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Abstract: We present a new coordinated control law for a group of vehicles in the
plane that stabilizes an arbitrary desired group shape. The control law is derived
for an arbitrary shape using models of tensegrity structures which are spatial
networks of interconnected struts and cables. The symmetries in the coupled
system and the energy-momentum method are used to investigate stability of
relative equilibria corresponding to steady translations of the prescribed rigid
shape.
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1. INTRODUCTION

We address shape control of a group of mobile
agents or vehicles in the plane. Shape refers to the
geometry, configuration or formation of the group
and is invariant under translation and rotation of
the group as a whole. In (Zhang et al., 2003),
shape coordinates are defined based on Jacobi
coordinates and a law to control small formations
on Jacobi shape space is derived using a control
Lyapunov function. In this paper, we use models
of tensegrity structures to synthesize and analyze
the shape dynamics of a group.

Shape control and, more generally, collective con-
trol of multi-agent systems have applications in
a variety of engineering problems. One specific
application motivating this research is the con-
trol of a fleet of autonomous underwater vehicles
(AUVs) recently used for an adaptive sampling
experiment in Monterey Bay, CA (AOSN), see e.g.
(Leonard et al., 2006; Fiorelli et al., 2004). For the
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design of mobile sensors carrying out sampling or
searching tasks, the configuration of the group can
be critical. Depending on the field that is being
surveyed, smaller or larger formations might be
more efficient, and certain shapes of the group
might be preferable for estimating field parame-
ters such as gradients or higher-order derivatives
from noisy measurements made by the mobile sen-
sors, see e.g., the problem of generating a contour
plot with a mobile sensor network (Zhang and
Leonard, 2005).

We present a constructive method to stabilize an
arbitrary planar shape for a group of n vehicles
using virtual tensegrity structures. We model each
of the n vehicles as a particle, moving in the
plane, under the influence of a control force. The
control forces are designed as if the particle group
forms a tensegrity structure in which particles
are treated like nodes and connections between
particles simulate struts or cables. Stabilization
of relative equilibria corresponding to the desired
shape in steady translation is investigated using
symmetries in the multi-agent system together
with the energy-momentum method.



Tensegrity structures (Skelton et al., 2001) are
geometric structures formed by a combination of
struts (in compression) and cables (in tension)
which we classify together more generally as edges.
The edges of a tensegrity structure meet at nodes.
A generic combination of cables and struts will not
be in equilibrium; if the corresponding structure
were physically built, it would collapse. We define
tensegrity structures as only those structures that
are in equilibrium. The artist Kenneth Snelson
(Snelson, 1965) built the first tensegrity structure,
and Buckminster Fuller (Fuller, 1962) coined the
term tensegrity by combining the words tension
and integrity.

Tensegrity structures have been widely studied
with different motivations and approaches. For
instance, there is growing interest in tensegrities
in the context of designing structures whose shape
can be adjusted and controlled. Models of the
forces and formalization of the notion of stability
for tensegrity structures were proposed by Con-
nelly through an energy approach in (Connelly,
1982; Connelly, 2005; Connelly, 1999; Connelly
and Whiteley, 1996). Tensegrity structures have
also been used to model biological systems such
as proteins, (Zanotti and Guerra, 2003) or cellular
structure, (Ingber, 1993). It is known (Skelton et
al., 2001) that the shape of a tensegrity structure
can be changed substantially with little change in
the potential energy of the structure. This moti-
vates us in part to use tensegrity structures as a
model for shape control of a group of vehicles.

In this paper, we define a tensegrity structure
that realizes any arbitrary desired shape. Each
vehicle, modelled as a particle, is identified with
one node of the tensegrity structure. The edges of
the tensegrity structure correspond to communi-
cations and direction of forces between the vehi-
cles. If an edge is a cable, the force is attractive; if
the edge is a strut then the force is repulsive. The
magnitude of the forces depends on the tensegrity
structure parameters and the relative distance be-
tween the vehicles associated with the edge. In this
setting, it is possible to see a tensegrity structure
as an undirected graph with the interconnection
between nodes weighted by the magnitude of the
force. This allows us to use the formalism and
results from algebraic graph theory. We note that
because we use virtual tensegrity structures our
model cannot impose the constraints that physical
struts only increase in length and cables only
decrease in length; an important consequence is
the need for a nonlinear model that isolates the de-
sired equilibrium shape. In Sections 2 and 3 of this
paper we discuss different models for the forces.
In Section 4 we present a systematic method to
generate any shape. In Section 5 we investigate
the stability of the generated shapes.

2. LINEAR FORCE MODEL

In this section we describe the simplest way
of modelling the forces induced by the two types of
edges of a tensegrity structure. We then find the
relationship between the choice of cables, struts
and parameters for the corresponding model and
the equilibria. We model cables as springs with
zero rest length and struts as springs with zero
rest length and with a negative spring constant
(Connelly, 1982; Connelly, 2005). Hence if we
consider two nodes i, j we have

−→
f i→j = ωij(−→qi −−→qj ) = −

−→
f j→i, (1)

where
−→
f i→j ∈ R2 is the force applied to node

j as a result of the presence of node i. Here,
−→qi = (xi, yi) ∈ R2 is the position vector of
node i and ωij is the spring constant of the edge
ij. The spring constant ωij is positive if ij is a
strut, negative if ij is a cable and zero if there
is no connection between the nodes i and j. We
call ωij the stress of the edge ij. The absolute
position of the structure in the plane is given by
a vector q ∈ R2n which we call a placement. Let
x = (x1, . . . , xn)T and y = (y1, . . . , yn)T , then

q =
(
x
y

)
. The potential energy of a tensegrity

structure is

Eω(q) =
1
2

n∑
i=1

n∑
j=i+1

ωij‖−→qj −−→qi ‖2. (2)

We write
∑
i<j

to represent
n∑

i=1

n∑
j=i+1

. We note that

this potential increases as we stretch the cables or
shrink the struts. Using cartesian coordinates in
the plane, equation (2) becomes

Eω(q) =
1
2

( ∑
i<j

ωij(xj −xi)2 +
∑
i<j

ωij(yj −yi)2
)
.

(3)
The equilibria of the system are the critical points
of the potential (3). We rewrite (3) to more easily
calculate the critical points.

Using notations from algebraic graph theory, we
consider the undirected graph G = (V,E), where
V is the set of nodes and E the set of edges. Let
dj be the degree of node j, then the Laplacian L
of the graph G is the n× n matrix defined by

Lij =

 dj if i = j
−1 if (i, j) ∈ E
0 otherwise.

(4)

In our setting communications are not identi-
cal from one edge to the other, but rather are
weighted by the spring constants ωij .

Our goal is to solve for and stabilize a tensegrity
structure. To do this we solve for the weights ωij .
A tensegrity structure can then be viewed as an



undirected graph for which we define the weighted
Laplacian Ω by

Ωij =


n∑

j=1

ωij if i = j

−ωij if i 6= j.

This matrix Ω introduced by Connelly (but de-
rived in a different way) in (Connelly, 1982) is
called the stress matrix. The stress matrix is an
n × n symmetric matrix and the n-dimensional
vector 1 =

(
1 · · · 1

)T is in the kernel of Ω (the
last property is true for all Laplacians). Using this
matrix, we can rewrite the potential (3) as

Eω(q) =
1
2
qT (Ω⊗ I2)q,

where I2 is the 2× 2 identity matrix and Ω⊗ I2 is

the 2n × 2n block diagonal matrix
(

Ω 0
0 Ω

)
. It is

now easy to see that the critical points, and hence
the equilibria, are given by

qT (Ω⊗ I2) = 0. (5)

Using the fact that the stress matrix is symmetric,
we see that a placement qe is an equilibrium if
and only if xe and ye are in the kernel of Ω.
Recall that 1 is in the kernel of Ω. Assuming that
the nodes are not all in a line, xe,ye and 1 are
linearly independent. We can conclude that with
this model, a combination of cables and struts will
have an equilibrium if and only if rank(Ω) ≤ n−3.
We assume from now on that n ≥ 4. By choosing
the stresses of the edges of the structure so that
rank(Ω) = n−3, the kernel of the stress matrix Ω
is exactly three dimensional, and we can prescribe
the shape of the equilibrium.

However, we cannot prescribe the size of the
equilibrium configuration. Indeed if ker(Ω) =
span{xe,ye,1} then the structure described by
qe = (αxe, βye) is also an equilibrium ∀α, β ∈ R.
For real tensegrities this is not a problem because
the cable and strut constraints preclude the exis-
tence of any but the original equilibrium. In the
virtual setting, however, where we cannot impose
the constraints, we get a continuum of equilibria
which is not desirable. For example, if we prescribe
the tensegrity to be a square, it will be the case
that not only all squares but also all rectangles
will be equilibria. In the next section we exploit
the simple equation (5), derived using the linear
model (1), that determines the tensegrity shape
as a function of the parameters ωij . We propose
a nonlinear model for the forces along edges that
isolates a tensegrity, fixing both shape and size.

3. NONLINEAR FORCE MODEL

In the previous section we chose to model
the forces between a pair of nodes with a lin-

ear function of the relative distance between the
nodes. We now model the forces along the edges as
nonlinear springs with finite, nonzero rest length.
Cables will always be longer than their rest length
and struts will always be shorter than their rest
length. We consider two nodes i, j and we define

−→
f i→j = αij |ωij |

rij − Lij

rij
(−→q i −−→q j). (6)

Here rij = ‖−→q i − −→q j‖ is the relative distance
between nodes i and j, Lij is the rest length of
the spring that models the edge ij, ωij is the
spring constant from model (1) and αij is a scalar
parameter that fixes the spring constant of model
(6) for the edge ij.

The corresponding potential energy is

Eω(q) =
1
2

∑
i<j

αij |ωij |(rij − Lij)2. (7)

The equilibria of this system can be found by
solving for the critical points of the potential (7).
After some manipulation, we find that the critical
points of (7) are given by

n∑
j=1

αij |ωij |(−→qj −−→qi )(1−
Lij

rij
) = 0, i = 1, . . . , n.

From this set of equations, we can define an
analogue of the stress matrix Ω of (2). The new
stress matrix is not a constant matrix. Rather it
depends on the relative distances between pairs of
nodes. We define

ω̃ij(x,y) = αij |ωij |(1−
Lij

rij
) (8)

to be the stress of the edge ij. The entries of the
new stress matrix are given by

Ω̃ij(x,y) =


n∑

k=1

ω̃ik(x,y) if i = j

−ω̃ij(x,y) if i 6= j.

We note that the vector 1 is also in the kernel of Ω̃,
∀ (x,y) ∈ Rn×Rn. Now if we wish the placement
qe = (xe,ye) to be the tensegrity structure (i.e
the stable equilibrium of the system), we need to
pick (if possible) the parameters αij , ωij , Lij so
that

Ω̃(xe,ye)xe = 0

Ω̃(xe,ye)ye = 0.

As a first step we choose parameters αij and
Lij for all i, j so that Ω̃(xe,ye) = Ω. If edge
ij is a cable, then ωij > 0, and by (8) we have
ω̃ij = αijωij(1− Lij

rij
). To make ω̃ij(xe,ye) = ωij ,

we make αij(1− Lij

re
ij

) = 1 where re
ij is the relative

distance between nodes i and j for the desired
placement. This last equation is solved by picking
αij = 2 and Lij = 1

2re
ij . If edge ij is a strut, then



ωij < 0, and by (8) we have ω̃ij = −αijωij(1 −
Lij

rij
). We make αij(1 − Lij

re
ij

) = −1 by picking
αij = 1 and Lij = 2re

ij . The choice of Lij and
αij is not unique (in case of a strut or a cable);
the effect of picking other values for parameters
αij and Lij is to be determined.

We show in the next section, that we can also find
parameters ωij independent of parameters αij and
Lij , so that ker(Ω) = span{xe,ye,1}, and such
that the nonzero eigenvalues of Ω are all positive.
This makes the equilibrium qe = (xe,ye) an
isolated minimum of the potential (modulo rigid
transformations), i.e., our choices ensure that we
have the right combination of struts and cables to
make qe = (xe,ye) a tensegrity structure.

4. CONSTRUCTION OF THE CONSTANT
STRESS MATRIX

In this section we solve the following problem:
given a desired placement qe = (xe,ye), find
stresses ωij such that ker(Ω) = span{xe,ye,1}
and the nonzero eigenvalues of Ω are positive.

We know that Ω is symmetric, hence it has only
real eigenvalues and can be diagonalized using an
orthonormal basis. As mentioned previously, if we
do not consider the case when all the nodes are in
a line, then xe,ye and 1 are linearly independent.
We can complete these three vectors with n − 3
others so that we have a basis of Rn. Then if
we apply the Gram-Schmidt procedure to those
vectors, we get an orthonormal basis (v1, . . . ,vn)
for Rn that satisfies

span{v1,v2,v3} = span{xe,ye,1}.

Now we define the n × n diagonal matrix D
with diagonal elements (0, 0, 0, 1, . . . , 1) and the
orthonormal n × n matrix Λ =

(
v1 · · · vn

)
. If

we compute ΛDΛT we have a symmetric posi-
tive semi-definite matrix with its kernel equal to
span{xe,ye,1}. Setting Ω = ΛDΛT determines
the values of stresses ωij that make the placement
qe = (xe,ye) a tensegrity structure. The effect of
choosing smaller or larger positive eigenvalues for
Ω (set here to 1) is to be determined.

5. RELATIVE EQUILIBRIUM STABILITY

In this section we use the energy-momentum
method to look at the stability of the relative equi-
librium corresponding to the tensegrity structure
modelled by (6) in steady translation. The energy-
momentum method is a technique for proving sta-
bility of relative equilibria (Marsden, 2004). For
simple mechanical systems, we have the follow-
ing setting: a configuration space Q, a symplectic
manifold P = T ∗Q with a symplectic action of

a Lie group G on P , an equivariant momentum
map J : P 7→ g∗ and a G-invariant Hamiltonian
H : P 7→ R. Here g∗ is the dual of the Lie algebra g
of G. If the Hamiltonian vector at the point ze ∈ P
points in the direction of the group orbit through
ze, then the point is called a relative equilibrium.
Let µ = J(ze).

Theorem 1. Relative Equilibrium Theorem
(Marsden, 2004) ze is a relative equilibrium
if and only if there is a ξ ∈ g such that ze is
a critical point of the augmented Hamiltonian
Hξ(z) := H(z)− 〈J− µ, ξ〉.

Definition 1. (Marsden, 2004). Let S be a sub-
space of TzeP such that S ⊂ kerDJ(ze) and S
is transverse to the Gµ-orbit within kerDJ(ze),
where Gµ = {g ∈ G | g · µ = µ}, µ ∈ g∗ and g · µ
is the coadjoint action of G on g∗.

Theorem 2. Energy Momentum Theorem
(Marsden, 2004). If δ2Hξ(ze) is definite on
the subspace S, then ze is Gµ-orbitally stable in
J−1(µ) and G-orbitally stable in P .

For our system, the configuration space is Q =
(R2)n, q = (x,y) ∈ Q and an element in the
cotangent bundle z ∈ T ∗Q can be written as
z = (q,p) = (x,y,px,py). Assuming unit mass
nodes, the system kinetic energy is 1/2(‖ẋ‖2 +
‖ẏ‖2) and px = ẋ and py = ẏ. The Hamiltonian
of the system is given by

H(z) =
1
2
(‖px‖2+‖py‖2)+

1
2

∑
i<j

αij |ωij |(rij−Lij)2.

Noting the fact that the potential energy of the
system only depends on the relative distances
between nodes, we have that the Hamiltonian of
the system is invariant under the following action
of the Lie group SE(2) on Q:

g.q = (cos θx−sin θy+Tx1, sin θx+cos θy+Ty1),
(9)

where g = (θ, Tx, Ty) ∈ SE(2). Let g(t) ∈
SE(2) such that g(0) = (0, 0, 0) and ġ(0) =
ξ = (ω, Vx, Vy) ∈ se(2) = g. The infinitesimal
generator corresponding to the action (9) is

ξQ(q) =
d

dt

∣∣∣∣
t=0

g(t) · (x,y)

= (−ωy + Vx1, ωx + Vy1).

The momentum map J : T ∗Q 7→ g∗ is given by
the formula (Marsden and Ratiu, 1999)

〈J(x,y,px,py), ξ〉 = 〈(px,py), ξQ(q)〉. (10)

From equation (10), we get

J(z) =

〈x,py〉 − 〈y,px〉∑
pxi∑
pyi

 . (11)



The components of the momentum map are the
total angular momentum of the tensegrity about
the origin and the total linear momenta in the x
and y directions.

Let qe = (xe,ye) correspond to a tensegrity
as designed in the previous sections. Let ξ =
(ω, Vx, Vy) ∈ se(2). By Theorem 1, the relative
equilibria ze = (xe,ye,pe

x,pe
y) ∈ R4n satisfy

∂Hξ

∂x
(ze) =−ωpe

y + Ωxe = 0 (12)

∂Hξ

∂y
(ze) = ωpe

x + Ωye = 0 (13)

∂Hξ

∂px
(ze) = pe

x + ωye − Vx1 = 0 (14)

∂Hξ

∂py
(ze) = pe

y − ωxe − Vy1 = 0 . (15)

By design Ωxe = Ωye = 0. Choosing ξ =
(0, Vx, Vy) and (pe

x,pe
y) = (Vx1, Vy1), we satisfy

equations (12)-(15). Therefore ze = (xe,ye, Vx1, Vy1)
is a relative equilibria of the system.

Next we compute δ2Hξ(ze), the second variation
of Hξ evaluated at the relative equilibrium:

δ2Hξ(ze) =


Ω + Lωx(qe) Lωxy(qe) 0n 0n

Lωxy(qe) Ω + Lωy(qe) 0n 0n

0n 0n In 0n

0n 0n 0n In


(16)

where the ijth element of each matrix is

Lωx(i, j) =


−αij |ωij |

(xi − xj)2Lij

r3
ij

if i 6= j

n∑
j=1j 6=i

αij |ωij |
(xi − xj)2Lij

r3
ij

if i = j

Lωy(i, j) =


−αij |ωij |

(yi − yj)2Lij

r3
ij

if i 6= j

n∑
j=1j 6=i

αij |ωij |
(yi − yj)2Lij

r3
ij

if i = j

and

Lωxy(i, j) =
−αij |ωij |

(xi − xj)(yi − yj)Lij

r3
ij

if i 6= j

n∑
j=1j 6=i

αij |ωij |
(xi − xj)(yi − yj)Lij

r3
ij

if i = j.

We first show that this matrix is positive semi-
definite. This is equivalent to proving that the top
left 2n by 2n block in (16) given by

K =
(

Ω + Lωx(qe) Lωxy(qe)
Lωxy(qe) Ω + Lωy(qe)

)
(17)

is positive semi-definite. Recall that we have de-
signed Ω to be positive semi-definite. The matrices
Lωx and Lωy are symmetric and have all their

off diagonal terms negative. The diagonal terms
are positive so that each row sums to 0. In other
words, Lωx and Lωy are diagonally dominant
symmetric matrices. From the Gersgorin theorem
(Horn and Johnson, 1985) those two matrices are
positive semi-definite. We assert (and will prove in

a later publication) that
(

Lωx Lωxy

Lωxy Lωy

)
≥ 0. This

implies that K ≥ 0 and δ2Hξ(ze) ≥ 0.

Lemma 1. The kernel of δ2Hξ(ze) is equal to

span




1
0
0
0

 ,


0
1
0
0

 ,


−ye

xe

0
0


 .

Proof: See the appendix.

We now investigate if the vectors in the kernel of
δ2Hξ(ze) are in S (given by Definition 1). First
we compute DJ(ze) to be

DJ(ze) =
(
Vy1T −Vx1T −yeT xeT

)
.

Next we compute Gµ. In our case, G = SE(2)
and µ ∈ se(2)∗. By (11), we have µ = J(ze) =
(µ1, nVx, nVy). Let g = (θ, Tx, Ty) ∈ SE(2) then
the coadjoint action g · µ is

Ad∗(θ,Tx,Ty)−1(µ1, nVx, nVy)

= (µ1 −R(θ)V · JT, R(θ)V),

R(θ) =
(

cos θ − sin θ
sin θ cos θ

)
, J =

(
0 1
−1 0

)
,

T =
(

Tx

Ty

)
, V =

(
nVx

nVy

)
.

If V 6= 0 then

Gµ = {g ∈ SE(2) | R(θ) = I and VxTy = VyTx}.

Having computed DJ(ze) and Gµ, we can now
compute S as follows (Marsden, 2004). Let

V = {δq ∈ TqeQ | 〈δq, ξQ(qe)〉 = 0 ∀ξ ∈ gµ}.
(18)

Then,

S = {δz ∈ kerDJ(ze) | TπQ · δz ∈ V} (19)

where πQ : T ∗Q → Q is the projection. This leads
to δz = (δq,0,0) ∈ S if and only if

(
Vx1T Vy1T

) (
δx
δy

)
= 0 (20)

(
Vy1T −Vx1T

) (
δx
δy

)
= 0. (21)

Since there exist α, β ∈ R such that

δq =
(

δx
δy

)
= α

(
1
0

)
+β

(
0
1

)
+

(
−ye

xe

)
(22)

satisfies both (20)-(21), then δz = (δq,0,0) ∈ S
is also in the kernel of δ2Hξ(ze).



Thus, the Energy Momentum Theorem does not
provide a conclusive result on the stability of the
relative equilibrium ze. However, we note that
δz = (δq,0,0) with δq given by (22) corresponds
to a rotation of the tensegrity about its center of
mass. Any rotated tensegrity moving with con-
stant velocity is just another relative equilibrium.
Indeed there is a continuum of relative equilibria
for a given tensegrity shape moving at constant
velocity, parameterized by the orientation of the
tensegrity. Simulations restricted to a constant
momentum surface with µ = (0, nVx, nVy) reveal
no rotational drift. In the full space, simulations
exhibit drift only in the SE(2) directions, i.e.,
translational and rotational drift. Of particular
note, there are solutions in the full space, near
the relative equilibrium studied, that correspond
to a rotating and translating formation.

6. FINAL REMARKS

We present a new coordinated control law for a
group of vehicles in the plane that creates an
arbitrary desired group shape. The control law
is derived for an arbitrary shape using tensegrity
structures modelled by (6). The symmetries in
the coupled system and the energy-momentum
method are used to investigate stability of relative
equilibria corresponding to steady translations of
the prescribed rigid shape. The energy momentum
method alone does not provide conclusive results;
however, the relative equilibrium does appear to
be stable when the dynamics are restricted to the
constant momentum surface. The analysis led to
the discovery of solutions in the full space corre-
sponding to rotating and translating formations;
these solutions are under further investigation.
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APPENDIX: Proof of Lemma 1

Proving Lemma 1 is equivalent to proving that
the kernel of K is exactly equal to the span of

{w1,w2,w3} =
{(

1
0

)
,

(
0
1

)
,

(
−ye

xe

)}
.

We can rewrite K as

K = K1 + K2 =
(

Ω 0n

0n Ω

)
+

(
Lωx Lωxy

Lωxy Lωy

)
.

Since K1, K2 are symmetric positive semi-definite,

q ∈ ker(K) ⇐⇒ q ∈ ker(K1) and q ∈ ker(K2).

By design {w1,w2,w3} are in the kernel of K1.
By direct computation, they are also in the kernel
of K2. We now show that the kernel of K2 is
exactly equal to the span of {w1,w2,w3}. Since
we exclude the case of all nodes in a line, the span
of {w1,w2,w3} is three dimensional. We complete
{w1,w2,w3} with 2n − 3 vectors {w4, . . . ,w2n}
from the canonical basis of R2n making sure that
we have 2n linearly independent vectors. It is then
easy to check that

K2vi 6= 0 ∀i ≥ 4

and so the kernel of K2 and therefore the kernel
of K is exactly spanned by {w1,w2,w3}. �


