2zx1

� �
� sin� cos� x1 � r

2zy1
� �

: ð13Þ

Therefore,

_� ¼ �ð�1 cos�þ �2 sin�� uÞ ð14Þ

where we define

�1 ¼ �
1

krzk
x1 � r

2zx1

�2 ¼
1

krzk
x1 � r

2zy1:

9>>=
>>; ð15Þ

We let s be the curve length of a curve in the family

measured from the starting point. The curve length s is a

function of � and z. Since all curves in C are closed, the

total curve length L of each curve is finite and a function

of z. As the particle moves, the variation of the curve

length is

_s ¼
@s

@�
_� þ

@s

@z
_z

¼
ds

dt

����
z¼const

þ
@s

@z
_z

¼ � cos�� �
@s

@z
krzk sin�: ð16Þ

The total curve length L is a function of z only. Its

variation is

_L ¼
@L

@z
_z ¼ ��

@L

@z
krzk sin�: ð17Þ

Analogous to the concept of mean anomaly used for

satellite formation control in Zhang and Krishnaprasad

(2004), we define the curve phase variable

� ¼ 2�
s

L
, ð18Þ

Figure 1. The relative motion between a particle and a family

of ellipses; each ellipse is a level curve of some function z. The

solid dot represents the particle and the hollow dots represent

the starting points. The frames (x, y) and (x1, y1) are illustrated

and the angle � measures the difference in their orientation.

The arc-length s is the length of the curve segment between the

starting point and the particle. If we map the ellipses to circles

preserving arc-length (picture on right), then � can be

visualised as the phase angle on the circles.
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which was also used in Zhang and Leonard (2006) and
Paley, Leonard and Sepulchre (2006). This angle, with
its value belongs to the interval [0, 2�), is measured from
the starting point of each curve, and it can be visualised
as shown in figure 1. The time derivative of � is

_� ¼ 2�
_s

L
�

s

L2
_L

� �

¼
2��

L
cos��

2��

L

@s

@z
�

s

L

@L

@z

� �
_z: ð19Þ

On the other hand, the time derivative of � can also be
computed as

_� ¼
d�

dt

����
z¼const

þ
@�

@z
_z: ð20Þ

Comparing (19) and (20), we can observe that

@�

@z
¼

2��

L
P ð21Þ

where we define

P ¼ �
@s

@z
�

s

L

@L

@z

� �
: ð22Þ

Using z, �, � and � to describe the state of the particle,
we summarise the system equations for one particle as
follows:

_z ¼ ��krzk sin�

_� ¼ �ð�1 cos�þ �2 sin�� uÞ

_� ¼
2��

L
ðcos�þ Pkrzk sin�Þ

_� ¼ v:

9>>>>>=
>>>>>;

ð23Þ

4. Convergence to patterns

Now consider the motion of N particles in the bounded
open set B. For i¼ 1, . . . ,N, the ith particle satisfies
equation (23) indexed by i. We define an invariant
pattern for these particles.

Definition 1: We say N particles form an invariant
pattern determined by (cz, cs, cv) if (zi, �i, �i, �i) satisfies

zi ¼ czi

�i ¼ 0

�j ��jþ1 ¼ csj

min
i
f�ig ¼ cv

9>>>>=
>>>>;

ð24Þ

for all i¼ 1, . . . ,N and j¼ 1, . . . ,N� 1. Here czi is the
ith component for the N-dimensional constant vector cz,

and csj is the jth component for the (N� 1)-dimensional
constant vector cs. The constants satisfy cv>0,
zmin< czi< zmax and 0< csj<2�.

We design control laws for (ui, vi) so that from an
arbitrary initial configuration, the particles converge to
a given pattern asymptotically. Our control laws are
based on control Lyapunov functions.

Let hzi(z) be a smooth function on (zmin, zmax) and
fzi(z)¼ (dhzi/dz) satisfying the following conditions:

(AS5) limz!zmin
hziðzÞ ¼ limz!zmax

hziðzÞ ¼ þ1;
(AS6) fzi(z) is a monotone increasing smooth function

with fzi(z)¼ 0 if and only if z¼ czi.

Function fzi(z) can be constructed as

fziðzÞ ¼ tan
�ð2z� zmax � zminÞ

2ðzmax � zminÞ

� �

� tan
�ð2czi � zmax � zminÞ

2ðzmax � zminÞ

� �
:

ð25Þ

We let hsj(�) be a smooth function on (0, 2�) and
fsj(�)¼ (dhsj/d�) satisfying the following conditions:

(AS7) lim�!0 hsjð�Þ ¼ lim�!2� hsjð�Þ ¼ þ1

(AS8) fsj(�) is a monotone increasing smooth function
with fsj(�)¼ 0 if and only if �¼ csj.

We let ha(�) be a smooth function on (0, þ1) and
fa(�)¼ (dha/d�) satisfying the following conditions:

(AS9) lim�!0 hað�Þ ¼ lim�!þ1 hað�Þ ¼ þ1

(AS10) fa(�) is a monotone increasing smooth function
with fa(�)¼ 0 if and only if �¼ cv.

Without loss of generality, we assume that the curve
corresponding to z1¼ cz1 has the minimum length
among the curves determined by cz. Intuitively, in
order to maintain the invariant pattern, the particle
indexed by 1 on this shortest curve has to travel at
the minimum speed among all particles. We will justify
this intuition later.

Consider the following Lyapunov candidate function:

V ¼
XN
i¼1

� log cos2
�i

2

� �
þ hziðziÞ

� �

þ
XN�1

j¼1

hsj �j ��jþ1

� �
þ
1

2

�j
Lj

�
�jþ1

Ljþ1

� �2
 !

þ hað�1Þ:

ð26Þ

This function consists of several positive definite terms.
The term log(cos2(�i/2)) contributes to aligning the
velocity vector of particle i with the tangent vector of the
desired path. It vanishes when �i¼ 0. The term hzi(zi)
guides particle i to the desired curve from any initial
position. It vanishes when zi¼ czi. The term
hsj(�j��jþ1) corrects curve phase difference between

Control of coordinated patterns for ocean sampling 1189



New XML Template (2006) [26.7.2007–5:30pm] [1186–1199]
{TANDF_REV}TCON/TCON_I_80_07/TCON_A_222214.3d (TCON) [Revised Proof]

particles j and jþ 1. It vanishes when �j��jþ1¼ csj.

The term ha(�1) establishes the speed for particle 1.

It vanishes when �1¼ cv. The term ((�j/Lj)� (�jþ1/Ljþ1))

enforces the correct speed relation between particles j

and jþ 1. It vanishes if (�j/Lj)¼ (�jþ1/Ljþ1).
This Lyapunov function candidate is based on the

Lyapunov function for boundary tracking and obstacle

avoidance for a single vehicle first proposed in Zhang

et al. (2004). Similar functions have also been used for

formation control of unit speed particles as in Justh and

Krishnaprasad (2002, 2004). Our contribution here is to

introduce the coupling terms controlling relative separa-

tion and speed between vehicles. The Lyapunov function

is designed so that the invariant pattern defined by (24)

is a critical point. We will show that V remains finite if

V is initially finite and thus �i can never be � for all i¼ 1,

2, . . . ,N and Lj can never be 0 for all j¼ 1, 2, . . . ,N� 1.

Likewise, zi remains in (zmin, zmax), �j��jþ1 remains in

(0, 2�) and �1 is never zero.
In Appendix A, we derive control laws based on the

Lyapunov function V such that

_V ¼
XN
i¼1

��1
�i sin

2
ð�i=2Þ

cosð�i=2Þ

� �
�
XN�1

j¼1

�2
�j

Lj
�

�jþ1

Ljþ1

� �2

� �3fað�1Þ
2
� 0, ð27Þ

where �1, �2 and �3 are positive constants. The steering

control laws for i¼ 1, 2, . . . ,N are

ui ¼ �1i cos�i þ �2i sin�i � 2fzi rzik k cos2
�i

2

� 2� fsi � fsði�1Þ

� � 1

Li
sin�i þ 2

Pi

Li
rzik k cos2

�i

2

� �

þ �1 sin
�i

2
ð28Þ

where we use fzi as abbreviated notations for fzi(zi).

The speed control law for particle 1 is

v1 ¼ ��3fað�1Þ: ð29Þ

For particles jþ 1 where j¼ 1, 2, . . . ,N� 1, we

compute the speed control using the following set of

equations:

�v1 ¼ v1 þ
�2
1

L1

@L1

@z1
rz1k k sin�1

�vjþ1 ¼
Ljþ1

Lj
�vj þ 2�fsjLjþ1 þ �2

Ljþ1

Lj
�j � �jþ1

� �

vjþ1 ¼ �vjþ1 �
�2
jþ1

Ljþ1

@Ljþ1

@zjþ1
rzjþ1

�� �� sin�jþ1

9>>>>>>>>>=
>>>>>>>>>;

ð30Þ

where we use fsj as abbreviated notations for

fsj(�j��jþ1), and use �v1 and �vjþ1 as intermediate

variables.

Under the control laws (28)–(30), the closed-loop
system dynamics for zi are

_zi ¼ ��i rzik k sin�i, ð31Þ

and the closed-loop system dynamics for �i are

_�i ¼ �i ��1 sin
�i

2
þ 2fzi rzik k cos2

�i

2

�

þ 2� fsi � fsði�1Þ

� � 1

Li
sin�i þ 2

Pi

Li
cos2

�i

2

� ��
ð32Þ

for i¼ 1, 2, . . . ,N. The closed-loop system dynamics
for the relative curve phase angles are

_�j� _�jþ1 ¼ 2�
�j
Lj

cos�j�
�jþ1

Ljþ1
cos�jþ1�

�jPj

Lj
rzj
�� ��sin�j

�

þ
�jþ1Pjþ1

Ljþ1
rzjþ1

�� ��sin�jþ1

�
ð33Þ

for j¼ 1, 2, . . . ,N� 1. The speed �1 satisfies

_�1 ¼ ��3fa �1ð Þ: ð34Þ

To describe the relative speed between particles, we treat
((�j/Lj)� (�jþ1/Ljþ1)) as state variables. Their closed-

loop system dynamics have a simple form

d

dt

�j
Lj

�
�jþ1

Ljþ1

� �
¼ ��2

�j

Lj
�

�jþ1

Ljþ1

� �
� 2�fsj: ð35Þ

We observe that �1, �2 and �3 are controller gains. The
gain �1 affects the convergence rate of the alignment
angle �i. The gain �2 affects the convergence rate of
the speed difference between the particles. The gain �3

affects the convergence rate of the speed of the first
particle to the desired speed. In practice, these gains
are adjusted according to the desired performance of the
vehicles.

The following theorem shows that under the above
control laws, the closed-loop system dynamics converge
to the invariant pattern.

Theorem 1: Consider an invariant pattern given by (cz,
cs, cv) and (24). Assume that conditions (AS1)–(AS10)
hold and the initial conditions of N Newtonian particles in
the plane are such that the initial value of V given by
(26) is finite. Suppose further that �i(t)>0 for all t and
i¼ 2, . . . ,N. Then, the invariant pattern is achieved

asymptotically by the system of N particles under the
control laws (28)–(30).

Proof: It is easy to check that the Lyapunov function V
has compact sub-level sets. Under the feedback control
laws defined by (28)–(30), starting in the compact sub-

level set determined by the finite initial value of the
function V, the closed-loop system equations (31)–(35)
are Lipschitz continuous in the sub-level set and
piecewise Lipschitz continuous with respect to time.

1190 F. Zhang et al.
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Therefore a solution exists and is unique. Since the value

of the Lyapunov function is time-independent and non-

increasing, we conclude that if the initial value of V is

finite, then the entire solution stays in the sub-level set so

that V is finite for all time. This and conditions (AS7)

and (AS9) imply that along such a solution, the speed

of the first particle satisfies �1>0 and the phase

differences satisfy �j��jþ1 6¼ 0 for j¼ 1, 2, . . . ,N� 1.
Applying Theorem 8.4 on page 323 in Khalil (2001),

we conclude that as t!1, the controlled system

converges to the set D where _V ¼ 0. This set is

equivalent to

�i ¼ 0, �1 ¼ cv, and
�j

Lj
¼

�jþ1

Ljþ1
ð36Þ

where i¼ 1, 2, . . . ,N and j¼ 1, 2, . . . ,N� 1. On this set

D, equation (35) becomes

d

dt

�j

Lj
�

�jþ1

Ljþ1

� �
¼ �2�fsj, ð37Þ

and equation (32) is now

_�i ¼ 2�ifzi rzik k þ 4��i fsi � fsði�1Þ

� �Pi

Li
: ð38Þ

In order to show that �j��jþ1! csj and zi! czi, we

need the facts that _�i ! 0 and

d

dt

�j

Lj
�

�jþ1

Ljþ1

� �
! 0: ð39Þ

We first prove that (39) holds. As t!1, since the

closed-loop system dynamics converge to the set D

where (36) is satisfied, then (33) becomes

_�j � _�jþ1 ¼ 0 ð40Þ

which implies that (�j��jþ1) are constant. Therefore

fsj(�j��jþ1) are constant functions of the time t. Thus,

ðd=dtÞðð�j=LjÞ � ð�jþ1=Ljþ1ÞÞ converge to constant func-

tions of time t. These constant functions must be 0

because ðð�j=LjÞ � ð�jþ1=Ljþ1ÞÞ converges to 0.
Then equation (39) and (37) imply that fsj! 0. Thus

by condition (AS8), we conclude that �j ��jþ1 ! csj.

Next, we prove that _�i ! 0 as t!þ1. We have proved

that fsj! 0 for all i. Then from (38) we observe, on the

set D,

_�iðtÞ ¼ 2�ifzi rzik k: ð41Þ

Since zi and �i are constant on the set D, fzi are constant

for all i. Then krzik is a smooth periodic function of

time t as particle i moves along the orbit determined by

zi in constant speed �i. Therefore, krzik are uniformly

continuous with respect to time for all i. We can apply

an extension of the Barbalat lemma proved in Micaelli

and Samson (1993). According to this extended Barbalat

lemma, we conclude that _�iðtÞ ! 0 because _�iðtÞ con-
verges to a uniformly continuous function and �i(t)! 0.

The fact that _�i ! 0 implies that fzi! 0 because
�i 6¼ 0 and by condition (AS2), krzik 6¼ 0. By condition
(AS6), we conclude that zi! czi for i¼ 1, 2, . . . ,N. œ

Remark 1: Notice that all our arguments are based on
the assumptions that �i(t)>0 for i¼ 2, 3, . . . ,N (with
�1(t)>0 guaranteed by the finiteness of the Lyapunov
function). These assumptions are not very difficult to be
satisfied if the initial speed for each of the particles is
large enough and the desired speed for the first particle
is also large enough. We have observed convergence
in simulations even if �i¼ 0 for some i at certain time
instances.

Remark 2: The condition (AS7) and the finiteness of
the Lyapunov function V prevent the curve phase
difference (�j��jþ1) from being 0 or 2�. This implies
that particle j will not collide with particle j� 1 or
particle jþ 1.

Remark 3: After linearising the closed-loop system
dynamics, we observe that the closed-loop system is
exponentially stable within a neighbourhood of the
equilibrium. An input-to-state stability result may be
derived from this observation. Hence the control law
is robust under bounded perturbations.

5. Simulations

Our control laws are designed to coordinate mobile
sensor networks for ocean sampling. One class of closed
curves that plays an important role in the ASAP field
experiments is the class of super-ellipses. A super-ellipse
looks like a rectangular box with rounded corners.
Oceanographers who operate AUVs are interested in
the super-ellipses because large segments of the curve are
almost straight lines. In addition, the almost rectangular
shape allows one to easily divide a large region into
smaller rectangular blocks. As ocean dynamics change,
an AUV can be directed from patrol of the boundary
curve of a large block to patrol of a smaller block, etc.

We simulate such a scenario with our controlled
particle model and plot the tracks and snapshots of the
vehicles (modelled as Newtonian particles) on a map
of a region near Monterey Bay, CA where the ASAP
2006 field experiments were held. In the first example,
three vehicles are controlled to patrol a 40 km by 16 km
super-elliptic box. Furthermore, vehicles 1 and 2 and
vehicles 2 and 3 are to be separated along the track
such that �1��2¼�2��3¼ cs1¼ cs2¼�/2. The mini-
mum speed for the vehicles is cv¼ 1 km per hour.
Figure 2 shows the initial positions of the vehicles
and figure 3 shows the controlled configuration at time
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equal to 62.5 hours. After 80 hours, we control vehicles
1 and 3 to be on a smaller 12 km by 4.8 km box while
vehicle 2 stays on the larger box. The separations
between vehicles 1 and 2 as well as between vehicles 2
and 3 are still controlled to cs1¼ cs2¼�/2 as shown in
figure 4. In this case vehicles 1 and 3 travel at lower
speed than vehicle 3. After 140 hours, the vehicles
are commanded to resume the original pattern on the
larger box.
Figure 5 shows the value of the orbit function z1 of

vehicle 1 as a function of time. The value of the orbit
function at time t is the length of the semi-major axis
of the super-ellipse that the vehicle occupies at time t.

Figure 6 shows the separation �1��2 between vehicles
1 and 2 over time. From these figures, one can observe
the asymptotic convergence under the control laws.
It can be seen that it takes less than 20 hours to set up
the pattern on the larger box and about 30 hours to
transit from this pattern to the second pattern with
vehicles 1 and 3 on the smaller box. The time required
for the vehicles to set up the pattern is long mainly
because the vehicles are slow and the boxes are large.
This is generally the case for underwater gliders which
travel at around 1 km per hour. At this speed, it takes a
vehicle 40 hours to cover the long side of the large box.
In our simulation, the initial conditions for the vehicles
are arbitrarily given. However, in the field experiments,
using other methods such as time optimal control, we
set up the initial configurations to be close enough to
the desired configuration and use the control laws to
maintain the pattern under disturbances.

6. Experiments

In this section we describe how we implement coordi-
nated control schemes on a fleet of real underwater
gliders and we present coordinated control results from
sea trials with gliders in Buzzards Bay, MA during
March 2006.

6.1 Underwater gliders

Underwater gliders are winged submersibles with buoy-
ancy engines; see Rudnick et al. (2004). The motion
of an underwater glider is generated by periodically
changing its buoyancy. The lift force from the fixed
wings gives the glider manoeuvrability. The balance of
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Figure 6. The curve phase separation between vehicles 1 and 2, �1��2, as a function of time.

Figure 5. The orbit value z1, which is the length of the semi-major axis, as a function of time.
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forces on the glider produces steady gliding motions,
either forward and ascending when the glider is
positively buoyant or forward and descending when
the glider is negatively buoyant. Viewed from the side,
because of the switching between up and down motion,
the trajectory has a sawtooth shape.
Under the influence of flow, the navigation algorithm

on board a glider computes adjustments to direction of
motion to compensate for the component of flow that
carries the glider off its course towards a waypoint.
On Slocum gliders (Rudnick et al. 2004) used in the
Buzzards Bay experiment, heading adjustments are
made with a rudder. Effective glider speed towards
the waypoint decreases when bearing between flow and
the desired course is an obtuse angle. If the perpendi-
cular component of flow is larger than the glider speed,
the glider will be carried away by the flow and fail to
reach the waypoint.

6.2 The glider coordinated control system

In the simulation described in x 5 we demonstrate the
coordinated control algorithm applied to the planar
particle model. The real gliders that we use in the field
communicate only when they surface (asynchronously)
and only with a central on-shore server by means of
Iridium satellite. Further, gliders move in three-dimen-
sional space and are challenged by currents of significant
magnitude. For development, testing, and implementa-
tion on real gliders of control schemes such as the one
presented in this paper, we have designed the glider
coordinated control system (GCCS), which is described
in detail in Paley, Zhang and Leonard (2006).
The GCCS is a cross-platform software suite written

in MATLAB that automatically implements feedback
control of a glider fleet. It is a modular tool that serves
as a simulation testbed as well as a real-time coordinated
control system. A particle model like the one described
in this paper is used to plan future trajectories and a
detailed glider model to estimate glider positions while
gliders are underwater. The GCCS trajectory (and
waypoint) planner takes as input: parameters that
describe the desired coordinated configuration, glider
surface position measurements, the glider depth-
averaged flow estimates, the glider active waypoint
lists, and control parameters. The control algorithm is
itself a module so that different control algorithms can
be tested. The planner is triggered to initiate a new
planning cycle every time a glider surfaces. At the end of
a cycle the planner produces an updated waypoint list
for each glider; a waypoint here refers to the centre of a
circle in the horizontal plane that prescribes the next
desired location for the glider. The GCCS remote input/
output module implements secure file transmission
protocol (FTP) for communication to and from the

glider data server, e.g., the updated waypoint lists are
sent to and the glider surface position measurements
are received from the glider data server.

In addition to coordinating the control of gliders
in the field, the GCCS has its own glider simulator and
can implement the coordinated control on the simulated
gliders. It simulates gliders using the detailed glider
model with a flow field that can be provided as input
(e.g., ocean fields for the region of Monterey Bay
discussed in x 5). The glider simulator receives its
waypoint files from the same data server as real gliders
and posts its position measurements (as well as sampled
data profiles) to the same data server as real gliders.

The GCCS simulator and planner have been used
as a testbed for development and testing of coordinated
control schemes under realistic operating conditions.
A virtual glider deployment run in March 2006 on ten
gliders in Monterey Bay is described in Paley, Zhang
and Leonard (2006). The GCCS was used to control six
real gliders continuously for 25 days in Monterey Bay in
August 2006 as part of the ASAP program.

6.3 Buzzards Bay experiment

We performed coordinated glider sea trials in Buzzards
Bay, MA in March 2006 and we present the results of
the sea trials here with a focus on coordinated control
performance. A detailed description and record of
activities during this experiment can be found in
Fratantoni and Lund (2006). The experiment served as
a good test of the GCCS and provided the opportunity
to explore the effect on coordinated control performance
of the many constraints and disturbances (e.g., strong
tides) to glider operation. Results from previous
coordinated control sea trials with underwater gliders
are described in Fiorelli et al. (2006). These previous
trials, carried out in August 2003 in Monterey Bay,
CA, demonstrated control of gliders into triangular
formations for sensing and estimating gradients.
A precursor to the GCCS was used in August 2003.

The Buzzards Bay experiment ran from March 6–17,
2006. Five battery-powered Slocum gliders were
deployed during this period. Three of the gliders were
put out of service due to hardware problems and
environmental hazards. The control law was applied to
the remaining two gliders named ‘we09’ and ‘we11’. The
goal was to control an invariant pattern on a super-
ellipse track within a rectangular region to the west of
Naushon Island in Buzzards Bay, see figure 7(a), (b).
The dimensions of the rectangle were approximately
5.9 km (along-shore) by 3.3 km (cross-shore). Near the
Woods Hole Oceanographic Institution (WHOI), this
region is the largest area without threats such as
underwater rock piles and commercial ship traffic. The
super-ellipse track is centred at longitude 70.8003�W,
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latitude 41.5070�N with its major axis pointing to the
along-shore direction at azimuth 40�. The dimension of
the super-ellipse is 5.6 km by 2.8 km. For the invariant
pattern, the desired separation between the two gliders
is �/3 measured by curve phase. During the Buzzards
Bay experiment, each glider was programmed to spend
approximately one hour underwater between surfacing.
The average depth of the operation region is about
15metres. During this one hour period, the glider can
accomplish about 20 dives. While the glider is at surface,
the communication process takes about 12minutes to
finish. Relative to the flow, the average horizontal speed
is about 20 cm/s. Unlike a propeller driven underwater
vehicle, this average horizontal speed of the glider is
not controlled directly. During the experiment, the
control of speed along the original prescribed track
was implemented by changing the orbits of the glider.
A glider makes slower progress along the original track
by moving to an orbit with longer total length and
makes faster progress by moving to an orbit with shorter
total length. The GCCS generated two waypoints per
diving-surfacing cycle for each glider. This means that
the gliders were directed along a sequence of two
straight line segments every hour.

6.4 Data and analysis

We first plot segments of the trajectories of the two
gliders in figure 7(a), (b). The markers on each segment
indicate the GPS locations of the gliders when they
surfaced. The underwater position is estimated by the
deduced reckoning method. From the position data, we

compute the orbit value of the gliders and plot it in
figure 8(a). The curve phase difference between the two
gliders is also computed and plotted in figure 8(b).

To help interpret the results, we plot in figure 9 the
flow speed in the along-shore direction measured (i.e.,
estimated from measurements) by the two gliders. The
measured flow is clearly semi-diurnal. This indicates
its tidal nature. The measured flow is also in agreement
with predicted tides in Buzzards Bay found in Eldridge
(2006) based on historical data. Because the flow
strength in the cross-shore direction is significantly
weaker, we omit it to simplify our discussion.

We first analyse the twelve hour period from March
13th 19:00 GMT to March 14th 7:00 GMT. From
figure 8(a), we clearly see for both gliders that the orbit
value fluctuates around the desired value. The feedback
control produced waypoints that kept the gliders near
the desired track. From 19:00 GMT to 23:00 GMT on
March 13th, the flow was perpendicular to the course
for we11 but was aligned with the course of we09
moving northeast. In the inertial frame, the effective
speed of we09 was larger than that of we11 which
implies that we09 would be catching up to we11. Indeed,
we see from figure 8(b) that the curve phase separation
between the two gliders decreased. The flow then
reversed its direction and reached its maximum speed
between 1:00 GMT and 3:00 GMT on March 14th.
From figure 7(a), we see that during this period, we11
was near the bottom right corner of the super-ellipse,
under the influence of strong flow, and we09 took a
‘‘shortcut’’ to the long side of the super-ellipse without
traversing the rounded corner. This caused a downward
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spike in we09’s orbit value as shown in figure 8(a) and
further decreased the curve phase difference as shown in
figure 8(b). Then between 3:00 GMT and 7:00 GMT we
see that the action of the controller restored the desired
curve phase difference. The controller planned a
‘‘wiggling’’ action for we09 and put we09 on orbit
with larger total curve length. This slowed down we09
and restored the desired pattern.
During the next period, we see large deviations from

the desired invariant pattern between 7:00 GMT and
13:00 GMT on March 14th. From figure 9 we see that

between 7:00 GMT and 13:00 GMT, the flow speed was
greater than the averaged glider speed at 20 cm/s. This
flow was perpendicular to the planned path for glider
we09. Following our previous discussions in x 6.1 about
the on-board navigation algorithm, we deduce that
we09 was not able to reach the planned waypoints. This
is confirmed by figure 10 where both the planned
trajectory and the actual trajectory are plotted for we09
during this period. The glider was carried inward
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towards the centre of the super-ellipse by strong

flooding flow. When the flow attenuated after 13:00

GMT on March 14th, the controller restored the desired

pattern. In figure 8(b), we observe the converging

transient of the controlled curve phase between 13:00

GMT and 16:00 GMT on March 14th. An overshoot is

produced because the control gain is selected to be high

to achieve faster convergence. In figure 8(a), we can see

that the orbit value of both gliders were manipulated

by the controller to restore the desired pattern. The

overshoot in curve phase difference corresponds to the

rapid increase in orbit value of we09 and decrease in

orbit value of we11.
We have observed similar patterns in the controlled

orbit value and curve phase difference from analysing

trajectories during other time periods. The control

algorithm and the GCCS performed reliably and

repeatably. We can conclude that tidal flow is a most

influential factor for the controller performance in this

experiment.

6.5 Discussions and future work

The ‘‘short-cut’’ action by we11 near a corner of the

super-ellipse is related to the fact that each glider

travelled along two straight line segments every

hour. The length of each line segment is long

compared to the radius of curvature at the rounded

corner of the super-ellipse used in Buzzards Bay.

Therefore, accurate tracking of the curve was not

achieved in this experiment. We note that the super-

ellipse in Buzzards Bay is much smaller than what

was used to study meso-scale ocean features such as

in the ASAP experiments discussed in x 5. For a

typical sampling application the dimension of a

super-ellipse will be measured in tens of kilometres.

In those applications the tracking performance will

be much better. Tracking performance can also be

improved by reducing the distance between way-

points, hence increasing the number of waypoints for

each dive. However, under disturbances such as

ocean flow, this might cause the glider to perform

unnecessary turns.
In future experiments, it is of interest to further

address the challenge of strong currents by incorporat-

ing a model for tidal flow in the GCCS. This

model should be able to predict the strength and

direction of tides so that the gliders can be controlled

to avoid moving against strong currents. For applica-

tions in which the gliders do not have to strictly stay

on the desired track, the motion of the gliders can be

planned to only compensate for the non-tidal portion

of the flow.
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Appendix A: The development of control law

We want to compute the time derivative of the

Lyapunov function in (26) along the controlled system

trajectory. To simplify the process, the time derivatives

of each term in equation (26) is computed separately.

We use fzi and fsj as abbreviated notations for fzi(zi) and

fsj(�j��jþ1).
First, similar to Zhang et al. (2004) and Zhang and

Leonard (2005), we have

d

dt
� log cos2

�i

2

� �
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where we let, for i¼ 1, 2, . . . ,N,
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and �1>0 is a constant. Next, for j¼ 1, 2, . . . ,N� 1,
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We also have, for j¼ 1, 2, . . . ,N� 1,
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We let, for i¼ 1, 2, . . . ,N,
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Then, for j¼ 1, 2, . . . ,N� 1,
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If we add equations (A1) and (A7) and sum over i and j,

the following term appears and can be simplified as

follows:
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where fs0¼ fsN¼ 0. We let, for i¼ 1, 2, . . . ,N,
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Li
sin�i þ 2

Pi

Li
rzik k cos2

�i

2

� �
ðA9Þ

so that equation (A8) vanishes. Then

_V ¼
XN
i¼1

��1

�i sin
2 �i
2

cos �i2

 !
þ fað�1Þv1

þ
XN�1

j¼1

�j

Lj
�

�jþ1

Ljþ1

� �
�vj
Lj

�
�vjþ1

Ljþ1
þ 2�fsj

� �
: ðA10Þ

We let, for j¼ 1, 2, . . . ,N� 1,

�vj
Lj

�
�vjþ1

Ljþ1
þ 2�fsj ¼ ��2

�j

Lj
�

�jþ1

Ljþ1

� �
ðA11Þ

and

v1 ¼ ��3fa �1ð Þ, ðA12Þ

where �2>0 and �3>0. Then

_V ¼
XN
i¼1

��1

�i sin
2 �i
2

cos �i

2

 !
�
XN�1

j¼1

�2
�j

Lj
�

�jþ1

Ljþ1

� �2

� �3fað�1Þ
2
� 0: ðA13Þ

From (A9) and (A2), we can derive the steering
control law as

ui ¼ �1i cos�i þ �2i sin�i � 2fzi rzik k cos2
�i

2

� 2� fsi � fsði�1Þ

� � 1

Li
sin�i þ 2

Pi

Li
rzik k cos2

�i

2

� �

þ �1 sin
�i

2
ðA14Þ

for i¼ 1, 2, . . . ,N. The speed control for the first particle
is given by (A12). Applying (A6) for i¼ 1, we have

�v1 ¼ v1 þ
�2
1

L1

@L1

@z1
rz1k k sin�1: ðA15Þ

Equation (A11) allows us to compute �vjþ1 from �vj, i.e.,

�vjþ1 ¼
Ljþ1

Lj
�vj þ 2�fsjLjþ1 þ �2

Ljþ1

Lj
�j � �jþ1

� �
: ðA16Þ

Then the speed control vjþ1 is found by applying
(A6) for i¼ jþ 1, and we have

vjþ1 ¼ �vjþ1 �
�2
jþ1

Ljþ1

@Ljþ1

@zjþ1
rzjþ1

�� �� sin�jþ1: ðA17Þ
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