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Abstract

Motivated by interest in the collective behavior of autonomous agents, we lay foundations
for a study of networks of rigid bodies and, specifically, the problem of aligning orienta-
tion and controlling relative position across the group. Our main result is the reduction
of the (networked) system in the case that two individuals are coupled by control inputs
that depend only on relative configuration. We use reduction theory based on semi-direct
products, yielding Poisson spaces that enable efficient formulation of control laws. We ap-
ply these reduction results to satellite and underwater vehicle dynamics, proving stability
of coordinated behaviors such as the case of two underwater vehicles moving at constant
speed with their orientations stably aligned.

1 Introduction
In this paper we examine symmetry and reduction in rigid body networks for which coupling is
provided by control inputs that depend only on the relative configuration (orientation and posi-
tion) of the rigid bodies in the network. We have in mind systems of vehicles such as satellites,
underwater vehicles and helicopters, and consider the problem of aligning the orientations of all
vehicles in the group while they move as in Figure 1. Control algorithms for individual vehicles
of this kind have been previously studied in [1, 15]. Here we focus on control of networks
consisting of two rigid bodies, and we discuss at the end of the paper how these results may be
extended to networks of larger numbers of rigid bodies. Our goal is to provide a comprehensive
study of the coupled two-body system and contribute to laying the foundations for future work
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Figure 1: Schematic of the orientation problem for two underwater vehicles.

on coordinated control of relative orientation and position across networks in more general set-
tings. Other recent work on the control of networked mechanical systems has recently appeared
in [12] and [13].

The class of control inputs that we address to couple the rigid bodies derive from artificial
potential functions. In contrast to the simplified setting presented in [10], our potential func-
tions are interpreted as breaking certain symmetries, namely those associated with the relative
configurations of the individual bodies. The most obvious symmetry present in a group of rigid
bodies is associated with the invariance of the dynamics to the absolute position and orientation
of the group. One may use this system symmetry to factor out the explicit position and orienta-
tion of each individual rigid body in space and only retain information on the relative positions
and orientations within the group; this passage from the dynamics on the original phase space to
simpler dynamics on the smaller (reduced) phase space is the essence of mechanical reduction
[8].

The control law we present is formulated in terms of (artificial) potentials on the reduced
phase space and this allows for achievement of any prescribed relative orientation (and position).
In the analysis, the kinetic energy in the Hamiltonian remains in a general form and needs only
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be specified once the theory is applied to a particular kind of rigid body dynamics. In this paper
we apply our results to both satellites and underwater vehicles. We prove conditions for stability
of the controlled coupled dynamics in each case, paying special attention throughout the paper
to the important case of control laws that align the (three-dimensional) orientations of the rigid
bodies as in Figure 1.

There are a number of advantages for control design and analysis that come from the reduc-
tion derived here. These include the reduced dimensionality, and thus complexity, of the sys-
tem, the simplification in the equations of motion for a given Hamiltonian and, importantly, the
derivation of a Hamiltonian structure for the reduced system complete with Casimir functions
which can be readily used in the study of stability and stabilization of the controlled network.
In future work, interaction with the environment and/or prescription for a group objective can
be re-interpreted as breaking the symmetries we use in this paper to reduce the phase space.

Our effort here is motivated by the problem of coordinated control of groups of rigid body
systems and vehicles. The study of control laws for groups of autonomous vehicles has emerged
as a challenging new research topic in recent years. There are currently few examples of, and
yet many possible applications for, groups of highly autonomous agents that exhibit complex
collective behavior in the engineered world. Researchers in this area are finding much inspira-
tion from biological examples. Animal aggregations, such as schools of fish, are believed to use
simple, local traffic rules at the individual level but exhibit remarkable capabilities at the group
level.

Numerous researchers have attempted to model animal aggregation with each agent consid-
ered as a point mass (see, for example, [14, 19]). Likewise in engineering applications, group
control problems are often formulated with point-mass vehicle models (e.g. [3, 4, 7]). Less of-
ten, the individuals are modelled as rigid bodies in three-dimensional physical space. Here, we
consider a group in which individuals are modelled as rigid bodies from the outset. We note that
a close biological analogue to this system, that of a school of fish, is believed to maintain group
cohesion through each individual’s desire to match the speed and direction of nearby fish, and
to be surrounded by a certain amount of open space (see [16]).

We note that there is a natural connection between coordinated rigid body networks and
multi-body dynamics problems; the former can be made to resemble the latter by imposing
control inputs that artificially couple the individuals so that the network functions as one large
multi-body system. Our aim in this paper is to realize this connection and develop a framework
for analysis and design of coordinated rigid body networks in which we can make best use of
tools and results from mechanics.

Problem Setup Throughout this paper we shall make much use of the modern theory of
geometric mechanics (see [8] for a detailed and readable exposition)). In doing so, we shall
often refer to the Lie groups SE(3) and SO(3); the former, the Euclidean group (or group of
rigid motions) globally describes the position and orientation of a rigid body while the latter,
the Special Orthogonal group (a subgroup of SE(3)), describes the orientation alone, mapping
body coordinates into inertial coordinates. We shall also make use of the respective Lie algebras
and their dual spaces se(3)∗− and so(3)∗−, on which we choose the ‘lower sign’ Poisson structure
(see [8], Chapter 9 for an exposition of Lie groups and their associated Lie algebras).
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In our general problem, we consider N rigid bodies (vehicles), each with configuration
space SE(3) (or some subgroup of SE(3)) so that the configuration space for the network
is SE(3)N = SE(3)× ·· · × SE(3). The phase space for the network can be described by the
cotangent bundle T ∗SE(3)N , and the dynamics are Hamiltonian dynamics given a Hamiltonian
function H : T ∗SE(3)N −→ R.

We examine, in depth, the problem of N = 2 and discuss at the end of the paper extensions
to N > 2. For N = 2 we consider two rigid bodies labelled A and B. An element in the system
configuration space SE(3)×SE(3) is given by (RA,bA,RB,bB), where Rk ∈ SO(3) and bk ∈ R3

describe orientation and position of body k. A schematic of this problem setup is presented in
Figure 1.

We consider in this paper three general settings motivated by applications. Each case de-
scribes a system that moves in three-dimensional space (but which can be specialized to motion
in two dimensions). The key idea is that the dynamics of the network are invariant to the
global position and/or orientation of the group as a whole; we interpret this as the dynam-
ics being invariant under the continuous symmetry G = SO(3), G = SE(3) = SO(3)×δ R3 or
G = SO(3)×δ (R3×R3) (where ×δ denotes the semidirect product induced by the canonical
action δ : SO(3)×R3 −→ R3 in the former case and by the diagonal action δ : SO(3)× (R3×
R3)−→ R3×R3 in the latter case) as appropriate.

The most general case we consider is motivated by the problem of designing stable con-
trollers to align the rigid bodies in the group and to fix their relative positions. The way to take
advantage of the lack of dependence of the dynamics of the network on its global position and
orientation is to reduce T ∗SE(3)× . . .×T ∗SE(3) by the (left) diagonal action of SE(3). For
N = 2, dividing out the 6-dimensional symmetry group G = SE(3) from the 24-dimensional
phase space T ∗SE(3)×T ∗SE(3), yields the 18-dimensional reduced phase space

T ∗SE(3)×T ∗SE(3)/SE(3)
∼= (se(3)∗−× se(3)∗−)×SE(3) = t∗−, (1)

where the remaining copy of SE(3) contains the relative position and orientation of one body
with respect to the other. The isomorphism and the direct product on the right hand side refer to
the manifold character of the sets involved and not to the group structure (in fact, the left hand
side does not even come equipped with a group structure). We call this Case C and furthermore
consider explicitly two simplifications of this setting, each interesting in its own right, where
the concepts introduced are simpler to describe.

The first simplified setting is the case studied in [18] in which we not only abstract from the
absolute positions of the two rigid bodies, but also from their relative position. We thus consider
control inputs that depend only on the relative orientation of the individual bodies, thereby
seeking orientation alignment of the two individuals but not relative position alignment. To this
end we again reduce the left action of a Lie group G but instead of G = SE(3), the semidirect
product of SO(3) with R3, this group G now becomes the 9-dimensional semidirect product of
SO(3) with R3×R3 (see [5] for more on this semidirect product). The additional copy of R3

in the symmetry group, as compared with Case C, comes from the invariance of the system to
the relative position of the two bodies. Correspondingly, we do not end up with (1), but with
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the 15-dimensional reduced phase space

t∗− = (se(3)∗−× se(3)∗−)×SO(3) (2)

(again concentrating on the (Poisson) manifold character and not the group structure). We call
this Case B.

Our final setting, which we have denoted Case A, is even simpler. Here we ignore the trans-
lational part of the problem altogether and only consider the rotational aspect. This particular
case is relevant to the alignment problem for two rigid bodies (satellites, for example) where the
phase space is the 12-dimensional cotangent bundle T ∗SO(3)×T ∗SO(3), and we assume con-
trol inputs that depend on relative orientation. The 3-dimensional symmetry group G = SO(3)
corresponds to the invariance of the controlled system with respect to the orientation of the
group of rigid bodies as a whole and the 9-dimensional reduced phase space is

T ∗SO(3)×T ∗SO(3)/SO(3)
∼= (so(3)∗−× so(3)∗−)×SO(3) = t∗− . (3)

Overview In the first part of this paper we describe the reduction for Cases A, B and C.
We do this without assuming the form of the kinetic energy of the rigid bodies of interest; we
only assume the dependency of the coupling potentials that are realized by the control inputs.
The reduction can therefore be seen as providing a framework for a class of problems. For
example, Cases B and C which concern rigid bodies, each on SE(3), can be applied to a groups
of vehicles such as stratospheric balloons, underwater vehicles and helicopters. Case A, which
concerns rigid bodies on SO(3), is applicable to satellite cluster coordination, for example.
The presentation of the reduction is organized as follows. In §2 we obtain the quotient spaces
provided by the abstract theory. In §3 we review the reduction theory by means of semi-direct
products and apply this to Cases A-C. This yields flat (Euclidean) Poisson spaces s∗−

∼= Rν

which we treat in their own right in §4; we write down Casimirs, study how the abstract quotients
of §2 are realized as submanifolds and examine the singular (lower-dimensional) symplectic
leaves. These flat Poisson spaces described in §3 and §4 are preferable to the abstract reduced
spaces described in §2 since they make it possible for us to efficiently formulate control laws.

In the second part of the paper we apply the reduction results to particular examples, i.e.,
we study the controlled dynamics for particular choices of kinetic energy. In §5 the dynamics
are given by Hamiltonians that are obtained by adding a potential energy incorporating our
control law to the (free) kinetic energy. The (relative) equilibria of these controlled dynamics are
described in §6, while the stability properties of these are analysed in §7. To give an impression
of the dynamics we performed some simulations that are summarised in §8. Extensions to N > 2
are presented in §9 and final remarks in §10.

2 Abstract reduction theory
As noted in the Introduction, we describe the absolute position of our network of rigid bodies as
an element in a Lie group (either SO(3) or SE(3)) and we make use of the fact that the dynamics
of the network are invariant to changes in this position. Mathematically, changes in the absolute
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position can be described as the action of a Lie group G on the configuration space; this action
can be lifted to the phase space through a cotangent lift ([8], Chapter 6), and the invariance of
the dynamics to this lifted action may be considered to be a continuous symmetry. According
to Noether’s theorem, such continuous symmetries lead to conserved quantities; a concise for-
mulation of this result and its implications can be given within Hamiltonian mechanics, as we
shall now describe (following the exposition in [8]).

We consider a Hamiltonian system (P,H,{·, ·}), where P is the phase space, H is the
Hamilonian function H : P→ R and {·, ·} is the Poisson bracket on functions on P. If H is
invariant under the proper Poisson action of some Lie group G, we call G a symmetry group,
and we have our choice of two method of simplifying the system. In the first of these, Poisson
reduction, we form the quotient space

P/G =
{
{ g(p) = p | g ∈ G } | p ∈ P

}
and note that this space is again Poisson, even a Poisson manifold if the action of G is free [8].
The conserved quantities predicted by Noether’s theorem are Casimir functions on this quotient
space, i.e. functions that Poisson-commute with all other functions, in particular the Hamilto-
nian function. The system XH canonically projects to a Hamiltonian system on the quotient
space, the so-called reduced system. Like every Hamiltonian system on P/G, it leaves the
values of the Casimir functions fixed. Therefore, the reduced dynamics are restricted to a sub-
manifold of the quotient space, defined by the Casimir functions.

A second way of doing reduction swaps the order of the steps and fixes the values of con-
served quantities before passing to the quotient. Because of the intimate relation between the
two procedures, going through the steps of each helps to efficiently work with the reduced dy-
namics in applications. For this reason we present here the latter, more abstract, reduction, often
called regular reduction in the literature.

Assembling the conserved quantities in the unreduced space, P, leads to the momentum
mapping

J : P −→ g∗

with values in the dual of the Lie algebra g of the symmetry group G. Given the value µ ∈ g∗

of J, the dynamics are restricted to the subset J−1(µ) ⊆ P. In the important case that µ is
a regular value of J the subset J−1(µ) is a (smooth) submanifold. Regular reduction aims to
divide out the remaining symmetry.

The action of the whole group G would in general alter the value of the momentum mapping.
An important case is when J is equivariant with respect to the given action of G on P, Φg, and
the coadjoint action Ad∗g−1 of G on g∗, i.e.,

Ad∗g−1 ◦J = J◦Φg for all g ∈ G.

In this case, we have that the isotropy subgroup

Gµ =
{

g ∈ G | Ad∗g−1(µ) = µ

}
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does leave J−1(µ) invariant and hence defines a free action, i.e. one that does not have any fixed
points. (This is true provided that the action of G on P is free and µ is a regular value of the
momentum mapping). If P is a symplectic manifold, then the quotient

Pµ = J−1(µ)/Gµ

is (in a canonical way) again a symplectic manifold. The two ways of reduction are related
through

P/G =
⋃

µ∈g∗
Pµ (4)

with the corresponding identifications; in fact the Pµ constitute the symplectic leaves of this
Poisson manifold.

In the important case that the phase space P is given by the cotangent bundle T ∗G of the
symmetry group G (acting by left translation) – for G = SO(3) this is the situation of the free
rigid body and for G = SE(3) that of a free underwater vehicle – equation (4) expresses that
g∗ is foliated by the coadjoint orbits, i.e. the orbits of the coadjoint action Ad∗g−1 [8]. We now
examine the abstract reduction theory in the three cases of interest in this paper.

2.1 Case A
The phase space of two rigid bodies in three-dimensional space,

P = T ∗(SO(3)×SO(3)) ∼= T ∗SO(3)×T ∗SO(3)

is a symplectic manifold, and we define the action of the group G = SO(3) on this space through
the lift of the diagonal action

G× (SO(3)×SO(3)) −→ SO(3)×SO(3)
(R,RA,RB) 7→ (RRA,RRB). (5)

This corresponds to rotating bodies A and B, whose orientations with respect to an inertial
frame are specified by RA and RB, respectively, by the same (fixed) rotation R. A fixed value
µ ∈ so(3)∗ ∼= R3 of the momentum mapping J : P−→ R3 corresponds to the sum

µ = RAπA + RBπB (6)

of the two angular momenta of the two bodies, measured in the inertial frame, where πA,πB ∈
so(3)∗ are the individual angular momenta in the respective body frames of the two vehicles.
Hence, the isotropy subgroup Gµ is isomorphic to S1 and consists of all rotations about µ

(provided this vector does not vanish). Since J−1(µ) is 9-dimensional and dimS1 = 1, we
obtain 8-dimensional symplectic leaves Pµ . Correspondingly, the squared length

µ
2 = π

2
A + 2π

T
B (RT

BRA)πA + π
2
B (7)

is the Casimir function on the 9-dimensional Poisson manifold (3). The rank of the reduced
Poisson bracket is 8; we have reduced from 6 to 4 degrees of freedom.
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2.2 Case B
The phase space of two rigid bodies with translational dynamics in three-dimensional space,

P = T ∗(SE(3)×SE(3)) ∼= T ∗SE(3)×T ∗SE(3),

is again a symplectic manifold, while the symmetry group G of interest in this case, as described
in §1, is given by the semi-direct product of SO(3) with R3×R3. The action of G we choose is
the lift of

G× (SE(3)×SE(3)) −→ SE(3)×SE(3)
(R,a,b,RA,bA,RB,bB) 7→ (RRA,RbA +a,RRB,RbB +b) (8)

and corresponds to rotating bodies A and B by the same rotation R while translating them with
two (possibly different) vectors a and b. A fixed value µ ∈ g∗ ∼= R9 of the momentum mapping
J : P−→ R9 corresponds to the nine components of the three vectors

RA pA, RB pB, RAπA + bA×RA pA + RBπB + bB×RB pB

where pA, pB denote the linear momenta of the vehicles A, B, respectively, measured in the
respective body frames. For regular values µ , the isotropy subgroup Gµ is isomorphic to S1×
S1×S1 and consists of all rotations about these three vectors. Since J−1(µ) is 15-dimensional
and dim(S1×S1×S1) = 3, we obtain 12-dimensional symplectic leaves. Correspondingly, we
have on the 15-dimensional Poisson manifold (2) the three Casimir functions

p2
A, p2

B and pT
B(RT

BRA)pA. (9)

The rank of the reduced Poisson bracket is 12; we have reduced from 12 to 6 degrees of freedom.

2.3 Case C
The phase space is again

P = T ∗(SE(3)×SE(3)) ∼= T ∗SE(3)×T ∗SE(3)

and we choose the symmetry group G, the semi-direct product SE(3) of SO(3) with R3, to act
through the lift of the diagonal action

SE(3)× (SE(3)×SE(3)) −→ SE(3)×SE(3)
(R,b,RA,bA,RB,bB) 7→ (RRA,RbA +b,RRB,RbB +b). (10)

This corresponds to rotating bodies A and B by the same rotation R while translating them with
the same vector b. A fixed value µ ∈ se(3)∗ ∼= R6 of the momentum mapping corresponds to
the six components of the two vectors

RAπA + bA×RA pA + RBπB + bB×RB pB and RA pA + RB pB.
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Hence, the isotropy subgroup Gµ is isomorphic to S1× S1 and consists of all rotations about
these two vectors. Since J−1(µ) is 18-dimensional and dim(S1 × S1) = 2, we obtain 16-
dimensional symplectic leaves. On the 18-dimensional Poisson manifold (1), we have the two
Casimir functions

πA · pA + pT
B(RT

BRA)πA + π
T
B (RT

BRA)pA

+ πB · pB + RT
B(bB−bA) · (pB× (RT

BRA)pA) (11)
and p2

A + 2pT
B(RT

BRA)pA + p2
B.

Fixing the values of these two Casimirs yields the 16-dimensional symplectic leaves of (1).
Hence, the rank of the reduced Poisson bracket is 16; we have reduced from 12 to 8 degrees of
freedom.

3 Semi-direct product reduction
While regular reduction yields symplectic manifolds, it does not provide an algorithm to obtain
a realization of the quotients Pµ = J−1(µ)/Gµ

as submanifolds of some flat (i.e. linear) Poisson
space. The advantage of such an embedding into Rν is that further computations may be done
using the ν linear coordinates, and these contribute to efficient formulation of control laws. In
the present case this can be achieved by means of semi-direct product reduction (see [9]).

Indeed, since the phase space P is the cotangent bundle of some Lie group F , and the
symmetry group G is a subgroup of F , the quotient P/G can be embedded in the flat Poisson
space

s∗− = f∗− ×ρ ′ V
∗
−

where f∗ is the dual of the Lie algebra of F and V is a vector space; the minus sign indices indi-
cate the lower sign choice in the Poisson brackets (12) given below. To define this semi-direct
product one needs a dummy dependent variable a ∈V ∗+ for the system and a left representation

ρ : F −→ GL(V )

where GL(V ) is the general linear group. This representation defines the semi-direct product
S = F ×ρ V in such a way that the symmetry group G can be identified with the isotropy
subgroup

Fa =
{

f ∈ F | ρ
∗( f )a = a

}
where ρ∗ is the associated right representation of F on V ∗. Further, ρ ′ : f−→V is the induced
Lie algebra representation. The vector space V acts on itself by vector addition. This allows us
to use regular reduction on T ∗S. The reduction of the S-symmetry on T ∗S provided by the lift
of the (left) action of S on itself is the well-known Lie-Poisson reduction leading to

T ∗S/S = s∗−
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with lower sign choice in the Poisson bracket on s∗−

{W,Q}±(`,α) = ±
〈

`,

[
δW
δ`

,
δQ
δ`

]〉
(12)

±
〈

α,ρ ′
(

δW
δ`

)
· δQ

δα
− ρ

′
(

δQ
δ`

)
· δW

δα

〉
.

To obtain the upper sign one would have to reduce the right action of S on itself. The symplectic
leaves of this Poisson manifold are the quotients

J−1(µ,a)/S(µ,a)
= J−1(µ)×V ×{a}/F(µ,a)×V

where
F(µ,a) =

{
g ∈ Fa | Ad∗g−1 µ = µ

}
= Gµ .

The vector space V cancels and we have embedded

T ∗F/G =
⋃

µ∈f∗+

J−1(µ)/Gµ

in the flat Poisson space s∗− by choosing for the dummy variable a ∈V ∗+ some fixed value. This
is called semi-direct product reduction and is summarized in the following theorem.

Theorem 3.1 (Marsden et al [9]) Let Ha : T ∗F→R be a Hamiltonian depending smoothly on
a parameter a ∈V ∗, and left invariant under the action on T ∗F of the stabiliser Fa, defined as

Fa =
{

f ∈ F | ρ
∗( f )a = a

}
(13)

where ρ is a left representation of F on the vector space V , and ρ∗ is the associated right
representation of F on V ∗. The family of Hamiltonians {Ha | a ∈ V ∗} induces a Hamiltonian
function H on the space s∗−, defined by H((TeL f )∗α f ,ρ

∗( f )a) = Ha(α f ), thus yielding Lie-
Poisson equations on s∗−.

Again we explicitly formulate the implications of this procedure for the cases of interest in this
paper.

3.1 Case A
Here F = SO(3)×SO(3) and we shall consider the symmetry group G = SO(3). Define

FK =
{

(RA,RB) ∈ F | RT
AKRB = K

}
, (14)

where K ∈ R3×3 is a dummy variable. We shall eventually fix K = I3, the 3×3 identity matrix,
whence FI3 becomes {(R,R) | R ∈ SO(3)} , and we recover the diagonal action (5) of the
symmetry group G = SO(3). As we shall see in §5.1, this choice of G may arise, for example,
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in the addition of a potential function which is added to stabilise the equilibrium RA = KRB; the
choice K = I3 corresponds to the two vehicles, A and B, having orientations in alignment.

We may now define a representation ρ : SO(3)× SO(3) −→ GL(R3×3) by ρ(RA,RB)K =
RAK(RB)T where GL(R3×3) is the general linear group of the vector space R3×3 of three by
three matrices. Given two matrices Y ∈Rn1×m1 , Z ∈Rn2×m2 , we define their Kronecker Product
[17], denoted by Y ⊗Z ∈ Rn1n2×m1m2 , as

Y ⊗Z =

 y11Z · · · y1m1Z
... . . . ...

yn11Z · · · yn1m1Z

 . (15)

With this definition it is easy to check that there is a direct correspondence between the elements
of RAKRT

B ∈R3×3 and those of (RA⊗RB)K̃ ∈ R9, where, using the canonical basis {e1,e2,e3}
of R3, the latter is given by K̃ = (eT

1 K,eT
2 K,eT

3 K)T ∈ R9. We can thus equivalently define
ρ : SO(3)× SO(3) −→ GL(R9) by ρ(RA,RB)K̃ = (RA⊗RB)K̃, where GL(R9) denotes the set
of invertible linear mappings on R9.

Given this parameter space V = R3×3 ∼= R9, we may write the entire 15-dimensional space
S = F×ρ V = (SO(3)×SO(3)) ×ρ R9 as a semi-direct product where group multiplication is
given by

((R̄A, R̄B), ¯̃K)((RA,RB), K̃) = ((R̄A, R̄B)(RA,RB),ρ(R̄A, R̄B)K̃ + ¯̃K)

= ((R̄ARA, R̄BRB,(R̄A⊗ R̄B)K̃ + ¯̃K).

Using this correspondence, an element in the Lie group S can be represented by a 16×16 matrix
of the form 

RA 0 0 0
0 RB 0 0
0 0 RA⊗RB K̃
0 0 0 1


and the group action is given simply by matrix multiplication. Let ρ∗ be the associated right
representation of SO(3)×SO(3) on R9, given by

ρ
∗(RA,RB)K̃ = (RT

A ⊗RT
B)K̃. (16)

With this definition, G may be identified with the isotropy subgroup

FK̃ =
{

(RA,RB) ∈ F | ρ
∗(RA,RB)K̃ = K̃

}
. (17)

By Theorem 3.1 the Hamiltonian dynamics on T ∗(SO(3)× SO(3)) can be reduced to a Lie-
Poisson system on the fifteen-dimensional space s∗−, the dual of the Lie algebra s of S. In fact,
s = (so(3)× so(3))×ρ ′ R3×3 where ρ ′ is the induced Lie algebra representation, given by

ρ
′(α,β )ν = αν − νβ . (18)
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Here (α,β ) ∈ so(3)× so(3) and ν ∈ R3×3. This implies that the Lie bracket of two elements
of the Lie algebra s is given by

[((α,β ,ν),((α ′,β ′),ν ′)] = ([(α,β ),(α ′,β ′)], ρ
′(α,β )ν

′−ρ
′(α ′,β ′)ν)

= (αα
′−α

′
α,ββ

′−β
′
β ,αν

′−ν
′
β −α

′
ν +νβ

′).

Again using the definition for the Kronecker product, elements in the Lie algebra s can be
represented by 16×16 matrices of the form

α 0 0 0
0 β 0 0
0 0 α⊗ I + I⊗β ν̃

0 0 0 0


where, as before, ν̃ = (eT

1 ν ,eT
2 ν ,eT

3 ν)T . The Lie bracket of two Lie algebra elements in this
form is given simply by the matrix commutator.

In body coordinates, which describe the isomorphism SO(3)× so(3)∗− ∼= T ∗SO(3), the re-
duction mapping is given by

SO(3)× so(3)∗−×SO(3)× so(3)∗− −→ s∗− = so(3)∗−× so(3)∗−×V ∗−
(RA,πA,RB,πB) 7→ (πA,πB,∆,Σ,Γ),

where we denote the three columns of (RT
AKRB)T by ∆,Σ and Γ, respectively. In the particular

case K = I3 the embedded reduced phase space t∗− of (3) is defined by the equations

∆2 = 1, Σ2 = 1, Γ2 = 1,
Σ ·Γ = 0, Γ ·∆ = 0, ∆ ·Σ = 0,
det(∆,Σ,Γ) = 1

(19)

and (∆,Σ,Γ) ∈ SO(3) measures the relative orientation RT
BRA of the two bodies.

Since we have performed reduction by means of the left action, the reduced phase space is
s∗− (with lower signs in (12)). Defining the pairing between matrices in R3×3 and R3×3∗ to be
〈Y,Z〉= Tr(Y T Z) yields the structure matrix

Λ(πA,πB,∆,Σ,Γ) =


π̂A 0 a b c
0 π̂B ∆̂ Σ̂ Γ̂

−aT ∆̂ 0 0 0
−bT Σ̂ 0 0 0
−cT Γ̂ 0 0 0

 (20)

of the Poisson bracket (12). Here ∆ 7→ ∆̂ is the usual isomorphism between vectors in R3 and
skew-symmetric 3×3 matrices, while the 3×3 matrices a,b and c are given by

a =

 0
ΓT

−ΣT

 , b =

 −ΓT

0
∆T

 , c =

 ΣT

−∆T

0

 .
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For a given Hamiltonian, H(πA,πB,∆,Σ,Γ), expressed in terms of the reduced variables, we
may now write the system dynamics as

(π̇A, π̇B, ∆̇, Σ̇, Γ̇)T = Λ∇H(πA,πB,∆,Σ,Γ). (21)

3.2 Case B
Here F = SE(3)× SE(3) and the symmetry group G, the semi-direct product of SO(3) with
R3×R3, is embedded as

FK =
{

(RA,bA,RB,bB) ∈ F | RT
AKRB = K

}
with the same dummy variable K ∈ R3×3 as in Case A. Analogous to Case A, we recover the
action (8) for the fixed value K = I3 of interest. The representation ρ : SE(3)× SE(3) −→
GL(R3×3) is given by ρ(RA,bA,RB,bB)K = RAK(RB)T and thus is essentially the same as in
Case A. Hence, the reduction proceeds via Theorem 3.1 as before, with the reduction mapping
now reading

SE(3)× se(3)∗−×SE(3)× se(3)∗− −→ s∗− = se(3)∗−× se(3)∗−×V ∗−
(RA,bA,πA, pA,RB,bB,πB, pB) 7→ (πA, pA,πB, pB,∆,Σ,Γ)

with the same convention for ∆,Σ,Γ as in Case A. The variables pA, pB are the linear momenta
of the two bodies (measured in their respective body frames).

The elements (R,b)∈ SE(3) are in one-to-one correspondence with 4×4 matrices
(

R b
0 1

)
and computations similar to those of Case A yield the structure matrix

Λ(πA, pA,πB, pB,∆,Σ,Γ) =



π̂A p̂A 0 0 a b c
p̂A 0 0 0 0 0 0
0 0 π̂B p̂B ∆̂ Σ̂ Γ̂

0 0 p̂B 0 0 0 0
−aT 0 ∆̂ 0 0 0 0
−bT 0 Σ̂ 0 0 0 0
−cT 0 Γ̂ 0 0 0 0


(22)

of the Poisson bracket (12).
For a given Hamiltonian, H(πA, pA,πB, pB,∆,Σ,Γ), expressed in terms of the reduced vari-

ables, we may now write the system dynamics as

(π̇A, ṗA, π̇B, ṗB, ∆̇, Σ̇, Γ̇)T = Λ∇H(πA, pA,πB, pB,∆,Σ,Γ). (23)

3.3 Case C
Again F = SE(3)×SE(3), while the symmetry group G = SE(3) is now embedded as

F(K,k) =
{

(RA,bA,RB,bB) ∈ F | RT
AKRB = K , RAk +bA−KbB = k

}
, (24)
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where the dummy variable has become (K,k) ∈ R3×3×R3. For the fixed value (K,k) = (I3,0)
we recover the diagonal action (10). One may easily check that F(K,k) may also be written

F(K,k) = { (RA,bA,RB,bB) ∈ F | (25)[
RA 0
−bT

ARA 1

]T [ K k
0 1

][
RB bB
0 1

]
=
[

K k
0 1

] }
.

We now define the representation ρ : SE(3)×SE(3)−→ GL(R3×3×R3) by

ρ(RA,bA,RB,bB)
[

K k
0 1

]
=
[

RA 0
−bT

ARA 1

]T [ K k
0 1

][
RB bB
0 1

]
.

One may use the definition (15) to demonstrate that there is a direct correspondence between
the elements of [

RA 0
−bT

ARA 1

]T [ K k
0 1

][
RB bB
0 1

]
∈ R4×4

and those of [
RT

A −RT
AbA

0 1

]
⊗
[

RT
B 0

bT
B 1

]
K̃ ∈ R16

where K̃ = (eT
1 K,k1,eT

2 K,k2,eT
3 K,k3,0,0,0,1)T . We can thus equivalently define ρ : SE(3)×

SE(3)−→ GL(R16) by

ρ(RA,bA,RB,bB)K̃ =
[

RT
A −RT

AbA
0 1

]
⊗
[

RT
B 0

bT
B 1

]
K̃.

Note that ρ(RA,bA,RB,bB) fixes the 12-dimensional affine subspace V of R16 that consists of
vectors of the above form K̃, i.e. vectors that have as last four components 0,0,0,1. We can
give V the structure of a vector space by (re)defining addition to only operate on the first 12
(or 15) entries of K̃ and leaving the 16th component fixed at 1. In this way we are led to the
desired ρ : SE(3)×SE(3)−→ GL(V ). Given this parameter space V ∼= R12, we may write the
entire 24-dimensional space S = F×ρ V = (SE(3)×SE(3)) ×ρ V as a semi-direct product and
proceed as in Case A. In particular, G may be identified with the isotropy subgroup

FK̃ =
{

(RA,bA,RB,bB) ∈ F | ρ
∗(RA,bA,RB,bB)K̃ = K̃

}
,

where the associated right representation of the symmetry group G is

ρ
∗(RA,bA,RB,bB) =

[
RT

A −RT
AbA

0 1

]
⊗
[

RT
B 0

bT
B 1

]
.

By Theorem 3.1 the Hamiltonian dynamics on T ∗(SE(3)× SE(3)) can be projected to a Lie-
Poisson system on the 24-dimensional space s∗−. This performs the reduction from 12 to 9
degrees of freedom and provides at the same time a realization of the reduced phase space (1)
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as a Poisson submanifold of the flat Poisson space s∗−, the dual of the Lie algebra s of S. In fact,
s = (se(3)× se(3))×ρ ′V where ρ ′ is the induced Lie algebra representation

ρ
′(α,νA,β ,νB) =

[
α 0
−νT

A 0

]
⊗ I4 + I4⊗

[
β νB
0 0

]
.

The reduction mapping is given by

SE(3)× se(3)∗−×SE(3)× se(3)∗− −→ s∗− = se(3)∗−× se(3)∗−×V ∗−
(RA,bA,πA, pA,RB,bB,πB, pB) 7→ (πA, pA,πB, pB,∆,Σ,Γ,β )

where in addition to the three columns ∆,Σ,Γ of (RT
AKRB)T we now have β = RT

A(k− bA +
KbB). In the particular case (K,k) = (I3,0) the embedded reduced phase space is still defined
by (19) and the new variable β measures the relative position of the two bodies (in the body
frame of underwater vehicle A). The Poisson bracket (12) has the structure matrix

Λ =



π̂A p̂A 0 0 a b c β̂

p̂A 0 0 0 0 0 0 I3

0 0 π̂B p̂B ∆̂ Σ̂ Γ̂ 0
0 0 p̂B 0 0 0 0 −(∆,Σ,Γ)
−aT 0 ∆̂ 0 0 0 0 0
−bT 0 Σ̂ 0 0 0 0 0
−cT 0 Γ̂ 0 0 0 0 0

β̂ −I3 0 (∆,Σ,Γ)T 0 0 0 0


. (26)

For a given Hamiltonian, H(πA, pA,πB, pB,∆,Σ,Γ,β ), expressed in terms of the reduced vari-
ables, we may now write the system dynamics as

(π̇A, ṗA, π̇B, ṗB, ∆̇, Σ̇, Γ̇, β̇ )T = Λ∇H(πA, pA,πB, pB,∆,Σ,Γ,β ). (27)

4 Casimirs in flat spaces
In the previous section we were able to realize the abstract reduced spaces of §2 as submani-
folds of (concrete) flat Poisson spaces. We now study these Poisson spaces in their own right,
determining the (maximal) rank of the bracket and looking for the Casimir functions. These
Casimirs play a central role in proving stability for the coordinated rigid body networks. While
we do not lose sight of our particular case(s) K = I3 (and k = 0) which lead to the submanifolds
t∗− ⊆ s∗− defined by (19), letting K (and k) vary allows to decompose the whole flat space(s)
into various reduced manifolds. One may think of s∗− as collecting all possible reductions of
FK-actions for all possible matrices K ∈ R3×3 (and k ∈ R3 ).

4.1 Case A
On the whole 15-dimensional space s∗− the rank of the Poisson structure (20) cannot be more
than 12; this follows because of the identically vanishing lower right 9× 9-block. For points
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in t∗− we already know this rank to be equal to 8 since the symplectic leaves of t∗− are precisely
the quotient manifolds Pµ = J−1(µ)/Gµ

of §2.1. However, regular reduction of the FK-action
with

K =

 1 1 1
0 1 1
0 0 1

 (28)

does indeed lead to 12-dimensional quotient manifolds. Correspondingly, on the whole space
s∗− there are only three Casimir functions

C1 = ∆
2 + Σ

2 + Γ
2

C2 = ‖Σ×Γ‖2 + ‖Γ×∆‖2 + ‖∆×Σ‖2 (29)
C3 = (∆×Σ) ·Γ = det(∆,Σ,Γ).

The functions c1 = ∆2 , c2 = Σ2 , c3 = Γ2 , c4 = Σ ·Γ , c5 = Γ ·∆ , c6 = ∆ · Σ of (19) are not
themselves Casimirs. We may, however, use these functions to define a 10-dimensional Poisson
submanifold,

r∗− =
{

∆
2 = Σ

2 = Γ
2 , Σ ·Γ = Γ ·∆ = ∆ ·Σ = 0

}
, (30)

on which the three Casimirs (29) are constrained by the two relations

3C2 = C2
1 and 27C2

3 = C3
1 .

Thus on r∗− we have, effectively, only one Casimir remaining from (29). Since the rank of the
Poisson bracket on r∗− is 8, there must be a further Casimir on this subspace; it is given by

C0 = ((∆×Σ) ·Γ)
(
(πA)2 + (πB)2) +

2(∆2 +Σ2 +Γ2)
3

π
T
B (∆,Σ,Γ)πA. (31)

Thus, in the particular case K = γR with nonzero scalar γ and R ∈ SO(3), regular reduction
of the FK-action leads to 8-dimensional quotients. We may go on to identify the hypersurface
t∗− ⊆ r∗− as given by C3 ≡ 1 (whence C1 ≡ 3 and C2 ≡ 3), confirming that t∗− is a Poisson
submanifold of s∗− as well. On t∗− the (first) factors in the two terms of (31) become 1 and 2,
respectively, and we see that the Casimir C0 equals the total angular momentum (7) of the
system. One easily computes that the rank of the Poisson structure on r∗− drops from 8 to 6
when πA = πB and that there is no further drop of the rank when both vanish.

The Poisson submanifold r∗− of s∗− also contains the non-generic points C3≡ 0 (whence C1≡
0 and C2 ≡ 0, note that these points are not contained in t∗−) where the rank of the Poisson struc-
ture drops from 8 to 4 for πA and πB in general position. Here FK = F0 = SO(3)×SO(3) and
there are two sub-Casimirs π2

A and π2
B; reducing by this large symmetry group abstracts from all

inter-body information and leads to two uncoupled free rigid bodies.

4.2 Case B
On the whole 21-dimensional space s∗−, the rank of the Poisson structure (22) cannot be more
than 12 since the rows associated with the momentum variables can be linearly combined from
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the last 9 rows for a proper choice of ∆,Σ,Γ; this is possible if e.g. K is given by (28). We
also know from §2.2 that the (maximal) symplectic leaves of the reduced phase space t∗− ⊆ s∗−
defined by (19) are 12-dimensional as well. Thus, there is no drop in the rank of the Poisson
bracket on s∗− when K = I3. The parametrisation by invertible K ∈ R3×3 provides a foliation
into symplectic leaves that all have the same dimension. However, the extreme choice K = 0
still leads to F0 = F . In addition to the three Casimirs in (29) we found the Casimirs

C4 = (pA)2

C5 = (pB)2 (32)
C6 = pT

B(∆,Σ,Γ)pA

which equal (9) on t∗−. We conjecture that there are three further Casimirs C7,C8,C9, but these
have not yet been found.

By (30) we again define a submanifold r∗− ⊆ s∗− which is now 16-dimensional and on which
the Poisson structure has maximal rank 12. The 12-dimensional symplectic leaves of r∗− are
the level sets of the remaining Casimirs C3,C4,C5,C6. Since t∗− ⊆ r∗− is once more defined by
C3 ≡ 1, those level sets with C3 = 1 yield the symplectic leaves of t∗−. There is a further drop of
the rank for certain special configurations of the four vectors πA, pA,πB and pB or when K = 0.

4.3 Case C
Here the (maximal) symplectic leaves of the 18-dimensional reduced phase space t∗− ⊆ s∗− (de-
fined by (19)) have dimension 16, while the maximal rank of the Poisson structure (26) on the
whole 24-dimensional Poisson space s∗− is 18. Indeed, the extra rows in (26) yield, e.g. for
K given by (28), 6 additional linear independent rows in comparison with (22). Correspond-
ingly, we have the Casimir functions C1,C2,C3 of (29) and possibly the three others C7,C8,C9
conjectured to exist for Case B.

On the Poisson submanifold t∗− ⊆ s∗− defined by (19) we have C1 = C2 = 3C3 = 3, whence
the symplectic leaves are given by the two Casimirs

C10 = (pA)2 + (pB)2 + 2pT
B(∆,Σ,Γ)pA

C11 = πA · pA + pT
B(∆,Σ,Γ)πA + π

T
B (∆,Σ,Γ)pA

+ πB · pB + ((∆,Σ,Γ)β ) · (pB× (∆,Σ,Γ)pA) .

We stress that C10 and C11 are Casimirs only on the Poisson manifold t∗−, but not on the whole
space s∗−. They simplify to (11) when (K,k) = (I3,0).

5 Controlled equations of motion
The controlled equations of motion are obtained taking the Poisson bracket with the Hamil-
tonian, where the Hamiltonian is the sum of the kinetic and the potential energies. In our
examples, the kinetic energy is completely specified by the problem description; it is simply the
rotational kinetic energy of two satellites in SO(3) (Case A) or the translational plus rotational
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kinetic energies of two underwater vehicles in SE(3) (Cases B and C). In contrast, the potential
energy for the uncontrolled system is assumed to be zero. In the controlled system we design
the potential energy to achieve the desired control, assuming that the control design is able to
realize the ensuing requirements (this particular kind of control design was previously discussed
in [6]). Specifically, for orientation alignment (Cases A, B and C), it is required that each body
can provide three independent torque inputs. For relative position control (Case C only), it is
also required that each body can provide three independent force inputs. In Cases A and C the
vehicles are therefore required to be fully actuated.

We require this designed potential energy to be invariant under the action of a subgroup G
of SO(3)× SO(3) or SE(3)× SE(3), respectively, since we only want the relative orientation
(and relative position in Case C) to enter. This subgroup G is of the form FK̃ as in (13) of
Theorem 3.1 with parameter K̃. This can be ensured by defining the potential energy on the
reduced phase space t∗−, as the restriction of some formal potential energy on s∗−. In future
work we will incorporate both the interaction with the environment and the mission one wants
the satellites/underwater vehicles to achieve by means of potential energy terms that do break
the G-symmetry (and thus have to be formulated on the original phase space).

5.1 Case A
Here we consider the problem of aligning two satellites that have purely rotational dynamics.
We model each satellite as a free rigid body with moment of inertia matrix J, and write Ωk for
the angular velocity vector of the body k with respect to its body-fixed frame.

In this case, the kinetic energy of the system is merely rotational. In the unreduced space,
T ∗SO(3)×T ∗SO(3), we write it as

T =
1
2
(
Ω

T
AJΩA + Ω

T
BJΩB

)
(33)

whence the expression in the reduced variables reads

T =
1
2
[
π

T
A J−1

πA + π
T
B J−1

πB
]
.

To enforce orientation matching we formulate on s∗− the control with potential energy

U = σ (∆ · e1 + Σ · e2 + Γ · e3) (34)

where σ is a scalar control gain. For K = I3 and negative σ , an aligned orientation RA = RB then
minimizes the potential energy (recall that ∆,Σ and Γ denote the three columns of (RT

AKRB)T

and simplify for K = I3 and RA = RB to the canonical basis {e1,e2,e3} of R3). Writing H =
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T +U and substituting into (21), one finds that the reduced equations of motion are

π̇A = πA× J−1
πA − σ (∆× e1 + Σ× e2 + Γ× e3)

π̇B = πB× J−1
πB + σ (∆× e1 + Σ× e2 + Γ× e3)

∆̇ =
π3

A
J3

Σ −
π2

A
J2

Γ + ∆× J−1
πB (35)

Σ̇ =
π1

A
J1

Γ −
π3

A
J3

∆ + Σ× J−1
πB

Γ̇ =
π2

A
J2

∆ −
π1

A
J1

Σ + Γ× J−1
πB.

The control torque applied to body A is thus computed to be

uA = −σ (∆× e1 + Σ× e2 + Γ× e3)

and the control torque applied to body B is uB = −uA. As discussed in §4.1 the Casimir func-
tions (29) and (31) are conserved under the flow of this dynamical system. In the unreduced
space T ∗SO(3)×T ∗SO(3) the potential (34) takes the (rather intuitive) form

U = σ

3

∑
i=1

eT
i RT

AKRBei . (36)

5.2 Case B
Here we consider the case of two underwater vehicles as an example of a pair of bodies with
translational as well as rotational dynamics. We assume they are identical and model each as an
ellipsoidal body of mass m, as in [5]. For each vehicle, the matrix J will now denote the sum
of the body inertia and the added inertia from the potential flow model of the fluid. Similarly,
let M denote the sum of the body mass m multiplied by the identity matrix and the added mass
matrix. We assume that m is also the mass of the displaced fluid so that each vehicle is neutrally
buoyant. If each ellipsoid has uniformly distributed mass, the center of buoyancy is coincident
with the center of gravity and both J and M are diagonal in a coordinate system defined by the
ellipsoid’s principal axes. We shall denote the translational velocity of each vehicle in body
coordinates as vk, and write M = diag(m1,m2,m3), assuming m3 > m2 > m1. In this case, the
kinetic energy is now written as

T =
1
2
(
Ω

T
AJΩA + Ω

T
BJΩB + vT

AMvA + vT
BMvB

)
(37)

and turns into

T =
1
2
[
π

T
A J−1

πA + π
T
B J−1

πB + pT
AM−1 pA + pT

BM−1 pB
]

(38)

in terms of the reduced variables. We continue to write the control potential energy as (34)
which still takes the form (36) in the unreduced space T ∗SE(3)×T ∗SE(3). Writing H = T +U
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and substituting into (23), one finds that the reduced equations of motion become

π̇A = πA× J−1
πA + pA×M−1 pA − σ (∆× e1 + Σ× e2 + Γ× e3)

ṗA = pA× J−1
πA

π̇B = πB× J−1
πB + pB×M−1 pB + σ (∆× e1 + Σ× e2 + Γ× e3)

ṗB = pB× J−1
πB (39)

∆̇ =
π3

A
J3

Σ −
π2

A
J2

Γ + ∆× J−1
πB

Σ̇ =
π1

A
J1

Γ −
π3

A
J3

∆ + Σ× J−1
πB

Γ̇ =
π2

A
J2

∆ −
π1

A
J1

Σ + Γ× J−1
πB.

The control inputs are the same torques as in Case A.

5.3 Case C
Here we focus attention on the case of the two underwater vehicles of Case B where we now
seek to add a control to stabilise the configuration where both vehicles are not only aligned, but
also separated by a prescribed relative position vector dAB, directed from body A to body B. In
the reduced variables the kinetic energy still reads (38) and we choose

U =
1
2

(β +dAB)T C (β +dAB) + σ (∆ · e1 + Σ · e2 + Γ · e3) (40)

as potential energy where C is a constant 3× 3 matrix. Using (27) the reduced equations of
motion defined by the Hamiltonian H = T +U are written as

π̇A = πA× J−1
πA + pA×M−1 pA + β ×C(β +dAB)

− σ (∆× e1 + Σ× e2 + Γ× e3)
ṗA = pA× J−1

πA + C(β +dAB)
π̇B = πB× J−1

πB + pB×M−1 pB + σ (∆× e1 + Σ× e2 + Γ× e3)
ṗB = pB× J−1

πB − (∆,Σ,Γ)C (β +dAB) (41)

∆̇ =
π3

A
J3

Σ −
π2

A
J2

Γ + ∆× J−1
πB

Σ̇ =
π1

A
J1

Γ −
π3

A
J3

∆ + Σ× J−1
πB

Γ̇ =
π2

A
J2

∆ −
π1

A
J1

Σ + Γ× J−1
πB

β̇ = β × J−1
πA − M−1 pA + (∆,Σ,Γ)T M−1 pB.

Here the control torque applied to body A is thus computed to be

uA = β ×C(β +dAB) − uB,
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where the control torque applied to body B is, as in Cases A and B,

uB = σ (∆× e1 + Σ× e2 + Γ× e3) .

Additionally, we find there are control forces

fA = C (β +dAB) and fB = −(∆,Σ,Γ)C (β +dAB)

acting on bodies A and B, respectively.
In the unreduced space T ∗SE(3)×T ∗SE(3), the kinetic energy is still given by (37) and we

now use the control with potential energy

U =
1
2
(
RT

A(RAk +bA−KbB)+dAB
)T

C
(
RT

A(RAk +bA−KbB)+dAB
)

+ σ

3

∑
i=1

eT
i RT

AKRBei.

Recall that we made in §3.3 the arbitrary choice to express the inter-vehicle distance in terms of
the body frame of vehicle A. We observe that for (K,k) = (I3,0), positive definite matrix C and
σ < 0, the aligned configuration RA = RB with the vehicles having the desired relative position
dAB =−RT

A(bA−KbB) minimizes the potential energy.

6 Equilibria of the reduced system
The first step in analysing the closed-loop dynamical systems defined by (35), (39) and (41)
consists in identifying the simplest possible motions: the (relative) equilibria. In the interest of
avoiding a great deal of unwieldy algebra, we shall only exhaustively discuss the equilibria for
Case A.

6.1 Case A
Careful consideration of the last three equations of (35) indicates that, as might be expected,
all equilibria in this case are non-generic, i.e. they are contained in the lower-dimensional sym-
plectic leaf πA = πB. Let us set π0 = πA = πB.

Since the control torques of bodies A and B are equal and opposite, it is clear that for real
equilibria to exist we require

π0× J−1
π0 = 0. (42)

For bodies with neither spherical nor axial symmetry, elementary considerations reveal that no
real solutions exist for this equation with all three components of π0 different from zero. While
real solutions to (42) exist with merely one component of π0 equal to zero, it is not possible
to simultaneously satisfy the equations ∆̇ = 0 , Σ̇ = 0 , Γ̇ = 0 (since this requires two of ∆, Σ

21



and Γ to be parallel when, by definition, they must be orthogonal). We must therefore have two
components of π0 equal to zero. Additionally, an equilibrium in this system requires that

∆× e1 + Σ× e2 + Γ× e3 =

 Γ2−Σ3
∆3−Γ1
Σ1−∆2

 = 0 (43)

and, consequently, the matrix (∆,Σ,Γ) must be symmetric.
We use the unit quaternion representation (see [11]) for the matrix (∆,Σ,Γ) ∈ SO(3) to

rewrite its columns as  ∆1
∆2
∆3

 =

 q2
0 +q2

1−q2
2−q2

3
2(q1q2−q0q3)
2(q1q3 +q0q2)


 Σ1

Σ2
Σ3

 =

 2(q1q2 +q0q3)
q2

0−q2
1 +q2

2−q2
3

2(q2q3−q0q1)


 Γ1

Γ2
Γ3

 =

 2(q1q3−q0q2)
2(q2q3 +q0q1)

q2
0−q2

1−q2
2 +q2

3


where the q j are real numbers such that q2

0 +q2
1 +q2

2 +q2
3 = 1.

The condition that (∆,Σ,Γ) is symmetric is thus equivalent to stating that either q1 = q2 =
q3 = 0, in which case (∆,Σ,Γ) is the identity matrix and the bodies A and B are aligned or,
q0 = 0, in which case the bodies need not be aligned.

For the case where the bodies are aligned we may immediately write down the form of two
equilibria. This simplest possible case consists of the two bodies being stationary and aligned,

(πA,πB,∆,Σ,Γ) = (0,0,e1,e2,e3), (44)

while the next simplest consists of the two rigid bodies spinning synchronously about their ith
axis of inertia, i.e.

(πA,πB,∆,Σ,Γ) = (π0ei,π0ei,e1,e2,e3). (45)

For the non-aligned configurations we introduce spherical coordinates

q1 = sinϕ cosψ

q2 = sinϕ sinψ

q3 = cosϕ
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to write these equilibria as ∆1
∆2
∆3

 =

 sin2
ϕ cos(2ψ)− cos2 ϕ

sin2
ϕ sin(2ψ)

sin(2ϕ)cosψ


 Σ1

Σ2
Σ3

 =

 sin2
ϕ sin(2ψ)

−sin2
ϕ cos(2ψ)− cos2 ϕ

sin(2ϕ)sinψ

 (46)

 Γ1
Γ2
Γ3

 =

 sin(2ϕ)cosψ

sin(2ϕ)sinψ

cos(2ϕ)

 .

For the case of two stationary rigid bodies in a non-aligned configuration, there are no additional
restrictions on the columns of the relative rotation matrix given in (46). In contrast, for two
bodies rotating and non-aligned with, say, πA = πB = π0ei, we see from (35) that (∆,Σ,Γ)T ei
must be parallel to ei and, hence, from (46), the relative rotation matrix is of the form:

(∆,Σ,Γ) =

 ε1 0 0
0 ε2 0
0 0 ε3

 (47)

where one of the εi is positive and the other two are negative. This configuration corresponds
to one axis of the two bodies A and B being in alignment, while the other two axes are out of
alignment by 180 degrees. This equilibrium therefore corresponds to the two bodies ‘pointed’
in opposite directions.

6.2 Cases B & C
Here we merely give the principal equilibria of interest, ones where the two underwater vehicles
are not spinning and have aligned orientation. In Case B the bodies may still move in different
directions, whence the equilibria are of the form

(πA, pA,πB, pB,∆,Σ,Γ) = (0,CAei,0,CBe j,e1,e2,e3). (48)

In Case C the two bodies have to move in the same direction and maintain their relative position,
yielding

(πA, pA,πB, pB,∆,Σ,Γ,β ) = (0,Cei,0,Cei,e1,e2,e3,−dAB).

We shall prove the stability of the equilibrium (48) for motion along the shortest axis in §7.2.

7 Stability of Equilibria
We now obtain results on the stability of the equilibria of the controlled network dynamics
found in the previous section. Where possible, we use the energy-Casimir method [8] to prove
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stability for the aligned equilibria of Cases A and B. We note that the application of the energy-
Casimir method does not require any knowledge of the Poisson structure other than (some of)
the Casimirs. In particular, only the partial derivatives of these (and of the Hamiltonian) within
the flat space s∗− are needed, while the precise way in which the reduced manifold t∗− lies within
s∗− is relevant only to the extent that this determines the Casimirs.

7.1 Case A
We claim that the equilibria of the form (44) are stable in the sense of Lyapunov. Recall that
these equilibria correspond to two aligned and stationary rigid bodies. To find a Lyapunov
function, we make the ansatz

HΦ = H + Φ(C1,C2,C3)

where we have included as arguments of Φ only those Casimirs (29) that are valid on all of s∗−.
Let

Φ
(l) :=

∂Φ

∂Cl
(3,3,1)

denote the partial derivative of Φ with respect to Cl (l = 1,2 or 3) at the equilibrium (44).
One readily checks [18] that the first variation of HΦ vanishes at the equilibrium provided that
Φ(1) =−σ/2 and Φ(2) = Φ(3) = 0. We may thus choose Φ to have the simple form

Φ = − σ

2
(
∆

2 +Σ
2 +Γ

2) .
For the use of the energy-Casimir method we now check for definiteness of the second variation
at the equilibrium point. The Hessian of HΦ has an associated block-diagonal matrix given by

J−1

J−1

−σ I3
−σ I3

−σ I3

 .

The Hessian is thus positive definite provided σ < 0. Stability follows from the statement of
the energy-Casimir method ([8], §1.7).

For the other equilibria in Case A, it is less straightforward to find a function Φ for which
it is easy to show the Hessian to be definite. Stability results are proved for these cases using
alternative energy methods in [13].

7.2 Case B
We claim that the equilibria of the form (48) with i = j = 3 are stable in the sense of Lyapunov.
Since we have assumed m3 > m2 > m1, these equilibria correspond to two aligned underwater
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vehicles moving in the same direction each with their shortest principal axis aligned with the
direction of motion. Here we make the ansatz

HΦ = H + Φ(C1,C2,C3,C4,C5,C6), (49)

where we now include as arguments of Φ also the Casimirs (32), which are valid on all s∗−.
Recall from §4.2 that there may be three further Casimirs, so it is not a priori clear that our
ansatz will indeed yield the desired result. The first variation of HΦ vanishes at the equilibrium
provided that

CA

m3
+ 2CAΦ

(4) + CBΦ
(6) = 0

CB

m3
+ 2CBΦ

(5) + CAΦ
(6) = 0

σ + 2Φ
(1) + 4Φ

(2) + Φ
(3) = 0

σ + CACBΦ
(6) + 2Φ

(1) + 4Φ
(2) + Φ

(3) = 0.

This implies Φ(6) = 0, and taking Φ(2) = Φ(3) = 0 we may choose Φ to have the simple form

Φ = ((pA)2−C2
A)2 − (pA)2

2m3
+ ((pB)2−C2

B)2 − (pB)2

2m3
− σ

2
(∆2 +Σ

2 +Γ
2). (50)

Here the Hessian of HΦ has an associated matrix given by

J−1

M̃A
J−1

M̃B
−σ I3

−σ I3
−σ I3


(51)

where

M̃k =

 1/m1−1/m3
1/m2−1/m3

8C2
k


for k = A,B, and is thus again positive definite provided σ < 0. As before, stability follows
from §1.7 in [8].

8 Simulation Example
As an example, we consider Case B of two ellipsoidal underwater vehicles each with M = J =
diag(1,2,3). We set these vehicles to have initial conditions

πA = pA = πB = pB = (1,1,1)T (52a)
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Figure 2: Dynamics of the ∆, Σ, and Γ variables for the example given in (52).

which means that each body (initially) moves in a direction that is not a principal axis and
(initially) spins around that same axis. For the relative orientation we randomly choose the
matrix

(∆,Σ,Γ) =

 −0.7079 −0.7013 −0.0843
−0.6254 0.5667 0.5364
−0.3284 0.4324 −0.8397

 (52b)

as an initial condition. Clearly, for this non-identiy choice of the relative orientation matrix the
vector (1,1,1)T in body coordinates of vehicle A and (1,1,1)T in body coordinates of vehicle B
do not lead to the same vector measured in an inertial frame.

We formulated our model in the Hamiltonian context, where energy is conserved and friction
excluded from the outset. When applying such models to real underwater vehicles, there is
always dissipation. Alternatively, one may also add control terms that introduce dissipation
(cf. [12]). In these ways the equilibria (48) with ei = e j = e3 turn from merely being stable in
the sense of Lyapunov into asymptotically stable equilibria. We therefore integrate (39) with a
modest amount of linear dissipation added to the π̇A, ṗA, π̇B and ṗB equations, with damping
factor set to 0.5. The resulting dynamics of the ∆, Σ and Γ variables are shown in Figure 2
where we observe that ∆1, Σ2 and Γ3 all tend to 1 while the remaining variables tend to zero, i.e.
(∆,Σ,Γ)→ I3 as desired. Snapshots of two schematic vehicles rotating in space for the example
of (52) are shown in Figure 3, with the translational motion of the vehicles neglected from the
figure for clarity. Because of the suitable damping, the two bodies converge on the equilibrium
with orientations in alignment, while the translational motion converges to the (now common)
direction of the shortest principal axis and the rotational motion is damped out completely.
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Figure 3: The two underwater vehicles of (52) converging towards alignment when suitable
damping is added.

9 Systems of N vehicles
The case of N underwater vehicles, when considered as N(N− 1)/2 possible pairwise inter-
actions, can be treated as a natural extension of the two-vehicle problem. We concentrate on
Case B and label each of our N vehicles with an index (i) for i = 1, . . .N, and now seek an
appropriate artificial potential to stabilise the equilibrium R( j) = K( jk)R(k) for all pairs ( j,k) in
the set

I =
{

( j,k) ∈ N2 | 1≤ j < k ≤ N
}

where K( jk) ∈ R3×3 is a (matrix) parameter relating the orientation of body ( j) to that of body
(k). When re-interpreting equilibria singled out by a choice of K as relative equilibria of the
dynamics of our group of vehicles, it is important that we satisfy the two sets (53) of nonlinear
equations

K( jk)K
T
( jk) = I3 for all i, j,k with j < i < k (53a)

detK( jk) = 1 for all i, j,k with j < i < k (53b)

to ensure K( jk) ∈ SO(3) for all ( j,k) ∈ I and, for consistency concerning subgroups of three
bodies,

K( ji)K(ik) = K( jk) for all i, j,k with j < i < k . (53c)

These three requirements are trivially satisfied in the case

K( jk) = I3 for all ( j,k) ∈ I. (54)
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As in §3, the choice (54) corresponds to our desire to stabilize the equilibrium consisting of all
N vehicles having the same orientation. We note that it is not necessary to include potential
functions for all possible N(N−1)/2 pairwise interactions in order to stabilise this equilibrium.
In the language of Graph Theory, all possible pairwise would correspond to a complete graph,
where each of the vehicles is represented by a node on the graph, and the presence of a potential
function coupling the orientations of any two vehicles may be described as an undirected link
in the graph. Rather than this complete graph of all N(N − 1)/2 pairwise interactions, we
merely need at least N− 1 of them to ensure that the graph is connected. Indeed, the proper
generalization of the symmetry group SO(3)×δ (R3×R3) for two bodies in Case B is the
semi-direct product

G = SO(3) ×δ (R3× . . .×R3)

of SO(3) with R3N , where the group of rotations acts diagonally on each of the N three-
dimensional spaces. This leads straightforwardly to the reduced phase space

T ∗SE(3)N
/G

∼= (se(3)∗)N× (SO(3))N−1 (55)

where the (N−1)-fold identity in the second factor stands for alignment of all bodies.
When designing our control inputs we aim for the flexibility and (structural) stability of

e.g. fish in a school that try to align with all of their nearest neighbours (and not only one of
them). We therefore use the generality of the semi-direct product reduction to let our dummy
variable K vary in a vector space V that is possibly larger than (R3×3)N−1. Let therefore J⊆ I

be a set of n ordered pairs ( j,k) with N−1 ≤ n ≤ N(N−1)/2, such that the associated graph
is connected and consider

V = (R3×3)J ∼= R9n.

For this latter isomorphism we define for each K( jk) an associated vector,
K̃( jk) = (eT

1 K( jk),eT
2 K( jk),eT

3 K( jk))T ∈ R9 and then K̃ ∈ R9n by

K̃ =
(

K̃( jk)

)
( j,k)∈J

.

Similar to (16) the associated right representation ρ∗ : SE(3)N → GL(R9n) is given by

ρ(R(1),b(1), . . . ,R(N),b(N))K̃ =
(
(RT

( j)⊗RT
(k))K̃( jk)

)
( j,k)∈J

whence the isotropy subgroup reads

FK̃ =
{

(R( j),b( j)) j ∈ SE(3)N | ρ
∗(R( j),b( j)) j)K̃ = K̃

}
.

Note that for each K ∈V satisfying (53) we have G∼= FK̃ and (55) is embedded in

s∗− = (se(3)∗)N×V ∗−.
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With these definitions, the semi-direct product reduction follows through in much the same way
as in §3. In particular, the resulting structure matrix will be block diagonal with each block of
the form (22). Most importantly, one can use the linear coordinates(

(π( j), p( j)) j , (∆ jk,Σ jk,Γ jk)( j,k)∈J
)
∈ s∗−

on the reduced phase space to define the artificial potential

U = ∑
( j,k)∈J

σ jk
(
∆ jk · e1 + Σ jk · e2 + Γ jk · e3

)
where (σ jk)( j,k)∈J ∈ Rn×n is a matrix of control gains. In the unreduced space T ∗SE(3)N this
potential takes the form

U = ∑
( j,k)∈J

σ jk

3

∑
i=1

eT
i RT

( j)K( jk)R(k)ei

and by construction we have FK̃-symmetry. The kinetic energy is the sum of terms (37) which
turns into the corresponding sum of terms (38) on the reduced phase space. Using the energy-
Casimir method we can now show that the equilibrium consisting of all bodies aligned (K( jk) =
I3 for all ( j,k) ∈ J ) is stable provided all the control gains σ jk are negative. This proof is
straightforward since the Hessian of the augmented Hamiltonian, HΦ = H + Φ, where Φ is a
sum of terms of the form (50), is again block diagonal where each block is of the form (51).
This inherent block diagonality ensures that our control law, at least for fixed and connected
coupling topology, is scalable (with number of bodies N), i.e. the control inputs, the dynamics
and the stability analysis do not get any more complex for very large N. Further, the control
inputs should still provide stabilisation of alignment even if the number of bodies in the group
drops due to malfunction. For the latter it is necessary to choose the number n of pairs in J

sufficiently generous. Such a choice will be almost automatic in Case C where J should contain
the pairs of nearest neighbours.

10 Final Remarks
We have presented reduction for two rigid bodies coupled by a control law that depends only
on their relative configuration. The semi-direct product reduction provides flat (Euclidean)
spaces from which we can efficiently formulate control laws. We have applied the reduction
results to several cases of interest including orientation alignment of a pair of rigid satellites
and orientation and position alignment of a pair of underwater vehicles moving at constant
speed.

We note that the control law presented in §5 for orientation matching is related to those
of [1, 15] constructed for the asymptotic tracking of a desired attitude for satellites and heli-
copters. The control laws in these works consist of state feedback laws which required can-
cellation of the natural dynamics of those vehicles to achieve asymptotic stabilisation. In con-
trast, our control law is derived from the addition of a potential function designed to preserve
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the Hamiltonian nature of the system (and therefore the natural dynamics of the system); this
Hamiltonian structure was used to prove stabilitiy of the aligned configuration in §7.

We also point out that the stabilization proof of §7.2 applies to two aligned underwater
vehicles with each moving along its short (stable) axis. An additional control term is necessary
to stably coordinate two (or more) aligned underwater vehicles with each moving along its long
(unstable) axis. The problem of stable coordination of a network of mechanical systems of a
particular class, each with otherwise unstable dynamics, is addressed in [12, 13]. In [12] stable
coordination is proved for a controlled network of carts, each moving steadily while balancing
an inverted pendulum. The addition of a control term that introduces dissipation is included
and asymptotic stability analyzed. In [13] stabilization is proved for a group of satellites with
orientations aligned and each spinning stably about its otherwise unstable (middle) axis. The
role of an additional dissipation term provided by control and the analysis of asymptotic stability
in the context of the problems discussed in [13] and the present paper will be presented in a
future publication.

At the end of the present paper, we discussed extensions to groups of coupled rigid bodies
with N > 2. We considered fixed, connected interconnection topologies. The reduction and this
preliminary extension provide a foundation for further study of control inputs for alignment of
groups that may include a varying number of vehicles and a limited communication radius.
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