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Abstract—We study stabilization of collective motion of impractical to expect every agent to interact with every other
N constant-speed, planar particles with less than all-to-all agent. For example, in engineering applications, communi-
coupling. Our interest is in circular motions of the particles cation constraints may limit the number of communication
around the fixed center of mass of the group, as has been . .
studied previously with all-to-all coupling. We focus on coupling links an_d in case of large number_s of agen'Fs, _com_plex
defined by a ring, i.e., each particle communicates with exactly €lectronics may be necessary to avoid communication inter-
two other particles. The Kuramoto model of coupled oscillators, ference. In biological models, it may be quite unreasonable
restricted to “ring” coupling, serves as our model for controlling  to expect that a single animal such as a fish can effectively
the relative headings of the particles. Each phase oscillator process the relative positions of hundreds of its neighbors.

represents the heading of a particle. We prove convergence to In thi id i fi d ficl
a set of solutions that correspond to symmetric patterns of the n this paper, we consider a kinematic modehbparticles

phases about the unit circle. The exponentially stable patterns that move at constant speed in the plane. The control is
are generalized regular polygons, determined by the sign of the distributed in that each particle can control its own heading

coupling strength parameter K. using feedback of its own sensor measurements. This model
was used in [2], [4], [5] to study collective motion of planar
particles, assuming all-to-all coupling among the particles,

The distributed control of collective motion of particlesi.e., assuming that each particle can sense the relative heading
is motivated both by innovative engineering application&nd relative position of every other particle in the group.
and by problems in modelling complex biological dynamics. In [2], [4], [5], control laws were proven to stabilize
A distributed control system can be much more robust tparallel motions of the particles and circular motions of the
individual agent malfunctions than a centralized control sysparticles about the fixed center of mass of the group. In [4],
tem. In an engineering application that involves interaction®], an analogy with phase models of coupled oscillators
among many agents, such as adaptive ocean sampling withs exploited to prove stabilization: each oscillator phase
autonomous underwater vehicles [1] or formation flying irrepresents the heading of one of the particles. The control law
unmanned aerial vehicles [2], it is desirable for the rest gfonsists of two terms, one that controls relative headings and
the system to continue operation even if a few agents get loe that controls relative spacing of particles. The model with
or are damaged. If the entire controller resides on a singly the relative heading control term is the Kuramoto model
agent or on a fixed outpost, the malfunction of that agent @f coupled oscillators with identical natural frequencies [6].
outpost renders the entire system useless. The relative spacing control term depends both on relative

Models of distributed control systems are also useful ifeadings and relative positions.
modelling biological systems such as the dynamics of animal In [7], the analogy with oscillator models was exploited
groups. Many animals that display coordinated groupinfrther to stabilize thesplay state formationa highly sym-
behaviors, such as swarming honeybees, schooling fish, ®etric formation defined by circular motion of all particles
flocking birds, do not have a well-defined leader. Modelon a circle of prescribed radius with all particles evenly
that take into account the numerous interactions betweé&paced on the circle. All-to-all coupling was assumed and
individual animals have been shown to display some of theigher harmonics of the phase differences in the coupling
same behaviors exhibited in nature [3]. function were used.

However, in both engineering applications and in biolog- In this paper, motivated by communication constraints
ical models, the number of interactions required for everglescribed above, we study stabilization of circular motions
agent to communicate with every other agent gets very largé particles in symmetric patterns (such as the splay state
as the number of agents increases. At these large numbdggmation) with less than all-to-all coupling and without
scaling of performance can become a problem and it may thégher harmonics in the coupling function. In particular, we

consider the coupling (communication) topology defined by
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I. INTRODUCTION



is described in Section II.
In Section lll, we discuss how the model with only 7 2 7 2
alignment control looks like the Kuramoto model of coupled
oscillators restricted to ring coupling. In Section IV, we
prove that all solutions converge to a set of symmetric 6
patterns of the phases about the unit circle. These patterns
are described by generalized regular polygons (see also [8]) 5 4 5 4
as presented in Section V. The sign of the coupling strength
parameteK determines which of the symmetric patterns are
exponentially stable. In Section VI, we add a relative spacing 7 2
control term and demonstrate with a simulation the particles
converging to a circular motion in a symmetric pattern about
the fixed group center of mass.

I1. PARTICLE MODEL WITH RING COUPLING 5 4

We investigate the dynamics of a systemMfparticles

that move in the plane at constant (unit) speed governed bBig. 1. Examples of communication topologie¥ £ 7). Each dot is a

the following system of equations [2]: particle and each Iine-seg_ment is a bidirectional communication link. a:
all-to-all. b: connected. c: ring.

i = % 1)

B = U @ the center of mass of the grolp= g 3} 1rj. The inner
wherek=1,...,N. re = X+1iyx € C ~ R? is the position of product is< 71,2z >= Re{z12}, 71,2 € C.
the K" particle, 8 € St is the heading of th&" particle, and ~ The average linear momentum of the group, defined as
Uy is the steering control input to tHé" particle. The (unit) N N
velocity of thek!" particle is given bye% = cos6y + i sin6y. Po=1 3 fi= 1 S etk
Define relative position variablagj = r—r; and relative N& N&
heading variablesy; = 6 — ;. Then, as in [2], [4], [5] We v 4 key role. Parallel motion is characterized jmyl = 1,

consider a controli that is the sum of two terms, the first ji5 1 ayimal value, and circular motion is characterized by
an alignment term that depends only on relative headin Be| — 0, its minimal value. It was observed in [4], [5]

and.t.he second a spacing tgrm that depend; only on relatiyg,; pe is equal to the complex order parameter for the
positions and relative headings. In the previous works, allase model, defined as the centroid of the phases. This can
to-all coupling is assumed and the control takes the form:be interpreted as parallel motion, or maximal group linear

u = Uilign(ekj)+Uipac(rkj76kj) mome_ntum, corre_sponding tp synchronizgtion of the phases
N (headings) and circular motion, or zero linear momentum,
= _K Z sin6k1+uﬁpac(rkj,9kj) () correspondi.ng to a distribution of phases (headings) with

N & zero centroid.

However, the control law (3) requires that every particle
n communicate with every other particle. In this paper we
nsider a control law with coupling (or communication)
topology that is not all-to-all but is stilconnected By
. KN connected, it is meant that every particle is linked, via at
O = N le'neki least one path of arbitrary length, to every other particle. The
= connected topology that we consider igray coupling topol-
which is the Kuramoto model for coupled phase oscillatorggy defined such that each particle communicates (in both
with identical (trivial) natural frequencies [6]. directions) with exactly two other particles. In particular, the
For K > 0, with an appropriate spacing term, stabilizatiorkt" particle communicates only with th&— 1)™" particle and
was proved for parallel motion of the particles with somehe (k+ 1)I" particle, fork=1,...,N. All indices are taken
average inter-vehicle relative spacing. Rér< 0, circular modulo N, i.e., particleN + 1 is identified with particle 1
motion of the particles was proved with prescribed radiuand particle 0 is identified with particl. See Fig. 1.
about the fixed center of mass of the particle group. The

whereK is a scalar coupling strength parameter. Note that
in the case without the spacing term, the controlled headinzgz
dynamics become, fdk=1,...,N,

spacing term used in [7] is I1l. RING-COUPLEDALIGNMENT CONTROL LAW
uipac: —@e(14 K < i, Fx >) (4) Using notation from algebraic graph theory, the communi-

cation topology for a network can be represented as a matrix.
where x > 0 is a gain,we = 1/pe and pe is the constant The incidence matriB of a graph withN nodes ana edges
desired radius of the circle of rotation. The veatpe=T,—R is defined in [9] as thé x e matrix whereB;; = —1 if edge

is the position of thei" particle relative to the position of j leaves nodé and Bij =1 if edgej enters nodé. Bjj =0 if



edgej does not connect to node Note that the incidence of (8), i.e., there is ar§' set of solutions corresponding to

matrix also includes the orientation of each edge. 6. Equivalently, because the control law depends only on
The incidence matribB for the ring topology defined in relative headings, the dynamics are invariant to a rotation

Section Il is a square matrix sind¢ = e. We arbitrarily of the group of particles as a whole, i.e., there is $in

choose an orientation for each edge, although the edges ayenmetry. The direction of this symmetry is given by the

really undirected, and compute vector 1e.

Now define an arbitrary anglgy € St. Then, ¢ satisfies

-1 0 0 0 1 . .
1 -1 0 0o o (9) if and only if
5 0 1 -1 0 0 ) ¢ €{do,t— o}, i=1,...,N. (12)
0 O Let M < N be the number of components ¢f which are
0 0 0 1 -1 0 equal togo. Then, an equilibrium of this form satisfies (10)
0 0 0 0 1 -1 if and only if
B has rankN — 1 and the one-dimensional null space is Mdo + (N —M)(x — ¢o) = 2nm (12)

spanned by the vectdf = (1,1,...,1) ¢ RV. _ _ _
The alignment control law that we propose is the alignfor some integen. If M 7 N/2, then (12) is equivalent to

ment control in (3) restricted to the ring coupling: any term 2n+M—N
sinfy; in (3) is set to zero if there is no edge betwdeand Po=—"Sv N (13)
> j I g _ _ 2M —N
j. Following [10], this restricted alignment control law can . )
be written as for some integem. For example, ifN = M then ¢o must
K_ . i
u=—<Bsin(BT9), 6 Sausty or
N Po=n-— (14)

where u = (ug,...,un). Define the N-dimensional vector . . . N ]
¢ =BT6. ¢ = (¢1....,¢n) is the vector of relative head- for some integen. If we identify ¢o with ¢o+2mnz wherem

ings between pairs of particles that communicate. The teri @1y integer, then the condition (13) yields a finite number
sin(BT6) denotes theN-dimensional vector withii" element of sets of equilibria, parametrized by the finite number of
equal to sim;. Although B signifies a directed graph, the Solutionsgo of (13) for eachN andM # N/2.

presence of botB andBT in Eq. (6) results in an undirected !N the caseM = N/2 (which requires thall be even), then

structure so that condition (12) becomes

) K ) N

Oc= — [SIN(Bk— Oc-1) +sin(Oc— B-1)],  (7) SU=2n (15)
for all k=1,...,N, as desired. for some integen. Condition (15) is equivalent tdl = 4n.

Before including the spacing control term, the controlled his means that there are equilibria fist = N/2 only in
system becomes the case thal is an integer multiple of 4. We note that in
K this case there are an infinite number of sets of equilibria
o — —NBsin(BT 0), (8) parametrized by € S'.

Next we prove that all solutions of (8) converge to the set
wheref = (6y,...,6n) andB is defined by (5). This is the of equilibria defined above. In other work, where all-to-all
Kuramoto model of coupled phase oscillators (with identicakoupling is assumed, we ubgy_to_a1(6) = N/2|pg|? in the
trivial natural frequencies) restricted to the ring topology. Lyapunov function (see, for example, [7]). Note that

IV. STABILITY ANALYSIS AUa—t0—ail(0) KN |
. . » o —Kiz——zsmekj,
In this section we study stability of the equilibrium solu- a6k N =1
tions of the system with ring coupling and alignment contro| , . . , . .
only as defined by (5) and (8). The configuration space c‘)’}!h'Ch is the alignment control law (3) in the case of all-to-all

: ! coupling.

N
the system (8) IS the\ torus, T™. We first compute the Here, with ring coupling, we use a generalizationmf,
equilibrium solutions of the system (8). These correspond tg .~ " - ; .

N IO Similar in spirit to the Lyapunov function used in [10]. We
values of6 € T" such that sig is in the null space oB. '

; . , : . . define
That is, 6 is a fixed point of (8) if and only if K K e
T T
sing = ale, Q) u(e) = _Nle cosB' 0 = N Zcosq). (16)

1L ¢ = 27n, (10)

Then, the control (6) is a gradient control and the controlled
both hold where¢p = BT, « € R and n is any integer. ring-coupled system (8) a gradient system since
Eg. (10) ensures that any solution is compatible with ring ou(6) K

i i i N U= ——-~=——Bsin(B"9). 17)
coupling. Given any solutior0 € T" and constant angle 90 N
B € S, it holds that® + 1. € TN is also a solution



Theorem 1:Consider the system (8) witl® ¢ TN and of equilibria is exponentially stable. K > 0 then allN —
ring coupling defined by the incidence matixof (5). Al 1 nonzero eigenvalues are positive and so the equilibrium
solutions® in TN converge to the sé& of equilibria defined set is unstable. Now suppose thgtc (—x/2,7/2) so that
by (9)-(10). These fixed points are given by (11). Mt cosg > 0. In this case, iK < 0 the equilibrium set is unstable
be the number of components of= BT 6 which are equal since there arél — 1 positive eigenvalues and i > 0 the
to ¢o € St. Then if M # N/2, ¢o must satisfy (13) for some equilibrium set is exponentially stable since there ldre 1
integern. In the case tha¥®l = N/2 thenN must be an integer negative eigenvalues and one zero eigenvalue corresponding
multiple of 4 in which casey € S' in (11) can be arbitrary. to the symmetry direction. In the case thigt= 7/2-+mmr, m

Proof: Consider the functioiJ (6) defined by (16). some integer, caf = 0 and the Jacobian is the zero matrix.

Then, If M #N, thengj = ¢ € St and ¢; = 7 — ¢ for somei #
_ U(8) . K.+ Ko . & j. Therefore, cog = —cosp;. Suppose tha$; # n/2+mr
U(O)=—5" 0= {NBsm(B 9)] : [NBS'H(B 8)|.  for any integerm. Let z=sgn(cos¢)). Then, the Jacobian
18) becomes K
For K # O this yieldsU(6) = —X;676 < 0. Since TV J = —; cospoBdiagZ)BT (20)

is compact, by LaSalle’s Invariance Principle all solutions

converge to the largest invariant set for whiéh= 0, i.e., Note thatz = —z; which implies that at least one eigen-

the set of equilibricE. B value of J will be positive for anyK # 0. To see this,
We next prove which equilibria in the sEtare exponen- assume without loss of generality that= —1 andzy = 1.

tially stable and which are unstable in the c&e: 0. We Let Y = Bdiag(z)B'. Let w= (1,0,...,0,2) ¢ RN andx =

do the same for the cage> 0. (2,0,...,0,1) e RN. Thenw"Yw=4>0andx'Yx=—-2<0
Theorem 2:Consider the equilibria in the sé& defined and soY is indefinite. Thus, for any choidé€ # 0 there will

in Theorem 1. IfK # 0, then any equilibrium wittM N  be at least one positive eigenvalue of the JacobBiand the

is unstable. Now supposkl = N, i.e., consider equilibria equilibrium set will be unstable. ]
of the form ¢ = ¢o, i = 1,...,N, where ¢o = ¢ + 2n,
¢o € [—m/2,3n/2), n some integer andyy satisfies (14). V. GEOMETRY OF STABLE EQUILIBRIA

Then, for K < 0, the corresponding® set of equilibria
is exponentially stable ifyp € (7/2,37/2) and unstable if
¢ € (—m/2,7/2). For K > 0, the corresponding' set of
equilibria is_exponentially stable o € (—n/2,7/2) and
unstable if¢p € (7/2,3n/2). If K0 and¢o = w/2+ mn

for some integem, then all eigenvalues of the linearization ; : .
are zero. line between every pair of points that are coupled. The graph

Proof: First we find the Jacobian for the system (8)rﬁprese.r|1_t§ _the f quilib.riun."n rSS Olgti\?nh-lwa.lt also glustr{a'Fes
where — f(0) and f(8) — —%BsinBTe. Using ¢ — BT 6, t e equilibrium ormatlonll E(2)" (headings an posmons.
in the plane for each particle) that corresponds to the solution

In this section we examine the geometry of the equilibrium
values of6 € TN (equivalentlyg € TN) that were proved to
be exponentially stable in Theorem 2. To draw the graph
of 6, we plot a point for each particle=1,....N at the
equilibrium heading angl®y on the unit circle and draw a

we compute N : T :
¢ € T™ when the particles are also circling the fixed center
_ ﬂ _ ﬂgﬁ _ —EBdiag(cosqb)BT. (19) of mass of the group. See Figure 2 for examples. .
a6  d¢ Jo N All of the equilibria that were proved to be exponentially

The matrix BB' is called the Laplacian for the graph stable in Theorem_2 corre_spondgeneralized regular poly-
defined by the incidence matri, i.e., for ring coupling 9°NS In [8], a cyclic pursuit strategy was used to contkol
[9]. It is a symmetric, positive semi-definit& x N matrix agents in the plane and equilibrium formations were shown

with rank N — 1. Thus, all its eigenvalues are real and© € generalized regular polygons. o
positive except for one zero eigenvalue. The eigenvector Following [11], [8], letd < N be a positive integer and
corresponding to the zero eigenvaluelis Thus, the zero definep=N/d. Lety; be a point on the unit circle. L&ty
eigenvalue corresponds to the rotational symmetry, i.e., f&€ Clockwise rotation by the angje=2z/p. The generalized
every equilibrium value of there is a circle of equilibria Fégular polygon{p} is given by the points;i 1 = Ryyi, i =
corresponding to the arbitrariness in the choicedp S'. 1,...,N—1 and edges between poinitsand I+ 1 fori=
Consider the case thd =N and ¢; = ¢o, i = 1,...,N, 1,...,N. The _polygon{N/l} is c_aIIed anordinary regular
wherego = ¢o+2n7, 9o € [~7/2,37/2), n some integer and polygonand its edges do not intersect; see, for example,

9 satisfies (14). Since didgosg) — In cosdo, wherely is ~ 19/1} in Figure 2. Ifd > 1 andN andd are coprime, then the
the N x N identity matrix, the Jacobian is edges intersect and the polygon istar as in the examples

{9/2} and{9/4} of Figure 2. IfN andd do have a common
J= _K cospoBB'. factor| > 1, then the polygon will consist df traversals of
B N the same polygon withl/I vertices and edges, s§¢8/3} in
Suppose thaty € (n/2,3n/2). Then cogp < 0. If K <0 the figure. In the casgé= N the polygonN/N corresponds to
then all eigenvalues of are negative, except for the zeroall particles at the same point. In the case tias even and
eigenvalue corresponding to the symmetry and saStheet d = N/2, then the polygon is a line with points corresponding



V1. RING-COUPLED SPACING CONTROL

In this section we consider the cae< 0. Recall that
the exponentially stable equilibria for the phases (with the
likely largest regions of attraction) correspond to the anti-
synchronized case in whicllp = = for N even and¢gg =
n(N+1)/N for N odd. We add a control term for spacing
so that we can drive the particles to a steady circular
rotation about the fixed center of mass of the group with
radius prescribed by, > 0 and phases (relative headings)
corresponding to the exponentially stable case. Consider the
spacing term (4) used in [7]:

U= —we(14 K < i, i >) (21)

wherex > 0, we = 1/pe. The vectorrg is the position ofkth
particle with respect to the center of mass of the group, i.e.,

{9/3} {9/4}

" 1 X 1
rk:rk—R:rk—Ner:N Ikj- (22)
=1

T =

Fig. 2. Regular polygons of typ€9/1}, {9/2}, {9/3}, and {9/4}. Types
{9/1} and{9/2} are exponentially stable fd¢ > 0 and unstable foK < 0.

Types{9/3} and {9/4} are exponentially stable fdt < 0 and unstable for hi . | . I I i
K > 0. ForK < 0, {9/4} appears to have the largest region of attraction. 1 NIS Spacing Contro_ term requires all-to-all coupling. In
the case of ring-coupling, the vectarg are only measured

for j =k—1 andj =k+1. So, each particle does not have
enough measurements to exactly compute the center of mass

to an even index on one end and points corresponding to 8h € group. _ ac
odd index on the other end. We propose a spacing control teuf(‘f’ of the form (21)
] _ where R is replaced in the control law with an estimate
In Theorem 2 it was shown that exponentially stablgy _ Re(M_1,T, Nke1) Of the center of mass of the group.

1

equilibrium are of the formy = ¢o, i =1,...,N, wherego = Each particle makes it own estimate of the center of mass of
n(2z/N), n some integer. These correspond to generalizefle group as if the two particles with which it communicates
regular polygons{N/d} whered =n, i.e., y = ¢o. were already anti-synchronized. Thus, the estimate gets bet-

For K < 0, the exponentially stable equilibria corresponder as the phase differences of the communicating particles
to % <d< 3TN- ForK > 0, the exponentially stable equilibria 9et closer to the anti-synchronized state. The estimated center
correspond to & d <  and 3 < d < N. For example, in the Of mass for each particle is
caseN =9, the equilibria corresponding to regular polygons kil
{9/3}, {9/4} {9/5}3 _an_d{9/6} are ex_ponentially stable for Re = }rkJr} Z r.

K < 0 and the equilibria corresponding to regular polygons 4 4j: -1

{9/1}, {9/2}, {9/7}, {9/8} and {9/9} are exponentially

stable forK > 0. Note that wherN is an integer multiple Numerical simulations suggest that a control law using this
of 4 andd = N/4 thengo = x/2 and all eigenvalues of the estimation of the center of mass can effectively stabilize
linearization are zero. This is also the caseder 3N/4 and ~ circular motion. Although the particles always converge to
¢o = 31/2. circular motion in simulation, certain initial conditions can

For K < 0 ical simulati t that th lead to long transient behavior.

_or £ <9, humerical simufations suggest that the con- Fig. 3 shows the results of a simulation using this spacing
figurations with the largest regions of attraction are, lfor .

) . control term withK = —1, we = 1/5, k = 0.1, andN =
even, those with=d =N/2, i.e.,¢o = &, and forN odd, . . . .

. - ) 9. Heading control is the same as used in the previous

n=d=(N+1)/2,i.e.,¢o=xm(NL1)/N. This is consistent . S o 5
with intuition since the cas& < 0 corresponds to an “anti- section, except that the gain in this case is giveniag.
svnchronizing” control. In thz case oﬂp— 9 this is the The simulation used a simple Euler approximation to the
);I on {9/49]{ (and 9/'5 which looks Iik_e 9/4} with a differential equations describing the system, with a time
per)r/gutation of the ir{1dice}s) { step of 0.1 time units. Initial positions and headings were
P ' randomized and the system was simulated for 600 time

For K > 0, numerical simulations suggest that the configunits (6000 iterations). The long transient trajectories in
urations with the largest regions of attraction are the cadbe figure are due to the fact that each particle is only
n=d=N, i.e., ¢o = 0, corresponding to the synchronizedcommunicating with the two particles that are farthest away
state. This is consistent with intuition since the c&se 0 from it. Thus, spacing adjustments between adjacent particles
corresponds to a “synchronizing” control. are only made indirectly.



higher harmonics, we break discrete symmetries by reducing
the coupling (i.e., to ring coupling).

We also add a control term to regulate the relative spacing
1 3 of the particles and drive the particles to a circular motion
of prescribed radius about the center of mass of the group.
This control term is the spacing control term used in [7]
0 except that each particle uses only an estimate of the center
5 of mass of the particle group since it only measures the

4 relative position of two other particles. In future work we

-5 will analyze the controlled, ring-coupled system with both
7 5 alignment and spacing control terms.

O
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