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Cooperative Filters and Control
for Cooperative Exploration

Fumin Zhang, Member, IEEE, and Naomi Ehrich Leonard, Fellow, IEEE

Abstract—Autonomous mobile sensor networks are employed to
measure large-scale environmental fields. Yet an optimal strategy
for mission design addressing both the cooperative motion control
and the cooperative sensing is still an open problem. We develop
strategies for multiple sensor platforms to explore a noisy scalar
field in the plane. Our method consists of three parts. First, we
design provably convergent cooperative Kalman filters that apply
to general cooperative exploration missions. Second, we present a
novel method to determine the shape of the platform formation to
minimize error in the estimates and design a cooperative forma-
tion control law to asymptotically achieve the optimal formation
shape. Third, we use the cooperative filter estimates in a provably
convergent motion control law that drives the center of the plat-
form formation to move along level curves of the field. This control
law can be replaced by control laws enabling other cooperative ex-
ploration motion, such as gradient climbing, without changing the
cooperative filters and the cooperative formation control laws. Per-
formance is demonstrated on simulated underwater platforms in
simulated ocean fields.

Index Terms—Adaptive Kalman filtering, cooperative control,
cooperative filtering, mobile sensing networks.

I. INTRODUCTION

M ISSIONS that require measuring and exploring a scalar
field such as a temperature or a salinity field are encoun-

tered, for example, in ocean science and meteorology. Since the
scalar field is often distributed across a large area, it takes too
many sensors to obtain a snapshot of the field if the sensors are
installed at fixed locations. Mobile sensor networks are ideal
candidates for such missions: a small number of moving sensor
platforms can patrol a large area, taking measurements along
their motion trajectories. Exploration activities of great interest
include climbing gradients of a scalar field [1], monitoring en-
vironmental boundaries [2]–[5], patroling the perimeter of a re-
gion or a contour [6]–[12], and providing sampling coverage
over a large area [13]–[15]. Various methods are developed and
demonstrated in the above references.
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Mission design for a mobile sensor network requires a com-
bination of cooperative control and cooperative sensing. This
is because the nature and quality of collected information are
coupled with the motion of the sensor platforms. Therefore,
the challenges in developing successful sensing algorithms are
complementary to those addressed in earlier work on distributed
but fixed wireless sensor networks (c.f. review articles [16],
[17]). Recent theoretical and experimental developments sug-
gest that a balance between data collection and feasible motion
is key to mission success [15], [18], [19]. Finding an optimal
strategy is a challenging task.

In this paper, we present a general Kalman filter design for
mobile sensor networks to perform cooperative exploration mis-
sions. Exploration missions are frequently encountered in envi-
ronmental applications where the mobile sensor platforms are
commanded to measure an unknown scalar field corrupted by
(correlated) noise. Since each platform can only take one mea-
surement at a time, the platforms should move in a formation or
a cluster to estimate local structures of the field.

The Kalman filter combines sensor readings from platforms
in a formation to provide estimates for the field value and the
gradient. A separate cooperative filter is developed to estimate
the Hessian. We demonstrate that the formation shape can be
made adaptive to minimize the error covariance of the estimate
produced by the cooperative Kalman filter. We prove a set of
sufficient conditions that the formation and its motion need
to satisfy to achieve the convergence of the Kalman filter.
Derivation of these sufficient conditions is based on funda-
mental results connecting controllability and observability of a
(time-varying) filtering system to its convergence in [20]–[22].
More recent developments in [23]–[25] have relaxed the con-
ditions for convergence of Kalman filters to stabilizability and
detectability, with even weaker conditions for some special
cases. In this paper, we develop the sufficient conditions based
on controllability and observability conditions because the
resulting constraints on formation design are already mild
enough, hence are acceptable in typical applications.

Kalman filtering for mobile sensor network applications has
received recent attention in the literature. In [26], a distributed
Kalman filter method was proposed to decompose a high-order
central Kalman filter into “micro” filters computable by each
sensor node. The estimates made by each node are then com-
bined using consensus filters [27]. A similar approach is taken
in [28] to address target tracking and coverage problems. An-
other type of Kalman filter design is proposed in [29] where the
entire field is partitioned into cells and the movement of agents is
controlled to maximize collected information. The above con-
tributions assume that a (dynamic) model for a planar field is
known to all nodes, hence each individual is able to compute a
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Kalman filter. Accordingly, the goal there is to implement a dis-
tributed algorithm on many sensor nodes to improve tracking or
mapping precision.

For the cooperative exploration problem, on the other hand,
the field is completely unknown; a Kalman filter can only be
computed by combining readings across platforms. The interest
here is to take advantage of the Kalman filter design in order
to use a minimum number of sensor platforms to navigate in
the unknown scalar field and reveal its structure, e.g., to follow
level curves or gradients. In [30], an adaptive scheme using a
Kalman filter is developed for interpolating data to construct a
scalar field. This contribution addresses different problems than
in this paper and is complementary to our results.

In concert with our cooperative filter development, we de-
sign provable cooperative control laws to stabilize desired for-
mation shape and motion. There exist many contributions on
cooperative formation control that are closely related to graph
theory, c.f. [31]–[35], to name only a few. In this paper, we em-
ploy a different approach based on geometric reductions. The
Jacobi transform [36]–[38] is applied to decouple the motion of
the formation center from the motion of the formation shape.
Hence the control effort can also be decoupled into control for
the formation shape and control for the formation center. We de-
sign the shape control and the center control separately and then
combine them to get the overall control. The key benefit of this
approach is that it allows us to design formation shape control
to improve performance of the Kalman filter. The center of the
formation can be controlled to perform gradient climbing, level
curve tracking, or other motions while the Kalman filter and for-
mation control remains the same. For this reason we name the
Kalman filter associated with the formation control in this paper
the cooperative Kalman filter.

In this paper we control the center of the formation to track
level curves of a scalar field corrupted by noise; this is a col-
laborative exploration behavior that reveals structure in the un-
known field. The tracking control method is developed to steer
the center to follow its projection on a curve. This strategy was
first reported in [39], [40] and has been applied to curve tracking
for mobile robots, c.f. some recent developments in [41], [42]. A
differential geometric approach was developed in [6] which ex-
tended the tracking method to 3-D curves. The tracking control
law in the present paper is a generalization of the differential
geometric results to the case of 2-D level curve tracking. The
control law allows a formation to smoothly find and follow any
desired regular level curve with proved convergence.

The organization of this paper is as follows. In Section II, we
derive the information dynamics of a typical platform forma-
tion that moves in a planar scalar field. In Section III, Kalman
filtering techniques are applied to the information dynamics. We
establish sufficient conditions for the cooperative Kalman filter
to converge. We also show that the formation shape can be made
adaptive to minimize the error covariance of the estimates pro-
duced by the cooperative Kalman filter. In Section IV, we pro-
vide a method to estimate the Hessian, which is necessary for the
cooperative Kalman filter. Formation shape and orientation con-
trol laws are derived based on the Jacobi transform in Section V.
In Section VI, a steering control law is designed to control the
center of the formation to follow level curves of a planar scalar

field. We demonstrate the cooperative Kalman filter and the co-
operative control law in a simulated ocean temperature field in
Section VII. A summary and discussion for future directions are
presented in Section VIII.

II. INFORMATION DYNAMICS OF COOPERATIVE EXPLORATION

In this section, we define the cooperative exploration problem
and introduce the corresponding information dynamic model.
Let where be a smooth scalar field in the plane that
is unknown. In most practical situations, since the field is cor-
rupted by noise and the sensing devices are imperfect, it is dif-
ficult to estimate the field value using a single sensor platform.
The key idea for mobile sensor networks is to employ multiple
moving sensor platforms to obtain the necessary estimates co-
operatively and reduce noise. This requires the platforms to be
in a formation, moving and collecting information simultane-
ously.

In most applications, the sensor measurements are taken dis-
cretely over time. This is because the spatial range of the scalar
field is usually very large. Hence very small scale fluctuations
in the field should be filtered out as noise. Let the moment when
new measurements are available be where is an integer
index. To simplify the derivation, we do not consider the asyn-
chronicity in the measurements; we assume that all platforms
have new measurements at time . In reality, when there exists
asynchronicity, the technique we develop can still be applied
with slight modifications.

Let the positions of the sensor platforms at time be
where . We assume that the measurement

taken by the th platform is modeled as

(1)

where is the value of the field at ,
are i.i.d. Gaussian noise, and are spatially correlated
Gaussian noise. We define the following vectors:

(2)
and assume that and are stationary, i.e., their statistics
are time invariant.

Remark 2.1: By convention in ocean and atmospheric sci-
ences, modeling a physical field as a smooth field plus a
spatially correlated random field is often desired to sepa-
rate larger and smaller scale phenomena. The assumptions we
impose here are idealizations for physical scalar fields. In addi-
tion, the smoothness of field helps in developing Hessian
filters and motion control laws in later sections.

We define the problem of cooperative exploration, as a spe-
cial class of mapping problems, as follows:

Problem 2.2: Given the statistics of the noise and ,
co-design cooperative motion and filtering that utilize collected
measurements for mobile sensor platforms so that an esti-
mate for the field that minimizes an error metric can be
obtained.

The choice of the error metric depends on application. In
this paper, is chosen to be the mean square error over spatial
domain.
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To solve this problem, there is no need to take measurements
at every point in the plane. Sufficient knowledge of the field
can be gained by measuring (or estimating) the field value ,
the gradient , and Hessian at locations well distributed
across the plane and then interpolating the field. Note that this
problem can be defined for a time-varying field i.e. . In
this paper, we address the time-invariant case.

We address Problem 2.2 by deriving rigorous tools that are
particularly useful when there exist smaller regions within the
global area with unknown features that require high resolution
sampling; we do not attempt to address Problem 2.2 globally in
this paper. Our approach includes one development that focuses
on minimizing the local error collectively using the cooperative
Kalman filter and coordinated motion that controls the shape of
the formation. A second development focuses on a cooperative
exploration behavior, namely formation motion control for level
curve tracking. This contributes to reducing error at a some-
what larger scale than the filtering and even can contribute to
global reduction in error if multiple formations are distributed
throughout the region. Central to our approach is the decoupling
of the two developments, i.e., formation motion control can be
designed independently from formation shape control and the
cooperative Kalman filtering. Indeed the level curve tracking
can be replaced or augmented with one or more other collab-
orative exploration behaviors, such as wide-area coverage and
gradient climbing, to aid in global error minimization; further,
because of the decoupling these can be implemented without af-
fecting the local error minimization.

The function can be locally approximated by a Taylor
series. Let be the center of the platform formation at time

, i.e., . If is close to , then
it is sufficient to use the Taylor series up to second order. Let

, then

(3)

for . We are interested in estimates of ,
, and . In addition to providing insights on

the structure of the scalar field, these estimates are also used in
the steering control for the center of the formation, as shown
later in Section VI.

A. The Measurement Equations

Let . Let be the matrix
defined by

...
... (4)

Let be the matrix with its th row vector defined by
where is the Kronecker

product. For any 2 2 matrix , we use the notation to

represent a column vector defined by rearranging the elements
of as follows:

(5)

Then the Taylor expansions (3) for all sensor platforms near
can be re-written in a vector form as

(6)

where is a 4 1 column vector obtained by rear-
ranging elements of the Hessian as defined by (5).

Suppose that is an estimate for the Hessian
in vector form. Equation (1) can now be written as

(7)

where represents the error in the estimate of the Hessian.
Let , , and .
The noise is “colored” because it originates from the spatial
correlation of . Let . We suppose that

, and are known once the positions of the platforms
are known. This assumption is reasonable in ocean and meteo-
rology applications since the statistical properties of ocean fields
and atmospheric fields are usually known from accumulated ob-
servational data over a long period of time. We also assume that

determined by the accuracy of the Hessian estimation algo-
rithm is known.

B. The State Dynamics

As the center of the formation moves, the states
evolve according to the following equa-

tions:

(8)

Let and

. We then rewrite (8) as

(9)

where we have introduced the noise vector which
accounts for positioning errors, estimation errors for the Hes-
sians, and errors caused by higher-order terms omitted from the
Taylor expansion. We assume that are i.i.d Gaussian with
zero mean and known covariance matrix that is positive
definite.

Remark 2.3: We note that the assumption that is i.i.d
Gaussian with zero mean may be unrealistic. Simulation or
physical data will help to validate the assumption.

C. The Noise Dynamics

The noise in the measurement (7) is colored. The standard
technique (c.f. [43]) to handle this issue is to model as

(10)
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where is white noise with positive definite correlation ma-
trix . Because

(11)

we have

(12)

Remark 2.4: State equation (9) reveals the major difference
between the cooperative exploration problem considered in this
paper and the tracking/coverage problems considered in [26],
[28], [29]. Equation (9), fundamental to the cooperative explo-
ration problem, is only valid for the formation and does not
make sense for each individual node, since and de-
pend on the location of all platforms in the formation. Therefore,
the distributed Kalman filter algorithms for tracking and cov-
erage in [26], [28], and [29], which achieve consensus between
nodes and increase computational efficiency, are not applicable
here. The central problem here is to use the minimum number
of platforms with coordinated motion to estimate the field. For
this purpose, we design the cooperative Kalman filter in the next
section.

III. THE COOPERATIVE KALMAN FILTER

We observe from the information dynamics modeled by (9),
(10), and (7) that if the Hessian related term is known
for all , then the system belongs to the category for which
Kalman filters can be constructed. In Section IV we show that

can be estimated. Thus standard procedures can be fol-
lowed to obtain a Kalman filter, which will be called the co-
operative Kalman filter because it can only be computed by a
formation and its performance depends on the configuration of
the formation. Our main contribution in this section is to estab-
lish sufficient conditions that a formation must satisfy for the
cooperative Kalman filter to converge.

A. Cooperative Kalman Filter Equations

The equations for Kalman filters are obtained by canonical
procedures, the formulas are derived following textbooks
[43]–[45]. For the sake of clarity and convenience for later
references we list those formulas for the case when as
below:

1) the one-step prediction

(13)

2) error covariance for the one-step prediction

(14)

3) optimal gain

(15)

4) updated estimate

(16)

5) error covariance for the updated estimate

(17)

Here we use subscript to indicate predictions and to
indicate updated estimates.

In order to design a Kalman filter with colored measurement
noise , a well-known method devised in [46] can be applied
by defining a new measurement as .
This gives a new equation for measurements

(18)

The equations (9), (10), and (18) are now the state and the mea-
surement equations for the case when . The states are

, the output is , the state noise is , and the ob-
servation noise is

. The Kalman filter design procedure for this case can
be found in most textbooks and will not be repeated here.

B. Convergence of the Cooperative Kalman Filter

Kalman filters converge if the time-varying system dy-
namics are uniformly completely controllable and uniformly
completely observable [22]. In our case, these conditions are
determined by the number of platforms employed, the geo-
metric shape of the platform formation, and the speed of each
platform. We develop a set of constraints for these factors so
that the uniformly complete controllability and observability
conditions are satisfied, which then guarantees convergence of
the cooperative Kalman filter.

Let be the state transition matrix from time to
where . Then and

. The following lemma follows from direct calcula-
tion.

Lemma 3.1: For as defined above and as defined

in (4), we have, for , and

...
... .

Remark 3.2: Note that this lemma holds for both and
. It applies to formations with any shape and any motion.

For clarity, we restate the definitions for uniformly complete
controllability and uniformly complete observability in [22]
using notations in this paper.

Definition 3.3: The state dynamics (9) are uniformly com-
pletely controllable if there exist , , and
(independent of ) such that the controllability Grammian

satisfies

Authorized licensed use limited to: Princeton University. Downloaded on March 25,2010 at 23:52:03 EDT from IEEE Xplore.  Restrictions apply. 



654 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 55, NO. 3, MARCH 2010

for all . Here is
the covariance matrix for state noise .

Definition 3.4: Suppose for all . The state
dynamics (9) together with the measurement equation
(7) is uniformly completely observable if there exist

, , and (independent of )
such that the observability Grammian

satisfies
for all . Here and

are covariance matrices for noises and respectively.
Note that in these definitions, the “ ” is a relation between

two symmetric matrices such that if and only if
for any vector with compatible dimension.

If , the measurement equation is (18) instead of
(7). Then the observability Grammian is

where
and

(19)

The condition for uniformly complete observability is that for
all , .

In the following discussions, we derive constraints on the for-
mations so that the uniformly complete controllability and ob-
servability conditions are satisfied by showing that there exist
positive real numbers that serve as time-inde-
pendent bounds for various quantities. The actual value for these
bounds do not affect the correctness of our arguments.

For uniformly complete controllability the following lemma
holds.

Lemma 3.5: The state dynamics (9) are uniformly completely
controllable if the following conditions are satisfied:

(Cd1) The symmetric matrix is uniformly bounded,
i.e., for all and for some constants

.
(Cd2) The speed of each platform is uniformly bounded,
i.e., for all time , for ,
and for some constant .
Proof: Due to condition (Cd1), the controllability Gram-

mian satisfies and

for any and
such that . We first observe that is

a positive semi-definite symmetric matrix for each such that
. If we can find uniform bounds for each of these

matrices, i.e., , we obtain an overall bound for
the controllability Grammian.

We apply Lemma 3.1 to compute , i.e.,

(20)

where we define . The minimum eigen-
value of matrix (20) is

and the maximum eigenvalue is

Since (Cd2) is satisfied and is the averaged move-
ment over all platforms between time and , we must have

for all .
It is straightforward to show that assumes its minimum
value when . This minimum value is

. We can see that
. On the other hand, assumes its maximum value

also when . This maximum value is
, and . There-

fore, we conclude that
for all . Thus

. Let and . Since and
do not depend on , we have proved the uniformly complete

controllability claim using Definition 3.3.
By the arguments for proving Lemma 3.5, we have also

proved the following lemma.
Lemma 3.6: Suppose condition (Cd2) is satisfied. Then there

exist constants , , and such that the state
transition matrices satisfy
for all and for all .

To prove uniformly complete observability, we also need an
elementary lemma for which we do not show the proof.

Lemma 3.7: Suppose two 2 1 vectors and form an
angle such that . Then the minimum eigenvalue

of the 2 2 matrix is strictly positive,
i.e., .

We have the following lemma regarding uniformly complete
observability of a moving formation.

Lemma 3.8: Suppose for all . The state dynamics
(9) with the measurement equation (7) are uniformly completely
observable if (Cd2) and the following conditions are satisfied:

(Cd3) The symmetric matrices and are uniformly
bounded, i.e., and

for all and for some constants
.

(Cd4) The distance between each platform and the for-
mation center is uniformly bounded from both above and
below, i.e., for all , for

, and for some constants .
(Cd5) There exists a constant time difference and for all

, there exist time instances where
, as well as two platforms indexed by and , such

that one of the following two conditions is satisfied:
• (Cd5.1) The two vectors, and

form an angle that is uniformly bounded away from
0 or . In other words, there exists a positive constant

such that .
• (Cd5.2) The two vectors, and

form an angle that is uniformly bounded away from
0 or . In other words, there exists a positive constant

such that .
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Proof: Condition (Cd3) implies that is positive
semi-definite, and condition (Cd4) implies that every com-
ponent of is bounded above. Hence the matrix
is a positive semi-definite matrix with its maximum eigen-
value bounded above. Also from (Cd3), is a positive
definite symmetric matrix. Therefore, Weyl’s theorem (c.f.
[47], Theorem 4.3.1), which states the eigenvalues of the
sum of two Hermitian matrices are bounded above by
the sum of the two maximum eigenvalues and bounded
below by the sum of the two minimum eigenvalues, can
be applied to . This implies that there exist
positive constants such that

where and .
Thus, one must have

for all
. Next, we prove the existence of positive uniform upper

and lower bounds for for all
.

First for the upper bound, according to Lemma 3.1, we can
compute

(21)

The conditions (Cd2) and (Cd4) imply that each component of
the above matrix is bounded above. Hence there exists
such that .

We now use condition (Cd5) to argue that there ex-
ists the lower bound such that

. Consider the two time
instances indexed by and as given by condition
(Cd5). It is sufficient to show that the matrix defined by

satisfies .
Because , we have

where

(22)

By direct calculation one can verify that

(23)
Using Lemma 3.1 and the fact that , we
have

(24)

Then the matrix can be obtained by adding (23) and (24)
together. Considering the platforms and in (Cd5.1) and

(Cd5.2), we can further decompose as the sum of two ma-

trices: where with

(25)

and is a positive semi-definite matrix.
Because either condition (Cd5.1) or condition (Cd5.2) is sat-

isfied, according to Lemma 3.7, there exists such that
the matrix . Therefore, using Weyl’s theorem (c.f.
[47], Theorem 4.3.1) we conclude that there exists such
that . Then Lemma 3.6 guarantees the existence
of such that , which further implies that

.
Because both the uniform upper and lower bounds for the

observability Grammian exist for all , we
have proved the uniformly complete observability claim.

Remark 3.9: We do not need to give formulas for all the s in
conditions (Cd1)–(Cd5). The values for these s will not change
the fact that the filter converges, but only affect the speed of
convergence.

We now consider the case when the colored noise .
The following lemma establishes the sufficient conditions for
uniformly complete observability.

Lemma 3.10: The state dynamics (9) and (10) with the mea-
surement equation (18) are uniformly completely observable if
(Cd2), (Cd4), and the following conditions are satisfied:

(Cd6) The symmetric matrix is uniformly bounded i.e.
for all and some positive

constants and .
(Cd7) The matrix and the
matrix satisfy

and
for some positive

constants , , and .
(Cd8) The constants in (Cd2) and the constants
in (Cd7) satisfy for some positive
constant .
Proof: Condition (Cd6) implies that

and

.

Consider . Using Lemma
3.1 we have where

...
... . Therefore,

. Applying the Hoffman-Wielandt the-
orem ([47], Theorem 7.3.8), we have

(26)
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Thus using condition (Cd8), we have

(27)

Therefore is uniformly
bounded below, away from singular matrices. It is also uni-
formly bounded above by conditions (Cd2), (Cd4) and (Cd7).
Hence is uniformly bounded below, away from
singular matrices, and above.

With Lemmas 3.5, 3.8, and 3.10 justified, Theorem 7.4 in
[22] can be applied to prove the convergence of the cooperative
Kalman filter.

Theorem 3.11: (Theorem 7.4 in [22]) Consider the
time-varying linear system formed by the state equation
(9) and (10) with the measurement equation (18). If the system
is uniformly completely controllable and uniformly completely
observable, then the Kalman filter for this system converges.

The following theorems can be viewed as corollaries of The-
orem 3.11.

Theorem 3.12: Suppose for all . Consider the state
dynamics (9) with the measurement equation (7). If the con-
ditions (Cd1)-(Cd5) are satisfied, then the cooperative Kalman
filter given by (13)–(17) converges and the error covariance ma-
trix is bounded as .

Theorem 3.13: Consider the state dynamics (9) and (10) with
the measurement equation (18). If the conditions (Cd1)-(Cd2),
(Cd4) and (Cd6)–(Cd8) are satisfied, then the cooperative
Kalman filter for this case converges and the error covariance
matrix is bounded as .

C. Formation Design Principles

The conditions (Cd1)–(Cd8) have provided us the following
intuitive guidelines for formation design to yield successful co-
operative Kalman filters.

1) If , there is no penalty in fixing the orientation of the
formation, as long as the shape is nonsingular. A singular
formation occurs when all platforms are on a straight line
or collapse to a point. In fact, if the formation is singular
only occasionally, the Kalman filter will still converge.

2) If or a line formation is desired, then one should
make the orientation of the line change over time, such as
in a rocking or rolling motion.

3) The speed of the platforms needs to be bounded from both
above and below to guarantee the controllability and ob-
servability conditions at the same time. Such bounds de-
pend on the strength of the error covariance matrices.

4) In case of a correlated field, the relation between the size of
the formation and the speed of the formation should satisfy
(Cd8).

Fig. 1. Symmetric arrangement of a formation of four sensor platforms. We
design � and � to minimize the mean square error when constant Kalman
gain is adopted.

D. The Cross Formation and Steady State Error Covariance

As an example, we select a fixed coordinate frame formed by
unit vectors and and arrange four platforms in a symmetric
formation as shown in Fig. 1 so that

1) is perpendicular to ;
2) and

;
3) the vector is aligned with and the vector

is aligned with .
Then, in the lab coordinate frame

(28)
which have very simple form because of the symmetry.

We may design the steady state formation shape so that the
steady state error covariance of the cooperative Kalman filter
is minimized. In the case when for all , the error
covariance matrix satisfies the Riccati equation

(29)

The mission goal at steady state is to move the formation along
a level curve. Then consider (8): as , since

, we can replace by in (29)
as .

We then determine the steady state values of and that
minimize the error covariance. Suppose and as

. The following proposition holds.
Proposition 3.14: Suppose as , ,

, and . Then converges to
a diagonal matrix . The trace of is

(30)

where
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(31)

Proof: By direct calculation, one can verify that, as

(32)

As , is replaced by . Therefore, solved
from (29) is a diagonal matrix. By direct calculation, one can
verify that the trace of is given by (30).

Using the cross formation has simplified the procedure in
solving the steady state Riccati equation (29). The resulting
satisfies ; a minimum of can be found when

and assume value between . Finding analytical solu-
tions for the optimal values and that minimize re-
quires solving a fourth order algebraic equation, which is best
solved using numerical methods. Since there are only two vari-
ables to optimize, the problem is rudimentary for most numeric
packages.

We can then compute , , and . In the case
that the noise covariance , and are time-in-
variant, these computation can be performed “off-line,”
i.e., before any observations are made. Hence, a Kalman
filter gain can be given beforehand as

.

E. Adaptive Formation

The constant Kalman gain computed beforehand is based
on the assumptions on the steady state noise covariance. There-
fore, the steady state gain may only be suboptimal if the noise
covariances are time varying. If the constant gain is used,
the formation shape may be adjusted to achieve more accurate
Kalman filtering. Furthermore, if the regular Kalman filter gain

is used, we show the error covariance of the estimates can
be minimized by adjusting the shape of the platform forma-
tion, e.g., by changing and . Our method extends the adap-
tive scheme previously developed in [1] to minimize estimation
error based on instantaneous measurements.

It is well known that sub-optimal filters can be derived using
. For example, when , the update equation can be

. A unique prop-
erty of using multiple mobile sensor platforms is that we can
adjust and , by adjusting the geometric shape of the for-
mation, to minimize estimation error for this sub-optimal filter.
The resulting formation is then adaptive and the resulting filter
is more accurate.

Another well-known result for Kalman filter design
indicates that the error function to be minimized at
step is

. In fact, if and are
known, the gain that minimizes is exactly the Kalman
filter gain.

This formation can be made adaptive when the regular
Kalman gain is used. This is because by (15), since is
known, is a function of and . The resulting adaptive
formation and the estimates will minimize the cost function
at each step . Therefore, we modify step (3) in Section III-A:

(3A) Let be a function of
and i.e.

. Find
and so that the function

is minimized. Then let .
This new step is generally difficult to compute since and

are matrices. But as we have discussed, using symmetric
formations will greatly reduce the complexity.

F. Section Summary

The convergence of the cooperative Kalman filter algorithms
imposes constraints on feasible platform formations, and the
shape of the formation affects error in the filters. In order for
the cooperative Kalman filters to converge, formations should
be designed to make the filter systems uniformly completely
controllable and uniformly completely observable. Formations
with may need to rotate, but formations with
can have fixed orientation if the formation is not co-linear. The
formations can be adaptively adjusted on-line to minimize esti-
mation error. Symmetric formations help to reduce complexity
in theoretical analysis, computation, and operation.

IV. COOPERATIVE ESTIMATION OF THE HESSIAN

An estimate of the Hessian, , is needed to enable the
Kalman filter. At the end of the th time step, we have ob-
tained an estimate from the cooperative Kalman filter.
This includes an estimate for and an estimate

for . We outline the procedure to coopera-
tively compute as follows:

1) Start with an estimate or an initial guess .
2) Use a one-step filter to reduce noise in the new measure-

ments.
3) Compute .

A. Cooperative One-Step Filter to Reduce Noise

Using the computed estimates and , we can
make predictions, before the arrival of measurements at time
step , for the field value at the positions of the sensor platforms
that have moved from to as

. The error of the prediction compared to the true
value is Gaussian, i.e., . From properties of
the Kalman filter, the covariance of is
where is the error covariance in the estimate .

We then take new measurements at the th step using all plat-
forms. Let be the vector of the measurements and be the
vector of the predictions. Let the updated measurements be

(33)
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Such minimizes the cost function

(34)

As we can see, serves as the weighting matrix that balances
using the information from previous estimates and from current
measurements. The following proposition has been proved in
our previous work [48].

Proposition 4.1: The estimator given in (33) is unbiased with
error covariance matrix .

B. Cooperative Estimation of Hessian

Using the cooperative Kalman filter, we may obtain a predic-
tion for the as

(35)

Using the one-step filter we also have the filtered measurements
. If the number of the sensor platforms and the for-

mation is not co-linear, then since , one
may conjecture that the Hessian estimate can be solved, using
the least mean square method, as

. However, it can be shown that for , the matrix
is singular, hence the least mean square method will not

work.
We now introduce an alternative method to estimate the Hes-

sian that utilizes the relationship between the Hessian and the
curvature of level curves.

1) Curvature and Hessian: The level curve passing through
the center of the formation can be parametrized by its
arc-length , hence is constant for all values of .
Suppose the gradient does not vanish along the curve.
The unit normal vector to the level curve is defined as

, and at any given point, the
unit tangent vector to the curve, denoted by , satisfies

. Then we have the following Frenet-Serret
equations [49]:

(36)

where is defined as the Frenet-Serret curvature of the level
curve.

With this configuration, because along the
level curve, the derivative with respect to is

which implies
where is the Hessian of at

. Because is the unit vector along the -axis, in the Frenet-
Serret frame we have . This sug-
gests that we can obtain , the estimate for , by

(37)

where is the estimate for the gradient and is
the estimate for the curvature .

On the other hand, we have . Taking
derivatives on both sides of this equation with respect to , we
get . This
implies that . Therefore, the estimate

for is

(38)

The estimates and are elements of in the
Frenet-Serret coordinate system. Since the field is smooth,
we require . We also need to find out to
determine .

2) Algorithm to Estimate the Hessian: We show how to use
four sensor platforms to estimate the Hessian at . For ,
the algorithm can be used directly. For , the algorithm can
be extended by combining measurements from different time
instances.

Since the procedure only involves information for step , we
drop the subscript in this section for simplicity.

With a formation of four moving sensor platforms, we are
able to estimate for the level curve at the center of the
formation by the following steps:

(s.1) Compute an estimate of the field value and gradient
at the center using (35).
(s.2) Considering the formation defined by , and ,
obtain the estimates and at the center of this
three platform formation (Fig. 2) by solving the following
equations for , 3, 4:

where the are given by (33)
and is the estimate of Hessian taken from previous time
step. Let , , and

. Let be the 4 3 matrix with its

three row vectors given by
for , 3, 4. Then which implies
that .
(s.3) Along the positive or negative direction of , we
may find the point (Fig. 2) where using

.
(s.4) Estimate by solving the following equations for

, 3, 4:
.

(s.5) Repeat the steps (s.2), (s.3) and (s.4) for the formation
consisting of , and with appropriate changes in the
subscripts for points and (Fig. 2).
(s.6) Let , and denote the unit vectors along
the directions of the gradient , and . Define

, ,
, and . Obtain the estimate for

at as . Obtain the
estimate for according to (37).
(s.7) Approximate by

. Then using (38), the estimate
is .

(s.8) Solve
for where , 2, 3, 4.
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Fig. 2. Detection of a level curve using four sensor platforms. � denotes the
center of the entire formation. � denotes the center of the formation formed by
� , � and � . � denotes the center of the formation formed by � , � and � .
� and � are located on the same level curve as � .

The resulting matrix can be used directly as the estimate
for the Hessian at the th step. Or we may repeat steps (s.1)–(s.8)
starting from to get a new estimate for the curvature and
then to improve the estimate . The procedure becomes an
iterative numerical algorithm that solves the set of nonlinear
equations that , , and satisfy given for

, 2, 3, 4. The prediction from step provides a reason-
able initial value for this iterative algorithm.

V. FORMATION SHAPE AND ORIENTATION CONTROL

In this section, we show that by using a powerful tool called
the Jacobi transform, the formation shape and orientation dy-
namics can be decoupled from the dynamics of the center (or
the centroid) of the formation. Therefore, a formation shape and
orientation controller can be designed without considering the
motion of the formation center, and such a controller will not
affect the motion of the formation center. We can control the
formation to have fixed orientation or to rotate according to pre-
scribed angular speed around the formation center.

A. Formation Control With Fixed Orientation

We view the entire formation as a deformable body.
The shape and orientation of this deformable body can
be described using a special set of Jacobi vectors, c.f.
[37], [38], [50]–[52] and the references therein. Here, as-
suming that all platforms have unit mass, we define the
set of Jacobi vectors as , satis-
fying where
defines a linear coordinate transform that decouples the ki-
netic energy of the entire system, i.e.,

. We call the Jacobi
transform. This allows us to separate motion of the center from
shape and orientation changes. The transform is guaranteed
to exist. For example, when , the following definition of
Jacobi vectors may be used

(39)

Lagrange’s equations for the formation in the lab frame are
simply the set of Newton’s equations: where is the
control force for the th platform for . In terms of
the Jacobi vectors, these equations are equivalent to

(40)

where , and and are equivalent forces
satisfying

(41)

We design the control forces , , so that
as , where are desired vectors that define a
constant formation. For example, when , we want

(42)

where and are the two unit vectors defining the lab coor-
dinate frame in Section III-D, and and are the optimal values
determined by methods in Section III-D to minimize the steady
state error covariance. Since the controlled dynamics for are
linear, the following control laws guarantee the goal (42) with an
exponential rate of convergence:
where are constant gains. This control law design
method can also by applied to stabilize the adaptive formation
obtained in Section III-E with the assumption that the optimal
formation will not change very fast over time.

Comparing to existing formation control and stability results
for formation with fixed shape and orientation (for example,
[53], [54]), this controller is much simpler and its stability is
easy to prove. This is due to the fact that the reduced system is
linear after the Jacobi transform.

B. Formation Control With Rotation

When only two sensor platforms are available, if we control
the motion of the two platform formation such that the forma-
tion is rotating periodically, then the system will satisfy the ob-
servability condition and the Kalman filter will converge. The
difference between controller design in this section and in the
previous section is that the orientation of the platform forma-
tion will be changing.

The platform formation where there are platforms can be
described by the Jacobi vectors where .
The orientation of the collection of the Jacobi vectors in the in-
ertial frame can be described by an angle which is the angle
between a selected Jacobi vector and the horizontal axis of the
lab fixed frame. It does not matter which Jacobi vector to select.

Let the matrix be . We define vectors

as . Let be the angular velocity of the forma-
tion. Taking time derivatives on both sides of yields

. Take time derivatives again on both sides
yields

(43)

We then design and such that, for

(44)
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where is a constant vector and is a differentiable function
of . Then can be computed using (43).

Once we have designed the combined force to con-
trol the center of the formation, then the control forces ,

can be computed using (41). In Section VI,
we design so that the center of the formation tracks a level
curve. We note that our results in controller design for the
platform formations pertain only to the deterministic formation
dynamics; this certainty equivalence approach does not produce
optimal controllers with input noise.

VI. FORMATION MOTION CONTROL

In this section, we derive the equations governing a Newto-
nian particle moving in a scalar field. Then we design tracking
control laws so that a particle can be controlled to follow any
non-trivial level curve. The particle is identified with the center
of the formation so that a level curve tracking behavior is
achieved. Such level curve tracking behaviors complement gra-
dient climbing behaviors in cooperative exploration strategies
and help reveal structure in an unknown field.

A. Particle Motion in a Scalar Field

The center of the platform formation is modeled as a unit
mass Newtonian particle with its position represented by . The
system equation for the particle is Newton’s equation .
This equation can be written in an equivalent Frenet-Serret form
which is more convenient for the tracking purpose [14], [15].

We define the speed of the particle as and the acceleration
for as

(45)

Then the equation for speed control is

(46)

We let . As time , converges to unit
speed exponentially with a rate determined by .

We define a unit velocity vector as . We
define a second unit vector as the vector perpendicular to

that forms a right handed frame with so that and lie
in the plane of the page and the vector points towards
the reader. Then the steering control can be defined as

. Using the facts that

(47)

and , we have the following equations:

(48)

The equations (46) and (48) describe the particle motion in the
Frenet-Serret form. Equation (47) shows the equivalence be-
tween Newton’s equation and the Frenet-Serret form when

: once the speed control and the steering control are de-
termined, the total force can be determined.

Consider the smooth scalar field in the plane. With the
speed of the particle under control, we design a steering control
for the particle so that it will track a level curve of . The

procedure can be found in our previous works [14], [15]. Here
we briefly summarize and explain the results.

At any time instant , there is a level curve of passing
through . At this position , we let be the unit vector in
the direction of the gradient of the field , and let be the
unit tangent vector to the level curve. By convention, and

form a right handed coordinate frame with pointing
to the reader. This coordinate convention is identical to the one
used in Section IV-B to derive (36).

For convenience, we introduce a variable such
that and . Along the trajectory of
the center, it can be shown that
where , ,
and represents the Hessian of the scalar field . Mean-
while, along the trajectory of the center, the value of satisfies

.

B. Steering Controller Design

Suppose the scalar field has extrema which are
allowed to be infinity. Let be the derivative function of a
function so that the following assumptions are satisfied:

(A1) , where is a Lipschitz continuous
function on , and is continuously differ-
entiable on ;
(A2) and if ;
(A3) , , and
such that .

We design the control law to be

(49)
where is a constant control gain. We now assume that
the speed of the center is guaranteed by the speed con-
troller . Then the following proposition can be proved.

Proposition 6.1: Consider a smooth scalar field with bounded
Hessian and bounded gradient that satisfies except
for a finite number of points where or

. Under the steering control law given in (49),
we have and asymptotically if the initial value

and .
Proof: Let a Lyapunov candidate function be

. Then its derivative can be shown
as . Therefore, if
we have . The value of the Lyapunov function does
not increase. Because our initial condition is such that

, it is impossible for at
any time instant since otherwise goes to infinity.

By the invariance theorem for non-autonomous systems
([55], Theorem 4.4), we conclude that as

. will not go to because we have shown that
. This implies that as .

On the other hand, note that .
The right hand side is a uniformly continuous function of time
since is constant and is a smooth function with bounded
derivatives. Therefore, according to Barbalat’s lemma, must
vanish as . This implies that either or

. When , we know . According to our
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Fig. 3. Using two sensor platforms to track a level curve. The formation rotates
at constant angular speed.

assumption, goes to infinity at . Thus if we start
with , we must have for all time .
Therefore, the only possibility left is which implies
that .

VII. SIMULATION RESULTS

We first demonstrate the cooperative Kalman filtering and
level curve tracking control using two sensor platforms. The
potential field is generated by two identical positive charges in
the plane with added correlated noise. It is desired that the two
sensor platforms keep a distance of 1 unit length and rotate with
a constant angular speed. Fig. 3 shows snapshots of both plat-
forms and the trajectory of the formation center when tracing a
level curve. It can be observed that the trajectory of the center of
the formation is smoother than the actual level curve with spa-
tial noise.

The level curve tracking algorithm is applicable to adaptive
sampling using a mobile sensor network in the ocean. Adap-
tive ocean sampling is a central goal of our collaborative Adap-
tive Sampling and Prediction (ASAP) project [56]. The latest
ASAP field experiment took place in August 2006 in Monterey
Bay, California. Ten gliders were employed under continuous,
automated coordinated control to collect maximally informa-
tion-rich data for oceanographic research over the course of one
month. The success of this field experiment sets a precedent for
the usefulness of the kind of cooperative exploration represented
by level curve tracking. This motivated our second illustration
of level set tracking with four platforms in a model ocean field.

In order to test our current algorithms on realistic ocean
fields, we use a snapshot of the temperature field near Monterey
Bay produced by the Harvard Ocean Prediction System (HOPS)
[57]. This field reflects the temperature at 20 meters below
sea surface on 00:00 GMT August 13th, 2003. This field was
produced using remotely observed and in-situ data, including
glider measurements during the Autonomous Ocean Sampling
Network (AOSN) field experiment [18], [58].

Fig. 4. Tracking, in simulation, the temperature level curve of 13 � in an esti-
mated temperature field near Monterey Bay, CA on August 13, 2003. For visu-
alization purposes, the level curve is accentuated. The trajectory of the center of
formation is plotted with snapshots of the formation shown along the trajectory.
The horizontal axis corresponds to longitude and the vertical axis to latitude.

Fig. 5. Half distance (km) between platforms 1 and 2, i.e., the shape variable
�, versus time (hours).

Four platforms are employed to track a level curve corre-
sponding to temperature 13 . The trajectory of the formation
center and snapshots of the formation are plotted in Fig. 4. The
center of the formation is controlled to travel at 1 km per hour.
The orientation of the formation is adjusted so that the line con-
necting platforms 1 and 2 is aligned with the desired level curve.
The shape of the formation is adjusted to minimize the Kalman
filter error covariance. This can be observed from Fig. 5 where
we plot the half distance between vehicles 1 and 2, i.e. the shape
variable , versus time. Fig. 6 shows the estimates of the tem-
perature at the center of the formation versus time. One can see
that the estimates center around 13 with small error.

VIII. CONCLUSION

We have developed a cooperative Kalman filter that combines
measurements from a small number of mobile sensor platforms
to cooperatively explore a static planar scalar field. We show that
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Fig. 6. Estimate � � �� versus time (hour).

the combined estimates satisfy an information dynamic model
that does not depend on motion models of the platforms. Based
on this model, we have rigorously justified a set of sufficient
conditions that guarantee the convergence of the cooperative
Kalman filter. These sufficient conditions provide guidelines on
mission design. We show how to adapt the formation shape to
minimize error in the estimates. An algorithm has also been de-
signed to estimate the local Hessian, which enables the Kalman
filter and provides curvature estimates for steering control.

We take a geometric approach in formation control where re-
duction is performed on the total configuration space of the for-
mation using Jacobi vectors. The desired formation shape, ori-
entation and motion can be stabilized using simple controllers
with the help of the reduction method and the Jacobi transform.
Both the filter and the formation shape controller are general
for any number of platforms and arbitrary formations as long as
conditions for uniform controllability and observability are sat-
isfied. The filter and formation shape controller are combined
with a steering control law for the center of the formation to per-
form level curve tracking behavior with provable convergence.

There are open questions regarding the current results. The
error covariance of and are not theoretically character-
ized and rely on heuristics and simulations, and we have only
considered time-invariant fields in the plane. Hence, our on-
going work includes addressing the limitations, extending these
methods to fast, time-varying scalar fields in 3-D space, and
demonstrating the methods in experiments involving robotic
mobile sensor platforms.
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