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Abstract

Today there is a rapidly expanding and vibrant community of scientists interested in the

phenomenon of collective behavior. Collective behavior holds clues to the evolution of social

dynamics in animal or human groups, and also for the development of novel technological

solutions, from autonomous swarms of exploratory robots to smart grids that reliably dis-

tribute electricity to consumers in a dynamic fashion. In this dissertation we study the

dynamics and control of multi-agent systems in both the engineered and the natural set-

ting.

Focusing first on the engineered setting, we derive provable, distributed control laws for

stabilizing and changing the shape of a formation of vehicles in the plane using dynamic

models of tensegrity structures. Tensegrity models define the desired, controlled, multi-

vehicle system dynamics, in which each node of the tensegrity structure maps to a vehicle

and each interconnecting strut or cable in the structure maps to a virtual interconnection

between vehicles. Our method provides provably well-behaved changes of formation shape

over a prescribed time interval. A designed path in shape space is mapped to a path in the

parametrized space of tensegrity structures, and the vehicle formation tracks this path with

forces derived from the time-varying tensegrity model.

Turning our attention to the natural setting, we then present and study Lagrangian

models to investigate the mechanisms of decision-making and leadership in animal groups.

We study the motion dynamics of a population that includes “informed” individuals with

conflicting preferences and “uninformed” individuals without preferences. This work is the

result of an interaction between complex discrete-time models developed by biologists that
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produce highly suggestive simulations, and continuous-time models that, though simpler and

less suggestive, allow for a thorough investigation of the dynamics in a general context with

a complete exploration of parameter space, thus allowing us to uncover unifying principles

of motion.
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Chapter 1

Introduction

1.1 Motivation and Problem Statement

Collective behavior in the human, animal or engineered setting is a fascinating phenomenon.

Whether it is behavioral economists trying to understand the decision-making process of

market participants and its influence on market prices and returns, or biologists wondering

how schooling fishes, flocking birds or swarming ants make rapid collective decisions on

where to move or what task to perform in often variable and dangerous environments, or

engineers trying to design collaborating teams of robots by emulating mechanisms observed

in nature, the attention of many scientists has been captivated by the subject of collective

behavior.

Today we are far from the “thought transference” abilities hypothesized by Selous in

which a connectivity of individual minds is required to explain how tens of thousands of

starlings come together to roost [106]. It is now accepted that individuals in animal groups

make their movement decisions on the basis of local cues from both the environment and

near neighbors [18], and that through its interactions with other individuals in the group,

each individual gains access to information beyond its own cognitive abilities. The transfer

of information in this way between group members creates collective behaviors that give

the impression to a field observer that there exists a “collective mind” within the group
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[17]. That is, through their simple interactions, individuals in a group collectively perform

tasks without the need for a centralized control or global blueprint, as though endowed with

a collective mind. This capability holds the solution to the decentralized control problem

that engineers designing collaborating teams of mobile robots are to solve. The mechanisms

through which the capabilities of a group of individuals become greater than the sum of

the capabilities of its individual members provides a compelling model for the design of

collaborating teams of mobile robots.

Cooperative teams of mobile robots have been deployed on land, sea and air to perform

various tasks including searching and sampling both for commercial and for military appli-

cations. Recent efforts in cooperative control of groups of robots have focused on emulating

collective behaviors observed in animal groups. This new multi-disciplinary effort has been

beneficial to biologists and engineers alike. Mathematical techniques commonly used in the

engineered setting help reveal fundamental mechanisms of collective behavior in the natural

setting, and the mechanisms of animal collective behavior, once deciphered, provide new

inspiration for design in engineering.

In this dissertation we study the dynamics and control of both engineered and natural

systems. We first derive provable, decentralized control laws for stabilizing and smoothly

changing the shape of a group of vehicles in the plane. Tensegrity structures are used

to model the controlled multi-vehicle system dynamics, with each node in the tensegrity

corresponding to a vehicle and each connecting element of the tensegrity corresponding to

a virtual interconnection between a pair of vehicles. Then, turning our attention to the

biological setting, we present and study models to investigate the mechanisms of decision-

making and leadership in animal groups. We study the motion dynamics of a population

that includes two subgroups that are “informed” such that individuals in each subgroup

have a preferred direction and one subgroup that is “uninformed” such that individuals

in this subgroup do not have a preferred direction of motion. This work is the results of

an interaction between two types of models: complex discrete time models developed by

biologists that produce highly suggestive simulations, and continuous time models that,
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though simple and less suggestive, make it possible to explore the dynamics in a more

general context, thus allowing us to uncover unifying principles of motion.

1.2 Survey of Related Work

The literature on topics related to this dissertation is vast, and the survey of related work

that we present is therefore necessarily incomplete. Although in this dissertation the first

chapters focus on multi-agent systems in the engineered setting while later chapters focus

on multi-agent systems in the natural setting, we present our survey of related work in the

opposite order. We first summarize research in modeling of aggregation and decision making

in animal groups. We then summarize related research in coordinated control of robotic

teams. This order is chosen as the research on multi-agent systems in the natural setting

has tended to precede and inspire the research on multi-agent systems in the engineered

setting.

1.2.1 Aggregation and Decision-making in Animal Groups

Aggregation Modeling: Most animal species live in groups, in the sense defined by

Wilson as “any set of organisms, belonging to the same species, that remains together for a

period of time, interacting with one another to a distinctly greater degree than with other

conspecifics” [81]. The reasons why species have evolved to this social tendency have been

extensively studied and are well understood. They include an increased chance of surviving

predation, enhanced foraging, conservation of heat and such social benefits as finding a mate.

See Chapter 2 in [57] for a full review of the benefits of group formation. The mechanisms

of aggregation and cohesiveness of aggregated groups, however, are not as well understood.

The modeling and analysis of these phenomena continue to generate considerable interest in

the ethology community with many problems remaining open. Self organization theory has

gone a long way in explaining the emergence of group behavior, suggesting that complex

large-scale behaviors are the result of simple interactions among individuals in the group

[43, 10]. Deriving the precise mechanism by which simple interactions produce complex
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behaviors has proven difficult. One of the difficulties stems from the fact that patterns

which are posited to emerge from individual behavior are observable only at the level of

the population [42]. The observation that the same individual interaction may translate

into different group behaviors under the influence of different environments complicates the

problem, posing another challenge to uncovering aggregation mechanisms [30].

The dynamics of aggregation in animal groups that have been studied in the ethology

literature have been described mainly with two types of models: Eulerian and Lagrangian.

Eulerian models, also known as continuum models, describe a group using a continuous

density measure. They characterize the behavior of the group by describing the dynamics

of group properties such as population density or group size. The dynamics of the group

properties are usually modeled with a set of partial differential equations. Abstracting to

group properties has been a very appealing approach, given the availability of sophisticated

mathematical tools to analyze such systems. Gueron and Levin modelled the dynamics of

large wildebeest herds using an Eulerian approach [41]. Their model revealed a plausible

mechanism for self organization that spontaneously produces front patterns. Front patterns

predicted by this model were validated with aerial photos. The Eulerian approach has also

been very successful in describing the mechanism of aggregation for dense species such as

bacteria or for some insect swarms [37].

The Eulerian approach has its limitations however. It has not proven particularly well

suited for modeling aggregation of groups of moderate to low density including some schools

of fish and flocks of bird. Also, since in continuum models individual animals are not

represented, their social interactions cannot be implemented directly. Many continuum

models therefore describe social behavior using a heuristic interpretation of individual-

based models or of data collected in observations; the partial differential equations for the

group property of interest are formulated so as to include relevant diffusion, convection,

and interaction terms. Aiming to avoid building a model based on heuristic interpretation,

Grünbaum derived the formulation of a continuum model explicitly from a Lagrangian-

type model [38]. This allowed him to directly implement relevant interactions between
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individuals in the group.

Lagrangian models describe the group as a collection of discrete individuals interacting

with each other and determine the trajectories of individual animals. The rules governing

the group’s movements are often described with a set of discrete time or continuous time

ordinary differential equations incorporating physical laws (e.g., Newton’s second law) and

social rules (attraction, repulsion and tendency to align). Okubo, in paralleling Newtonian

dynamics to diffusion processes in ecological systems, revealed the tendency of individuals

to be both attracted to and align with others, but he did not discuss the tendency to move

away from individuals that are too close [84]. Aoki’s pioneering simulation study of schools

of fish proved the relevance of all three aforementioned social rules suggesting that the

main tendencies that individual fish adopt are attraction to and alignment with neighbors

and repulsion to individuals presenting a risk of collision [3]. While a clear advantage of

the Lagrangian approach is that it allows for implementation of specific behavioral rules,

limited computing power for many years made it impossible to study those models to

their full potential. Simulations of these models could only be performed on groups of

few individuals and for short periods of time. With the advent of ever more powerful

computers it is now possible to perform simulations on large numbers of individuals and

for significant amount of time. Accordingly, Lagrangian models are now capturing more

attention [130, 19].

Another advantage of the Lagrangian approach is that the simulated behavior can be

visualized and in this way compared with the observed behavior of the natural systems they

represent. Grünbaum et al. developed motion analysis hardware and software to precisely

track in three dimensions the positions of fishes in small schools of four or eight fishes

[39]. The authors used this framework to calibrate the parameters of the alignment force

and attraction/repulsion force of their theoretical model [20]. More recently Bellerini et al.

performed a large-scale observational study of flocks of starlings, reconstructing groups of up

to three thousand birds [4]. The results of their field study supported the notion, assumed

in most theoretical models, of a zone of repulsion around each individual. However, their
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study suggested that interactions between individuals depend on “topological” distances

(how many “birds away”) rather than on metric distances as many models assume.

Information and Decision Making: Although animal groups are known to utilize social

information [57], little is known about the mechanisms underlying decision-making and

information transfer in groups, this despite the growing interest in collective phenomena in

biology, engineering and psychology. Currently, research is being done to understand how

animals use the behavior of other group members to make accurate decisions.

It has been shown that some animals species migrating in groups (especially birds), are

born with genetic information of migratory directions [44]. In a classic field experiment,

Perdeck displaced juvenile and adult starlings 800km in an airplane flight [92, 23]. It was

shown that the juvenile starlings continued to migrate in the same direction that they had

flown prior to displacement, whereas the adults compensated for the displacement by taking

a different direction. However this type of genetic information of migratory direction has

not been found in many species. Another type of elaborate mechanism used by individuals

to make decisions is the famous waggle-dance that honeybees have been observed to use in

recruiting members to visit food sources [66]. However such elaborate mechanisms are not

observed in most groups of fish or birds [57]. For many species, it has been shown that only

a few individuals with pertinent information, such as the knowledge of a migration route,

of a source of food or of the efficient behavior to adopt, are necessary to successfully guide

the group. Further, in many species, it is not possible to identify which individuals have

information and whether it is reliable or not. In a controlled experiment, Reebs trained

golden shiners to expect food at a given time and given location in the tank and showed

that when introduced to a shoal of untrained golden shiners, the trained shiners were able

to direct the shoal to the food source [96] without causing it to split. With a different

controlled experiment involving guppy shoal, Swaney et al. showed further that familiar

and well trained demonstrators were more efficient than unfamiliar and poorly trained

demonstrator in guiding the shoal to a food source [119].

Animal groups may be constituted with informed individuals with conflicting informa-
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tion. Convergence to a common decision such as direction of travel or other activity is

described with the notion of consensus. In a recent paper, Couzin et al. revealed plausible

mechanisms for decision making and leadership by using a discrete simulation of particles

moving in the plane [19]. In this simulation, each particle represents an individual animal

and the motion of each individual is influenced by the state of its neighbors (e.g., relative

position and relative heading). Within this group, there are two subgroups of informed

individuals and one subgroup of naive individuals; each subgroup of informed individuals

has a preferred direction of motion that it can use along with the information on its neigh-

bors to make decisions. It is shown that information can be transferred within groups even

when there is no signaling, no identification of the informed individuals, and no evaluation

of others’ information. It was also observed that with two informed subgroups of equal

population, the direction of group motion depends on the degree to which the preferred

directions differ. For small disagreement, the group follows the average preferred direction

of all informed individuals, while for large disagreement the group selects one of the two

preferred directions. This model is more thoroughly studied in Chapter 4. Recent research

has also suggested that quorum response may be a particular mechanism for such decision

making. A quorum like behavior means that the probability of an individual performing

a certain action increases dramatically when seeing a threshold number of other individ-

uals performing this action. It has been shown to be relevant to decision-making in fish

[132, 118], honeybees [104], ants [94] or cockroaches [2].

1.2.2 Coordination under Decentralized Control in Groups of Robots

The apparent effortlessness with which coordination under decentralized control emerges in

natural systems, as reported in the previous section, has motivated engineers to seek to emu-

late such systems for the design of collaborative teams of robots. Two key parameters govern

the possibility of achieving coordination under decentralized control in engineered multi-

agent systems: sensing and inter-vehicle communication. Unlike their biological couterparts

which can use their senses, refined through evolution, to take cues from the environement
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and neighbors, robots have more limited sensing and communication technologies at their

disposal. Our survey provides an overview of existing research on two types of coordina-

tion under decentralized control: first on consensus and synchronization, then on formation

control.

Consensus and synchronization: Interest in the phenomenon of consensus and syn-

chronization appeared in the computer science community during the 1980s. Bertsekas

and Tsitsiklis designed models of distributed asynchronous computation in order to create

efficient methods for parallel computating, strategies of distributed optimization, and dis-

tributed signal processing [128, 5, 127]. An important building block of all these methods is

the “agreement algorithm” in which agents (e.g. signal processing units, computation units)

reach consensus on a common value through each agent forming convex combinations of

its current value and those of its neighbors. Reynolds in his 1987 seminal paper used such

an “agreement algorithm” to propose a simple model of flocking, his motivation being to

create computer animations realistically representing the motion of a flock of birds [97].

In the 1990s Viscek et al. demonstrated the relevance of Reynolds’ work to particle

physics by proposing a Lagrangian, discrete-time linear model to investigate the emergence

of self-ordered motion in multi-particle systems with biologically motivated interactions

[129]. In the Viscek model individuals traveling at constant speed head in the average

direction of motion of their neighbors. The model presented in this now classic paper, which

is actually a special case of the flocking model developed by Reynolds [97], catalyzed research

efforts in the physics community around the topic of consensus dynamics. Toner and Tu

developed an Eulerian model of flocking dynamics describing a large class of microscopic

rules, including the ones utilized in the Viscek paper [125, 126]. Other studies of collective

motion of self-propelled particles that are related to the Viscek model include [36, 35].

Savkin later implemented the Viscek model on groups of autonomous robots [102].

The behavior predicted by the Viscek model was explained theoretically by Jadbabaie

et al. who treated it as a switched linear system and applied tools from algebraic graph

theory and matrix analysis [48]. They were able to prove for a coordinated group of agents
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behaving according to the “nearest neighbor” rules of the Viscek model, convergence to

a common direction of travel under constraints on the switching times. Their worked

sparked tremendous interest in the control theory community. Recognizing the relevance

of graph theory, Olfati-Saber and Murray used “balanced graphs” to address the average-

consensus problem [87] and produced an algorithm that is valid for multi-agent networks

with fixed or switching topologies, with or without time-delays. Moreau extended the results

in [48] and presented sufficient conditions on the communication topology that guarantee

consensus, deriving them by supplementing the tools from graph theory with tools from

systems-theory [74]. Moreau studied both discrete-time and continuous-time consensus

models and presented sufficient conditions under which the equilibrium corresponding to

all individual agents’ converging to a common state value is uniformly exponentially stable.

Moreau showed that the common value to which the agents converge depends on the initial

condition. A key, non-intuitive result that Moreau demonstrated was that a more complete

communication topology does not necessarily translate into a faster convergence and in some

extreme cases may even cause loss of convergence. However, when the common state space

shared by the agents is non-Euclidean and/or the dynamics of the agents are nonlinear,

the results in Moreau [74] are only local. Scardovi et al. generalized Moreau’s result to

nonlinear dynamics on non-Euclidean space [103]. They studied the behavior of a network

of N agents that each evolves on the circle S1, also known as the problem of consensus on

the N -torus, and proposed an algorithm that achieves synchronization or balancing under

mild connectedness assumptions on the communication graph. The convergence results

proven in [103] are global.

The problem of consensus on the N -torus has been studied by many scientists in various

contexts including biology [135], chemistry [59] and neuroscience [113] to understand and

model periodic phenomena. The formulation of the problem of consensus on the N -torus

used in many of these works was first presented by Kuramoto in his 1984 study of “chem-

ical oscillations” [60]. The Kuramoto model describes the evolution in time of a group of

coupled-phase oscillators with global interactions. Many variations of the Kuramoto model
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have been studied. See [115, 1] for reviews of these variations. The Kuramoto model has

recently played a critical role in our context of collective motion. Justh and Krishnaprasad

developed a motion model in which vehicles travel at constant speed and are controlled by

steering their direction of travel [49, 50]. This framework was successfully used by Sepulchre

et al. to stabilize circular and parallel collective motion [108]. Extensions of these results

assuming only limited communications between the steered particles were presented by the

same authors in [107]. In the formulation of the steering control laws used in [108, 107] the

coupling between particles is based on the Kuramoto model. In Chapters 5 and 6 of this

dissertation, the particle models used to study leadership and decision-making are similar

to the cooperative models used in [49, 50, 108, 107] with coupling between agents based on

the Kuramoto model.

Formation Control: Also within the domain of decentralized control is the problem

of formation control which is central to Chapters 2 and 3 of this dissertation. In the

context of formation control, vehicle interactions are driven by the task they are required

to perform. For example, for the design of mobile sensors carrying out collective sampling

or searching tasks, the configuration of the group can be critical. Controlling the geometry

and resolution of the vehicle formation, also referred to collectively as the “shape” of the

formation, offers important advantages to performance and efficiency of data gathering

and processing. Depending on the field being surveyed, smaller or larger formations might

be more efficient and certain shapes of the group might be preferable for estimating field

parameters such as gradients or higher-order derivatives from noisy measurements made by

the mobile sensors. Ögren et al. presented a stable control strategy for groups of vehicles to

move and reconfigure cooperatively to perform gradient climbing missions [83]. In this work

optimal shapes were designed to minimize error. Zhang and Leonard, taking the results

from Ögren et al. a step further, presented an algorithm for level set tracking where the

shape of the group was dynamically controlled so as to minimize the least mean square error

in gradient estimates of a scalar field [139, 140]. Shape control can be significant in other

vehicle network tasks as well, for example, when vehicles need to coordinate their activity
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in order to escort, carry or otherwise interact with objects in their environment.

The earliest work on formation control, which can be dated back at least to the 1960’s,

involved one dimensional strings of inter-connected vehicles. Motivated by the development

of a high speed ground transport system, Levine and Athans presented an optimal linear

feedback control law regulating the position and velocity of a densely packed string of high

speed vehicles [65]. Other related work on the control of strings of vehicles includes [91, 70].

A method particularly relevant to the work presented in Chapters 2 and 3 that has

proven successful in designing distributed control laws of multi-vehicle formations has in-

volved the use of artificial potential functions [98, 85]. Initially, potentials were used solely

to prevent collisions in the vehicle network. Wang used repulsive potential functions to re-

duce the possibility of collisions with other robots and obstacles but in this work, potentials

were not used to achieve a desired formation [131]. In a related work, Khosla and Volpe

used potentials to design the workspace of a manipulator; regions in the workspace to be

avoided by the manipulator were modelled by repulsive potentials (energy peaks), and the

regions into which the manipulator is to move were modelled by an attractive potential

(energy valleys) [56].

Research on multi-robot path coordination using artificial potentials appeared later with

Warren [133]. In this work, the planning of multi-robot paths is performed by mapping the

real space of the robots into a configuration-space-time, with appropriate potential fields

applied throughout in order to influence the paths of the robots. Leonard and Fiorelli

presented a different framework for coordinated and distributed control of a multi-vehicle

system using artificial potentials [63]. They supplemented the artificial potentials by intro-

ducing “virtual leaders” which are moving reference points to which vehicles respond much

as they respond to other neighbors. These virtual leaders are used in the methodology to

eliminate undesirable equilibria created by the artificial potentials and to manipulate the

group behavior (e.g., translation and rotation of the formation). In this dissertation we

map the vehicle formation to a virtual tensegrity structure and design the potentials in this

structure in order to drive the shape of the formation.
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Research on formation control has also drawn inspiration and tools from graph theory,

which, as we have already discussed, has proven useful in the context of consensus and

synchronization. Tabuada et al. modelled formations using formation graphs, i.e., graphs

whose nodes represent the individual vehicle kinematics and whose edges represent the inter-

vehicle constraints to be satisfied [120]. Fax and Murray described the interactions between

vehicles using results on graph Laplacians [27]. They derived a Nyquist-like stability crite-

rion for vehicle formation from the eigenvalues of the Laplacian matrix. Olfati-Saber and

Murray utilized the notion of graph rigidity to study and manipulate (i.e., join or split)

multi-vehicle formations [86]. Also inspired by the notion of graph rigidity, Eren et al.

presented a systematic method of maintaining rigidity for a vehicle formation when a ve-

hicle is lost [26]. Their method descibes how to minimally rearrange the connectivity of

the formation while maintaining rigidity. Tensegrity structures studied in Chapter 2 can be

treated as undirected graphs, and the stress matrix defined in equation (2.3) can be viewed

as a weighted pseudo Laplacian.

1.3 Thesis Overview

Motivated by the resurgence of interest in group motion by engineers as well as biologists,

this dissertation offers contributions to the analysis of control and dynamics of multi-agent

systems in the engineered and natural settings. The dissertation is divided in two parts. In

Chapters 2 and 3 we focus on the engineering setting and develop a mathematical framework

to generate control laws that stabilize any desired group shape in the plane and allow for

continuous reconfiguration of the group shape. In Chapters 4 through 6 where we focus

on the natural setting, we develop and analyze mathematical models for leadership and

decision making in the context of animal group motion. Some of the developments of this

dissertation have been previously published or submitted for publication in archival journals.

See [78, 80, 72]. Conference papers in which earlier versions of the results appeared include

[77, 79]. Results presented in Chapters 4 and 6 have not yet appeared elsewhere.

In Chapter 2 we design control laws that drive vehicle formations into shapes with
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forces that can be represented as those internal to tensegrity structures. We first give a

brief history of the field of tensegrities and present existing methods for designing tensegrity

structures. We then motivate the use of tensegrity structures for solving the problem of

formation control. We go on to present two possible models for the forces of a tensegrity

structure: Connelly’s model [12] and an augmented version of it that we construct. For

each model, the relationship between the parameters of the model and the equilibrium

structure is formulated. We then present a smooth method for choosing the parameters

of the augmented model in a way that makes an arbitrary shape stable. Stability of the

desired shape is proven using the linearization of the controlled system. We illustrate the

results with examples of the computation of the parameters and a discussion on the number

of links between the nodes of a tensegrity that are necessary to realize a desired shape.

In Chapter 3 we again use the map between vehicles in a formation and nodes in a

tensegrity structure to derive a control law for vehicles in a formation that enables a well-

behaved reconfiguration between arbitrary planar shapes. The new control law, designed

to make nodes follow a smooth path in the space of stable tensegrities, is defined as a

smooth parameterization by time of the control law for stabilization of planar shapes that

is presented in Chapter 2. Tools from the nonlinear systems theory literature are utilized

to prove that the trajectory of the formation, in shape space, is close to the prescribed path

and that it converges to the desired final shape. We then present numerical simulations of

the time-varying control law and discuss its performance.

In Chapter 4 we investigate mechanisms of leadership and decision making in animal

groups such as schools of fish or flocks of birds through the simulation and analysis of a

discrete-time individual-based (i.e. Lagrangian) model developed by Couzin et al. in [19].

We consider a heterogeneous group of both informed individuals with conflicting preferences

and uninformed individuals, i.e, individuals without preferences. We consider two variations

of the discrete-time model presented in [19], one where the informed individuals have a fixed

preferred direction of travel and another where the preference is a destination, referred to as

a target. For each variation of this model we investigate the role of uninformed individuals
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in the decision-making process highlighting both the drawbacks and the benefits of having

uninformed individuals in the group.

In Chapter 5, we analyze a continuous-time model of a multi-agent system. This model

is motivated by the simulation study in [19] also treated in Chapter 4, on the dynamics

of leadership and decision making in animal group motion. In this model, each individual

moves at constant speed in the plane and adjusts its heading in response to relative headings

of others in the population. The population includes three subgroups - two “informed”

subgroups in which individuals have a preferred direction of motion and one “uninformed”

subgroup in which individuals do not have a preferred direction of motion. We present

the model first in its general form and prove that it can be reduced to a three-dimensional

system using a time-scale reduction argument. We then study the full phase space dynamics

of the reduced model in a particular case, computing equilibria and proving stability and

bifurcations. We conclude the chapter with an investigation of several extensions of the

model to test its robustness through numerical simulations.

In Chapter 6, we derive and study the dynamics of a low-dimensional, deterministic,

coordinated control system. This model, motivated by the observed deviations between the

qualitative behavior of the discrete-time model presented in [19] and that of the continuous-

time model presented in Chapter 5, relaxes two of that model’s simplifying assumptions.

We present the model first in its general form and prove that it can be reduced to a three-

dimensional system using a time-scale reduction argument. However, unlike the model

presented in Chapter 5 which has only one invariant manifold the model presented in this

chapter has several, each characterized by a set of interaction gains between the different

subgroups. For each invariant manifold, we determine whether they are attractive or not

and for the manifolds that are attractive, we also describe the stable and unstable equilibria

of the corresponding reduced model and interpret the stable motions in the context of

animal group motion. We conclude the chapter by an extension of the model investigated

numerically to test its robustness.

We conclude in Chapter 7 with a summary of the contributions of this dissertation and
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suggest possible future lines of research motivated by the presented work.



Chapter 2

Shape Control and Tensegrity

Structures

The tasks a mobile sensor network may need to perform include gradient climbing [83,

9], boundary tracking [139, 140] and surveillance [136]. For a network carrying out such

sampling or searching tasks, efficient feedback and coordinated control over the formation

of the sensors is critical. Depending on the field that is being surveyed, as well as the task

that is being performed, certain shapes and sizes of the group are preferable. For a mobile

sensor network moving through a time-varying environment, an ideal coordinated control

design should enable the network to reconfigure itself in response to real time measurements.

We seek in this chapter to present a method to systematically design control laws which

use dynamic models of tensegrity structures to stabilize any desired planar shape, shape

referring, in our case, to the scale and geometry of the group, i.e. the way the individual

vehicles are arranged relative to one another rather than where the group is or how it is

oriented. This work has appeared in [77, 78].

16
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2.1 Background on Tensegrity Structures

2.1.1 Origins of Tensegrities

A number of people participated in the creation of the field of tensegrity structures, and, as

with many other fields, the question of “paternity” of the concept is a little controversial. In

1948, the artist Kenneth Snelson built the first tensegrity structure while studying in North

Carolina at Black Mountain College (Figure 2.1). Inspired by this original structure, Buck-

minster Fuller coined the word tensegrity by joining the two words tension and integrity. He

also gave the first definition of a tensegrity, as “a structural-relationship principle in which

structural shape is guaranteed by the finitely closed comprehensively continuous, tensional

behaviors of the system and not by the discontinuous and exclusively local compressional

member behaviors”[101]. In the late 1950’s D.G. Emmerich, apparently unaware of the

earlier works by Snelson and Fuller, built several “self-tensioning structures.” He observed

that these structures could be maintained in equilibrium with no external action applied and

with all the cables in tension [24]. Emmerich is considered to be the pioneer of experimental

work on tensegrity structures.

In the 1950’s and 1960’s, the early years of the field, tensegrity structures were viewed

mainly as artistic sculptures. At the same time however, Snelson, Fuller, Emmerich, and

others began to move beyond the aesthetic dimension and made some scientific observa-

tions; their work on tensegrities remained mostly empirical, and no rigorous analysis was

performed [112, 32]. In 1976 Pugh wrote a book setting out practical rules for building

tensegrity structures, constituting the first attempt to formalize earlier studies [95] . It

was not until the 1980’s, with the work of mathematicians such as Connelly, Roth and

Whiteley, that rigorous analysis of tensegrities started to appear. Their work yielded im-

portant results in the theory of tensegrity frameworks, introducing the notions of prestress

stability and super stability, as well as static, infinitesimal, first and second-order stability,

and contributing to significant discoveries in the field of rigid graphs [12, 14, 13, 15, 100].

Around the same time, Motro, among others [75, 76], initiated research that focused on the
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Figure 2.1: The plywood X-Piece built by Kenneth Snelson in 1948. It is considered to be
the first prestressed tensegrity ever built.

dynamics of tensegrity structures. They were able to determine the dynamic characteristics

of a tensegrity prototype by applying a harmonic excitation on one node and measuring the

dynamic response of the other nodes. Mathematicians such as Oppenheim and Williams

took the study of these dynamics further. They proved closed-form analytical solutions for

the vibrations and damping of simple tensegrity structures [134, 88]. During the 1990’s

these structures caught the attention of the control theory community, among them Skel-

ton and Sultan, who went on to develop the concept of controllable tensegrity structures

[111, 117, 116]. Inspired by this concept of controllable structures, civil and aerospace en-

gineers began, in more recent years, to use tensegrity structures for the construction of

deployable domes, bridges, space constructions, and morphing wings, drawn by the aes-

thetic appeal of these constructions as well as by their structural properties [73, 122, 33].

In biology, some scholars argue that tensegrity is a fundamental element of the building

architecture of life [137, 47].
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2.1.2 Analysis and Design Methods for Tensegrity Structures.

A major obstacle in the production of systematic design methods for tensegrity structures

has been the determination of the equilibrium configuration, i.e. the geometrical configu-

ration, given a set of nodes and edges, at which the shape of the structure is maintained

with no outside force. This problem, known as the form-finding problem, has been a sig-

nificant focus in tensegrity literature. Snelson, Fuller and Emmerich used a trial and error

geometric approach to find a large number of possible equilibrium configurations. These

configurations, consisting almost exclusively of regular convex polyhedra, were classified by

Pugh [95].

Other scientists took a more formal approach to develop form-finding methods for tenseg-

rity structures. Tibert and Pellegrino classified these methods in two families, the kinemati-

cal methods and the statical methods, and analyzed them to find each one’s advantages and

limitations [123, 122]. Their analysis revealed that some of the methods were equivalent.

Among the statical methods, the Energy method developed by Connelly has been a great

inspiration to our work. In the remainder of this section we summarize some of Connelly’s

key findings [12, 13, 14, 15].

In his 1999 paper, Connelly observed: “there are many inequivalent, but related defini-

tions of rigidity and/or stability” [13]. Indeed his main contribution to the field has been

to rigorously define as well as relate the different types of both rigidity and stability for

tensegrity frameworks. A key step in defining and relating these different stability and rigid-

ity notions is to define and exploit a potential energy for a tensegrity structure. Following

Connelly’s notations, let a configuration of N points in a d dimensional space be described

by

q =
(
~q1 · · · ~qN

)
.

A tensegrity framework G(q) is a signed graph (V ;E−, E0, E+), where V is the set of nodes

in the structure, E− is the set of cables, E0 is the set of bars, E+ is the set of struts and

q ∈ RdN is the characterization of the tensegrity structure in absolute space such that each

~qi ∈ Rd corresponds to a vertex of G.
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Tensegrities with the same shape and edges should be viewed as identical. Shape refers

to the way the nodes are arranged relative to one another regardless of where the structure

is or how it is oriented. Thus, a given shape can be associated with an equivalence class

containing an infinite number of absolute position vectors. As we defined in [78], let ~qc =

(1/N)
N∑
i=1

~qi be the center of mass of the tensegrity. For two configurations q1 ∈ RdN and

q2 ∈ RdN , we define the equivalence relation R as

q1Rq2 ⇐⇒∃(R,~t) ∈ SE(d) and

q2 = (q1 after rigid rotation about ~q1
c by R and translation by ~t).

An element of SE(d) is a rigid motion and so any two configurations in the same equivalence

class R have the same shape. We can therefore identify a given shape with the equivalence

class [qe] = {q ∈ RdN | qeRq}, where qe is a representative configuration with the given

shape. The class [qe] can be identified with SE(d). We note that the ordering of the nodes

in the placement matters to classify shapes since two configurations q1 and q2 representing

the same geometric shape but with nodes permuted will not be in the same equivalence

class.

The edges in E− correspond to cables, the edges in E0 to bars, and the edges in E+ to

struts. Cables are always in tension, struts are always in compression, and bars can bear

both tension and compression. In addition, physical constraints are assumed on the edges:

cables cannot increase in length, struts cannot decrease in length, and bars cannot change

length. For each 1 ≤ i ≤ N and 1 ≤ j ≤ N , we define ωij to be the stress of the edge ij

linking node i and j. This parameter is assumed to be symmetric i.e., ωij = ωji, and in

the case that node i and j are not connected, we have ωij = 0. This collection of stresses

is denoted as one vector ω ∈ R
N(N−1)

2 ; in the case that ω has all components non-zero, the

connection topology of the graph is complete. A stress ω on a tensegrity framework is a

proper self stress if the following three conditions are satisfied [15]:

1. ωij ≥ 0 for cables i.e. ij ∈ E−

2. ωij ≤ 0 for struts i.e. ij ∈ E+
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3.
N∑
j=1

ωij(qj − qi) = 0 ∀i ∈ {1, · · · , N}.

A tensegrity is said to be prestress stable if it has a strict proper self stress (i.e., a

proper self stress with all inequalities strict) such that a certain energy function has a local

minimum at the given configuration [15]. Connelly defines a potential energy and states

sufficient conditions on the defined potential for prestress stability [12]. Given a stress ω,

we have

V (q) =
1
2

N∑
i=1

N∑
j=i+1

ωij‖~qj − ~qi‖2 (2.1)

where ~qi ∈ Rd is the position vector of node i, x = (x1, . . . , xN )T , y = (y1, . . . , yN )T ,

z = (z1, . . . , zN )T and q =


x

y

z

. (From now on we write
∑
i<j

to represent
N∑
i=1

N∑
j=i+1

.) From

the Energy Principle, if such a potential has a local minimum at qe which is isolated up to

rigid transformation, then the tensegrity framework G(qe) is prestress stable [12, 13].

In order to make the search for critical points of the potential V (q) more systematic

[77, 78], the potential (2.1) is rewritten as the following quadratic form:

V (q) =
1
2
qT (Ω⊗ I3)q, (2.2)

where I3 is the 3 × 3 identity matrix, Ω ⊗ I3 is the 3N × 3N block diagonal matrix
Ω 0 0

0 Ω 0

0 0 Ω

 and the elements of Ω are given by

Ωij =


N∑
j=1

ωij if i = j

−ωij if i 6= j.

(2.3)

This matrix Ω introduced by Connelly in [12] is called the stress matrix. The stress matrix

is an N ×N symmetric matrix, and the N -dimensional vector 1 =
(

1 · · · 1
)T

is in the

kernel of Ω . As mentioned earlier, a sufficient condition for the tensegrity framework to be

prestress stable in a configuration qe is that the quadratic form V (q) have a local minimum
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at qe. The positive definiteness of V (q) is directly related to that of Ω, but we cannot

expect strict positive definiteness as we already noted that 1 ∈ ker(Ω). In addition, the

necessary condition that ω be a proper self stress can be rewritten as

(Ω⊗ I3)qe = 0. (2.4)

This means that the kernel of Ω should be at least d+ 1 dimensional to make qe a prestress

stable configuration.

Connelly defined a stronger type of prestress stability called super stability which re-

quires prestress stability with the additional condition that Ω be positive semidefinite with

maximal rank, i.e. rank(Ω) = N − d− 1. Hence, to design a super stable tensegrity frame-

work, one must find a set of stresses such that Ω ≥ 0 and dim(ker(Ω)) = d+1. Connelly was

able with this characterization to create and analyze super stable tensegrity frameworks in

the shape of any strictly convex polygons. We will use this characterization in Section 2.3

and adapt them to our setting and motivating application.

2.2 Tensegrity Structures and the Shape Control Problem

Our goal to design control laws that drive vehicle formation into shapes with forces that can

be represented as those internal to tensegrity structures is motivated by the already existing

use of tensegrity structures as controllable structures [111, 116, 117]. Skelton and his col-

laborators who developed the concept of controllable tensegrity structures [111] promoted

them as a “new class of smart structures.” They argued that tensegrity structures present

promising opportunities for control design, with the edges “simultaneously perform-[ing]

the functions of strength, sensing, actuating and feedback control.” In addition, tensegrity

structures are deployable as Tibert has shown [122], meaning that they are capable of large

displacements, making them attractive for modeling a reconfigurable mobile sensor network.

These large displacements, as Skelton argued, can be achieved, moreover, with little change

in the potential energy of the structure [110]. This observation from Skelton and his collab-

orators is justified by the fact that shape changes of tensegrity structures are achieved by



23

changing the equilibrium of the structure, thus removing the need of control energy to hold

the new shape against the previous equilibrium. It suggests that a reconfigurable mobile

sensor network controlled with forces that can be represented as those internal to a tenseg-

rity structures would be energy efficient. It was further shown that the prestress nature of

tensegrity structures is critical in maintaining the shape in the presence of external forces

[109].

We define a one-to-one mapping between the mobile sensor network and a tensegrity

structure as follows [77, 78]: each node of the tensegrity structure is identified with one

vehicle of the network and the edges of the structure correspond to communications and

directions of forces between the vehicles. If an edge is a cable, the force is attractive; if the

edge is a strut, the force is repulsive. The magnitude of the forces depends on the tensegrity

structure parameters as well as the relative distance between the vehicles associated with

the edge. This mapping implies that each vehicle is modeled as a point mass with double

integrator dynamics. The point-mass model may appear somewhat simplistic as it seems to

ignore the challenges of controlling the detailed dynamics of each of the individual vehicles.

However, in practical experiments such as AOSN (Autonomous Ocean Sampling Network),

involving design and implementation of coordinated control for a network of autonomous

underwater vehicles deployed in the ocean, decoupling the design of the coordinating control

strategy from the lower-level, individual-based trajectory tracking control has proven to be

possible and also critical [29]. We thus focus our efforts on the coordinated trajectory design

problem of a group of point masses with double-integrator dynamics.

As we described in the previous section, the form-finding problem has been a major focus

of the tensegrity literature. In order to solve our shape control problem, we essentially have

to solve a “reverse engineering” problem, i.e., determine a set of edges and a model for the

forces that realizes any desired shape. Connelly has proven a conjecture that provides a

means to systematically design stable planar tensegrities in the shape of any strictly convex

polygon [12]. Connelly’s result is valid however only if physical constraints on the edges of

the tensegrity framework are assumed. In our virtual setting, these constraints associated
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with physical struts and cables have to be relaxed. The restrictions that cables do not

increase in length and struts do not decrease in length, cannot be imposed as constraints

on the distances between pairs of vehicles that are not physically connected. For the same

reason, it is not possible for us to use bars in the tensegrity framework we design. As we will

show, this requires us to modify Connelly’s model by augmenting it. The augmented model

is used to stabilize tensegrities of any arbitrary planar shape and is not limited to strictly

convex polygons. However, in comparison to Connelly’s results, our systematic method

produces a tensegrity framework with often a greater number of edges required. The issue

of the number of edges required to realize a given shape is further discussed in Section 2.5.

2.3 Mathematical Models for the Dynamics of a Tensegrity

In this section we describe two possible models for the forces of a tensegrity structure in

the plane, Connelly’s and our augmented version of it. For each of these models we deter-

mine the equations of motion and the potential of the structure as well as the equilibrium

condition, i.e., the relationship between the choice of cables, struts and parameters for the

corresponding model and its equilibria. We described this first in [77, 78]. In Connelly’s

model, presented in Section 2.1.2, the edges are modeled as linear springs with zero rest

length. Cables have a positive spring constant while struts have a negative one [12, 14].

Hence, as we noted in Section 2.1.2, shape control cannot be achieved with this model

in the constraint free approach we are considering. In the absence of the cable and strut

constraints, Connelly’s model does not yield an isolated equilibrium but a continuum of

equilibria, allowing for arbitrary stretching and shrinking of a tensegrity in the plane. To

isolate planar tensegrities without assuming any constraints on the distances between the

agents, it is necessary to modify the model. We propose a second model built as an aug-

mented version of Connelly’s model. In this model the edges are modeled as springs with

finite, nonzero rest length. Cables are always longer than their rest length, i.e., in tension;

struts are always shorter than their rest length, i.e., in compression.
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2.3.1 Connelly’s Model

This model for the forces of a tensegrity is derived from Connelly’s potential energy defined

in Section 2.1.2 specialized in the plane. The force ~fi→j ∈ R2 applied to node j as a result

of the presence of node i is derived from the defined potential (2.2) and is given by

~fi→j = ωij(~qi − ~qj) = −~fj→i. (2.5)

Using the force model (2.5), we derive the equations of motion for each node of the tensegrity.

We introduce in the system a linear damping of the form −ν~̇qn, where ν > 0 is the damping

coefficient. The equations of motion for the nodes of the tensegrity structure in a Cartesian

planar reference frame are computed from Hamilton’s equations as

ẋi = pxi

ẏi = pyi

ṗxi = −νpxi −
∂V

∂xi

ṗyi = −νpyi −
∂V

∂yi

∀i ∈ {1, ..., N}, (2.6)

where V (q) = qT (Ω ⊗ I2)q and, where (pxi , p
y
i ) are the momenta of the ith unit mass

particle, respectively, in the x- and the y-directions. From now on the following notations

will be used: q = (x,y) ∈ Q = (R2)N is an element in the configuration space and

z = (q,p) = (x,y,px,py) ∈ T ∗Q = (R4)N is an element in the cotangent bundle, where

px = (px1 , ..., p
x
N ) and py = (py1, ..., p

y
N ).

Our goal is to solve for and stabilize the tensegrity structure such that a desired shape

[qe] is a stable equilibrium of the system. This requires solving for the stresses ωij . In the

case where ωij = 0 is computed for some ij, it is interpreted that nodes i and j are not

connected. ze is an equilibrium of (2.6) if and only if px = py = 0 and qe = (xe,ye) is a

critical point of the potential V (q). Since the potential V (q) only depends on the relative

positions of nodes, then qe is an equilibrium shape of (2.6) if and only if every q ∈ [qe] is

an equilibrium shape of (2.6). Let [ze] = ([qe],0,0), it follows that ze is an equilibrium of

(2.6) if and only if every ze ∈ [ze] is an equilibrium of (2.6).
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Using the expression of the potential from (2.2) we derive a simple relationship between

the choice of stresses ωij and the equilibria of the model. The critical points of (2.2) and

hence the equilibrium shapes of (2.6) are given by

qT (Ω⊗ I2) = 0. (2.7)

Since the stress matrix is symmetric, a placement qe = (xe,ye) is a critical point of the

potential V (q) if and only if xe and ye are in the kernel of Ω. We note that, assuming

ωij ≥ 0 for cables and ωij ≤ 0 for struts, (2.7) fulfills the last condition to make ω a proper

self stress. Recall that 1 is in the kernel of Ω. Assuming that the nodes are not all in a line,

xe,ye and 1 are linearly independent. We can conclude that with this model a combination

of cables and struts can generate an equilibrium shape if and only if rank(Ω) ≤ N − 3. We

assume from now on that N ≥ 4. By choosing the stresses of the edges of the structure so

that rank(Ω) = N − 3, the kernel of the stress matrix Ω is exactly three dimensional, and

we can prescribe the shape of the equilibrium. We note that choosing the parameters ωij

such that Ω ≥ 0 makes [qe] a super stable tensegrity structure.

However, in our constraint free approach, this model does not prescribe the size of the

equilibrium configuration. Indeed if ker(Ω) = span{xe,ye,1} then [qe] = [(αxe, βye)] is also

an equilibrium shape ∀α, β ∈ R. For real tensegrities this is not a problem because the cable

and strut constraints are incompatible with the shapes [qe] = [(αxe, βye)] for (α, β) 6= (1, 1).

In the virtual setting, however, where the same constraints cannot be imposed, we get a

continuum of equilibria, which is not desirable. For example, if the prescribed shape for the

tensegrity is a square, it will be the case that not only all squares but also all rectangles

will be equilibria.

In order to use tensegrity structures in our virtual setting, we need to modify this model

to isolate the equilibrium. In the next section we exploit the simple equation (2.7), derived

using the linear model (2.5), that determines the geometry of the tensegrity as a function

of the parameters ωij . We propose an augmented model for the forces along edges that

isolates a shape, fixing both geometry and size.
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2.3.2 Augmented Model

Modeling the edges as springs with zero rest length yielded, in the absence of physical

constraints on the edges, a continuum of equilibria for the system (2.6), fixing only the

geometry of the structure but not its size. To isolate the equilibrium of the size of the desired

shape, we augment Connelly’s model and make the edges linear springs with finite, nonzero

rest length. In this augmented model, cables are always longer than their rest length, i.e.,

in tension, and struts are always shorter than their rest length i.e. in compression. For two

nodes i, j we define

~fi→j = αijωij
rij − lij
rij

(~qi − ~qj) = −~fj→i. (2.8)

Here rij = ‖~qi − ~qj‖ is the relative distance between nodes i and j, lij is the rest length of

the spring that models the edge ij, ωij is the spring constant/stress from model (2.5), and

αij is a scalar parameter that fixes the spring constant of model (2.8) for the edge ij. With

these forces, the potential of a tensegrity framework is given by

Ṽ (q) =
1
2

∑
i<j

αijωij(rij − lij)2. (2.9)

With the same damping used in (2.6), the equations of motion are

ẋi = pxi

ẏi = pyi

ṗxi = −νpxi −
N∑
j=1

ω̃ij(xi − xj)

ṗyi = −νpyi −
N∑
j=1

ω̃ij(yi − yj)

∀i ∈ {1, ..., N}, (2.10)

where ω̃ij is given by

ω̃ij(x,y) = αijωij(1− lij
rij

). (2.11)

Our goal again is to solve for and stabilize the tensegrity structure such that [qe] is an

equilibrium shape of the system (2.10), i.e., to find the relationship between the choice

of parameters αij , lij and ωij and the equilibrium shapes of the system (2.10). As in the
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previous model, since Ṽ (q) only depends on the relative position of nodes, then qe is an

equilibrium shape of (2.10) if and only if every q ∈ [qe] is an equilibrium shape of (2.10).

We likewise define [ze] = ([qe],0,0). Then ze is an equilibrium of (2.10) if and only if every

z ∈ [ze] is an equilibrium of (2.10). As for model (2.6), ze is an equilibrium of (2.10) if and

only if px = py = 0 and qe = (xe,ye) is a critical point of the potential Ṽ (q). The critical

points of Ṽ (q) are given by

N∑
j=1

αijωij(~qj − ~qi)(1− lij
rij

) = 0, i = 1, . . . , N. (2.12)

From (2.12), an analogue of the stress matrix Ω is constructed. The new stress matrix is

not a constant matrix and depends on the relative distances between pairs of nodes. The

entries of the new stress matrix are given by

Ω̃ij(x,y) =


N∑
j=1

ω̃ij(x,y) if i = j

−ω̃ij(x,y) if i 6= j

where ω̃ij , the stress of the edge ij (now state dependent), is defined by (2.11). The vector

1 is also in the kernel of Ω̃, ∀ (x,y) ∈ R2N .

This new state dependent stress matrix is now used to characterize the equilibria of

(2.10). To make a shape [qe] a critical point of the potential, we need to pick (if possible)

the parameters αij , lij and ωij so that for all q = (x,y) ∈ [qe],

Ω̃(x,y)x = 0

Ω̃(x,y)y = 0.
(2.13)

We show in the next section that it is possible to choose the parameters αij , lij and ωij such

that equation (2.13) is solved and that [ze] = ([qe],0,0) is an isolated exponentially stable

equilibrium set of (2.10).

2.4 Stabilization for a Desired Group Geometry

Our goal is to solve for and stabilize the tensegrity structure so that [ze] = ([qe],0,0) is

a stable equilibrium set of (2.10) making [qe] a stable shape of the tensegrity framework.
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This requires us to find the parameters αij , lij and ωij that solve (2.13). We present in

this section a systematic method to choose the parameters αij , lij and ωij to solve (2.13).

Further, we prove that this choice of parameters makes [ze] = ([qe],0,0) an isolated locally

exponentially stable equilibrium set of (2.10). These developments have been described in

[77, 78].

2.4.1 Smooth Parameterization of the Model

For any desired group shape [qe], we explain how to choose the parameters αij , lij and ωij

to make [qe] an isolated equilibrium shape of the system. As a first step we choose the

parameters αij and lij for all i, j so that Ω̃(xe,ye) = Ω. In order to make ω̃ij(xe,ye) = ωij ,

we choose αij , lij such that αij(1− lij
reij

) = 1. This last equation is solved by picking

αij =
π

arctanωij

lij = reij

(
1− 1

π
arctanωij

)
.

(2.14)

In the case where edge ij is a strut, then ωij < 0, and equation (2.14) makes αij < 0 and

lij > reij . This is consistent with the assumption that a strut is modeled as a linear spring,

with a positive spring constant αijωij > 0, shorter than its rest length. In the case that

edge ij is a cable, then ωij > 0, and equation (2.14) makes αij > 0 and lij < reij . This is

consistent with the assumption that a cable is modeled as a linear spring, with a positive

spring constant αijωij > 0, longer than its rest length. The choice of lij and αij is not

unique, but rather was chosen to make the vector field (2.10) a C∞ map of ωij and reij .

This result is critical in the next chapter to prove that the time varying control law that

changes the shape of the formation from any initial shape to any final desired shape is well

behaved.

We now show that the parameters ωij can be found independently of parameters αij

and lij , such that ker(Ω) = span{xe,ye,1} and the nonzero eigenvalues of Ω are all strictly

positive. This makes the equilibrium shape [qe] = (xe,ye) an isolated minimum of the

potential Ṽ (q), i.e., our choices ensure that we have the right combination of struts and
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cables to make [qe] a stable equilibrium shape. The stress matrix Ω is symmetric; hence it

has only real eigenvalues and can be diagonalized using an orthonormal basis. As mentioned

previously, assuming that all the nodes are not in a line, then xe,ye and 1 are linearly

independent. We complete these three vectors with N − 3 others and obtain a basis of RN .

Then applying the Gram-Schmidt procedure to those vectors yields an orthonormal basis

(v1, . . . ,vN ) for RN that satisfies

span{v1,v2,v3} = span{xe,ye,1}.

We now define the N × N diagonal matrix D with diagonal elements (0, 0, 0, d4, . . . , dN ),

where di > 0 ∀i, and the orthonormal N×N matrix Λ =
(
v1 · · · vN

)
. The matrix com-

puted as ΛDΛT , is symmetric positive semi-definite with its kernel equal to span{xe,ye,1}.
Setting Ω = ΛDΛT determines values of stresses ωij that make the desired shape [qe] a

tensegrity structure. The choice of eigenvalues D and eigenvectors Λ for the stress matrix

is not unique. In Section 2.5.2 we investigate, through an example, how the choice of D and

Λ influences the resulting interconnection topology that is needed to achieve the desired

shape.

We now prove that this choice of parameters makes [ze] an isolated equilibrium set of

(2.10).

Theorem 2.4.1 Choosing the parameters αij , lij and ωij to solve (2.13) makes [ze] =

([qe],0,0) an isolated equilibrium set of (2.10).

Proof: In order to prove this result, we show that [qe] is an isolated critical point of Ṽ (q)

by proving that the second variation of Ṽ (q), evaluated at [qe] is a positive definite matrix

except in the symmetry directions SE(2). As we pointed out earlier, the potential Ṽ (q)

only depends on the relative distances between nodes. This implies that Ṽ (q) and also

the Lagrangian of the system are invariant under the action of the Lie group SE(2) on the

configuration space Q. With these symmetries, critical points of Ṽ (q) are only isolated

modulo SE(2) transformation making δ2V (qe) not definite in these directions. The matrix
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δ2Ṽ (qe) is given by

δ2Ṽ (qe) =

Ω + Lωx(qe) Lωxy(qe)

Lωxy(qe) Ω + Lωy(qe)

 (2.15)

where Ω is the stress matrix derived in equation (2.3) and the ijth element of each bloc

matrix is

Lωx(i, j) =


−αijωij (xi−xj)2lij

r3
ij

if i 6= j

N∑
j=1,j 6=i

αijωij
(xi−xj)2lij

r3
ij

if i = j

Lωy(i, j) =


−αijωij (yi−yj)2lij

r3
ij

if i 6= j

N∑
j=1,j 6=i

αijωij
(yi−yj)2lij

r3
ij

if i = j

and

Lωxy(i, j) =


−αijωij (xi−xj)(yi−yj)lij

r3
ij

if i 6= j

N∑
j=1,j 6=i

αijωij
(xi−xj)(yi−yj)lij

r3
ij

if i = j.

Lemma 2.4.2 δ2V (qe) is a positive semi-definite matrix.

Proof: We write δ2V (qe) as

δ2V (qe) = M1 +M2 =

 Ω 0N

0N Ω

+

 Lωx Lωxy

Lωxy Lωy

 .

Recall that Ω is designed to be positive semi-definite, hence M1 ≥ 0. We then show that

M2 is positive semi-definite. By direct computation,

(
qTx qTy

) Lωx Lωxy

Lωxy Lωy

qx

qy

 = qTxLωxqx + qTy Lωyqy + 2qTxLωxyqy, (2.16)

where qx = (qx1 · · · qxN )T ∈ RN , and qy = (qy1 · · · qyN )T ∈ RN . Each term of the sum can
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be rewritten as

qTxLωxqx =
N∑
i=1

N∑
j=1,j 6=i

qxi
αijωij(xi − xj)2lij

r3
ij

(qxi − qxj )

=
∑
i<j

αijωij(xi − xj)2lij
r3
ij

(qxi − qxj )2,

qTy Lωyqy =
N∑
i=1

N∑
j=1,j 6=i

qyi
αijωij(yi − yj)2lij

r3
ij

(qyi − qyj )

=
∑
i<j

αijωij(yi − yj)2lij
r3
ij

(qyi − qyj )2,

qTxLωxyqy =
N∑
i=1

N∑
j=1,j 6=i

qxi
αijωij(xi − xj)(yi − yj)lij

r3
ij

(qyi − qyj )

=
∑
i<j

αijωij(xi − xj)(yi − yj)lij
r3
ij

(qyi − qyj )(qxi − qxj ).

(2.16) can now be factored as

qTxLωxqx+qTy Lωyqy+2qTxLωxyqy =
∑
i<j

αijωijlij
r3
ij

(
(yi−yj)(qyi−qyj )+(xi−xj)(qxi−qxj )

)2 ≥ 0.

(2.17)

Equation (2.17) concludes the proof that M2 ≥ 0, and hence δ2V (qe) ≥ 0 �

Lemma 2.4.3 The kernel of δ2V (qe) is equal to

span


 1

0

 ,

 0

1

 ,

 −ye

xe

 .

Proof: We write again δ2V (qe) as

δ2V (qe) = M1 +M2 =

 Ω 0N

0N Ω

+

 Lωx Lωxy

Lωxy Lωy

 .

By Lemma 2.4.2, M1 and M2 are symmetric, positive semi-definite matrices, hence

q ∈ ker(δ2V (qe))⇐⇒ q ∈ ker(M1) and q ∈ ker(M2). (2.18)

By design, ker(M1) = span{w1,w2,w3}; by direct computation, we check span{w1,w2,w3} ∈
ker(M2). Using (2.18), we conclude that the kernel of δ2V (qe) is exactly spanned by

{w1,w2,w3}. �
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We can now conclude the proof of the theorem by combining these two lemmas. By

Lemma 2.4.3, the three linearly independent eigenvectors for the three zero eigenvalues

are


 1

0

 ,

 0

1

 ,

 −ye

xe

. These vectors correspond respectively to symmetries

of translation along the x-axis and the y-axis and of rotation about the origin. In addi-

tion, Lemma 2.4.2 guarantees that all other eigenvalues of δ2V (qe) are strictly positive.

Combining Lemma 2.4.2 and Lemma 2.4.3 concludes the proof of the theorem. �

2.4.2 Stability Analysis

We now present the proof of the local exponential stability for the isolated equilibrium set

[ze] using the linearization of (2.10).

Theorem 2.4.4 [ze] = ([qe],0,0) is a locally exponentially stable equilibrium set of (2.10).

Proof: We prove local exponential stability for the isolated equilibrium set [ze] using the

linearization of (2.10). The Jacobian of (2.10) evaluated at ze = (xe,ye,0,0) is given by

Dg(ze) =

 02n I2n

−δ2V (qe) −νI2n

 . (2.19)

We show that this matrix is negative semi-definite and that the three zero eigenvalues

correspond to the symmetry directions SE(2). The linearization Dg(ze) can be written as

Dg(ze) =

 1
ν δ

2V (qe) I2n

−δ2V (qe) −νI2n

+

− 1
ν δ

2V (qe) 02n

02n 02n

 = B1 +B2.

By Lemma 2.4.2, B2 is negative semi definite. To show that B1 is also negative semi definite,

we proceed to two changes of basis represented by the following two invertible matrices:

P1 =

 1
ν I2n

1
ν I2n

02n I2n


P2 =

02n I2n

I2n
1
ν δ

2V (qe)
(

1
ν δ

2V (qe)− νI2n

)−1

 .
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The representation of B1 in the new basis is computed as

P−1
2 P−1

1 B1P1P2 =

 1
ν δ

2V (qe)− νI2n 02n

02n 02n

 .

This matrix is negative semi definite ∀ν > √λmax(δ2V (qe)), where λmax
(
δ2V (qe)

)
is the

largest eigenvalue of δ2V (qe). We now show by direct computation that the zero eigenvalues

correspond to the SE(2) symmetries.

 02n I2n

−δ2V (qe) −νI2n




x

y

px

py


=



0

0

0

0


if and only if 

px

py

−δ2V (qe)

x

y

− νI2n

px

py




=



0

0

0

0


if and only if 

x

y

px

py


∈ span{



1

0

0

0


,



0

1

0

0


,



−ye

xe

0

0


}.

These three vectors correspond respectively to symmetries of translation along the x-axis

and the y-axis and of rotation about the origin. �

Local asymptotic stability can also be proven using the total energy of the system as a

Lyapunov function. In the next chapter we utilize the exponential stability result for the

equilibrium set [ze] = ([qe],0,0) to construct a well behaved time-dependent control law

that enables the tensegrity to reconfigure itself between arbitrary planar shapes.
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2.5 Examples and Simulations

In this section, we illustrate with examples the computation of the stress matrix and pa-

rameters αij , lij using the method developed in Section 2.4.1. We first look at Snelson’s X

tensegrity which is one of the simplest and most studied “super stable” tensegrity frame-

works and show Matlab simulation results for the stabilization of its equilibrium shape. We

next present a five node tensegrity structure and show how the freedom in the choice of the

stress matrix Ω can be used to affect the resulting interconnection topologies.

2.5.1 Snelson’s X Tensegrity Framework

Snelson’s X tensegrity framework is one of the simplest tensegrities, it is the main component

of the plywood X piece, the first 3 dimensional tensegrity structure built by Snelson in 1948

(Figure 2.1). For this tensegrity framework (Figure 2.2), a representative configuration of

the desired shape is

qe =

xe

ye

 =

0 1 1 0

0 0 1 1

 .

Following the procedure describe in Section 2.4.1 with D = diag
(

0 0 0 4
)

, we find the

following, well known, expression for the stress matrix [12, 14, 123]:

Ω =



1 −1 1 −1

−1 1 −1 1

1 −1 1 −1

−1 1 −1 1


. (2.20)
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Strut

Figure 2.2: Snelson’s X tensegrity framework, consists of four nodes (denoted by circles)
in a square formation. A continuous network of cable form the edge of the square while a
discontinuous network of struts connects across each diagonal of the square. The labels on
the nodes define the ordering.

The computed values for the parameters αij and lij are

α =



0 4 −4 4

4 0 4 −4

−4 4 0 −4

4 −4 4 0



l =



0 3
4

5
√

2
4

3
4

3
4 0 3

4
5
√

2
4

5
√

2
4

3
4 0 3

4

3
4

5
√

2
4

3
4 0


,

(2.21)

where the ij-th entry of α (respectively l) corresponds to αij (respectively lij). The corre-

sponding tensegrity framework is graphed in Figure 2.2; it consists of four nodes (denoted

by circles) in a square formation, a continuous network of cable on the edge of the square

and a discontinuous network of struts connecting across each diagonal of the square.

Having computed all the parameters of the system (2.10), we now show a Matlab simula-

tion for the controlled network of N = 4 vehicles with the parameters ωij , αij and lij values

given by (2.20) and (2.21). The damping coefficient is set to ν = 1, and the simulation of
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the system is run from t = 0s to t = 20s. The initial conditions are given by

x1(0) x2(0) x3(0) x4(0)

y1(0) y2(0) y3(0) y4(0)

ẋ1(0) ẋ2(0) ẋ3(0) ẋ4(0)

ẏ1(0) ẏ2(0) ẏ3(0) ẏ4(0)


=



−1 2 0 −2

−1 1 2 1

1 −2 3 0

1
2 0 2 −1


,

where xi, yi have units of m and ẋi, ẏi have units of m/s. Figure 2.3 shows plots of the

positions for each of the four networked vehicles and Figure 2.4 shows plots of the velocities

for each of the four networked vehicles, after some oscillations, convergence to a fixed shape

is obvious. In Figure 2.5 snapshots of the tensegrity network are plotted at t = 0s, 0.25s, 2s

and at t = 20. The prescribed shape [qe] is indeed reached by the vehicle network but the

structure is both translated and rotated from qe. This is due to the initial conditions and

the changing linear and angular momentum of the system. It highlights the fact that we are

only controlling the shape of the formation but not its position or orientation in absolute

space.

2.5.2 A Five Vehicle Network Example

We now illustrate with a five node tensegrity network example the effect of the choices of

eigenvalues D and eigenvector Λ of the stress matrix Ω on the resulting interconnection

topology of the tensegrity realizing the desired shape. This study is reported in [77, 78]. It

is known that stable tensegrity structures with N nodes require at least 2N − 2 edges [14].

Connelly has proven a result that provides a means to systematically design stable planar

tensegrities in the shape of any strictly convex polygon [12]. His method is designed to yield

tensegrity structures with minimal number of edges. Our method allows us to generate

tensegrity structures of any shape, convex or non-convex, but often yields interconnection

topologies with number of edges greater than the proven lower bound. However, as we

illustrate, it is possible in our method to use the freedom of choice in the eigenvalues and

eigenvectors of the stress matrix to reduce the number of edges.
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Figure 2.3: Plots of both cartesian coordinates for each networked vehicle controlled to the
X tensegrity framework; convergence to a stable configuration is obvious.
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ẏ
1(

t)

0 10 20

!4

!2

0

2

t

ẋ
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ẋ
1(

t)

0 10 20
!1

0

1

2

3

t

ẏ
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ẋ
1(

t)

0 10 20
!1

0

1

2

3

t

ẏ
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Figure 2.4: Plots of both cartesian velocities for each networked vehicle controlled to the X
tensegrity framework; convergence to a static configuration is obvious.
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Figure 2.5: Snapshots of the tensegrity network at t = 0s, 0.25s, 2s and at t = 20. The
prescribed shape [qe] is indeed reached by the vehicle network but the structure is both
translated and rotated from qe, highlighting that we are only controlling the shape of the
formation but not its position and orientation in absolute space. The black dot represent
the center of mass of the formation for each snapshot.
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Figure 2.6: Five node configuration given by xe = (2, 3, 4, 3, 1),ye = (2, 1, 2, 5, 4). The
labels on the nodes define the ordering.

We consider the shape represented by the configuration

qe =

xe

ye

 =

2 3 4 3 1

2 1 2 5 4

 (2.22)

and plotted in Figure 2.6. Following the method from Section 2.3.2 we takeD1 = diag(0, 0, 0, 1, 1)

and

Λ1 =



√
5

5 − 3√
130

−
√

182
39 −

√
518

222
10
√

74
111

√
5

5
2√
130

−
√

182
26 −

√
518
37 −3

√
74

74
√

5
5

7√
130

−
√

182
273

43
√

518
1554 −2

√
74

111
√

5
5

2√
130

−31
√

182
546 −13

√
518

777
5
√

74
222

√
5

5
−8√
130

2
√

182
182

3
√

518
259 −2

√
74

37


,

where the columns of Λ1 constitute a basis of orthonormal eigenvectors obtained with the

Gram-Schmidt procedure. The stress matrix Ω1 = Λ1D1ΛT1 is given by

Ω1 =



11
18 −1

3 − 1
18

1
9 −1

3

−1
3

1
2 −1

3
1
6 0

− 1
18 −1

3
53
126 −17

63 − 5
21

1
9

1
6 −17

63
23
126 − 4

21

−1
3 0 5

21 − 4
21

2
7


. (2.23)
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The tensegrity structure corresponding to this stress matrix, plotted in Figure 2.7(a) has an

interconnection topology requiring 9 edges. To reduce the number of edges, we manipulate

our choice of D and Λ so that Ω = ΛDΛT has entries identically equal to zero. Consider,

for example, setting D2 = diag
(

0 0 0 60
253

30
253

)
and

Λ2 =



0 0
√

14
6

√
2

3 −
√

14
6

1√
42
− 2√

21

√
14
7 −

√
2

2 0

4√
42
− 2√

21

√
14

42

√
2

3
5
√

14
42

5√
42

2√
21

−
√

14
21 −

√
2

6 −2
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14
21

0 3√
21

√
14
7 0

√
14
7


.

We compute the stress matrix:

Ω2 =



25
253 − 20

253
5

253 0 − 10
253

− 20
253

30
253 − 20

253
10
253 0

5
253 − 20

253
135
1771 − 80

1771
50

1771

0 10
253 − 80

1771
50

1771 − 40
1771

− 10
253 0 50

1771 − 40
1771

60
1771


. (2.24)

The tensegrity corresponding to this stress matrix, plotted in Figure 2.7(b) has an inter-
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Figure 2.7: Tensegrity structures generated from the stress matrices (a) Ω1, (b) Ω2. Solid
lines are struts and dashed lines are cables

connection topology requiring only 8 = 2 × 5 − 2 edges. The number of edges cannot be



43

reduced further since we have reached the lower bound proven in [14]. We note that not

only the number of edges required is different between the tensegrities realized by Ω1 and

Ω2 but also the nature of the edges. While both tensegrities have a continuous network of

cables around, the tensegrity realized by Ω1 has inside a discontinuous network of cables and

strut and the tensegrity realized by Ω2 has inside a discontinuous network of only struts.

Tensegrities with a continuous network of cables around and a discontinuous network of

struts is a common outcome of the method designed by Connelly in [14].

As the number of nodes increases, it becomes harder to systematically find a combination

of eigenvalues and eigenvectors that yields a tensegrity with the minimum number of edges.

However, as the above example illustrates, it may be possible to manipulate the choices of

D and Λ to reduce the number of connections in a tensegrity derived using our method.

Our approach has significant advantages because it is systematic and smooth. We exploit

these features in the next chapter, where we define a smooth parameterization (by time)

of the control law (2.10), creating a systematic framework for smooth reconfiguration of

tensegrity structures between arbitrary planar shapes.



Chapter 3

Group Reconfiguration and

Tensegrity Structure

In the previous chapter, we created a framework to stabilize arbitrary planar formations by

mapping vehicles of a network to nodes of a tensegrity structure and controlling the vehicles

with the forces induced by the tensegrity’s edges, modeled by (2.8). In this chapter, we take

this result a step further and present a new control law for the nodes that enables a well-

behaved reconfiguration between arbitrary planar shapes. The control law is designed to

make the nodes follow a smooth path, in shape space, of stable tensegrities. This new control

law is defined as a smooth parameterization over time of the control law for stabilization

of planar tensegrities presented in the previous chapter, given by (2.10). In Section 3.1

we present the construction of the parameterized control law. In Section 3.2 we study

the resulting controlled time-varying dynamical system and prove that the system is well

behaved, i.e., that the trajectory stays close, in shape space, to the prescribed path and

that it converges to the final shape. In Section 3.3 we present a numerical example of the

implementation of the control law and discuss its performance. This work has appeared in

[78].

44
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3.1 Control Law for Shape Reconfiguration

Using the same notations as in Chapter 2, we define a desired starting shape [qe0] and a

desired ending shape [qef ], each with the same number of nodes. Our goal is to design a

control law that smoothly takes the structure from the shape [qe0] to the shape [qef ] over a

given time interval. The proposed control law is constructed in two steps. First, we design

in shape space a smooth path [qe](t) such that [qe](0) = [qe0] and [qe](τ) = [qef ], where

τ is a parameter to be chosen that determines the speed of the reconfiguration. Second

we develop a method to deduce the variations of parameters αij(t), lij(t) and ωij(t) that

are necessary to make the tensegrity follow the planned path [qe](t) in shape space. The

smooth evolution of the parameters defines a smoothly time-varying control law.

3.1.1 Path Design in Shape Space

In this section, we design a smooth path of tensegrity shapes such that, given any initial

and final shapes [qe0] and [qef ], [qe](0) = [qe0] and [qe](τ) = [qef ]. To do so, we first need

to pair each node of the initial shape with a node of the final shape and thus determine

which place each node will take in the final shape. The pairing of nodes between the

initial shape and final shape is not unique. For our motivating application, that of a vehicle

network, depending on the environment in which the network operates and the optimization

objectives of the reconfiguration, one pairing may be preferable over another. The path we

design here in order to define the control law is the simplest possible. We assume that

the vehicles are moving free of any external force from the environment and that there

are no obstacles. Further, with an eye toward preventing collisions between vehicles and

minimizing the energy input to vehicles, we set the following two conditions: first, the

planned trajectories of two distinct nodes must not intersect and second, the planned total

distance travelled by all the nodes should be minimized. Meeting these two conditions in the

planned trajectories, however, does not guarantee that in an actual vehicle network there

will be no collisions between the vehicles and that the total consumption of energy by all

the vehicles through the reconfiguration will be minimized. As we observe in the simulation
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presented in Section 2.5, the linear and angular momenta of the controlled system for

stabilization of a given shape (2.10) are not conserved, and for this reason, the center of

mass and the orientation of the vehicle network may change during the reconfiguration.

These deviations in absolute space from the planned path may cause the chosen pairing to

exceed the minimum energy consumption and/or may create situations in which collisions

between vehicles occur. However, simulations like the one presented in Section 3.3 suggest

good performance for a “slow enough” reconfiguration (i.e., one with a “large enough” τ)

using the control law designed in this section.

In the simple path we propose, each vehicle travels on a straight line [78]. The advantage

of using the straight line solution is that choosing the pairing with minimal total distance

covered by the vehicles automatically guarantees that no crossing will occur between the

planned trajectories. However, in the case of a perturbed environment or with obstacles in

the field, tracking such a path is almost always not optimal or not feasible. For example, in

the context of underwater vehicles operating in the ocean, as considered in [64], the vehicles

may be subject to currents. If the current acts in the opposite direction of the trajectory

of one vehicle, this vehicle could be significantly slowed down and/or may be unable to

track the prescribed (straight-line) trajectory; under either circumstance the reconfiguration

would be compromised. In the context of a unsteady field, Inanc et al. developed a method

to choose an optimal path using Lagrangian Coherent Structures [46]. In the context of a

field with obstacles, Erdmann and Lozano-Perez proposed a solution to choose an optimal

path in two steps [25]. First, paths that avoid collisions with static obstacles are planned

for each robot, then the speed of each robot is adjusted to prevent collisions between the

vehicles. Although we focus on straight line paths here, our approach can be adapted to

accommodate other kinds of planned paths.

To plan a path, we select representative configurations q0 ∈ [qe0] and qf ∈ [qef ] in such

a way as to minimize

d0→f =
N∑
i=1

‖~q0i − ~qfi‖. (3.1)

This is done by computing d0→f for all possible node pairings and shape orientations (with
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q0,qf having the same centroid) and choosing the node pairing and shape orientations that

yields the smallest d0→f . This choice, which minimizes the planned total distance travelled

by all the vehicles, also ensures that no planned trajectories intersect.

Lemma 3.1.1 A pairing, such that the trajectories of two nodes cross, does not minimize

d0→f , the total distance travelled by all the nodes.

Proof: Consider any two nodes i, j of the initial configuration q0 and suppose that they are

paired with two nodes i′, j′ of the final configuration qf . There are two possible pairings:

either i is paired with i′ and j is paired with j′ or i is paired with j′ and j is paired with i′,

as plotted in Figure 3.1. For the intersecting trajectories (dotted lines), the total distance

travelled by the nodes is equal to b1 +b2 +b3 +b4. For the non-intersecting trajectories (solid

lines), the total distance travelled by the nodes is equal to a1 + a2 < b1 + b2 + b3 + b4, this

from the triangle inequality. Hence a chosen pairing of nodes with intersecting trajectories

of any pair of nodes does not minimize d0→f . �

Figure 3.1: Two possible pairings between two starting nodes i, j and two ending nodes i′, j′.
For the intersecting trajectories (dotted lines) the total distance travelled by the nodes is
equal to b1 +b2 +b3 +b4. For the non-intersecting trajectories (solid lines) the total distance
travelled by the nodes is equal to a1 + a2 < b1 + b2 + b3 + b4.

Given initial and final configurations q0 and qf minimizing (3.1), we design a smooth
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path of tensegrities qe(t) = (xe(t),ye(t)) using the following linear interpolation [78]:

qe(t) =
t

τ
qf +

(
1− t

τ

)
q0, t ∈ [0, τ ]

qe(t) = qf , t > τ.

(3.2)

The parameter τ has units of time and allows for tuning of the tensegrity’s reconfiguration

speed. The greater τ is, the slower the tensegrity reconfigures itself.

The linear interpolation given by (3.2), defines a smooth path of shapes between two

arbitrary shapes [qe0] and [qef ]. We now use our map from shapes to tensegrities to define

a control law that will track this or any other planned smooth path. The design of the

reconfiguration using a path of stable tensegrities is motivated by the robustness properties

of stable tensegrity structures mentioned in the previous chapter and explained in [109].

3.1.2 Parameterized Control Law

In this section we define a smooth parameterization (over time) of the dynamics of a tenseg-

rity structure (2.10) such that the tensegrity follows a smooth path in shape space [qe](t),

for example the straight-line path given by (3.2). This control law was presented earlier in

[78]. The control law we present does not require a straight-line path, but only a smooth

path [qe](t) such that [qe](0) = [qe0] and [qe](τ) = [qef ]. The simulations presented in Sec-

tion 3.3 use the path given by (3.2) to illustrate the method. The parameterization of the

controlled system (2.10) which we now consider is given by

ẋi = pxi

ẏi = pyi

ṗxi = −νpxi −
N∑
j=1

αij(t)ωij(t)
(

1− lij(t)
rij(t)

)
(xi − xj)

ṗyi = −νpyi −
N∑
j=1

αij(t)ωij(t)
(

1− lij(t)
rij(t)

)
(yi − yj),

i = 1, . . . , N, (3.3)

where the parameters αij(t), lij(t) and ωij(t) are to be chosen so that at each time t, [ze](t) =

([qe](t),0,0) is an exponentially stable equilibrium set of (3.3). This choice of parameters
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thus creates a manifold of stable tensegrities along the path [qe](t). As a first step to making

the solution of the controlled system follow the path [qe](t), we define the appropriate

variation of the parameters αij(t), lij(t) and ωij(t) so that at each instant t, [qe](t) is an

exponentially stable equilibrium shape of the controlled system (3.3). Given that the system

(3.3) is nonlinear with time-varying inputs, we use results from Lawrence and Rugh [62] to

show that the non-autonomous system (3.3) is well behaved. By well behaved, we mean that

the quantity ‖[q](t)− [qe](t)‖ is bounded during the trajectory and that [q](t) converges to

the final shape [qef ] as t→∞. To ensure that at each instant t, [qe](t) is an exponentially

stable shape of (3.3), we follow a procedure similar to the one developed in Section 2.4.1.

We choose the parameters αij(t), lij(t) and ωij(t) so thatΩ̃(t,xe(t),ye(t)) 0

0 Ω̃(t,xe(t),ye(t))

xe(t)

ye(t)

 = 0, t ∈ [0, τ ]

Ω̃(t,xe(τ),ye(τ)) 0

0 Ω̃(t,xe(τ),ye(τ))

xe(τ)

ye(τ)

 = 0, t > τ,

(3.4)

where the explicit dependence of Ω̃ in t comes from its dependence on the parameters

αij(t), lij(t) and ωij(t). As with equation (2.13) in Section 2.4.1, equation (3.4) is solved in

two steps. First we choose the parameters αij(t), lij(t) for all i, j so that Ω̃(t,xe(t),ye(t)) =

Ω(t). This last equation is solved by choosing

αij(t) =
π

arctan (ωij(t))

lij(t) = reij(t)
(

1− 1
π

arctan (ωij(t))
)
,

(3.5)

where reij(t) = ‖~qei (t) − ~qej (t)‖ is the relative distance between node i and node j at time t

along the planned path in shape space [qe](t). The parameters ωij(t) are then computed as

in Section 2.4.1 using the identity

Ω(t) = Λ(t)DΛ(t)T , (3.6)

where D = diag
(

0 0 0 d4 · · · dN

)
, di > 0, i = 4, . . . , N and the columns of Λ(t)

constitute a basis of orthonormal eigenvectors obtained by the Gram-Schmidt procedure
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on the N linearly independent vectors xe(t),ye(t),1,w4(t), · · · ,wN (t). This choice makes

[qe](t) a parameterized (over t) family of exponentially stable equilibrium shapes for the

system (3.3). We now use results from Lawrence and Rugh [62] to show that the nonlinear

system with time-varying control inputs (3.3) is well behaved as defined above.

3.2 Boundedness and Convergence

In this section we prove that with the parameters αij(t), lij(t) and ωij(t) solving (3.5) and

(3.6), the controlled system (3.3) is well behaved. In other words we prove that under the

time-varying controlled system (3.3), the reconfiguring tensegrity remains close, in shape

space, to the prescribed shape path [qe](t) (i.e., ‖[q](t)− [qe](t)‖ bounded) and that it con-

verges to the final prescribed shape [qef ] (i.e., [q](t)→ [qef ] as t→∞). These developments

have been described in [78]. We prove these results for the time-varying controlled system

(3.3) by using the main theorem in Lawrence and Rugh [62] for nonlinear systems with

slowly varying inputs. The argument of the proof of this theorem is that solutions of a

nonlinear system with a manifold of exponentially stable equilibria parameterized by con-

stant inputs remains close to the manifold if the initial condition is “close” to that manifold

and the inputs “slowly” vary. Similar results have been proven in [51, 53], although the

assumptions on the vector field are not exactly identical and the methods used to prove the

respective theorems differ. Kelemen [51] investigated stability of the manifold using the lin-

earization of the system and the Gronwall-Bellman inequality, while Khalil and Kokotovic

[53] used a Lyapunov function type approach to prove their stability result. The stability

theorem we are using from Lawrence and Rugh [62] is also proven with a Lyapunov function

type approach. Borrowing the notations from [62], the following setting is considered: a

system described by

ż(t) = f(z(t),u(t)), z(0) = z0, t ≥ 0, (3.7)

where z(t) ∈ R4N is the state vector, u(t) = (αij(t), lij(t), ωij(t), reij(t)) is the time-varying

input vector, and f is the vector field given by (3.3). For such system, Lawrence and Rugh

proved the following result [62]:
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Theorem 3.2.1 Suppose the system (3.7) satisfies

H1 f : R4N × Rm 7→ R4N is twice differentiable,

H2 there is a bounded, open set Γ ⊂ Rm and a continuously differentiable function z :

Γ 7→ R4N such that for each constant input value u ∈ Γ, f(z(u),u) = 0,

H3 there is a λ > 0 such that for each u ∈ Γ, the eigenvalues of (∂f/∂z)(z(u),u) have

real parts no greater than −λ.

Then there is a ρ∗ > 0 such that given any ρ ∈ [0, ρ∗] and T > 0, there exist δ1(ρ), δ2(ρ, T ) >

0 for which the following property holds. If a continuously differentiable input u(t) satisfies

u(t) ∈ Γ, t ≥ t0,

‖z0 − z(u(t0))‖ < δ1

and
1
T

∫ t+T

t
‖u̇(σ)‖dσ < δ2, t ≥ t0,

then the corresponding solution of (3.7) satisfies

‖z(t)− z(u(t))‖ < ρ, t ≥ t0.

To apply Theorem 3.2.1 to our system, we first show that all three conditions H1-H3 are

satisfied.

We prove that the vector field (3.3) satisfies H1 using the smoothness of f(z(.),u(.))

as a function of Ω(.) and re(.) as noted in Section 2.4.1 and showing that Ω(t) and re(t)

are smooth functions of t. Assuming [qe](t) is a smooth path of tensegrities in shape space

between the starting and ending shapes [qe0] and [qef ] (e.g., the path [qe](t) given by the

linear interpolation (3.2)), re(t) is a smooth function of t. The time-varying stress matrix

Ω(t) is computed as

Ω(t) = Λ(t)DΛ(t)T ,

where D is a constant diagonal matrix and the columns of Λ(t) constitute an orthonormal

basis of RN obtained through a Gram-Schmidt procedure on the N linearly independent
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vectors xe(t),ye(t),1,w4(t), · · · ,wN (t). The vectors obtained from a Gram-Schmidt proce-

dure consist of linear combinations of the original set of linearly independent vectors; hence

Λ(t) and consequently Ω(t) are smooth functions of t. In Section 2.4.1 we noted that the

choice for the parameters αij and lij given by

αij =
π

arctanωij

lij = reij

(
1− 1

π
arctanωij

)
is such that the vector field (2.10) is a smooth map of ωij and reij . This shows that the

vector field f(z(.),u(.)) is a smooth function of Ω(t) and re(t), concluding the proof that

the system (3.3) satisfies H1 being C∞ and hence C2 differentiable in t,Ω(t) and re(t).

Using the results from Section 2.4.2, we now prove that (3.3) satisfies both H2 and

H3. From Theorems 2.4.1 and 2.4.4 we know that choosing the parameters αij , lij and ωij

satisfying (2.13) makes [ze] an isolated exponentially stable equilibrium set of (2.10). Hence

choosing αij(t), lij(t) and ωij(t) satisfying (3.4) for every t makes [ze](t) a parameterized

(by Ω(t) and re(t)) exponentially stable equilibrium set of (3.3), concluding the proof that

(3.3) satisfies both H2 and H3.

Theorem 3.2.1 guarantees that if we start “close enough” to the shape [qei ] (i.e., ‖[z0]−
[ze0]‖ < δ1) and the reconfiguration is not “too fast” (i.e τ is large enough such that

1
T

∫ t+T
t ‖u̇(σ)‖dσ < δ2), then the solution of (3.3) satisfies ‖[z](t) − [ze](t)‖ < ρ. This

proves that the reconfiguration is well behaved with ‖[q](t)− [qe](t)‖ bounded and [z](t)→

[zef ] =

[qef ]

0

 as t → ∞. We next explore the performance of this control law with a

simulated example.

3.3 Examples and Simulations

In this section we present simulation results for the reconfiguration control law given by

(3.3). With an example involving six nodes, we investigate the effect of the choice of τ on the

“shape error” and on the total distance travelled by the vehicles through the reconfiguration.
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Shape error e(t) is measured as

e(t) =

√√√√ N∑
i=1

(diG(t)− deiG(t))2, (3.8)

where diG(t) is the observed distance between the ith node and the center of mass of the

tensegrity at time t and deiG(t) is the planned distance between the ith node and the center

of mass of the tensegrity at time t.

Looking at snapshots of the reconfiguration for different times allows us to interpret

the physical meaning of shape error. We consider as an example the reconfiguration of a

six-vehicle formation from initial shape [qe0] to final shape [qef ], represented respectively by

the configurations q0,qf , given by

q0 =

−1 1 2 1 −1 −2

−2 −2 0 2 2 0


qf =

−2 2 0 1
2 0 −1

2

−3
2 −3

2 −1
2

1
2

5
2

1
2

 ,

where the coordinates are expressed in meters. Figure 3.2 shows the planned initial shape,

final shape and planned intermediary shapes as prescribed by (3.2) for t = τ
3 and t = 2τ

3 .

We note that the final shape is non-convex. In the context of a mobile sensor network, this

reconfiguration corresponds to having the network that is sampling the environment shift

from lower resolution in a larger space to higher resolution in a smaller space.

Figure 3.3 shows the evolution of the mean total distance travelled by the six nodes

calculated over four thousand runs as a function of τ , for values of τ between .1s and 16s

with increment of .1s. Each run has an initial condition randomly picked from a normal

distribution with mean [ze0] =

[qe0]

0

 and variance 0.1. For increasing τ in the range from

0 to 3s, the total distance decreases dramatically from about 30m to about 12m. For τ > 3s,

as τ increases, the total distance converges to an asymptote. This is lower bounded by the

total distance travelled in the linear designed path given by (3.2), represented in Figure

3.3 by the solid white line. The planned distance for this path is calculated as 8.58m.
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Figure 3.2: Plot of the the studied six vehicle formation along the planned path at (a) t = 0,
(b) t = τ

3 , (c) t = 2τ
3 and (d) t = τ . The final configuration is non-convex. In the context

of a mobile sensor network, this reconfiguration can be interpreted as having the network
sampling the environment from a lower to a higher resolution.
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Figure 3.4 shows the evolution of the mean minimum distance between all pair of nodes

calculated over four thousand runs as a function of τ , for values of τ between .1s and 16s

with increment of .1. For increasing τ in the range from 0 to 4s, the minimum distance

between pairs of nodes increases dramatically from about .2m to about .9m. As τ increases

for τ > 4s, the minimum distance converges to an asymptote. This is upper bounded by

the minimum distance between pairs of nodes along the linear designed path given by (3.2),

represented by a solid white line in Figure 3.4. The minimum distance between pairs of

nodes is calculated as 1m.

In Figures 3.5 and 3.6 we give for different values of τ (τ = .1s, .8s, 1.8s and 10s) a

plot of the shape error e(t), and snapshots of the six vehicle network at four meaningful

instants: at the beginning of the reconfiguration, at the first two peaks of the e(t) curve

and when e(t) becomes permanently smaller than 10−2m. (Note that the e(t) graphs do

not all have the same scale.) Looking at the graph of e(t) for the cases τ = .1s and τ = 10s

we observe a difference of one order of magnitude. The case where τ = .1s corresponds to

the extreme case where the final configuration is prescribed with no intermediate points on

the path. This is tantamount to requiring the system to stabilize to the shape [qef ] given

the initial condition qe0 as in Section 2.4. In the snapshots of the system at the peaks of

shape error for the case τ = .1s, the peaks can be interpreted either as the system’s being

too slow to react to the input (in the case of the first peak) or as an overshoot (in the case

of the second peak). As τ increases, the structure follows the planned path more smoothly.

In the case where τ = 10s, the structure follow the prescribed path very smoothly. We also

note that independently of the choice of τ , the structure at its final configuration is rotated,

due to changing angular momentum in the system. This highlights the fact that we are

controlling only the shape of the structure but not its position or orientation in absolute

space. These simulations show that with τ sufficiently large, the distance covered by the

nodes is minimized and no collisions occur.

In Chapter 2, we presented and proved a systematic methodology to create decentralized

control laws for the stabilization of multi-vehicle formations of arbitrary planar shape. In
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Figure 3.3: Normalized probability distribution (proportion of maximum) of the total dis-
tance travelled by the six nodes calculated over four thousand runs as a function of τ , for
values of τ between .1s and 16s with increment of .1. The greater τ is (i.e., the slower
the network is prescribed to reconfigure itself), the least distance is travelled by the five
vehicles. The lower bound is given by the total distance travelled for the linear designed
path (solid white line which gives 8.58m).
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Figure 3.4: Normalized probability distribution (proportion of maximum) of the minimum
distance between all pair of nodes calculated over four thousand runs as a function of τ ,
for values of τ between .1s and 16s with increment of .1. The greater τ is (i.e., the slower
the network is prescribed to reconfigure itself), the greater the distance between pairs of
vehicles. The upper bound shown is given by minimum distance between all pairs of nodes
for the linear designed path (solid white line which gives 1m).
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Figure 3.5: For τ = 0.1s, .8s, shape error is plotted as a function of time. (a)-(c) give
snapshots of the six vehicle network along the prescribed path qe(t) respectively for τ =
0.1s, .8s. (b)-(d) give snapshots of the actual six vehicle network at the beginning of the
reconfiguration, at the first two peak of the e(t) curve and when the shape error becomes
permanently smaller than 10−2m respectively for τ = 0.1s, .8s.
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Figure 3.6: For τ = 1.8s and 10s, shape error is plotted as a function of time. (a)-(c)
give snapshots of the six vehicle network along the prescribed path qe(t) respectively for
τ = 1.8s and 10s. (b)-(d) give snapshots of the actual six vehicle network at the beginning
of the reconfiguration, at the first two peak of the shape error curve and when the shape
error becomes permanently smaller than 10−2m respectively for τ = 1.8s and 10s. As τ
increases, the shape error decreases and the network follows the prescribed path qe(t) more
closely.
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this chapter we extended the proven framework to control changes of formation shape over

a given time interval. In the subsequent chapters of this dissertation we will turn our

attention to the dynamics of decision making in groups. The problem of interest is the

following: given a group of individuals, by which mechanisms if any can they agree on

a direction of travel even when some individuals have conflicting preferences. We look

at this problem in a natural setting and build and/or study models with the motivation

of understanding the key mechanisms. The goal is to set the foundation for a mutually

beneficial interaction between biology and engineering such that analysis tools derived to

study collective robotic behavior are used to test plausible mechanisms of decision making in

animal groups, and, in return, the understanding of such phenomenon provides inspiration

for new control strategies for engineered cooperative multi-agent systems.



Chapter 4

Collective Decision Making:

Discrete Time Models

In the remaining chapters of this dissertation, we turn our attention to group dynamics in the

context of natural systems. We investigate mechanisms of leadership and decision making in

animal groups such as schools of fish or flocks of birds through the simulation and analysis of

discrete- and continuous-time individual-based (i.e. Lagrangian) models. More specifically

we consider a heterogeneous group of both informed individuals with conflicting preferences

and uninformed individuals, i.e, individuals without preferences. We assume that there

is no explicit signaling and that group members cannot recognize which individuals are

informed and how accurate the information is. This conservative assumption makes this

research relevant to species where it is not reasonable to assume sophisticated cognitive

abilities. For example groups of migrating fish, birds or insects can be so crowded as to

limit significantly the range over which neighbors can be detected, making the hypothesis

of sophisticated communication abilities unlikely.

For such a collective, we address the following leadership and consensus decision-making

problems: how can information be transferred and how can a consensus be reached in the

group? This research has been conducted with both complex stochastic discrete times mod-

els and simplified deterministic continuous-time models. The former gives highly suggestive
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simulations, whereas the latter allows a deeper investigation of the microscopic reasons for

the macroscopic behaviors observed and a more complete exploration of parameter space.

In this chapter we present a discrete-time model developed by Couzin et al. in [19] and

present a new investigation of this model focusing on the role of uninformed individuals in

the decision-making process within a heterogeneous group. We highlight both the draw-

backs and the benefits of having uninformed individuals in the group. In Section 4.1 we

present two variations of the discrete-time model used in [19]. In one variation, the informed

individuals have a fixed preferred direction of travel; in the other variation, the preference

is a destination, referred to as a target. We then summarize the results in Couzin et al. [19].

In Section 4.2 we investigate the influence of the uninformed individuals in the model with

preferred direction. In Section 4.3 we investigate the influence of uninformed individuals in

the model with targets.

4.1 Discrete-time Model from Couzin et al. [19]

4.1.1 The Model

The discrete-time model from [19] considers a group of N individuals, each modeled as a

particle moving in the plane at constant speed si, i = 1, . . . , N . At time t, each individual

is characterized by a position vector ci(t) and a velocity vector vi(t). The velocity vi(t)

is applied to the i-th particle between time t − ∆t and time t. At each time step, the

individuals in the group update their direction of travel depending on social interactions

with local neighbors and, when applicable, on a preferred direction of travel. The population

is divided into three subgroups, two informed and one uninformed. Let Ni, i = 1, 2, 3 be,

respectively, the set of indices in {1, · · · , N} corresponding to individuals in the first and

second informed subgroups and in the uninformed subgroup. Each individual in the first

and second subgroups has a preferred direction of travel (where the preference represents,

for example, knowledge of the direction to a food source or of a migration route) and

can use that preference along with information it has on its neighbors to make decisions.
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The preferred direction is denoted with a unit vector gi i ∈ N1,N2. In the variation of

the model in which informed individuals have a fixed preferred direction of travel, gi is a

constant vector pointing in the respective preferred direction of each informed subgroup.

In the variation in which informed individuals have a fixed target, gi is updated at every

time step so as to point in the direction from the informed individual’s current position to

the position of its target.

Individuals in the group interact with other group members according to the following

rules (see Figure 4.1):

1. Maintain a minimum distance α with others by turning away from neighbors within

that range.

2. If no neighbors are within a distance α, move towards and align with any other

individuals within a local interaction range of β > α.

Formally, individual agent i, for i = 1, . . . , N computes a direction of travel dsoc
i (t + ∆t)

to be followed between times t and t + ∆t in accordance with social interactions. dsoc
i (t)

evolves according to the following discrete-time dynamics:

d′i(t+ ∆t) = −
∑
j∈αi

cj(t)− ci(t)
‖cj(t)− ci(t)‖ +

∑
j∈βi

cj(t)− ci(t)
‖cj(t)− ci(t)‖ +

vj(t)
‖vj(t)‖

 (1− χαi)

dsoc
i (t+ ∆t) =

d′i(t+ ∆t)
‖d′i(t+ ∆t)‖ ,

(4.1)

where αi denotes the subset of indices in {1, · · · , N} corresponding to the individuals in

the zone of repulsion of individual i, where βi denotes the subset of indices in {1, · · · , N}
corresponding to the individuals in the zone of attraction/alignment of individual i, and

where χαi is an indicator function taking the value 0 if the set αi is empty and the value of

1 otherwise.

Individuals in the first and second informed subgroups have a preferred direction of

travel that they balance with the social influence dsoc
i (t). Informed individual i determines

its net desired direction of motion as dsoc
i (t + ∆t) + ωgi, where ω ≥ 0 is a constant gain

(referred to as “assertiveness”) that weights the attention paid to the preferred direction
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Figure 4.1: Zone of interaction of an individual in the simulation. Individuals turn away
from neighbors within a distance α or move towards and align with neighbors within a
distance β.

versus attention paid to neighbors. If ω is large, informed individuals desire to move at each

time step predominantly in their preferred direction/destination. If ω is small, informed

individuals desire, at each time step, to predominantly move toward and align with their

neighbors. Combining the influences of social interactions and, when applicable, attraction

to a preferred direction, the dynamics of the computed direction of travel of all the individ-

uals in the group between times t and t+ ∆t are given by the following set of discrete-time

equations:

di(t+ ∆t) =
dsoc
i (t+ ∆t) + ωg1

‖dsoc
i (t+ ∆t) + ωg1‖ +Xi i ∈ N1

di(t+ ∆t) =
dsoc
i (t+ ∆t) + ωg2

‖dsoc
i (t+ ∆t) + ωg2‖ +Xi i ∈ N2

di(t+ ∆t) = dsoc
i (t+ ∆t) +Xi i ∈ N3,

(4.2)

where Xi is a random angle taken from a circular-wrapped gaussian distribution centered

on zero and with a standard deviation σ = 0.01rad.

Individuals use their calculated desired direction of travel di(t + ∆t) to adapt their

actual direction of travel. They are constrained, however, by a maximum turning rate Ω
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such that the maximum change in direction of travel between t and t+ ∆t is Ω∆t. For an

individual moving at a speed of si, if the angle between the velocity vector vi(t) at time t

and the calculated direction of travel di(t+ ∆t) between time t and time t+ ∆t is smaller

than Ω∆t, then vi(t + ∆t) is equal to sidi(t + ∆t); otherwise vi(t + ∆t) is equal to vi(t)

rotated by Ω∆t towards di(t + ∆t). The discrete-time dynamics of the individuals in the

group can then be written as

vi(t+ ∆t) =

 sidi(t+ ∆t) if |mod(θd − θv, 2π)− π| ≤ Ω∆t

vi(t)R (sgn(mod(θd − θv, 2π)− π)Ω∆t) otherwise,

ci(t+ ∆t) = ci(t) + vi(t+ ∆t)∆t,
(4.3)

where θv (respectively θd) is the oriented principal value of the angle between vi(t) and the

rightward unit vector i.e., the angle θv between vi(t) and the rightward unit vector such

that θv ∈ [−π, π) (respectively between di(t+∆t) and a rightward unit vector), the function

mod(x, 2π) is defined as x− 2πn with n = floor( x
2π ), the function sgn is defined as

sgn(x) =


1 if x > 0

−1 if x < 0

0 if x = 0,

and R(θ) is the 2× 2 rotation matrix given by

R(θ) =

cos θ − sin θ

sin θ cos θ

 .

In some of the simulations presented in [19], a “forgetting factor” feedback was intro-

duced by making the weight ω of the attraction to the preferred direction state dependent.

More specifically, if at a given time step, informed individuals find themselves moving in

a “similar” direction to their preferred direction (within ± 20 deg), the weight ω is in-

creased by ωinc up to a maximum value ωmax; otherwise it is decreased by ωdec up to 0.

In the simulations presented in this chapter, no “forgetting factor” feedback is considered.

However, similar feedback terms are considered in the extensions for the analytical models

presented in Chapters 5 and 6.
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4.1.2 Summary of the Results in Couzin et al. [19]

Using the model described above considering informed individuals with fixed preferred di-

rections, Couzin et al. addressed the following two questions: how can information be

transferred within a group without signaling or individual recognition and how can consen-

sus decisions be made by groups containing individuals with conflicting preferences. They

demonstrated plausible mechanisms for information to flow within a group, assuming lim-

ited cognitive abilities for the group members. This work also revealed that leadership can

emerge from the differences in preference of members when individuals, informed or unin-

formed, respond spontaneously to those individuals that have information although without

necessarily recognizing them as such.

The first question was investigated by considering a group with one informed subgroup

and one uninformed subgroup. The authors showed that for a given group size, the accuracy

of group motion increases asymptotically as the proportion of informed individuals increases,

accuracy being measured as the normalized angular deviation of group direction around the

preferred direction g. They noticed furthermore that the larger the group, the smaller the

proportion of informed individuals needed to be to achieve any given level of accuracy.

These simulations also showed that higher values of ω yield greater accuracy but at the cost

of increasing the probability of group fragmentation.

The second question was investigated by considering a group containing two informed

subgroups with conflicting preferences and one uninformed subgroup. Simulations showed

that with two informed subgroups of equal population, the direction of group motion de-

pends on the degree to which the preferred directions differ. For disagreements below a

certain threshold, the group follows the average preferred direction of all informed indi-

viduals, while for disagreements greater than the threshold, the group selects with equal

probability one of the two preferred directions. When introducing the “forgetting factor”

feedback described above, the same transition from averaging the preferred directions to

collectively selecting one preferred direction occurs, although the threshold is smaller. One

remarkable feature of these simulations is that the informed individuals are not aware of
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how many individuals share their preferred direction and whether or not they are in the

majority. Moreover, when one informed subgroup has a population greater than the other,

even if only by one extra individual, the group is nevertheless able to sense this. For dis-

agreements greater than the threshold, the group selects with almost probability one the

preferred direction of the informed subgroup in the majority rather than randomly selecting

either of the preferred directions.

This model produces highly suggestive simulation results but contains many degrees

of freedom. In order to isolate biologically plausible mechanisms for the decision-making

behavior observed in [19] when there are two informed subgroups with conflicting informa-

tion, we proposed and analyzed in [80] a continuous-time model making several simplifying

assumptions. First, rather than considering interaction zones as in (4.1), we assumed an

all-to-all communication topology, meaning that every individual senses every other indi-

vidual in the group and adjusts its own direction of travel accordingly. Second, we removed

the “forgetting factor” feedback term considered in some simulations in [19] by not allowing

informed individuals to update the strength of their attraction to their preferred direction.

Finally we ignored the presence of uninformed individuals. This model and its analysis are

presented in detail in Chapter 5 of this dissertation. Notably, the continuous-time model

produced some but not all of the behaviors observed in [19], suggesting that some of the

simplifying assumptions made may be responsible for the collective behavior observed in

[19]. Driven by the analysis of the continuous-time model, we reexamine, in the remain-

der of this chapter, the simulation from [19], focusing on the subtle and nontrivial role of

uninformed individuals in achieving consensus decisions. We first explore the role of naive

individuals in the case where informed individuals have a fixed preferred direction of travel.

We then consider the case where informed individuals have a fixed target.

4.2 Influence of Naive Individuals in the Direction Model

In the context of animal foraging or migration, it has been shown that in many cases only a

few individuals have pertinent information of where to travel [96, 119, 31, 105]. Simulations
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of the model presented in the previous section from [19] revealed plausible mechanisms for

information transfer and leadership in such groups, further assuming limited cognitive abil-

ities of individual group members. However these observations raise the following question:

why would an informed individual team up with naive individuals? In other word, if an in-

dividual has information about a food source, what, if any, is the gain from traveling along

with naive individuals. In this chapter, we argue that naive individuals can in fact increase

the accuracy of decision making and reduce the probability of fragmentation in a group

containing individuals with conflicting preferences. We also show that when the number

of naive individuals is too large, these trends are reversed. In this section, we focus our

investigation on the influence of naive individuals in the case where the informed individuals

have a fixed preferred direction of travel. This setting is well suited for modeling animal

migration for example, where the desired destinations are “infinitely” far away.

In order to reveal the role of naive individuals, we run a suite of simulations. We con-

sider groups containing two informed subgroups with equal populations N1 = N2 = 5, an

equal level of assertiveness ω varying between .1 and .4 with increments of .1 and respective

preferred directions of 0 and θ̄2, with θ̄2 varying between 0 and 180 deg with increments of

5 degrees. We include one naive subgroup with population N3 varying between 0 and 100

with increments of 10. For each set of values for the parameters (N3, ω, θ̄2), we simulate

the motion of the group for 25,000 time steps and check if the group fragmented or not.

In the cases where the group has not fragmented, we record the direction followed by the

group. We simulate each set of parameters enough times to get 3000 non-fragmented repli-

cates. With these simulations we compute for each level of assertiveness ω, the normalized

probability distribution of group fragmentation (proportion of maximum number of frag-

mented simulations for a given set of parameters). Figures 4.2-4.5 represent respectively

for ω = .1, .2, .3 and .4 the normalized probability distributions of group fragmentation for

θ̄2 ∈ [90, 180] and N3 ∈ [0, 100]. We also reproduced bifurcation plots (not shown) similar

to the ones presented in Figure 3 of [19], for each set of values for ω,N3. These plots show

the normalized probability distribution (proportion of maximum) of group direction as a
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Figure 4.2: Color scale shows normalized probability distribution (proportion of maximum)
of group fragmentation for a group containing N1 = 5 informed individuals with preferred
direction of 0 degrees, N2 = 5 informed individuals with preferred direction θ̄2 ∈ [0, 180],
and N3 ∈ [0, 100] naive individuals with no preferred direction. The informed individuals in
each subgroup have the same level of assertiveness ω = .1. The plot of the bifurcation angle
as a function of N3 is superimposed in black. For this level of assertiveness, introducing
small numbers of naive individuals in the group does not reduce the level of group fragmen-
tation. On the other hand, adding more than 70 naive individuals to the group causes the
probability of group fragmentation to start increasing. As the number of naive individuals
is increased, the bifurcation angle drops from about 152 degrees to about 97 degrees.

function of θ̄2 for a group containing N1 = 5 informed individuals with preferred direction

of 0 degrees, N2 = N1 = 5 informed individuals with preferred direction θ̄2 ∈ [0, 180], and

N3 naive individuals with no preferred direction. An example of such a plot is given in

Figure 4.7(a). They are referred to as bifurcation plots since they represent the possible

steady state behavior as the bifurcation parameter θ̄2 (the difference between the preferred

directions of the two informed subgroups) is varied. Using these bifurcation plots, we then

record the bifurcation angle θ̄2 at the bifurcation point, i.e., when the group switches from

following the average of the preferred directions to collectively selecting one of the preferred

directions. For each value of ω considered (.1,.2,.3 and .4 respectively on Figures 4.2, 4.3,

4.4 and 4.5), the plot of the bifurcation angle as a function of N3 is superimposed in black

on the plot of the normalized probability distribution of group fragmentations.

The value of each bifurcation point is obtained using a topological skeleton of the cor-
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Figure 4.3: Color scale shows normalized probability distribution (proportion of maximum)
of group fragmentation for a group containing N1 = 5 informed individuals with preferred
direction of 0 degrees, N2 = 5 informed individuals with preferred direction θ̄2 ∈ [0, 180],
and N3 ∈ [0, 100] naive individuals with no preferred direction. The informed individuals in
each subgroup have the same level of assertiveness ω = .2. The plot of the bifurcation angle
as a function ofN3 is superimposed in black. For this level of assertiveness, introducing small
numbers of naive individuals in the group does not reduce the level of group fragmentation.
On the other hand adding more than 60 naive individuals to the group causes the probability
of group fragmentation to start increasing. As the number of naive individuals is increased,
the bifurcation angle drops from about 148 degrees to about 96 degrees.
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Figure 4.4: Color scale shows normalized probability distribution (proportion of maximum)
of group fragmentation for a group containing N1 = 5 informed individuals with preferred
direction of 0 degrees, N2 = N1 = 5 informed individuals with preferred direction θ̄2 ∈
[0, 180], and N3 ∈ [0, 100] naive individuals with no preferred direction. The informed
individuals in each subgroup have the same level of assertiveness ω = .3. The plot of the
bifurcation angle as a function of N3 is superimposed in black. For this level of assertiveness,
introducing naive individuals to the group initially reduces the level of group fragmentation
(N3 ∈ [0, 40]). However adding more than 40 naive individuals to the group causes the
probability of group fragmentation to start increasing. As the number of naive individuals
is increased, the bifurcation angle drops from about 127 degrees to about 95 degrees.
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Figure 4.5: Color scale shows normalized probability distribution (proportion of maximum)
of group fragmentation for a group containing N1 = 5 informed individuals with preferred
direction of 0 degrees, N2 = 5 informed individuals with preferred direction θ̄2 ∈ [0, 180],
and N3 ∈ [0, 100] naive individuals with no preferred direction. The informed individuals in
each subgroup have the same level of assertiveness ω = .4. The plot of the bifurcation angle
as a function ofN3 is superimposed in black. For this level of assertiveness, introducing naive
individuals to the group initially reduces the level of group fragmentation (N3 ∈ [0, 40]).
However adding more than 40 naive individuals to the group causes the probability of
group fragmentation to starts increasing. As the number of naive individuals is increased,
the bifurcation angle drops from about 120 degrees to about 100 degrees.
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Figure 4.6: Example of a simple shape and its skeleton. The black line is the topological
skeleton of the light blue shape; it is equidistant to the boundary of the blue shape.

responding bifurcation plot obtained from the data (Figure 4.7). Figure 4.7(a) shows the

bifurcation plot for ω = .4 and N3 = 80, its corresponding topological skeleton is shown

in Figure 4.7(b). A topological skeleton of a shape is a “thin” version of that shape that

is equidistant to its boundaries. For example a bar with a finite thickness would have a

topological skeleton made of a line going through the middle of it as represented in Figure

4.6. We use topological skeletons as they preserve topological properties of a shape while

emphasizing them. The skeleton images used to measure the bifurcation points were gener-

ated using Matlab. For each skeleton image, we identify the pixel at which the bifurcation

occurs and deduce the corresponding bifurcation value for θ̄2. For example in Figure 4.7

(b), the bifurcation occurs at the pixel X : 523 Y : 527, hence the bifurcation value for θ̄2

is given by 523
926180 ' 102deg, where 926 is the width in pixels of the bifurcation plot.

In Figures 4.2-4.5, we observe that depending on the level of assertiveness assumed

for the informed individuals in the group, adding naive individuals has a different effect

on the probability of group fragmentation. For low levels of assertiveness for the informed

individuals, (ω = .1 or .2, Figures 4.2, 4.3), introducing “few” naive individuals in the group

(N3 less than 60) does not affect the probability of group fragmentation. However adding

more than 60 naive individuals to the group causes the probability of group fragmentation

to increase. For higher levels of assertiveness for the informed individuals, (ω = .3 or .4,

Figures 4.4, 4.5), introducing “few” naive individuals in the group (less than 40) reduces

the probability of group fragmentation. However adding more than 40 naive individuals to

the group reverses the trend and the probability of group fragmentation starts to increase.
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(b)

Figure 4.7: (a) Color scales shows normalized probability distribution (proportion of maxi-
mum) of group direction for a group containing N1 = 5 informed individuals with preferred
direction of 0 degrees, N2 = 5 informed individuals with preferred direction θ̄2 ∈ [0, 180],
and N3 = 80 naive individuals with no preferred direction. The informed individuals in
each subgroup have the same level of assertiveness ω = .4. For θ̄2 smaller than a certain
threshold (between 100 and 110 degrees) the group follows the average of the preferred
directions, while for θ̄2 greater than the threshold the group selects one of the preferred
directions with equal probability. (b) Processed version of the bifurcation plot in (a) with
skeletonization. With this processed image, it is possible to identify more precisely the
bifurcation point in pixels (here X : 523 Y : 527). Using the width of the processed image
(here 926 pixels) we compute the bifurcation angle (threshold) θ̄2 as 523

926180 ' 102deg.
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This suggests that for groups with fairly assertive informed individuals with conflicting

preferences, naive individuals can help the group remain cohesive. When there are very

large numbers of naive individuals, they can increase the probability of group fragmentation.

For all levels of assertiveness, we observe (Figures 4.2-4.5) that the bifurcation angle is

a decreasing function of the number of naive individuals N3, i.e., adding naive individuals

moves the bifurcation point to the left. This means that the more naive individuals that join

the group, the smaller the disagreement between the informed individuals needs to be to

have the group switch from following the average of the preferred directions to collectively

selecting one of the preferred directions. In other words, having naive individuals in a group

increases the sensitivity of decision making in a group containing informed individuals with

conflicting preferences. This trend is observed for all levels of assertiveness for the informed

individuals but is more dramatic for lower levels of assertiveness. For ω = .1 the bifurcation

angle dropped from about 152 deg to about 97 deg while for ω = .4 the bifurcation angle

only dropped from about 120 deg to about 100 deg. This suggests that informed individuals

that are less confident derive a greater benefit from associating and sharing their information

with naive individuals than more confident informed individuals do.

The simulations presented in this section suggest two things. First naive individuals, in

some circumstances, can help keep a group cohesive but, when in too great numbers, cause

the group to fragment. Second, adding naive individuals to a group increases the sensitivity

of decision making by increasing the size of the region of parameter space in which the

group selects one of the preferred directions rather than follow the average of the preferred

directions. In order to show that improving the sensitivity of decision making also improves

its accuracy, we turn our attention from the the case where the informed individuals have

a preferred direction to the case where they have a fixed target.

These two cases are in fact intimately related. As we explained in Section 4.1, informed

individuals having a fixed target is equivalent to their having a changing preferred direction

pointing towards the target. As shown in Figure 4.8, depending on the location of the

agents relative to the targets, the difference of preferred direction between the two informed
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Direction of Motion

Target 1

Target 2

θ̄2(t1) θ̄2(t2)
θ̄2(t3) = 180◦

Figure 4.8: Informed individuals with fixed targets traveling in space. Black triangles
represent one informed individual traveling along the dotted line at different times with
the black disk as its fixed target. White triangles represent a different informed individual
traveling along the dotted line at different times with the white disk as its fixed target.
As the group moves along the dotted horizontal line the difference between the preferred
directions θ̄2(t) continuously increases until reaching 180 degrees when the group is located
on the line connecting the two targets.

subgroups θ̄2(t) changes. For example, if the group moves along the horizontal line between

the targets (horizontal dotted line in Figure 4.8), θ̄2(t) continuously increases until reaching

180 degrees when the group is located on the line connecting the two targets. Assuming

further that the agents are moving “slowly”, the model with fixed preferred directions can

be viewed as a “fast” time scale of the model with targets. This means that as the group

gets closer to the targets, it will undergo the bifurcation investigated in the present section

for the direction model.

An increased sensitivity of decision making for the model with fixed preferred directions

implies that, for the model with fixed targets, the group will choose its target from further

away. In the next section we investigate numerically the influence of naive individuals on

the model with fixed targets. We show that adding naive individuals increases the accuracy

of decision making and helps reduce the probability of group fragmentation. We also show

that these trends are reversed when too many naive individuals are added.
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4.3 Influence of Naive Individuals in the Target Model

We now focus our investigation on the influence of naive individuals in the case where the

informed individuals have a fixed target. This setting is well suited for modeling animal

foraging, for example, where desired destinations are a finite distance away. In order to

reveal the role of the naive individuals, we run a suite of simulations. We consider groups

containing two informed subgroups of unequal numbers with N1 = 6 and N2 = 5 but with

equal levels of assertiveness ω varying from .1 to .4 by increments of .1, along with one

naive subgroup with population N3 varying between 0 and 100 by increments of 5. For such

a group, reaching the target of the first informed subgroup constitutes the more accurate

decision. For all simulations, the group starts randomly distributed (according to a uni-

form distribution) in a disk centered at the point (0, 0) in the plane with a radius of 1
2

√
N ;

the individuals in the first subgroup have a fixed target located at (2300,−1000), and the

individuals in the second informed subgroup have a fixed target located at (2300, 1000).

The targets are chosen such that the difference in preferred direction between two informed

informed individuals located at the point (0, 0), at the beginning of the simulation is ap-

proximately 47 degrees. Given the restriction on the initial conditions given above, this

choice guarantees that the group will go through the bifurcation that we described in the

previous section (i.e., when the difference in preferred direction is 100-150 degrees depend-

ing on the parameter values). For each set of values of the parameters (N3, ω), we simulate

the motion of the group for 100,000 time steps and check whether it reached a target or not

and record which target was reached. We simulate each set of parameters enough times to

get 1,000 replicates where the group reaches a target. With these simulations we compute,

for all levels of assertiveness ω ∈ [.1, .4] and for all values of N3 ∈ [0, 100], the probability of

group fragmentation, the probability of the group’s reaching the target of the first informed

subgroup (referred to as the “majority target”), and the probability, given that the group

has not fragmented, of the group’s reaching the target of the second informed subgroup

(referred to as the “minority target”). Figures 4.9-4.11 represent for ω = .1, .2, .3 and .4 the

evolution, as a function of N3, of the probability of group fragmentation, the probability of



78

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N30 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N3

 

 

ω = .1
ω = .2
ω = .3
ω = .4

P
ro

ba
bi

lit
y

of
gr

ou
p

fr
ag

m
en

ta
ti

on

Figure 4.9: Probability of group fragmentation as a function of N3 for ω = .1, .2, .3 and
.4. For low levels of assertiveness of the informed individuals, ω = .1 or .2, introduc-
ing “few” naive individuals in the group (less than 60) slightly reduces the probability of
group fragmentation, but adding “too many” naive individuals (more than 60) to the group
reverses this trend. For high level of assertiveness of the informed individuals, ω = .4,
introducing “few” naive individuals in the group (less than 10) dramatically reduces the
probability of group fragmentation but adding more than 10 naive individuals reverses this
trend. Informed individuals with a level of assertiveness ω = .3, seem never to benefit from
associating with naive individuals.

reaching the majority target and the probability of reaching the minority target given that

the group has not fragmented.

In Figure 4.9 we observe that the effect of adding naive individuals on the probability of

group fragmentation depends on the level of assertiveness assumed for the informed individ-

uals. For low levels of assertiveness of the informed individuals (ω = .1 or .2), introducing

“few” naive individuals in the group (less than 60) slightly reduces the probability of group

fragmentation (from 97 percent to 82 percent for ω = .1 and from 86 percent to 78 percent

for ω = .2). However, adding “too many” naive individuals in the group (more than 60)

causes this trend to be reversed. For high levels of assertiveness of the informed individu-

als (ω = .4), introducing “few” naive individuals in the group (less than 10) dramatically

reduces the probability of group fragmentation (from almost 100 percent to about 60 per-
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Figure 4.10: Probability of reaching the majority target overall as a function of N3 for
ω = .1, .2, .3 and .4. For low levels of assertiveness of the informed individuals, ω = .1 or
.2, introducing “few” naive individuals in the group (less than 60) slightly increases the
probability of reaching the majority target but adding “too many” naive individuals (more
than 60) to the group causes this trend to be reversed. For high level of assertiveness of the
informed individuals, ω = .4, introducing “few” naive individuals in the group (less than
10) dramatically increases the probability of group fragmentation but adding more than
10 naive individuals causes this trend to be reversed. Informed individuals with a level of
assertiveness of ω = .3, seem never to benefit from associating with naive individuals.
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Figure 4.11: Probability of reaching the minority target, given that the group has not
fragmented, as a function of N3 for ω = .1, .2, .3 and .4. For all level of assertiveness,
adding “too many” naive individuals in the group (more than 60) causes the group to start
making mistakes i.e., going to the minority target. We note that the higher the level of
assertiveness the more likely the group will be to select the wrong target.

cent). However, adding more than 10 naive individuals causes this trend to be reversed with

the probability of group fragmentation returning to nearly 100 percent when over 90 naive

individuals are added. These results suggest that it is beneficial for informed individuals

to associate with some naive individuals, as they help the group to remain cohesive. When

informed individuals associate with “too many” naive individuals, however, the benefit is

lost. It is interesting to note that more assertive individuals derive greater benefit from

mixing with naive individuals than do less assertive informed individuals. However, more

assertive individuals lose this relative benefit much more quickly when they associate with

too many naive individuals. The effect of adding naive individuals in the case where ω = .3

is harder to understand because even with no naive individual in the mix, the group already

has a “low” rate of fragmentation (a little above 60 percent), and adding naive individuals

causes the probability of group fragmentation almost exclusively to increase. It seems as

though informed individuals with this level of assertiveness derive almost no benefit from

their association with naive individuals.
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In Figure 4.10 we observe that the variations of the probability of group fragmenta-

tion described in the previous paragraph translates into variations of the probability of the

group’s reaching the majority target. For “low” levels of assertiveness (ω = .1 or .2), intro-

ducing “few” naive individuals in the group (less than 60) slightly increases the probability

of reaching the majority target (from 4 percent to 16 percent for ω = .1 and from 14 per-

cent to 22 percent for ω = .2). This trend is reversed, however, when “too many” naive

individuals (more than 60) are added to the group. For high levels of assertiveness of the

informed individuals (ω = .4), introducing “few” naive individuals in the group (less than

10) dramatically increases the probability of reaching the majority target (from almost 0

percent to about 40 percent). However adding more than 10 naive individuals causes this

trend to be reversed, with the probability of reaching the majority target decreasing again

to nearly 0 percent when more than 90 naive individuals are added. These observations

further support the idea that informed individuals benefit from associating with some naive

individuals, since it increases the accuracy of decision making, but that associating with too

many naive individuals diminishes this benefit. The plot for ω = .3 also suggests that by this

measure some informed individuals derive no benefit in associating with naive individuals.

In Figure 4.11 we observe that for all levels of assertiveness, adding “too many” naive

individuals in the group (more than 60) causes the group to start making mistakes, i.e.,

going to the minority target. We note moreover that the higher the level of assertiveness the

more likely the group will be to select the wrong target. With one hundred naive individuals

in the group, if the informed individuals have a low level of assertiveness (ω = .1), then

the group will choose the “wrong” target about 8 percent of the time, whereas if the level

of assertiveness of the informed individuals is high (ω = .4), then the group will choose

the “wrong” target as often as 18 percent of the time. This trend is consistent with our

earlier observation that more assertive informed individuals are more strongly penalized by

associating with “too many” naive individuals.

Our numerical investigation of the subtle role of naive individuals in the decision-making

process within a heterogeneous group using the discrete-time model developed by Couzin
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et al. [19] has highlighted possible drawbacks and benefits for informed individuals in asso-

ciating with naive individuals. In both settings, with informed individuals having a fixed

preferred direction and informed individuals having a fixed target, simulations suggest that

informed individuals benefit from associating with some naive individuals, as they help the

group remain cohesive and increase the sensitivity and accuracy of the decision making.

When informed individuals associate with too many naive individuals, however, the bene-

fits vanish. In these simulations, we also encountered phenomena that are hard to explain.

For informed individuals with a certain level of assertiveness, there seemed to be no benefit

in associating with naive individuals, only drawbacks. This observation highlights the point

made at the beginning of this chapter: although the discrete-time model produces highly

suggestive simulations, it is sometime hard to understand in detail the microscopic reasons

for the macroscopic behavior observed. In the next two chapters of this dissertation, we turn

our attention to simplified deterministic continuous-time models which allow for a deeper

investigation of the behavior produced and a more complete exploration of parameter space.



Chapter 5

Collective Decision Making: A

Simple Analytical Model

In this chapter, we derive and study the dynamics of a low-dimensional, deterministic,

coordinated control system designed as an interacting approximation of the individual-based

model investigated in Chapter 4. In Section 5.1, we present the model and its reduction using

a time-scale separation argument. In Section 5.2 we study the full phase-space dynamics

of the reduced model by computing equilibria and proving stability and bifurcations. In

Section 5.3 we consider several extensions of the model to test its robustness. The material

in this chapter has previously appeared in [79, 80]. The same model with certain kinds of

heterogeneity was studied with an equation-free approach in [72].

5.1 Model and Reduction

The continuous-time model we present here is an interactive partner to the discrete-time

model described in Chapter 4. The discrete-time model, first presented by Couzin et al. in

[19], contains many degrees of freedom and produces highly suggestive simulation results.

It is difficult, however, to use this model to prove particular mechanisms, define unifying

principles, and explore all possible behaviors. The continuous-time model that we propose

83
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and study here in a particular case is represented by a set of ordinary differential equations.

A clear advantage of using ordinary differential equations is that it makes available to us

sophisticated tools from the nonlinear dynamical system literature. It is then possible to

study the global phase-space for the proposed simple model by computing equilibria and

proving stability and bifurcations.

In order to formulate our continuous-time model, we make several simplifying assump-

tions from the model presented in [19] and in Chapter 4. First, our model describes the

dynamics of the heading angles for all individuals in the population independent of their

positions. Second, an all-to-all communication topology is assumed, meaning that every

individual senses every other individuals in the population, so as to be able to adjust its

own steering rate. Third, we remove the “forgetting factor” feedback term by not allowing

informed individuals to update the strength of their attraction to their preferred direc-

tion. Finally, for the purpose of the global phase-space analysis, we ignore the presence of

naive individuals (i.e. individuals without a preferred direction of travel) when describing

the phase-space dynamics of the reduced model. These simplifications from the original

discrete-time model yield a model that produces qualitative behaviors some of which, but

not all, are observed in [19]. The observed deviations then draw our attention to a small

number of assumptions that are potentially responsible for the behavior in [19]. Our explo-

ration of the role of the naive individuals in the decision-making process, for example, as

presented in Chapter 4, was motivated by the deviation between [80] and the result pub-

lished in [19]. It is in this sense that we describe the continuous-time model presented here

as an interacting partner to the discrete-time model of [19] and Chapter 4. In Chapter 6,

we derive and analyze a similar model but relax the all-to-all coupling assumption and con-

sider the presence of naive individuals. This model produces qualitative behaviors closer,

although not identical, to the ones observed in [19] and in Chapter 4.
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5.1.1 Particle Model

In this model, we consider a population of N interacting individuals, each described as a

unit mass Newtonian particle moving in the plane at constant speed and controlled by its

steering rate. The steering rate evolves though time under the influence of inter-particle

measurements and, when applicable, information represented by a preferred direction of

travel. Preferred directions of travel can, for example, represent knowledge of a migration

route or of the direction to a known good source of food or resource. The model assumes

an all-to-all communication topology in the group. In the natural setting, this all-to-all

coupling assumption may be reasonably well justified for tightly clustered groups. For

large swarms of insects or for microscopic organisms, however, this assumption is no longer

realistic. It is for this reason that, in the next chapter, we relax this assumption and consider

a model where the strength of the coupling between individuals is time-varying, yielding

non-complete communication topologies.

The population is divided into three subgroups: two subgroups of informed individuals

with N1 and N2 agents, respectively, and one subgroup of naive (uninformed) individuals

with N3 agents such that N1 + N2 + N3 = N . We define N1 and N2, respectively as the

subsets of indices in {1, . . . , N} corresponding to individuals in the informed subgroups 1

and 2, and N3 as the remaining subset of indices corresponding to the naive individuals.

The cardinality of each subset Nk is Nk, k = 1, 2, 3. Agents in the informed subgroup i

have a preferred direction of travel θ̄i, for i = 1, 2.

We denote as θj the instantaneous heading direction of individual j, where θj is allowed

to take any value in the circle S1. Let ~rj ∈ R2 be the position in the plane of the jth

individual moving at constant speed V0, then the instantaneous velocity vector ~Vj = d~rj
dt is

given by

~Vj = (V0 cos θj , V0 sin θj) , j = 1, . . . , N.

The model we define consists of a set of differential equations describing the dynamics of

these instantaneous heading directions θj . The dynamics are modeled with steering terms
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that depend on relative heading angles, as

θ̇j = sin
(
θ̄1 − θj

)
+
K

N

N∑
l=1

sin (θl − θj) , j ∈ N1

θ̇j = sin
(
θ̄2 − θj

)
+
K

N

N∑
l=1

sin (θl − θj) , j ∈ N2

θ̇j =
K

N

N∑
l=1

sin (θl − θj) , j ∈ N3 ,

(5.1)

where the parameter K > 0 weights the attention paid to other individuals versus the

preferred direction. This assumption is related to the assumption of all-to-all communica-

tion topology and may be well justified for tightly clustered groups. This model was first

presented in [79, 80].

The form of the coupling used in (5.1) is taken from the Kuramoto model for populations

of coupled oscillators [60]. As we already emphasized in Chapter 1, the use of similar

models in engineered and natural systems is not a coincidence. The very efficient and

robust mechanisms refined through evolution and natural selection that are used by natural

systems to move and achieve consensus decisions provide compelling inspiration for design

of engineered systems, and the tools available for analysis of engineered systems have in

turn proven useful for modeling and predicting natural phenomena. The Kuramoto model

is a perfect example of this interaction between biology and engineering [1]. The Kuramoto

model, which has been used to model natural phenomena in neuroscience [113], chemistry

[59] and biology [135], has been studied using sophisticated tools from dynamical systems

theory [115], while it has also provided inspiration to Sepulchre et al., to successfully stabilize

circular and parallel collective motion of a group of agents [108, 107]. Mirollo and Strogatz

used the Kuramoto model to model a group of coupled spins in a random magnetic field [71].

The coupled spin model is similar to our model but without subgroups of individuals with

common preferences; rather, each individual oscillator has a randomly assigned “pinning”

angle θ̄j such that the pinning angles are uniformly distributed around the circle. The

authors proved that their system exhibits a jump bifurcation and hysteresis as K is varied.

Our model also exhibits interesting bifurcations as the parameter K is varied as we explore
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in Section 5.2.2.

5.1.2 Time Scale Reduction

The model (5.1) is challenging to study. It is an N -dimensional system and the “preferred

direction” terms of the dynamics break the symmetries exploited to study the original

Kuramoto model (see e.g. [115]). Simulations of the model (5.1) shown in Figure 5.1

suggest however that there are two time-scales in the dynamics. At first, during an initial

transient time, the heading angles of the individuals in each subgroup synchronize. Then

the three average subgroup directions slowly drift to reach a steady state. This means

that there exists a set of “few” variables that can describe the long term dynamics of the

model (5.1). Motivated by these observations, we formalize this time-scale separation by

defining a new set of independent variables that allows us to distinguish between slow and

fast variables.

Let ψ1, ψ2 and ψ3 denote the average headings of the three subgroups; we choose them as

the slow variables since they characterize the direction of travel of the three subgroups. The

average headings ψ1, ψ2 and ψ3 are defined from the parameter pk, known as the complex

order parameter in the coupled oscillator literature. The parameter pk ∈ C is computed as

the average of the phasors on the unit circle; its expression is given by

pk = ρke
iψk =

1
Nk

∑
l∈Nk

eiθl , k = 1, 2, 3. (5.2)

The argument of pk, arg(pk) = ψk corresponds to the average direction of the individuals in

the k-th subgroup. The modulus of pk, |pk| = ρk with values in the interval [0, 1], provides

a measure of synchrony among the phases. In particular, ρk = 1 if all individuals in Nk
are heading in the same direction (synchronized headings) and ρk = 0 if individuals in Nk
head in directions such that the average velocity of the group is zero. To represent the fast

dynamics, we define as in [80] the following variables αj ∈ C

αj = e
i

(
Nkθj−

P
l∈Nk

θl

)
, j ∈ Nk. (5.3)
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Figure 5.1: Phase angle of each individual in the group versus time for model (5.1) with
K = 1. For this simulation there are five individuals with preferred direction 0 rad, five
individuals with preferred direction 2 rad and twenty individuals with no preferred direction.
Two time-scales in the dynamics can be observed. During a short initial transient time,
the heading angles of the individuals in each subgroup synchronize. Then the three average
subgroup directions change slowly to their steady state values.

Each variable αj provides a measure of how “close” the heading of individual j ∈ Nk is to

ψk, the average direction of the subgroup k. When all the individuals in the kth subgroup

have the same heading, we have αj = 1, ∀j ∈ Nk. We denote θ = (θ1, . . . , θN ) ∈ TN

and αk =
(
αj(k,1)

, . . . , αj(k,Nk−1)

)
∈ CNk−1, where Nk =

{
j(k,1), . . . , j(k,Nk)

}
, and consider

change of variables θ 7→ {
α1,α2,α3, ψ1, ψ2, ψ3

}
. The system (5.1) can be rewritten in the

new set of coordinates as

α̇j(k,i) = iαj(k,i)

Nkθ̇i −
∑
l∈Nk

θ̇l

 , i ∈ 1, · · · , Nk − 1, k = 1, 2, 3

ψ̇k =
1

ρkNk

∑
l∈Nk

θ̇l cos(ψk − θl), k = 1, 2, 3

(5.4)
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Following the calculations in [115, 80], we rewrite the coupled multi-agent system dynamics

(5.4) as

α̇j = iN1αj

( (
sin
(
θ̄1 − θj

)− ρ1 sin
(
θ̄1 − ψ1

))
+
KN1

N
ρ1 sin (ψ1 − θj)

+
∑
k=2,3

KNk

N
ρk (sin (ψk − θj)− ρ1 sin (ψk − ψ1))

)
, j ∈ N1, j 6= j(1,N1)

α̇j = iN2αj

( (
sin
(
θ̄2 − θj

)− ρ2 sin
(
θ̄2 − ψ2

))
+
KN2

N
ρ2 sin (ψ2 − θj)

+
∑
k=1,3

KNk

N
ρk (sin (ψk − θj)− ρ2 sin (ψk − ψ2))

)
, j ∈ N2, j 6= j(2,N2)

α̇j = iN1αj

(KN3

N
ρ3 sin (ψ3 − θj)

+
∑
k=2,3

KNk

N
ρk (sin (ψk − θj)− ρ3 sin (ψk − ψ3))

)
, j ∈ N3, j 6= j(3,N3)

ψ̇1 =
1
ρ1

∑
j∈N1

(
1
N1

sin
(
θ̄1 − θj

)
+
K

N

(
3∑

k=1

Nk

N1
ρk sin (ψk − θj)

))
cos (ψ1 − θj)

ψ̇2 =
1
ρ2

∑
j∈N2

(
1
N2

sin
(
θ̄2 − θj

)
+
K

N

(
3∑

k=1

Nk

N2
ρk sin (ψk − θj)

))
cos (ψ2 − θj)

ψ̇3 =
1
ρ3

∑
j∈N3

(
K

N

(
3∑

k=1

Nk

N3
ρk sin (ψk − θj)

))
cos (ψ3 − θj)

(5.5)

for ρk 6= 0, k = 1, 2, 3.

The solution αj = 1 for j ∈ Nk, k = 1, 2, 3, (or equivalently θj = ψk, j ∈ Nk, k = 1, 2, 3,)

is an isolated solution of α̇j = 0, j ∈ Nk, j 6= j(k,Nk) k = 1, 2, 3. For this solution ρk = 1,

k = 1, 2, 3. In other words, θj = ψk, j ∈ Nk, k = 1, 2, 3 is an invariant manifold of the system

(5.5); we call this manifold M. Physically this means that if we start with all individuals

synchronized within their respective subgroup (i.e., θj = ψk, j ∈ Nk, k = 1, 2, 3), they will

remain so for all time.

Lemma 5.1.1 The change of variables θ 7→ (α1, ψ1,α
2, ψ2,α

3, ψ3) is well defined near the

invariant manifold M.

Proof: We write (α1, ψ1,α
2, ψ2,α

3, ψ3) = F (θ) and prove that F is locally invertible near
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M. On M, we have

∂αj(k,l)
∂θm

∣∣∣∣
M

=


−i if m ∈ Nk, m 6= j(k,l)

(Nk − 1)i if m = j(k,l)

0 otherwise

∂ψk
∂θm

∣∣∣∣
M

=


1
Nk

if m ∈ Nk
0 otherwise.

(5.6)

Using (5.6), the Jacobian of F evaluated on M can be written as

dF

dθ

∣∣∣∣
M

= diag(Ak),

where

Ak =



(Nk − 1)i −i · · · · · · −i
−i . . . . . . −i ...
...

. . . . . . . . .
...

−i · · · −i (Nk − 1)i −i
1
Nk

· · · · · · · · · 1
Nk


∈ RNk×Nk , k = 1, 2, 3.

Each Ak is invertible with

A−1
k =



− i
Nk

0 · · · 0 1

0
. . . . . .

...
...

...
. . . . . . 0

...

0 · · · 0 − i
Nk

...

i
Nk

· · · · · · i
Nk

1


∈ RNk×Nk , (5.7)

hence dF
dθ

∣∣
M is also invertible. This concludes the proof that F : θ 7→ (α1, ψ1,α

2, ψ2,α
3, ψ3)

is locally invertible in a neighborhood of M. Hence the change of variables from θ 7→
(α1, ψ1,α

2, ψ2,α
3, ψ3) is well defined near M. �

In order to prove the time-scale reduction, we rewrite the model (5.5) in the form of

a singular perturbation model, decomposing it into a boundary layer (fast) model and a

reduced (slow) model. We suppose K ≥ N >> 1 and let ε = 1/K. We assume further that

N1 and N2 are such that 1/N1, 1/N2, N1/N , N2/N are not as small as ε. For example, if
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K = N = 100, N1 = N2 = 10, N3 = 80, then ε = 0.01 but 1/N1 = 1/N2 = N1/N = N2/N =

0.1 =
√
ε. Given these assumptions the coupled multi-agent system dynamics (5.5) become

εα̇j = iN1αj

(
ε
(
sin
(
θ̄1 − θj

)− ρ1 sin
(
θ̄1 − ψ1

))
+
N1

N
ρ1 sin (ψ1 − θj)

+
∑
k=2,3

Nk

N
ρk (sin (ψk − θj)− ρ1 sin (ψk − ψ1))

)
(5.8)

=: g1
j

(
α1,α2,α3, ψ1, ψ2, ψ3, ε

)
, j ∈ N1, j 6= j(1,N1)

εα̇j = iN2αj

(
ε
(
sin
(
θ̄2 − θj

)− ρ2 sin
(
θ̄2 − ψ2

))
+
N2

N
ρ2 sin (ψ2 − θj)

+
∑
k=1,3

Nk

N
ρk (sin (ψk − θj)− ρ2 sin (ψk − ψ2))

)
(5.9)

=: g2
j

(
α1,α2,α3, ψ1, ψ2, ψ3, ε

)
, j ∈ N2, j 6= j(2,N2)

εα̇j = iN1αj

(N3

N
ρ3 sin (ψ3 − θj)

+
∑
k=2,3

Nk

N
ρk (sin (ψk − θj)− ρ3 sin (ψk − ψ3))

)
(5.10)

=: g3
j

(
α1,α2,α3, ψ1, ψ2, ψ3, ε

)
, j ∈ N3, j 6= j(3,N3)

ψ̇1 =
1
ρ1

∑
j∈N1

(
1
N1

sin
(
θ̄1 − θj

)
+
K

N

3∑
k=1

Nk

N1
ρk sin (ψk − θj)

)
cos (ψ1 − θj) (5.11)

=: f1

(
α1,α2,α3, ψ1, ψ2, ψ3, ε

)
ψ̇2 =

1
ρ2

∑
j∈N2

(
1
N2

sin
(
θ̄2 − θj

)
+
K

N

3∑
k=1

Nk

N2
ρk sin (ψk − θj)

)
cos (ψ2 − θj) (5.12)

=: f2

(
α1,α2,α3, ψ1, ψ2, ψ3, ε

)
ψ̇3 =

1
ρ3

∑
j∈N3

(
K

N

(
3∑

k=1

Nk

N3
ρk sin (ψk − θj)

))
cos (ψ3 − θj) (5.13)

=: f3

(
α1,α2,α3, ψ1, ψ2, ψ3, ε

)
for ρk 6= 0, k = 1, 2, 3.

With ε << 1, the model (5.8)-(5.13) is in the form of a singular perturbation model

(as described in [54]). The N − 3 dimensional boundary layer (fast) model is represented

by (5.8)-(5.10) and the 3 dimensional reduced (slow) model is represented by (5.11)-(5.13).

The reduced dynamics on the invariant manifold M are then given by

ψ̇k = fk
(
α1 = 1,α2 = 1,α3 = 1, ψ1, ψ2, ψ3, 0

)
, k = 1, 2, 3,
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where 1 = (1, . . . , 1), which can be written as

ψ̇1 = sin
(
θ̄1 − ψ1

)
+
K

N
N2 sin (ψ2 − ψ1) +

K

N
N3 sin (ψ3 − ψ1)

ψ̇2 = sin
(
θ̄2 − ψ2

)
+
K

N
N1 sin (ψ1 − ψ2) +

K

N
N3 sin (ψ3 − ψ2)

ψ̇3 =
K

N
N1 sin (ψ1 − ψ3) +

K

N
N2 sin (ψ2 − ψ3) .

(5.14)

Theorem 5.1.2 Assuming N1 = N2 and N3 = 0, the invariant manifold M is attractive.

Given the attractiveness of the invariant manifold, singular perturbation theory (see e.g.

[54]) then guarantees that solutions to the unreduced dynamics stay close to solutions of

the reduced system.

Proof of Theorem 5.1.2: Assuming N1 = N2 and N3 = 0, we show that the invariant

manifoldM is attractive by proving that it is a locally exponentially stable manifold of the

boundary layer dynamics

dαj
dt

= gj(α1,α2, ψ1, ψ2, 0), j ∈ Nk, j 6= j(k,Nk), k = 1, 2, (5.15)

uniformly in ψ1, ψ2.

The boundary layer dynamics can be written as

α̇j = iN1αj

(
−N1

N
ρ1 sin(ψ1 − θj) +

N2

N
ρ2

(
sin(ψ2 − θj)− ρ1 sin(ψ2 − ψ1)

)
+
N3

N
ρ3

(
sin(ψ3 − θj)− ρ1 sin(ψ3 − ψ1)

))
, j ∈ N1, j 6= j(1,N1)

α̇j = iN2αj

(
−N2

N
ρ2 sin(ψ2 − θj) +

N1

N
ρ1

(
sin(ψ1 − θj)− ρ2 sin(ψ1 − ψ2)

)
+
N3

N
ρ3

(
sin(ψ3 − θj)− ρ2 sin(ψ3 − ψ2)

))
, j ∈ N2, j 6= j(2,N2).

The linearization of the boundary layer model is given by

∂α̇j
∂αm

∣∣∣∣
M

=− iNk

N

 ∂θj
∂αm

∣∣∣∣
M

(
Nk +

∑
l 6=k

Nl cos(ψl − ψk)
)

+
∂ρk
∂αm

∣∣∣∣
M

∑
l 6=k

Nl sin(ψl − ψk)
 ,

j ∈ Nk, j 6= j(k,Nk), k = 1, 2, 3, m ∈ {1, . . . , N} \ {j(1,N1), j(2,N2)}.
(5.16)
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Using equation (5.7), the values for ∂θj
∂αm

∣∣∣
M

can be read as

∂θj
∂αm

∣∣∣∣
M

=

 −
i
Nk

if m = j,

0 otherwise.
(5.17)

Taking partial derivatives with respect to αm of equation (5.2) yields

∂ρk
∂αm

eiψk + ρki
∂ψk
∂αm

eiψk =
i

Nk

∑
j∈Nk

∂θj
∂αm

eiθj . (5.18)

Evaluating (5.18) on M and using equation (5.7) gives

∂ρk
∂αm

∣∣∣∣
M

=
i

Nk

∑
j

∂θj
∂αm

∣∣∣∣
M

= 0. (5.19)

Plugging equation (5.17) and (5.19) into (5.16), the Jacobian can be rewritten as a diagonal

matrix J with

Jjj = − 1
N

(
Nk +

∑
l 6=k

Nl cos(ψl − ψk)
)
, j ∈ Nk, j 6= j(k,Nk), k = 1, 2.

When N1 = N2 the eigenvalues of J are strictly negative, thus concluding the proof that

M is a locally exponentially stable manifold of (5.15) uniformly in ψ1, ψ2. Hence M, the

invariant manifold of (5.1) defined by θj = ψk, j ∈ Nk, k = 1, 2, is attractive. �

The solution of the boundary layer (fast) dynamics corresponds to synchronization of

all particle headings in subgroup k to a common heading ψk, for k = 1, 2, 3. These common

headings then follow the reduced (slow) model (5.14). This reduced model is one in which

all the agents in each subgroup (informed subgroups 1 and 2 and naive subgroup 3) behave

as a single entity and the inter-subgroup coupling term is weighted by the corresponding

subgroup population size as well as the bifurcation parameter K. This grouping of identical

individuals is consistent with the spatial clustering observed in the simulations from [19].

In the next section, we present a full phase-space dynamics analysis of the reduced model

(5.14) assuming N1 = N2 and N3 = 0, and in so doing show the different stable and

unstable motions, and investigate bifurcations in the K, θ̄2 parameters. Extension to the

cases N1 6= N2 and N3 6= 0 will be considered numerically in Section 5.3. The extension to

the case N3 6= 0 is developed more formally in Chapter 6.
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5.2 Phase Space Dynamics of the Reduced Model

In the case N1 = N2 and N3 = 0, the system (5.14) becomes

ψ̇1 = sin
(
θ̄1 − ψ1

)
+
K

2
sin (ψ2 − ψ1)

ψ̇2 = sin
(
θ̄2 − ψ2

)
+
K

2
sin (ψ1 − ψ2) .

(5.20)

Without loss of generality we set θ̄1 = 0 and consider the two bifurcation parameters, K ≥ 0

and θ̄2 ∈ (0, π]. The case θ̄2 = 0, which corresponds to having all informed individuals

identical, is ignored. In this case there is no disagreement, and it can be shown that the

groups travel in the direction θ̄1 = θ̄2 = 0.

We note that in the studied special case (i.e., N1 = N2 and N3 = 0), the reduced model

is a gradient system. The dynamics are gradient such that

ψ̇k = − ∂V
∂ψk

,

where V is given by

V (ψ1, ψ2) = − cos(θ̄1 − ψ1)− cos
(
θ̄2 − ψ2

)− K

2
cos (ψ2 − ψ1) .

Thus, LaSalle’s Invariance Principle guarantees that all solutions converge to the set of

critical points of V (ψ1, ψ2) and that there are no periodic solutions.

5.2.1 Equilibria of the Reduced System (5.20)

We compute the equilibria of the system (5.20) but note that, except for specific values

of the parameters K, θ̄2, we cannot find closed form expressions for all of them. For each

equilibrium we nevertheless describe how its value and stability changes as the bifurcation

parameters K and θ̄2 vary. We call an equilibrium synchronized if ψ1 = ψ2 mod 2π and

anti-synchronized if ψ1 − ψ2 = π mod 2π. The equilibria are given by

− sinψ1 +
K

2
sin (ψ2 − ψ1) = 0

sin
(
θ̄2 − ψ2

)
+
K

2
sin (ψ1 − ψ2) = 0.
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There are two sets of solutions, the first set given by

ψ1 = π − θ̄2 + ψ2

sin
(
ψ2 − θ̄2

)
=
K

2
sin θ̄2, (5.21)

and the second set given by

ψ1 = θ̄2 − ψ2 (5.22)

sin
(
θ̄2 − ψ2

)
=
K

2
sin
(
2ψ2 − θ̄2

)
. (5.23)

In the first set of solutions, equation (5.21) has two solutions: ψ2 = θ̄2 +arcsin
(
K
2 sin θ̄2

)
and ψ2 = θ̄2 + π− arcsin

(
K
2 sin θ̄2

)
. These two solutions exist if and only if |K2 sin θ̄2| ≤ 1.

Lemma 5.2.1 If |K2 sin θ̄2| < 1, then the two equilibria ψS1 = (ψ1, ψ2)S1 and ψS2 =

(ψ1, ψ2)S2 satisfying (5.21) and given by

ψS1 =
(
π + arcsin

(
K

2
sin θ̄2

)
, θ̄2 + arcsin

(
K

2
sin θ̄2

))
, (5.24)

ψS2 =
(
− arcsin

(
K

2
sin θ̄2

)
, π + θ̄2 − arcsin

(
K

2
sin θ̄2

))
, (5.25)

are saddle points ∀K > 0 and ∀θ̄2 ∈ [0, π]. If K
2 sin θ̄2 = 1, then ψS1 = ψS2. In this case, if

also K > 0 and θ̄2 ∈
(
0, π2

) ∪ (π2 , π), then ψS1 = ψS2 is unstable with one zero eigenvalue

and one positive real eigenvalue. If θ̄2 = π
2 (and K = 2), then both eigenvalues are zero.

Proof: The proof of Lemma 5.2.1 can be found in Appendix A.

Figure 5.2 shows the equilibrium ψS1 for K = 1, 2, 4 and θ̄2 = 0.1, π2 , π. For this

equilibrium, the relative heading of the two informed subgroups is constant, and equal to

θ̄2 − π. As θ̄2 goes from 0 to π, the equilibrium goes from being anti-synchronized, with

each subgroup traveling opposite to its preferred direction, to being synchronized in the

preferred direction of the second informed subgroup.

Figure 5.3 shows the equilibrium ψS2 for K = 1, 2, 4 and θ̄2 = .1, π2 , π. For this equilib-

rium, the relative heading of the two informed subgroups is constant, and equal to θ̄2+π. As

θ̄2 goes from 0 to π, the equilibrium goes from being anti-synchronized, with each subgroup
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K = 1 K = 4

θ̄ 2
=

.1
θ̄ 2

=
π 2

K = 2

θ̄ 2
=
π

Not defined

Figure 5.2: Unit circle picture of the equilibrium ψS1 for K = 1, 2, 4 and θ̄2 = .1, π2 , π.
The solid vector represents ψ1, the average heading of the first informed subgroup, and
the dashed vector represents ψ2, the average heading of the second subgroup. The zero
degree reference corresponds to a vector pointing to the right with angles increasing in the
counter-clockwise direction.

traveling towards its preferred direction, to being synchronized in the preferred direction of

the first informed subgroup.

For the equilibria from the second set of solutions given by equations (5.22)-(5.23) we

make a change of variables (ψ1, ψ2) 7→ (ρ,Ψ) where ρ ∈ [0, 1] and Ψ ∈ S1 are defined by

ρeiΨ =
1
2

(
eiψ1 + eiψ2

)
= cos

(
ψ1 − ψ2

2

)
ei(ψ1+ψ2)/2 (5.26)

= cos
(
θ̄2

2
− ψ2

)(
cos

θ̄2

2
+ i sin

θ̄2

2

)
. (5.27)

Equation (5.27) is obtained by combining equations (5.22) and (5.26). For θ̄2 ∈ (0, π],

ψ1 = θ̄2 − ψ2 implies that Ψ = θ̄2
2 or Ψ = θ̄2

2 + π. We further rewrite (5.23) as

sin
θ̄2

2
cos
(
θ̄2

2
− ψ2

)
+cos

θ̄2

2
sin
(
θ̄2

2
− ψ2

)
+K sin

(
θ̄2

2
− ψ2

)
cos
(
θ̄2

2
− ψ2

)
= 0. (5.28)

For Ψ = θ̄2
2 , (5.27) implies that cos

(
θ̄2
2 − ψ2

)
= ρ and sin

(
θ̄2
2 − ψ2

)
= ±

√
1− ρ2.

Accordingly, (5.28) implies that ρ satisfies

ρ sin
θ̄2

2
+
√

1− ρ2 cos
θ̄2

2
+Kρ

√
1− ρ2 = 0 (5.29)
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K = 1 K = 4

θ̄ 2
=

.1
θ̄ 2

=
π 2

K = 2

θ̄ 2
=
π

Not defined

Figure 5.3: Picture of the equilibrium ψS2 for K = 1, 2, 4 and θ̄2 = .1, π2 , π.

or

ρ sin
θ̄2

2
−
√

1− ρ2 cos
θ̄2

2
−Kρ

√
1− ρ2 = 0. (5.30)

For Ψ = θ̄2
2 + π, (5.27) implies that cos

(
θ̄2
2 − ψ2

)
= −ρ and sin

(
θ̄2
2 − ψ2

)
= ±

√
1− ρ2.

Accordingly, (5.28) implies that ρ satisfies

−ρ sin
θ̄2

2
+
√

1− ρ2 cos
θ̄2

2
−Kρ

√
1− ρ2 = 0 (5.31)

or

−ρ sin
θ̄2

2
−
√

1− ρ2 cos
θ̄2

2
+Kρ

√
1− ρ2 = 0. (5.32)

We now consider equations (5.29)-(5.32) individually and determine the existence and na-

ture of the equilibria that they yield. We ignore for now the case θ̄2 = π; it will be studied

separately, in Section 5.2.2. For all solutions of equations (5.29), (5.30), (5.31) and (5.32),

as K gets increasingly large, Kρ
√

1− ρ2 must approach zero. This means that as K →∞,

ρ → 0 or ρ → 1. Thus, for very large values of K all the equilibria will be either syn-

chronized (ρ → 1) or anti-synchronized (ρ → 0). For finite values of K, the coupling term

competes with the attraction to the preferred direction, and the equilibria are often neither

fully synchronized nor fully anti-synchronized. We call an equilibrium K-almost synchro-

nized (K-almost anti-synchronized) if the corresponding equilibrium in the case K � 1 is
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synchronized (anti-synchronized). K-almost synchronization occurs at Ψ θ̄2
2 and Ψ = θ̄2

2 +π

which represent a compromise between the two preferred directions. We now look at the

solution of equations (5.29)-(5.32) and study the yielded equilibria.

Equation (5.29) does not have any solution for (ρ, θ̄2) ∈ [0, 1] × (0, π) since all of the

terms on the left hand side of the equation are strictly positive.

Equation (5.30) has one solution for (ρ, θ̄2) ∈ [0, 1] × (0, π); we call the corresponding

equilibrium ψsync1 := (ψ1, ψ2)sync1. This equilibrium is K-almost synchronized, with K-

almost synchronization occurring at Ψ = θ̄2
2

Lemma 5.2.2 The equilibrium ψsync1 is a stable node for all
(
K, θ̄2

) ∈ [0,∞)× (0, π).

Proof: The proof of Lemma 5.2.2 can be found in Appendix A.

Figure 5.4 shows the equilibrium ψsync1 for K = 1, 4, 100 and θ̄2 = .1, π2 , 3.1. For all

θ̄2 fixed, as K increases, the equilibrium becomes synchronized at θ̄2
2 . This motion in the

average of the preferred directions is stable for
(
K, θ̄2

) ∈ [0,∞) × (0, π) and corresponds

to having all individuals compromising between their desire to stay with the group and to

follow their preferred direction.

K = 1 K = 4

θ̄ 2
=

.1
θ̄ 2

=
π 2

θ̄ 2
=

3.
1

K = 100

Figure 5.4: Picture of the equilibrium ψsync1 for K = 1, 4, 100 and θ̄2 = 0.1, π2 , 3.1.

Equation (5.31) has one solution for (ρ, θ̄2) ∈ [0, 1] × (0, π); we call the corresponding

equilibrium ψantisync1 := (ψ1, ψ2)antisync1. This equilibrium is K-almost anti-synchronized.
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Lemma 5.2.3 The equilibrium ψantisync1 is unstable for all
(
K, θ̄2

) ∈ [0,∞)× (0, π).

Proof: The proof of Lemma 5.2.3 can be found in Appendix A.

Figure 5.5 shows the equilibrium ψantisync1 for K = 1, 4, 100 and θ̄2 = .1, π2 , 3.1. For

all θ̄2 fixed, as K increases, the equilibrium becomes anti-synchronized. This motion of the

two informed subgroups is unstable for
(
K, θ̄2

) ∈ [0,∞)× (0, π).

K = 1 K = 4

θ̄ 2
=

.1
θ̄ 2

=
π 2

θ̄ 2
=

3.
1

K = 100K = 1 K = 2 K = 4

θ̄ 2
=

.1
θ̄ 2

=
π 2

θ̄ 2
=

3.
1

Figure 5.5: Picture of the equilibrium ψantisync1 for K = 1, 4, 100 and θ̄2 = 0.1, π2 , 3.1.

Equation (5.32) has between zero and two solutions for (ρ, θ̄) ∈ [0, 1] × (0, π). The

equilibria emerging from (5.32), when they exist, are called ψsync2 := (ψ1, ψ2)sync2 and

ψantisync2 := (ψ1, ψ2)antisync2.

Lemma 5.2.4 Equation (5.32) has two solutions (ρantisync2, ρsync2) when K > K1 =(
cos
(
θ̄2
2

) 2
3 + sin

(
θ̄2
2

) 2
3

) 3
2

such that

0 < ρantisync2 <

√√√√1−
(

sin θ̄2
2

K

) 2
3

< ρsync2 <

√√√√1−
(

sin θ̄2
2

K

)2

< 1. (5.33)

Proof: We pose K ′ = K/ sin θ̄2
2 , which is valid for θ̄2 ∈ (0, π). Equation (5.32) becomes

ρ sin
θ̄2

2
+
√

1− ρ2 cos
θ̄2

2
−K ′ sin θ̄2

2
ρ
√

1− ρ2 = 0,
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which can be rewritten as

ρ

(
1√

1− ρ2
−K ′

)
= − cot

θ̄2

2
. (5.34)

The solutions of (5.32) exist when the function g(ρ) = ρ

(
1√

1−ρ2
−K ′

)
intersects the

constant y = − cot θ̄22 < 0. The function g(ρ) goes to zero when ρ → 0, approaches +∞
when ρ → 1, and reaches its minimum of −K ′(ρ∗)3 at ρ∗ =

√
1− 1

K′2/3
. Equation (5.32)

has two solutions (ρantisync2, ρsync2) flanking ρ∗ if and only if g(ρ∗) < − cot
(
θ̄2
2

)
; this last

inequality is satisfied if and only if

K > K1 =

(
cos
(
θ̄2

2

) 2
3

+ sin
(
θ̄2

2

) 2
3

) 3
2

. (5.35)

The two solutions (ρantisync2, ρsync2) have to be smaller than the zero of the function g(ρ)

given by

√
1−

(
sin

θ̄2
2

K

)2

< 1. This concludes the proof that equation (5.32) has two

solutions (ρantisync2, ρsync2) when K > K1 =
(

cos
(
θ̄2
2

) 2
3 + sin

(
θ̄2
2

) 2
3

) 3
2

such that

0 < ρantisync2 <

√√√√1−
(

sin θ̄2
2

K

) 2
3

< ρsync2 <

√√√√1−
(

sin θ̄2
2

K

)2

< 1. �

We note that given the form of g(ρ), ρantisync2 (ρsync2) is a decreasing (increasing) function

of K, making the equilibrium ψantisync2 (ψsync2) K-almost anti-synchronized (K-almost

synchronized).

Lemma 5.2.5 The equilibrium ψsync2 is unstable for all (K, θ̄2) ∈ [K1,∞) × (0, π2 ) ∪

[K0,∞)×(π2 , π) and stable for all (K, θ̄2) ∈ [K1,K0)×(π2 , π), where
(

cos
(
θ̄2
2

) 2
3 + sin

(
θ̄2
2

) 2
3

) 3
2

=

K1 < K0 = 2
sin θ̄2

.

Lemma 5.2.6 The equilibrium ψantisync2 is unstable for all (K, θ̄2) ∈ [K1,∞)× (0, π).

Proof: The proof of Lemmas 5.2.5 and 5.2.6 can be found in Appendix A.

Figure 5.6 shows the equilibrium ψsync2 for K = 1, 4, 100 and θ̄2 = .1, π2 , 3.1. For all θ̄2,

as K increases, the equilibrium becomes synchronized at θ̄2
2 +π. This motion does not exist
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for all values of (K, θ̄2) and is stable only for some range of values of K. It corresponds to

having all individuals going in the opposite direction from the average preferred direction.

Even when this equilibrium is stable, its region of attraction is much smaller than the region

of attraction for ψsync1.

K = 1 K = 4

θ̄ 2
=

.1
θ̄ 2

=
π 2

θ̄ 2
=

3.
1

K = 100

Not defined

Not defined

Not defined

Figure 5.6: Picture of the equilibrium ψsync2 for K = 1, 4, 100 and θ̄2 = .1, π2 , 3.1.

Figure 5.7 shows the equilibrium ψantisync2 for K = 1, 4, 100 and θ̄2 = .1, π2 , 3.1. For

all θ̄2, as K increases, the equilibrium becomes anti-synchronized. This motion of the two

informed subgroups is always unstable.

Figure 5.8 summarizes the evolution of equilibria from the second set showing two bifur-

cation diagrams in the cases (a) θ̄2 = 1 rad and (b) θ̄2 = 2 rad with bifurcation parameter

K. The synchrony measure ρ as defined by (5.26) is plotted as a function of K for all

equilibria in the second set of solutions. There are two equilibria ψsync2 and ψantisync2

that do not exist for low enough values of K (i.e. for K <

(
cos
(
θ̄2
2

) 2
3 + sin

(
θ̄2
2

) 2
3

) 3
2

);

these two equilibria emerge from equation (5.32). Comparing Figures 5.8(a) and (b), we

also note that the stability of one of these two equilibria changes as a function of K and

θ̄2, indicating the presence of bifurcations. The other two equilibria, ψsync1 and ψantisync1,

are defined for all values of K, and their stability type does not change. The stable node

is ψsync1 and becomes synchronized as K increases, i.e., ρ → 1 as K → ∞. The unstable
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K = 1 K = 4

θ̄ 2
=

.1
θ̄ 2

=
π 2

θ̄ 2
=

3.
1

K = 100K = 1 K = 2 K = 4

θ̄ 2
=

.1
θ̄ 2

=
π 2

θ̄ 2
=

3.
1

Not defined

Not defined

Not defined

Figure 5.7: Picture of the equilibrium ψantisync2 for K = 1, 4, 100 and θ̄2 = 0.1, π2 , 3.1.

node is ψantisync1 and becomes anti-synchronized as K increases, i.e., ρ → 0 as K → ∞.

Consistent with the prediction above, as K increases, ρ approaches 0 or 1 for the two other

equilibria as well. We now look at bifurcations in both parameters K, θ̄2 and interpret them

in the context of animal group motion.

5.2.2 Bifurcations in the Reduced Model (5.20)

As we observed in the previous section, the system exhibits different bifurcations as the

two parameters K and θ̄2 are varied. The two equilibria ψS1 and ψS2 are defined if and

only if |K2 sin θ̄2| ≤ 1, the equilibria ψsync2 and ψantisync2 are defined only for some values

of (K, θ̄2), and the stability type of ψsync2 changes as a function of K and θ̄2. In all of

these bifurcations the only equilibrium that becomes stable is ψsync2. It corresponds to the

group going in the direction opposite to the average of the preferred directions. From a

biological point of view, this equilibrium is inefficient since the group heads in a direction

as divergent as possible from both preferred directions. The bifurcation analysis shows

that to stabilize this inefficient behavior we need to have θ̄2 >
π
2 and K ∈ [K1,K0], where

K1 =
(

cos
(
θ̄2
2

) 2
3 + sin

(
θ̄2
2

) 2
3

) 3
2

< 2
sin θ̄2

= K0. We focus our bifurcation analysis on the

three following cases: first we consider K = 2 fixed and perform the bifurcation analysis
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Figure 5.8: Bifurcation diagrams in cases (a) θ̄2 = 1 rad and (b) θ̄2 = 2 rad. The bifurcation
parameter is K and ρ is plotted as a function of K for all equilibria in the second set of
solutions. We note that two equilibria ψsync2 and ψantisync2 do not exist for low values of
K. Stability of these same two equilibria changes type between (a) and (b), indicating the
presence of bifurcations.

varying θ̄2. Second, we consider θ̄2 >
π
2 fixed, and perform the bifurcation analysis varying

K. Finally we consider the extreme case with θ̄2 = π and perform the bifurcation analysis

varying K. In this last case we show that for values of K smaller than a threshold, each

subgroup follows its own preferred direction but for larger values of K, the stable motion

is synchronized in the average of the preferred directions.

Bifurcations in the
(
θ̄2, ψi

)
Plane with K = 2 Fixed

We set K = 2 and study the bifurcations in the
(
θ̄2, ψi

)
plane. The system (5.20) dynamics

become

ψ̇1 = − sinψ1 + sin (ψ2 − ψ1)

ψ̇2 = sin
(
θ̄2 − ψ2

)− sin (ψ2 − ψ1) .

In this case the strength of each subgroup’s attraction towards its preferred direction is

equal to the strength of its tendency to align with the other subgroup. For this system it is

possible to find closed form expressions of all equilibria. There are a total of six equilibria,

given by



104

1. ψsync1 =
(

1
3 θ̄2,

2
3 θ̄2

)
.

By Lemma 5.2.2, the equilibrium ψsync1 is a stable node for θ̄2 ∈ (0, π).

2. ψsync2 =
(

1
3 θ̄2 − 2π

3 ,
2
3 θ̄2 + 2π

3

)
.

By a check of the Jacobian, the equilibrium ψsync2 is an unstable node for θ̄2 ∈ (0, π2 )

and a stable node for θ̄2 ∈ (π2 , π).

3. ψantisync1 =
(

1
3 θ̄2 − 4π

3 ,
2
3 θ̄2 + 4π

3

)
.

By Lemma 5.2.3, the equilibrium ψantisync1 is an unstable node for θ̄2 ∈ (0, π).

4. ψantisync2 =
(
θ̄2 − π, π

)
.

By a check of the Jacobian, the equilibrium ψantisync2 is a saddle point for θ̄2 ∈
(0, π2 ) ∪ (π2 , π).

5. ψS1 =
(
θ̄2 + π, 2θ̄2

)
.

By Lemma 5.2.1, the equilibrium ψS1 is a saddle point for all θ̄2 ∈ (0, π2 ) ∪ (π2 , π).

6. ψS2 =
(−θ̄2, π

)
.

By Lemma 5.2.1, the equilibrium ψS2 is a saddle point for all θ̄2 ∈ (0, π2 ) ∪ (π2 , π).

Figure 5.9 shows the bifurcation diagram in the
(
θ̄2, ψ1

)
plane; i.e, for each equilibrium, ψ1

is plotted as a function of the bifurcation parameter θ̄2. The equilibrium ψsync2 changes

stability type at θ̄2 = π
2 from unstable node to stable node. This equilibrium at θ̄2 = π

2 is

highly degenerate, having its linearization equal to the zero matrix. Furthermore, we see

from the bifurcation diagram (Figure 5.9) that the bifurcation occurs with four equilibria

coming together at the point in phase space (ψ1, ψ2) =
(

3π
2 , π

)
. This bifurcation is one of

Thom’s seven elementary catastrophes; it is called an elliptic umbilic [121].

Catastrophe theory applies to gradient systems, and the elementary catastrophes are

classified according to the form of the potential. As we noted earlier, the system (5.20)

obeys gradient dynamics, and the associated potential for K = 2 is

V = cosψ1 + cos
(
θ̄2 − ψ2

)
+ cos (ψ1 − ψ2) . (5.36)
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Figure 5.9: Bifurcation diagram in the
(
θ̄2, ψ1

)
plane, i.e. ψ1 as a function of bifurcation

parameter θ̄2 fixing K = 2. Since the equilibria ψantisync2 and ψS1 have the same value
for ψ1 (but different values for ψ2), we see on this diagram only five equilibria even though
there are six. At θ̄2 = π

2 there are only three distinct equilibria; this is the degenerate point
of the system. The multiplicity of the equilibrium

(
3π
2 , π

)
is four.

To identify the bifurcation as an elliptic umbilic, we examine the unfolding of this potential

near the catastrophe
(
ψ1, ψ2, θ̄2

)
=
(

3π
2 , π,

π
2

)
. We write the potential given by (5.36) as

V = cos
(
u+

3π
2

)
+ cos

(π
2

+ a− (π + v)
)

+ cos
(
u+

3π
2
− (π + v)

)
, (5.37)

where u, v and a are, respectively, the deviation of ψ1 from 3π
2 , ψ2 from π and θ̄2 from π

2 .

A Taylor expansion of (5.37), keeping terms up to third order in u and v, yields

V =
(cos a− 1)

3!
v3 +

uv2

2
− vu2

2
− sin a

2
v2 + (1− cos a) v + sin a.

After the following change of variables:

x =
1
2

3

√
(4 cos a− 1)

3
v

y = 3

√
2
√

6√
4 cos a− 1

(
1√
6
u− 1

2
√

6
v

)
,

the potential (5.37) becomes

V = x3 − 3xy2 − 2× 3
2
3 sin a

(4 cos a− 1)
2
3

x2 − 2× 3
1
3 (cos a− 1)

(4 cos a− 1)
1
3

x+ sin a. (5.38)
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In (5.38) we recognize the standard unfolding of the potential of an elliptic umbilic as

described in [93].

As we previously mentioned, the system is highly degenerate at the bifurcation point

(ψ1, ψ2, ψ3) = (3π
2 , π,

π
2 ). As Figure 5.10 shows there are only three distinct equilibria at

this point. The equilibria ψsync1 and ψantisync1 are not affected by the bifurcation and

are respectively a stable node K-almost synchronized at θ̄2
2 = π

4 and an unstable node

K-almost anti-synchronized. The third equilibrium consists of the superposition of four

equilibria, three saddles (ψS1,ψS2 and ψantisync2) and one node (ψsync2) that is unstable

before the bifurcation and stable after. This topology in fact is typical for an elliptic

umbilic catastrophe, and this equilibrium is called a monkey-saddle in the catastrophe

theory literature [93]. After the bifurcation the equilibrium ψsync2 is stable; in the context

of animal group motion, this result suggests that when the informed subgroups have a

disagreement larger than some threshold, inefficient behaviors may arise.

ψantisync1ψsync1 ψsync2, ψantisync2,ψS1, ψS2

Figure 5.10: These diagrams show the equilibria of the system at the critical point, i.e., when
both K = 2 and θ̄2 = π

2 there are only three distinct equilibria. The second equilibrium
drawn, called a monkey-saddle in the catastrophe theory literature, is the superposition of
four equilibria ψsync2, ψantisync2, ψS1 and ψS2; it has multiplicity four.

Bifurcations in the (K,ψi) Plane with θ̄2 ∈ (π2 , π) Fixed

As we proved in Section 5.2.1 with Lemmas 5.2.4 and 5.2.5, the equilibrium ψsync2 exists

only ifK > K1 and is stable only if (K, θ̄) ∈ [K1,K0)×(π2 , π). We now study the bifurcations

in the (K,ψi) plane with θ̄2 ∈ (π2 , π) fixed. Figure 5.11 shows the bifurcation diagram in the

(K,ψ1) plane for θ̄2 = 3π
4 as a representative of any case with θ̄2 ∈ (π2 , π). We observe two
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bifurcations: a first one at K = K1 where the two equilibria ψsync2 and ψantisync2 appear

and a second one at K = K0 > K1 where the two equilibria ψS1 and ψS2 disappear. For

K1 < K < K0 there are two stable equilibria, ψsync1 and ψsync2, whereas there is only one

stable equilibrium, ψsync1, when K is outside this region. The second stable equilibrium,

ψsync2, appears through a saddle-node bifurcation at K1 =
(

cos
(
θ̄2
2

) 2
3 + sin

(
θ̄2
2

) 2
3

) 3
2

and

becomes unstable through a hypercritical pitchfork at K0 = 2/ sin θ̄2.

0 1 2 3 4 5
0

1

2

3

4

5

6

7

Stable Node

Unstable Node

Saddle Point

K

 1

K 0K 1

Figure 5.11: Bifurcation diagram in case θ̄2 = 3π
4 . The bifurcation parameter is K and ψ1

is plotted as a function of K for all the equilibria of the system. We observe a saddle node
bifurcation at K = K1 and a hypercritical pitchfork bifurcation for K = K0.

We prove that the second stable equilibrium ψsync2 appears through a saddle node bi-

furcation at K = K1. From Lemma 5.2.4, when K = K1 =
(

cos
(
θ̄2
2

) 2
3 + sin

(
θ̄2
2

) 2
3

) 3
2

two

branches of equilibria ψsync2 and ψantisync2 appear simultaneously. With the change of vari-

able (ψ1, ψ2) 7→ (ρ,Ψ) defined by equation (5.26) where ρ ∈ [0, 1] and Ψ ∈ S1, the equilib-

riumψsync2 = ψantisync2 = ψ∗ forK = K1 becomes (ρ∗,Ψ∗) =

(√
cos(

θ̄2
2

)
2
3

cos(
θ̄2
2

)
2
3 +sin(

θ̄2
2

)
2
3
, θ̄22 + π

)
.

Using the general theorem for saddle node bifurcations in [40], we prove that the equilibria

ψsync2 and ψantisync2 appear through a saddle node bifurcation at K = K1. To apply the
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theorem, we check that the system satisfies the following three conditions:

1. Non-degeneracy of the linearization.

The linearization of (5.20) at ψ = ψ1 and K = K1 is

J1 =
∂f
∂ψ

∣∣∣∣
ψ∗,K1

=

cos( θ̄22 )ρ∗ − sin( θ̄22 )
√

1− ρ2
∗ + K1

2 (1− 2ρ2
∗)

K1
2 (2ρ2

∗ − 1)

K1
2 (2ρ2

∗ − 1) cos( θ̄22 )ρ∗ − sin( θ̄22 )
√

1− ρ2
∗ + K1

2 (1− 2ρ2
∗)


where f is the vector field given by (5.20) with corresponding state vector ψ = (ψ1, ψ2).

This linearization is non-degenerate since it has a simple zero eigenvalue. We set

v =

−1

1

 and w =
(
−1 1

)
to be, respectively, the right and left eigenvectors of

the linearization for the zero eigenvalue.

2. Transversality condition to control non-degeneracy with respect to the parameter.

For this condition, we check whether the eigenvalues cross the imaginary axis with

non-zero speed. We compute

∂f
∂K

∣∣∣∣
ψ∗,K1

= ρ∗
√

1− ρ2
∗

−1

1

 ,

which implies that w. ∂f
∂K

∣∣
ψ∗,K1

= 2 cos(
θ̄2
2

)
1
3 sin(

θ̄2
2

)
1
3q

cos(
θ̄2
2

)
2
3 +sin(

θ̄2
2

)
2
3

6= 0. This means that the eigen-

values have non-zero speed at the bifurcation.

3. Transversality condition to control non-degeneracy with respect to the dominant effect

of the quadratic nonlinear term.

We check this condition by showing

w.
(
D2
ψf(ψ∗,K1)(v, v)

) 6= 0,
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where

D2
ψf(ψ∗,K1)(v, v) =


vT

 ∂2f1

∂ψ2
1

∂2f1

∂ψ1∂ψ2

∂2f1

∂ψ1∂ψ2

∂2f1

∂ψ2
2

 v

vT

 ∂2f2

∂ψ2
1

∂2f2

∂ψ1∂ψ2

∂2f2

∂ψ1∂ψ2

∂2f2

∂ψ2
2

 v


,

with fi being the ith component of the vector field f given by (5.20). We compute

w.
(
D2
ψf(ψ∗,K1)(v, v)

)
= −6K1ρ∗

√
1− ρ2

∗ 6= 0.

With all three condition thus satisfied, the general saddle node theorem in [40] guarantees

the existence of a codimension-one saddle node bifurcation at

(ρ∗,Ψ∗) =


√√√√ cos( θ̄22 )

2
3

cos( θ̄22 )
2
3 + sin( θ̄22 )

2
3

,
θ̄2

2
+ π


K = K1 =

(
cos
(
θ̄2

2

) 2
3

+ sin
(
θ̄2

2

) 2
3

) 3
2

.

We now (partially) prove that the second stable equilibrium ψsync2 disappears through

a hypercritical pitchfork at K = K0. From Lemma 5.2.1, when K = K0 = 2/ sin θ̄2, the two

equilibria ψS1 and ψS2 meet and are equal to ψ0 = (ψ1, ψ2)0 =
(

3π
2 , θ̄2 + π

2

)
. For K > K0,

ψS1 and ψS2 no longer exist. With the change of variable (ψ1, ψ2) 7→ (ρ,Ψ) defined by

(5.26) where ρ ∈ [0, 1] and Ψ ∈ S1, the equilibrium ψS1 = ψS2 = ψ0 for K = K0 becomes

(ρ,Ψ)0 =
(

sin θ̄2
2 ,

θ̄2
2 + π

)
. This equilibrium also solves equation (5.32) and corresponds to

ψsync2 at K = K0. Hence a third branch of equilibria from the second set of solutions goes

through the bifurcation point (ψ,K) = (ψ0,K0). No other branch of equilibria crosses this

bifurcation point.

We partially prove that the bifurcation at K = K0 is a hypercritical pitchfork bifurcation,

using the extension for pitchforks of the general theorem for saddle node bifurcations in [40].

This is only a partial proof because, of the three conditions to check in the theorem, we can

verify only the first two.

1. Non-degeneracy of the linearization.
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The linearization of (5.20) at ψ = ψ0 and K = K0 is

J0 =
∂f
∂ψ

∣∣∣∣
ψ0,K0

= cot θ̄2

 1 −1

−1 1

 ,

where f is the vector field given by (5.20) with corresponding state vector ψ = (ψ1, ψ2).

This linearization is non-degenerate since it has a simple zero eigenvalue. We set

v =

1

1

 and w =
(

1 1
)

to be, respectively, the right and left eigenvectors of the

linearization for the zero eigenvalue.

2. Transversality condition to control non-degeneracy with respect to the parameter.

For this condition we first check whether the eigenvalues cross the imaginary axis with

non-zero speed. We compute

∂2f
∂ψ∂K

∣∣∣∣
ψ0,K0

=
1
2

cos θ̄2

 1 −1

−1 1

 ,

which implies that w. ∂2f
∂ψ∂K

∣∣∣
ψ0,K0

.v = 0. This means that the velocity (with respect

to K) of the eigenvalues of the Jacobian (evaluated at ψsync2 = ψ0 and K = K0)

is zero when the eigenvalues reach the value zero (at the bifurcation). Because the

conditions of this theorem are only sufficient, we can still prove the bifurcation using

the more general form of this condition. It remains for us to show that the equilibrium

ψsync2 goes from stable to unstable through the bifurcation. From Lemma 5.2.5 we

know that λ1|ψsync2 = ρsync2 cos θ̄22 −
√

1− ρ2
sync2 sin θ̄2

2 is negative for K < K0, and

positive for K > K0 and that λ2 = ρsync2 cos θ̄22 −
√

1− ρ2
sync2 sin θ̄2

2 −K(2ρ2
sync2 − 1)

is always negative. Thus ψsync2 changes from stable node to saddle point through the

bifurcation.

3. Transversality condition to control non-degeneracy with respect to the dominant effect

of the cubic nonlinear term.

We first check this condition by computing

wivjvkvl
∂3fi

∂ψj∂ψk∂ψl

∣∣∣∣
ψ0,K0

= 0
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for all i, j, k, l ∈ {1, 2}, with fi being the ith component of the vector field f given

by (5.20). Since these terms are all zero, this sufficient condition is not satisfied.

Instead, to prove the condition, one could demonstrate that the dynamics on the

center manifold have a non-degenerate cubic term. If this can be shown, the sign

of the cubic term would be positive, proving that the bifurcation is a hypercritical

pitchfork.

Bifurcation in the (K,ψi) Plane with θ̄2 = π Fixed

We set θ̄2 = π, and study the bifurcation in the (K,ψi) plane. The system (5.20) dynamics

become
ψ̇1 = − sinψ1 +

K

2
sin (ψ2 − ψ1)

ψ̇2 = sinψ2 +
K

2
sin (ψ1 − ψ2) .

(5.39)

Here the two preferred headings differ by 180 degrees. Since the disagreement is so large,

for small values of K each informed subgroup follows its own preferred direction. This kind

of splitting is sometimes observed in swarm-bees [66]. We note that this system appears

in Chapter 8 of [114]. For this system we can find a closed form expression for all the

equilibria. Depending on the value of K, there are four or six equilibria. We consider first

the case where K ∈ [0, 1). In this case there are four equilibria:

1. ψantisync1 = (π, 0).

By Lemma 5.2.3, the equilibrium ψantisync1 is an unstable node for K ∈ [0, 1].

2. ψantisync2 = (0, π).

By a check of the Jacobian, the equilibrium ψantisync2 is a stable node ∀K ∈ [0, 1).

3. ψS1 = (0, 0).

By Lemma 5.2.1, the equilibrium ψS1 is a saddle point for all K ∈ [0, 1].

4. ψS2 = (π, π).

By Lemma 5.2.1, the equilibrium ψS2 is a saddle point for all K ∈ [0, 1].

Next we consider next case where K > 1. In this case, there are six equilibria as follows:
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1. ψsync1 =
(
π − arccos

(− 1
K

)
, arccos

(− 1
K

))
.

By Lemma 5.2.2, the equilibrium ψsync1 is a stable node for K > 1.

2. ψsync2 =
(
π + arccos

(− 1
K

)
,− arccos

(− 1
K

))
.

By a check of the Jacobian, the equilibrium ψsync2 is a stable node ∀K > 1.

3. ψantisync1 = (π, 0).

By Lemma 5.2.3, the equilibrium ψantisync1 is an unstable node for K ≥ 1.

4. ψantisync2 = (0, π).

By a check of the Jacobian, the equilibrium ψantisync2 is a saddle point ∀K > 1.

5. ψS1 = (0, 0).

By Lemma 5.2.1, the equilibrium ψS1 is a saddle point for all K ≥ 1.

6. ψS2 = (π, π).

By Lemma 5.2.1, the equilibrium ψS2 is a saddle point for all K ≥ 1.

Figure 5.12 shows the bifurcation diagram in the (K,ψ1) plane; for each equilibrium, ψ1

is plotted as a function of the bifurcation parameter K. Before the bifurcation, i.e., K < 1,

the only stable equilibrium is ψantisync2 = (0, π). This corresponds to the case where each

informed subgroup follows its own preferred direction; there is no compromise between the

individuals, and the group splits. When K < 1 the strength of the coupling force relative to

the strength of the attraction to the preferred direction is too weak to influence the stable

steady state of the system. The motion of the group is the same as if there were no coupling

between the two informed subgroups. For K > 1, there are two stable equilibria, ψsync1

and ψsync2. These correspond, respectively, to the motion in the directions Ψ = θ̄2
2 = π

2 and

Ψ = θ̄2
2 + π = 3π

2 . As we increase the bifurcation parameter K, the two directions ψ1 and

ψ2 become synchronized. θ̄2 = π is the only case where we have two stable equilibria for

large value of K. At K = 1, the equilibrium ψantisync2 changes stability type from being a

stable node to being a saddle through a supercritical pitchfork bifurcation. We prove this,

by using the extension for pitchforks of the general theorem for saddle node bifurcations in
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Figure 5.12: Bifurcation diagram in the (K,ψ1) plane, i.e, ψ1 as a function of bifurcation
parameter K fixing θ̄2 = π. At K = 1 we have a supercritical pitchfork bifurcation. We
have one stable equilibrium for K < 1 and two stable equilibria for K > 1.

[40]. There are three conditions to check in the theorem. We define ψ0 = (ψ1, ψ2)0 = (0, π),

K0 = 1.

1. Non-degeneracy of the linearization.

The linearization of (5.39) at ψ = ψ0 and K = K0 is

J0 =
∂f
∂ψ

∣∣∣∣
ψ0,K0

=

−1
2 −1

2

−1
2 −1

2

 ,

where f is the vector field given by (5.39) with corresponding state vector ψ = (ψ1, ψ2).

This linearization is non-degenerate since it has a simple zero eigenvalue. We set

v =

 1

−1

 and w =
(

1 −1
)

to be, respectively, the right and left eigenvectors of

the linearization for the zero eigenvalue.

2. Transversality condition to control non-degeneracy with respect to the parameter.
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For this condition we check whether the eigenvalues cross the imaginary axis with

non-zero speed. We compute

∂2f
∂ψ∂K

∣∣∣∣
ψ0,K0

=
1
2

 1 −1

−1 1

 ,

which implies that w. ∂2f
∂ψ∂K

∣∣∣
ψ0,K0

.v = 2 6= 0. Hence, the eigenvalues cross the imagi-

nary axis with non-zero speed.

3. Transversality condition to control non-degeneracy with respect to the dominant effect

of the cubic nonlinear term.

For this condition we compute

wivjvkvl
∂3fi

∂ψj∂ψk∂ψl

∣∣∣∣
ψ0,K0

= −6 < 0

for all i, j, k, l ∈ {1, 2}, with fi being the ith component of f . Since we get a strictly

negative number, the pitchfork is supercritical.

This last condition completes the proof of the existence of a codimension-one supercritical

pitchfork bifurcation at ψ = (0, π), K = 1.

We have modelled the dynamics of motion for a group of N = N1 + N2 + N3 coupled

individuals moving in the plane. We studied the full phase space dynamics of the reduced

model in the case of a group having N1 informed individuals with a preferred direction

θ̄1 = 0, N2 = N1 informed individuals with a preferred direction θ̄2, and no naive (unin-

formed) individuals. We proved that the system has either one or two stable equilibria. The

equilibrium ψsync1 is stable for all values of (K, θ̄2). It correspond to a K-almost synchro-

nized motion of the group in the direction Ψ = θ̄2
2 . For large values of K, this equilibrium

corresponds to the whole group moving together in the average of the preferred directions.

This result is consistent with simulations from the discrete-time model used in Chapter 4,

although only for values of θ̄2 below a threshold. In the discrete-time model, for θ̄2 greater

than a threshold, the group is observed to move together in one of the preferred directions.

Our continuous-time model does not exhibit this transition and never yield the behavior
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where the group collectively selects one of the two preferred directions. Furthermore, for

(K, θ̄2) ∈ (K1,K0) × [π2 , π) the equilibrium ψsync2 is stable. It corresponds to a K-almost

synchronized motion of the group in the direction Ψ = θ̄2
2 + π. For large values of K,

this equilibrium corresponds to the whole group moving together in a direction opposite

to the average of the preferred directions. The region of attraction of this equilibrium is

relatively small, which can explain why this behavior was not observed in the simulation of

the discrete-time model.

Figure 5.13 shows the phase portrait for the subgroup heading directions ψ1 and ψ2 for

two values of θ̄2 and three values of K. The vertical (and likewise horizontal) edges are

identified since the phase space is the torus. Some of the stable and unstable manifolds

are plotted as solid lines and the vector field is plotted as arrows so that the flow can

be readily observed. For example, as described above, in the right, middle plot, these

manifolds illustrate the region of attraction for the second stable equilibrium ψsync2. The

middle plots together show before (left) and after (right) the elliptic umbilic catastrophe.

The three panels in the left column, corresponding to θ̄2 = π
4 , show equilibria with K = 1

for the top plot, K = 2.5 for the middle plot, and K = 4 for the bottom plot. For example,

the single stable equilibrium can be observed to be near the point ψ1 = ψ2 = π
8 , i.e., the

K-almost synchronized equilibrium ψsync1 at θ̄2
2 = π

8 . Likewise, the three panels in the

right column, corresponding to θ̄2 = 3π
4 , show equilibria that can also be observed in the

bifurcation plot of Figure 5.11 at K = 1 for the top plot, K = 2.5 for the middle plot, and

K = 4 for the bottom plot.

We illustrate in Figure 5.14 the dynamics near one of the instabilities with a simulation in

the caseN1 = N2 = 5. Snapshots of the positions and heading directions of all 10 individuals

are shown at three different times in the three left column plots. The corresponding heading

directions of all 10 individuals are plotted on the unit circle together with the preferred

heading directions in the right column plots. The initial condition, shown in Figures 5.14(a)

and (b) is close to the saddle point ψsync2 shown in the bottom right plot of Figure 5.13,

i.e., the individuals are heading in the opposite direction of the compromise of the preferred
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directions. First, as expected (but not shown in Figure 5.14), the individuals with the same

preferred direction synchronize. Then more slowly, the two lumped subgroups both move

away from the unstable solution (in the counter-clockwise direction around the unit circle).

Figures 5.14(c) and (d) show that they are close together as they move and practically all

synchronized as they pass through the preferred direction of subgroup 1. Figures 5.14(e)

and (f) show the convergence to the stable solution ψsync1.
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Figure 5.13: Phase portrait for heading directions ψ1 and ψ2 at three different values of K
and two different values of θ̄2.

In the next section, we explore, through simulations, several extensions of the continuous-

time model with the motivation of testing the robustness of the continuous-time model.
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Figure 5.14: Simulation for two informed subgroups with each a population of 5 individuals
in the physical plane. The phases of the individuals are initially started near the equilibrium
ψsync2 with K = 70, θ̄2 = 3π

4 .

5.3 Extensions and Robustness of the Model

In this section we consider several extensions of the model (5.1). We first look at the

case where N1 6= N2 and N3 = 0; we show that the qualitative behavior of the system

remains identical and interpret the quantitative changes. We then look at the case where

the subgroups are not homogeneous, introducing heterogeneity both at the informed and

uninformed individual level. Here again, the qualitative behavior remains identical and

we interpret the quantitative changes. Finally, we consider a forgetting factor feedback

in the form of a dynamic gain on the relative strength of the attraction to the preferred

direction. This feedback factor is analogous to the feedback on the weight ω used in some
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simulations in [19] which reinforces or diminishes the gain ω if informed individuals find

themselves moving towards or away from their preferred direction. In this case, we show

that consensus is always achieved, the group traveling either in the average of the preferred

directions or in one of the two preferred directions. In this case the continuous-time model

reproduces the discrete-time model results.

5.3.1 Uneven Informed Subgroups

The first extension we consider is the case where the two informed subgroups do not have

identical populations (N1 6= N2). In this case, the time-scale separation of the model (5.1)

still holds and the reduced dynamics (5.14) become

ψ̇1 = − sin (ψ1) +
KN2

N
sin (ψ2 − ψ1)

ψ̇2 = sin
(
θ̄2 − ψ2

)
+
KN1

N
sin (ψ1 − ψ2) .

(5.40)

For this system, the nature of the persistent stable motion remains unchanged. That is,

there is still one persistent stable equilibrium (corresponding to ψsync1 in the case N1 =

N2) where for large values of K the two informed subgroups are synchronized. However,

synchronization no longer occurs at Ψ = θ̄2
2 , the average of the preferred directions. Instead,

synchronization occurs at a weighted average of the two preferred directions, 0 and θ̄2. If

N1 > N2, the value of Ψ for the persistent stable equilibrium is “closer” to 0 than to θ̄2;

if N2 > N1, the value of Ψ for the persistent stable equilibrium is “closer” to θ̄2 than to

0. Figure 5.15 shows the evolution of Ψ for the persistent stable equilibrium ψsync1 with

N2 = 10 fixed and N1 increasing such that the ratio N1
N2

increases from 1
10 to 10. The value

of Ψ for the persistent stable equilibrium (corresponding to ψsync1 in the N1 = N2 case),

goes from being asymptotically close to θ̄2 = 2 rad to asymptotically approaching 0.

5.3.2 Heterogeneous Subgroups

The continuous-time model (5.1) that we studied in this chapter assumes some homogene-

ity in the group; specifically individuals in the same subgroup are assumed to be strictly

identical although have heterogeneous initial conditions. Here we consider extensions of
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Figure 5.15: (a) The value of Ψ corresponding to the stable motion ψsync1 as a function
of subgroup population size N1 for fixed subgroup population size N2 = 10. As the ratio
N1
N2

increases from 1
10 to 10 (i.e., N1 goes from 1 to 100), the value of Ψ goes from being

asymptotically close to θ̄2 = 2 to being asymptotically close to θ̄1 = 0. (b) The persistent
stable equilibrium ψsync1 for the two extreme values of N1. The motion of the group is
closer to θ̄2 = 2 rad when 1 = N1 < N2 = 10. The motion of the group is closer to θ̄1 = 0
rad when 100 = N1 > N2 = 10. The circle and the diamond represent respectively the
preferred direction of the first and second informed subgroups.

this homogeneity assumption by introducing heterogeneity both at the level of informed

and uniformed individuals. For each extension, we give the modified equations of the model

(5.1) and present and interpret simulation results. With either type of heterogeneity the

time-scale separation and the nature of the stable motions remain unchanged.

Although we only discuss here the heterogeneous case with simulations, the two types of

heterogeneity have been formally studied in [72]. In this work we studied the coarse-grained

(i.e., group-level) alignment dynamics of the model (5.1) adding the two type of heterogene-

ity mentioned above. Choosing convenient coarse-grained variables (suggested by the time
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scale separation proven in this chapter) that account for rapidly developing correlations dur-

ing initial transients, we performed efficient computations of coarse-grained steady states

and their bifurcation analysis. The saddle-node bifurcation and the hypercritical pitchfork

bifurcation proven in Section 5.2.2 were observed with either type of heterogeneity.

We introduce a first type of heterogeneity, at the uninformed level, by considering a

group composed of N1 individuals, all with preferred direction θ̄1 = 0; N2 individuals all

with preferred direction θ̄2; and N3 heterogeneous naive (uninformed) individuals where the

heterogeneity is expressed with a tendency to deviate from the average direction, following

a random distribution. The system (5.1) becomes

θ̇j = sin
(
θ̄1 − θj

)
+
K

N

N∑
l=1

sin (θl − θj) , j ∈ N1

θ̇j = sin
(
θ̄2 − θj

)
+
K

N

N∑
l=1

sin (θl − θj) , j ∈ N2

θ̇j = ωj +
K

N

N∑
l=1

sin (θl − θj) , j ∈ N3 ,

(5.41)

where the parameters ωj are independent draws from a gaussian distribution function f(ω)

with a mean of 0 and a given variance. Figures 5.16 and 5.17 present simulation results

of the system (5.41). For these simulations, we considered two informed subgroups of 10

individuals each and a naive (uninformed) subgroup of 80 individuals. The parameters

were set as K = 1 and θ̄2 = 2.5 rad. The parameters ωj were taken from a normal

distribution with zero mean and a variance of 0.05. In Figure 5.16 the observed stable

motion corresponds to the equilibrium ψsync1, with the group traveling towards the average

of the preferred direction. In Figure 5.17 the observed stable motion corresponds to the

equilibrium ψsync2, with the group traveling in a direction opposite to the average of the

preferred directions. The initial conditions of the phases to get this equilibrium had to be

chosen in a fairly tight region around θ̄2
2 + π, highlighting that the region of attraction of

the equilibrium ψsync2 is smaller than the region of attraction of ψ1. In this model, as in

the model (5.1), the naive individuals do not completely synchronize in the direction θ̄2
2 for

ψsync1 ( θ̄22 + π for ψsync2). Rather, they form a clump centered at θ̄2
2 for ψsync1 ( θ̄22 + π for
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ψsync2), as shown in Figure 5.16 for ψsync1 (Figure 5.17 for ψsync2). Simulations show that

larger values of the coupling gain K yield tighter clumps. In [72], we showed that some of

the same bifurcations proven in Section 5.2.2 can be recovered numerically for the system

(5.41), suggesting a measure of robustness for the model (5.1) .
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Figure 5.16: (a) Phase angle for each individual in the group versus time for K = 1. For
this simulation there are 10 individuals with preferred direction 0 rad, 10 individuals with
preferred direction 2.5 rad, and 80 heterogeneous individuals with no preferred direction.
Heterogeneity is introduced at the uninformed level with a tendency of the uninformed indi-
viduals to deviate from the average direction, following a random distribution as expressed
in equations (5.41). During a short initial transient time, the heading angles of the individu-
als in the informed subgroups synchronize and the ones in the uninformed subgroup clump.
Subsequently, the directions slowly drift to the steady state value towards the average of
the preferred directions. (b) Phase angle for each individual after reaching the steady state.
The uninformed individuals are clumped around θ̄2

2 = 1.25 rad and the informed individuals
are synchronized by subgroups, each subgroup flanking the uninformed individuals.

We next introduce a second type of heterogeneity by considering a group composed

of two subgroups of heterogeneous informed agents, where heterogeneity is expressed with

randomness in the preferred direction. More precisely, each of the N1 individuals in the

first informed subgroup have a preferred direction θ̄j1, j ∈ N1, drawn from a normal random

distribution with a mean of θ̄1, and a given variance; each of the N2 = N1 individuals in

the second informed subgroup have a preferred direction θ̄j2, j ∈ N2, drawn from another

independent normal random distribution with a mean of θ̄2, and a given variance. The
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Figure 5.17: (a) Phase angle for each individual in the group versus time for K = 1. For
this simulation there are 10 individuals with preferred direction 0 rad, 10 individuals with
preferred direction 2.5 rad, and 80 heterogeneous individuals with no preferred direction.
Heterogeneity is introduced at the uninformed level with a tendency of the uninformed indi-
viduals to deviate from the average direction, following a random distribution as expressed
in equations (5.41). During a short initial transient time, the heading angles of the indi-
viduals in the informed subgroups synchronize and the ones in the uninformed subgroup
clump. Subsequently, the directions slowly drift to the steady state value in a direction
opposite to the average of the preferred directions. (b) Phase angle for each individual after
reaching the steady state. The uninformed individuals are clumped around θ̄2

2 + π = 4.39
rad, and the informed individuals are synchronized by subgroups, each subgroup flanking
the uninformed individuals.
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group also has N3 identical naive (uninformed) individuals. The system (5.1) becomes

θ̇j = sin
(
θ̄j1 − θj

)
+
K

N

N∑
l=1

sin (θl − θj) , j ∈ N1

θ̇j = sin
(
θ̄j2 − θj

)
+
K

N

N∑
l=1

sin (θl − θj) , j ∈ N2

θ̇j =
K

N

N∑
l=1

sin (θl − θj) , j ∈ N3 ,

(5.42)

Figures 5.18 and 5.19 present simulation results of the system (5.42). For the simulations,

we considered two equal informed population of 10 individuals and a naive (uninformed)

population of 80 individuals. The parameters θ̄j1 are taken from a normal distribution with

a mean of 0 and a variance of 0.1, the parameters θ̄j2 are taken from a normal distribution

with a mean of 2.5 and a variance of 0.1, and the parameter K is set to 1. In Figure 5.18,

the observed stable motion corresponds to the equilibrium ψsync1, with the group traveling

toward the average of the preferred direction. In Figure 5.19 the observed stable motion

corresponds to the equilibrium ψsync2, with the group traveling in a direction opposite

to the average of the preferred directions. The initial conditions of the phases to get this

equilibrium also had to be chosen in a fairly tight region around θ̄2
2 +π, highlighting that the

region of attraction of the equilibrium ψsync2 is smaller than the region of attraction of ψ1.

For this model, as in model (5.1), the informed subgroups do not completely synchronize.

Rather, they form clumps distributed around a given equilibrium value. Simulations show

that larger values of the coupling gain K yield tighter clumps. In [72], we showed that some

of the same bifurcations proven in Section 5.2.2 can be recovered numerically for the system

(5.41), suggesting a measure of robustness for the model (5.1) .

For each of the three extensions we considered, simulation results suggest that the time-

scale separation, the nature of the stable motion, and some of the bifurcations proven in

Section 5.2.2 are preserved, implying some level of robustness of the model (5.1). However,

unlike the discrete-time model studied in Chapter 4 and in [19], neither the continuous-time

model (5.1) nor its extensions exhibit full synchronization of the group unless the coupling

gain K is very large (which is equivalent to the weight ω of the preferred direction in (4.2)
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Figure 5.18: (a) Phase angle for each individual in the group versus time for K = 1. For
this simulation there are 10 individuals with a preferred direction taken from a normal
distribution with a mean of 0 rad and a variance of .1, 10 individuals with a preferred
direction taken from a normal distribution with a mean of 2.5 rad and a variance of .1,
and 80 individuals with no preferred direction. Heterogeneity is introduced at the informed
level with randomness assumed in the choice of preferred direction as described in equations
(5.42). During a short initial transient time, the heading angles of the individuals in the
informed subgroups get clumped and the heading angles of the uninformed individuals
synchronize. Subsequently, the directions slowly drift to the steady state value in the
direction of the average of the preferred directions. (b) Phase angle for each individual
after reaching the steady state. The uninformed individuals are synchronized at θ̄2

2 = 1.25
rad, and the informed individuals are clumped by subgroups with each clump flanking the
uninformed individuals.
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Figure 5.19: (a) Phase angle for each individual in the group versus time for K = 1. For this
simulation there are 10 individuals with preferred direction taken from a normal distribution
with a mean of 0 rad and a variance of .1, 10 individuals with preferred direction taken from
a normal distribution with a mean of 2.5 rad and a variance of .1, and 80 individuals with
no preferred direction. Heterogeneity is introduced at the informed level with randomness
assumed in the choice of preferred direction as described in equations (5.42). During a short
initial transient time, the heading angles of the individuals in the informed subgroups get
clumped and the heading angles of the uninformed individuals synchronize. Subsequently,
the directions slowly drift to the steady state value in a direction opposite to the average
of the preferred directions. (b) Phase angle for each individual after reaching the steady
state. The uninformed individuals are synchronized at θ̄2

2 + π = 3.39 rad, and the informed
individuals are clumped by subgroups, with each clump flanking the uninformed individuals.
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being very small). This means that for small values of K, a population modelled by (5.1)

does not fully aggregate and the group splits. With this model, it is impossible moreover for

the group to select one of the preferred direction as was the case in [19] and in Chapter 4.

We now consider one last extension of the model (5.1) in which we introduce a “forgetting

factor” feedback in the form of a dynamic gain on the relative strength of the attraction

to the preferred directions. Simulations results then resemble more closely the results from

Chapter 4 and from [19].

5.3.3 Forgetting Factor Feedback

We present an extension of the model (5.1) which, when investigated numerically, yields the

same type of bifurcation observed in [19] and in Chapter 4. In this extension, individuals are

increasingly or decreasingly influenced by their preferred direction, depending on how close

they are to it. When individuals are heading in their preferred direction, their attraction

to it is maximum; this influence fades as the heading of an individual moves away from

its preferred direction. To model this effect, we multiply the “preferred direction” term of

equation (5.1) by a gaussian shaped gain, as follow:

θ̇j = e−
sin2(θ̄1−θj)

α sin(θ̄1 − θj) +
K

N

N∑
l=1

sin (θl − θj) , j ∈ N1

θ̇j = e−
sin2(θ̄2−θj)

α sin(θ̄2 − θj) +
K

N

N∑
l=1

sin (θl − θj) , j ∈ N2

θ̇j =
K

N

N∑
l=1

sin (θl − θj) , j ∈ N3,

(5.43)

where α is a positive constant chosen to control the width of the gaussian. The smaller α is

the “quicker” an individual gives up his preferred direction. Simulations of the model (5.43)

shown in Figure 5.20, suggest that, as in the model (5.1), there are two time-scales in the

dynamics. At first the heading angles of the individuals in each subgroup synchronize, then

the three average subgroup directions slowly drift to reach a steady state. We note that

at the steady state the three subgroups are synchronized. With the initial conditions used

in this simulation, synchronization occurs at the preferred direction of the second informed
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subgroup. Assuming further that N1 = N2 and N3 = 0, we conjecture that the reduced

dynamics are given by

ψ̇1 = −e− sin2(ψ1)
α sinψ1 +

K

2
sin (ψ2 − ψ1)

ψ̇2 = e−
sin2(θ̄2−ψ2)

α sin
(
θ̄2 − ψ2

)
+
K

2
sin (ψ2 − ψ1) .

(5.44)

Figure 5.21 shows for the system (5.44) the bifurcation diagram with (K,α) = (2.5, 0.2).
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Figure 5.20: Phase angle of each individual in the group versus time for (K,α) = (2.5, 0.2).
For this simulation there are 5 individuals with preferred direction 0 rad, 5 individuals with
preferred direction 2.5 rad, and 20 individuals with no preferred direction. As in model (5.1),
two time-scales in the dynamics are observed. During a short transient time, the heading
angles of the individuals in each subgroup synchronize. Subsequently the three average
subgroup directions drift slowly to their steady state values. For the initial conditions used
in this simulation the steady state solution corresponds to all three subgroup synchronized
in the preferred direction of the second informed subgroup.

The bifurcation parameter is θ̄2, and ψ1 is plotted as a function of θ̄2 for all equilibria of

the system. Figure 5.21 shows a bifurcation for K = 2.5, α = 0.2. For θ̄2 < θ̄∗2 there is

only one stable equilibrium corresponding to the synchronized motion of both informed

subgroups in the average of the preferred directions. For θ̄2 > θ̄∗2 there are two stable

equilibria, each corresponding to the synchronized motion of both informed subgroups in
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each of the two preferred directions. The system stabilizes to one preferred direction or the

other, depending on the initial conditions only. This behavior matches closely the results

in [19] where depending on the level of disagreement the group either follows the average of

the preferred directions or collectively select one of the preferred directions. In the region

of parameter space where the group selects one of the preferred directions, the choice of one

preferred direction over the other is solely driven by the initial conditions of the system.
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Figure 5.21: Bifurcation diagram for the system (5.44) with fixed K = 2.5, α = 0.2. The
bifurcation parameter is θ̄2 and ψ1 is plotted as a function of θ̄2 for all equilibria of the
system. We observe the supercritical pitchfork bifurcation at θ̄2 = θ̄∗2.

Motivated by the observed deviations between the qualitative behavior of the discrete-

time model studied in Chapter 4 and that of the continuous-time model (5.1), we derive

and study in the next chapter a more complicated continuous-time model relaxing two of

the model (5.1)’s simplifying assumptions. First, an all-to-all communication topology is no

longer assumed; instead we assume a time-varying, possibly incomplete, connecting topology

where the rate of change of the level of interaction between pairs of individuals depends on

their current states. Second, we consider the presence of uninformed/naive (i.e., individuals

without a preferred direction of travel). By relaxing these two assumptions, the yielded
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model produces qualitative behaviors closer, though not identical, to the ones observed

in [19] and in Chapter 4. The observed resulting deviations draw our attention to the

importance of a remaining simplifying assumption, namely, that our model describes the

dynamics of the heading angles for all individuals in the population independent of their

positions.



Chapter 6

Collective Decision Making:

Analytical Model with

Time-Varying Connecting

Topology

In this chapter, we derive and study the dynamics of a low-dimensional, deterministic,

coordinated control system. This model, a more complex version of the model presented

and studied in Chapter 5, relaxes two of that model’s simplifying assumptions. In Section

6.1 we present the model and identify invariant manifolds. In Section 6.2 we summarize

the conditions for each manifold to be attractive and describe the stable motions on these

invariant manifolds in the context of animal group motion. In Section 6.3 we study the at-

tractiveness of the identified invariant manifolds and the full phase-space reduced dynamics

on the attractive invariant manifolds. In Section 6.4 we consider an extension of the model

to test its robustness.

130
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6.1 Model and Invariant Manifolds

The continuous-time model we present here is motivated by the observed deviations between

the realistic qualitative behavior of the discrete-time model studied in Chapter 4 and that

of the continuous-time model presented in Chapter 5. In order to formulate this new

continuous-time model, we relax two simplifying assumptions made in the model presented

in Chapter 5. First, an all-to-all communication topology is no longer assumed; instead we

assume a time-varying, possibly incomplete, connecting topology where the rate of change of

the level of interaction between pairs of individuals depends on their current states. Second,

whereas in the analyses of the previous model we ignored the presence of uninformed/naive

individuals (i.e., individuals without a preferred direction of travel), here we consider their

presence. With these two assumptions relaxed, the yielded model produces qualitative

behaviors that are closer, though not identical, to the ones observed in [19] and in Chapter

4. The observed resulting deviations draw our attention to the importance of a remaining

simplifying assumption, namely, that we are considering only the dynamics of the phases

and not the complete spatial dynamics of the individuals in the group.

6.1.1 Particle Model

Following the notation used in Chapter 5, we consider a population of N interacting indi-

viduals, each described as a unit mass Newtonian particle moving in the plane at constant

speed and controlled by its steering rate. The steering rate evolves through time under the

influence of inter-particle measurements and, where applicable, information represented by

a preferred direction of travel. Unlike in the model presented in the previous chapter, in this

model we do not assume a fixed all-to-all communication topology in the group. Rather, we

consider a time-varying, possibly incomplete, undirected communication topology in which

the rate of change of the level of interaction between individuals depends on their current

states. We denote as alj(t), l ∈ {1, . . . , N}, j ∈ {1, . . . , N}, the coupling gain quantifying

the level of interaction between agent l and agent j, where alj(t) = ajl(t) is allowed to take

any value between 0 and 1. In the case where alj = 0, agents l and j are not interacting.
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In the case where alj = 1, the interaction between agents l and j is maximum.

The model we define consists of a set of differential equations describing the dynamics

of the instantaneous heading directions θj and interaction gains alj . The dynamics for the

heading angles are modeled with steering terms that depend on relative heading angles, as

in the previous chapter; the dynamics of the interaction gains are modelled with a saturated

integrator dynamics written as

θ̇j = sin
(
θ̄1 − θj

)
+
K1

N

N∑
l=1

ajl sin (θl − θj) , j ∈ N1

θ̇j = sin
(
θ̄2 − θj

)
+
K1

N

N∑
l=1

ajl sin (θl − θj) , j ∈ N2

θ̇j =
K1

N

N∑
l=1

ajl sin (θl − θj) , j ∈ N3

η̇lj = K2(ρlj − r), l ∈ {1, . . . , N}, j ∈ {l + 1, . . . , N}

alj =
1

1 + e−ηlj
, l ∈ {1, . . . , N}, j ∈ {l + 1, . . . , N},

(6.1)

where ηlj = ηjl ∈ R is an integrated variable, ρlj = | eiθl+eiθj2 | gives a measure of the level

of synchrony between agents l and j, the parameter K1 > 0 weights the attention paid to

other individuals versus the preferred direction, the parameter K2 > 0 quantifies the speed

at which the interaction gains evolve, and r ∈ [0, 1] is a fixed threshold. If ρlj > r, i.e.,

synchrony is above the threshold, then ηlj increases and alj eventually converges to 1, the

maximum interaction strength. If ρlj < r, i.e., synchrony is below the threshold, then ηlj

decreases and alj eventually converges to 0, no interconnection. The use of such dynamics for

the interaction gains allows us to include the effect of memory on the interactions between

individuals. This formulation is similar to the drift diffusion dynamics used to model “two-

alternative forced choice tasks” in psychological studies such as [7]. The dynamics of alj

can be written in a simpler form, substituting the dynamics of ηlj , as

ȧlj = K2(1− alj)alj(ρlj − r), l ∈ {1, . . . , N}, j ∈ {l + 1, . . . , N}. (6.2)

We will use this formulation in the remainder of the analysis.
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6.1.2 Invariant Manifolds in the Model

Like the model (5.1) discussed in the previous chapter, the (N+ N(N−1)
2 )-dimensional model

(6.1) is challenging to study. Simulations of the model (6.1) shown in Figures 6.1 suggest,

however, that we can reduce the complexity of the system using time scale arguments, as

we did in the previous chapter. During an initial transient time, the heading angles of

the individuals in each subgroup synchronize and the interaction gains between subgroups

converge to a fixed value (zero or one). Then, the three average subgroup directions slowly

drift to reach a steady state. This means that, as was true for the model presented in the

previous chapter, the long-term dynamics of the model (6.1) can be described by ψ1, ψ2

and ψ3, which are the average heading directions of the three subgroups. However, unlike

the model (5.1) which has only one invariant manifold the system (6.1) has several, each

characterized by a set of interaction gains between the different subgroups. Figures 6.2

- 6.5 present simulations illustrating six different invariant manifolds (each corresponding

to a different interconnection topology between the subgroups) to which the system can

converge during the fast time scale. We note that for these simulations, the gain K2 used is

smaller than the one used in Figure 6.1. Even without a sharp distinction of the two time

scales, the nature of the long term behavior is preserved.

In Figure 6.2 all three simulations presented have the same parameter values K1 =

2, K2 = 5, N1 = N2 = 10, N3 = 30, r = .8, θ̄1 = 0 rad, θ̄2 = 3 rad but each has a different

initial conditions. The first simulation is shown in panels (a), (b), (c), the second in panels

(d), (e), (f) and the third in panels (g), (h), (i). In the first simulation, all interaction

gains converge to 1. At the steady state, each informed subgroup compromises between its

preferred direction and the average of the two preferred directions, while the uninformed

subgroup travels in a direction corresponding to the average of the preferred directions.

In the second simulation, the interaction gains between individuals in the first informed

subgroup and individuals in the uninformed subgroup converge to 1, the interaction gains

between individuals in the second informed subgroup and individuals in the other two

subgroups (the uninformed subgroup and the first informed subgroup) converge to zero.
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At the steady state, the first informed subgroup travels in its preferred direction along

with the uninformed subgroup, while the second informed subgroup, disconnected from

the two other subgroups, travels in its preferred direction. In the third simulation, the

scenario is symmetrical to the previous one: the second informed subgroup travels in its

preferred direction along with the uninformed subgroup, while the first informed subgroup,

disconnected from the two other subgroups, travels in its preferred direction.

In Figure 6.3 the values of the parameters K1, K2, r and θ̄1 are identical to the ones

used in Figure 6.2, but the preferred direction of the second subgroup is set to θ̄2 = .5 rad. In

this simulation, the interaction gains between individuals in the first informed subgroup and

individuals in the second informed subgroup converge to 1 and the interaction gains between

individuals in the uninformed subgroup and individuals in the other two subgroups (the first

and second informed subgroups) converge to zero. At the steady state, the two informed

subgroups compromise between their preferred directions and the average of the preferred

directions, while the uninformed subgroup, disconnected from the two other subgroups,

travels in its initial heading.

In Figure 6.4 the values of the parameter K1, K2 are identical to the ones in Figures 6.2

and 6.3. The threshold r is set to .95 and the preferred directions of the first and second

informed subgroups are set to θ̄1 = 1 rad and θ̄2 = 3.1 rad, respectively. In this simulation,

all interaction gains between individuals in different subgroups converge to zero. At the

steady state, there are no interactions between subgroups, each informed subgroup travels

in its preferred direction and the uninformed subgroup travels in its initial direction.

In Figure 6.5 the values of the parameters are chosen as K1 = 2, K2 = 7, N1 = N2 =

10, N3 = 30, r = .85, θ̄1 = π
4 rad and θ̄2 = 5π

4 rad. In this simulation, the interaction

gains between individuals in the first informed subgroup and individuals in the second

subgroup converge to zero and the interaction gains between individuals in the uninformed

subgroup and individuals in both of the informed subgroups converge to 1. At the steady

state, each of the two informed subgroups, although not directly connected to the other,

compromises between its preferred direction and the average of the two preferred directions;



135

the uninformed subgroup, “linking” the two informed subgroups, travels in the average of

the preferred directions.

In order to formalize the time scale separation, we define a new set of independent

variables that distinguishes between slow and fast variables. As in the previous chapter, we

choose ψ1, ψ2 and ψ3 as the slow variables since they characterize the direction of travel of

the three subgroups. We choose as the fast variables of the system the variables αp(k,q)
, k =

1, 2, 3, q ∈ {1, . . . Nk−1} defined in equation (5.3) and the variables alj , l ∈ {1, . . . , N}, j ∈
{l + 1, . . . , N}. Following the calculations used in the previous chapter, we rewrite the

coupled multi-agent system dynamics (6.1) as

ψ̇1 =
1

N1ρ1

∑
l∈N1

(
sin
(
θ̄1 − θl

)
+
K1

N

(
N∑
n=1

aln sin (θn − θl)
))

cos (ψ1 − θl)

ψ̇2 =
1

N2ρ2

∑
l∈N2

(
sin
(
θ̄2 − θl

)
+
K1

N

(
N∑
n=1

aln sin (θn − θl)
))

cos (ψ2 − θl)

ψ̇3 =
1

N3ρ3

∑
l∈N3

(
K1

N

(
N∑
n=1

aln sin (θn − θl)
))

cos (ψ3 − θl)

α̇p = iN1αp

( (
sin
(
θ̄1 − θp

)− ρ1 sin
(
θ̄1 − ψ1

))
+
K1

N

 N∑
n=1

apn sin(θn − θp)− 1
N1

∑
l∈N1

N∑
n=1

aln sin(θn − θl)
), p ∈ N1, p 6= p(1,N1)

α̇p = iN2αp

( (
sin
(
θ̄2 − θp

)− ρ1 sin
(
θ̄2 − ψ2

))
+
K1

N

 N∑
n=1

apn sin(θn − θp)− 1
N2

∑
l∈N2

N∑
n=1

aln sin(θn − θl)
), p ∈ N2, p 6= p(2,N2)

α̇p = iN3αp
K1

N

 N∑
n=1

apn sin(θn − θp)− 1
N3

∑
l∈N3

N∑
n=1

aln sin(θn − θl)
 , p ∈ N3, p 6= p(3,N3)

ȧlj = K2(1− alj)alj(ρlj − r), l ∈ {1, . . . , N}, j ∈ {l + 1, . . . , N},
(6.3)

for ρk 6= 0, k = 1, 2, 3.

This system has several invariant manifolds. The ones we consider are those having all in-

dividuals synchronized within their respective subgroups (i.e., θp = ψk, p ∈ Nk, k = 1, 2, 3),
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each with one of eight possible interconnection topologies between the three subgroups.

We call these invariant manifolds M1, . . . ,M8. These manifolds are given by αp = 1 for

p ∈ Nk, k = 1, 2, 3; alj = 1 for l, j ∈ Nk, k = 1, 2, 3 and

• M1: alj = 1 for l ∈ N1, j ∈ N2; alj = 0 for l ∈ N1, j ∈ N3; alj = 1 for l ∈ N2, j ∈ N3.

• M2: alj = 1 for l ∈ N1, j ∈ N2; alj = 1 for l ∈ N1, j ∈ N3;alj = 0 for l ∈ N2, j ∈ N3.

• M3: alj = 0 for l ∈ N1, j ∈ N2; alj = 0 for l ∈ N1, j ∈ N3; alj = 0 for l ∈ N2, j ∈ N3.

• M4: alj = 0 for l ∈ N1, j ∈ N2; alj = 1 for l ∈ N1, j ∈ N3; alj = 0 for l ∈ N2, j ∈ N3.

• M5: alj = 0 for l ∈ N1, j ∈ N2; alj = 0 for l ∈ N1, j ∈ N3; alj = 1 for l ∈ N2, j ∈ N3.

• M6: alj = 1 for l ∈ N1, j ∈ N2; alj = 0 for l ∈ N1, j ∈ N3; alj = 0 for l ∈ N2, j ∈ N3.

• M7: alj = 0 for l ∈ N1, j ∈ N2; alj = 1 for l ∈ N1, j ∈ N3; alj = 1 for l ∈ N2, j ∈ N3.

• M8: alj = 1 for l ∈ N1, j ∈ N2; alj = 1 for l ∈ N1, j ∈ N3; alj = 1 for l ∈ N2, j ∈ N3.

In physical terms this means that if we start with all individuals synchronized within their

respective subgroups and any of the above sets of interaction gains between individuals, the

individuals will remain synchronized and the interaction gains will keep the same values for

all time.

We prove the time-scale reduction by rewriting the model (6.3) in the form of a singular

perturbation model, decomposing it into a boundary layer (fast) model and a reduced (slow)

model. We suppose that K1 >> 1 and K2 >> 1 and let ε = max( 1
K1
, 1
K2

) so that εK1 and

εK2 are O(1). Given these assumptions the coupled multi-agent system dynamics (6.3)
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become

ψ̇1 =
1

N1ρ1

∑
l∈N1

(
sin
(
θ̄1 − θl

)
+
K1

N

(
N∑
n=1

aln sin (θn − θl)
))

cos (ψ1 − θl) (6.4)

ψ̇2 =
1

N2ρ2

∑
l∈N2

(
sin
(
θ̄2 − θl

)
+
K1

N

(
N∑
n=1

aln sin (θn − θl)
))

cos (ψ2 − θl) (6.5)

ψ̇3 =
1

N3ρ3

∑
l∈N3

(
K1

N

(
N∑
n=1

aln sin (θn − θl)
))

cos (ψ3 − θl) (6.6)

εα̇p = iN1αp

(
ε
(
sin
(
θ̄1 − θp

)− ρ1 sin
(
θ̄1 − ψ1

))
+
εK1

N

 N∑
n=1

apn sin(θn − θp)− 1
N1

∑
l∈N1

N∑
n=1

aln sin(θn − θl)
), p ∈ N1, p 6= p(1,N1)

(6.7)

εα̇p = iN2αp

(
ε
(
sin
(
θ̄2 − θp

)− ρ2 sin
(
θ̄2 − ψ2

))
+
εK1

N

 N∑
n=1

apn sin(θn − θp)− 1
N2

∑
l∈N2

N∑
n=1

aln sin(θn − θl)
), p ∈ N2, p 6= p(2,N2)

(6.8)

εα̇p = iN3αp
εK1

N

 N∑
n=1

apn sin(θn − θp)− 1
N3

∑
l∈N3

N∑
n=1

aln sin(θn − θl)
 , p ∈ N3, p 6= p(3,N3)

(6.9)

εȧlj = εK2(1− alj)alj(ρlj − r), l ∈ {1, . . . , N}, j ∈ {l + 1, . . . , N}, (6.10)

for ρk 6= 0, k = 1, 2, 3.

With ε << 1, the model (6.4)-(6.10) has the form of a singular perturbation model

(as described in [54]). The (N − 3 + N(N−1)
2 )-dimensional boundary layer (fast) model is

represented by (6.7) - (6.10) and the 3-dimensional reduced (slow) model is represented by

(6.4) - (6.6). The reduced dynamics on the invariant manifolds Mq, q = 1, . . . , 8 are given

by

ψ̇1 = sin
(
θ̄1 − ψ1

)
+K1

A12N2

N
sin (ψ2 − ψ1) +K1

A13N3

N
sin (ψ3 − ψ1)

ψ̇2 = sin
(
θ̄2 − ψ2

)
+K1

A12N1

N
sin (ψ1 − ψ2) +K1

A23N3

N
sin (ψ3 − ψ2)

ψ̇3 = K1
A13N1

N
sin (ψ1 − ψ3) +K1

A23N2

N
sin (ψ2 − ψ3) ,

(6.11)
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where A12, A13, A23 (each equal to 0 or 1) are the values to which the interaction gains

between each pair of subgroups converge after the fast time-scale. It is interesting to note

that the net interconnection strengths are weighted by N1
N , N2

N and N3
N as in Chapter 5.

To investigate the attractiveness of the manifolds Mq, q = 1, . . . , 8, we determine

whether or not each Mq is an exponentially stable manifold of the boundary layer dy-

namics. We do so by evaluating the Jacobian of the boundary layer dynamics at ψ0, the

stable motion of the reduced dynamics on the invariant manifold. If the yielded matrix

is Hurwitz (i.e., all its eigenvalues are strictly negative), then the corresponding invariant

manifold is locally stable, i.e., trajectories of the unreduced dynamics starting “near” this

invariant manifold and having reduced variables “near” ψ0 remain close to the solution

of the corresponding reduced dynamics. Following the calculations in Section 5.1.2, the

Jacobian of the boundary layer dynamics can be proven to be an (N − 3 + N(N−1)
2 ) upper

triangular matrix J with its diagonal terms given by

Jjj = − 1
N

(
1− 1

Nk

)Nk +
∑
l 6=k

NlAkl cos(ψl − ψk)
 l ∈ Nk, l 6= j(k,Nk), k = 1, 2, 3

(6.12)

for j ∈ {1, . . . , N − 3} and

Jjj =
∂ȧlp
∂alp

∣∣∣∣
Mq

l ∈ {1, . . . , N}, p ∈ {l + 1, . . . , N} (6.13)

for j ∈ {N − 2, . . . , N − 3 + N(N−1)
2 }, where

∂ȧlp
∂alp

∣∣∣∣
Mq

=



r − 1 if l, p ∈ Nk, k = 1, 2, 3

(1− 2A12)(ρ12 − r)|Mq
if l ∈ N1, p ∈ N2

(1− 2A13)(ρ13 − r)|Mq
if l ∈ N1, p ∈ N3

(1− 2A23)(ρ23 − r)|Mq
if l ∈ N2, p ∈ N3.

We note that that j is a simple index to keep count of the diagonal elements (but it’s

relationship to k and l is not important).

In the next two sections, we consider each of the invariant manifolds Mq, q = 1, . . . , 8

individually and determine using the linearization computed above whether they are attrac-

tive or not. For the manifolds that are attractive, we also describe the stable and unstable
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equilibria of the corresponding reduced model. In Section 6.2 we summarize the condi-

tions for each manifold to be attractive and describe the stable motions on these invariant

manifolds; we then interpret the stable motions in the context of animal group motion. In

Section 6.3 we present the corresponding technical analysis.

6.2 Attractiveness of the Invariant Manifolds: Results and

Interpretation

As we demonstrated in the previous section, the system (6.1) has several invariant manifolds.

In this section we state the conditions for each manifold to be attractive and give the stable

motions on each attractive invariant manifold. We then interpret the stable equilibria in

the context of group motion. The technical analysis of the stability results is presented in

Section 6.3.

Without loss of generality we assume that θ̄1 = 0. We also assume that the two informed

subgroups are equal in numbers (i.e., N1 = N2). We first note that the reduced model (6.11)

is a gradient system. The dynamics are gradient such that

ψ̇k = − ∂V
∂ψk

, k = 1, 2, 3.

The potential V is given by

V (ψ1, ψ2, ψ3) = − cos(ψ1)− cos(θ̄2 − ψ2) +
1
2
K1〈eiΨ, LeiΨ〉, (6.14)

where Ψ = (ψ1, ψ2, ψ3)T , eΨ = (eψ1 , eψ2 , eψ3)T , L is the Laplacian of the interconnecting

graph between the subgroups given by

L =
1
N


A12N1 +A13N3 −A12N1 −A13N3

−A12N1 A12N1 +A23N3 −A23N3

−A13N1 −A23N1 A13N1 +A23N1

 ,

and the inner product 〈., .〉 is defined by 〈z1, z2〉 = Re{z∗1z2} for z1, z2 ∈ C, with ∗ denoting

the complex conjugate. Given the gradient dynamics, all solutions converge to the set of
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critical points of V (ψ1, ψ2, ψ3) and there are no periodic solutions. The form of the potential

V given by (6.14) has been previously used in [103, 107].

Out of the eight manifolds M1, . . . ,M8, two are never attractive and the six others

may be attractive given some assumptions on the parameters of the model. The first two

invariant manifoldsM1 andM2 are always unstable. The dynamics on these two manifolds,

where (A12, A13, A23) = (1, 0, 1) and (A12, A13, A23) = (1, 1, 0) respectively, are symmetric;

in each case the uninformed subgroup is connected to only one informed subgroup and the

two informed subgroups are connected to each other.

The invariant manifold M3 is attractive if and only if r, θ̄2 and ψ3(0) are chosen such

that ∣∣∣1 + eiθ̄2
∣∣∣− 2r < 0∣∣∣1 + eiψ3(0)
∣∣∣− 2r < 0∣∣∣eiψ3(0) + eiθ̄2
∣∣∣− 2r < 0.

(6.15)

On this invariant manifold, the stable equilibrium is ψM3,1 = (0, θ̄2, ψ3(0)). In this case,

the directions in which the subgroups are heading are “different enough” that they do

not “see” each other (i.e., ρij − r < 0 for all i 6= j ∈ 1, 2, 3). At the steady state, each

informed subgroup follows its preferred direction while the uninformed subgroup follows its

initial heading. At this equilibrium, there is no information transfer between the different

subgroups.

The invariant manifolds M4 and M5 are attractive if and only if the parameters r and

θ̄2 are chosen such that ∣∣∣1 + eiθ̄2
∣∣∣− 2r < 0. (6.16)

The dynamics on these manifolds, where (A12, A13, A23) = (0, 1, 0) and (A12, A13, A23) =

(0, 0, 1), respectively, are symmetric; in each case the uninformed subgroup is connected

to only one informed subgroup and the two informed subgroups are disconnected from

each other. The stable equilibrium on each invariant manifold is ψM4,1 = (0, θ̄2, 0) and

ψM5,1 = (0, θ̄2, θ̄2), respectively. The directions in which the two informed subgroups are

heading are “different enough” that they do not “see” each other (i.e., ρ12 − r < 0). Each
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informed subgroup travels in its preferred direction; the uninformed subgroup follows either

the first informed subgroup on M4 and the second informed subgroup, on M5.

On the invariant manifold M6 the dynamics of the two informed subgroups are inter-

connected but decoupled from the dynamics of the uninformed subgroup. The two informed

subgroups behave according to the model (5.20) studied in Section 5.2, and the uninformed

subgroup travels in its original heading (i.e., ψ3(t) = ψ3(0) for t > 0). We can hence write

an equilibrium of the system (6.22) as (ψ, ψ3(0)), where ψ is an equilibrium of the system

(5.20) with the gain K in (5.20) defined as K1 = KN
2N1

. From the analysis in Section 5.2 we

know that, depending on the values of the parameters θ̄2 and K1, the reduced model (6.11)

can have up to two stable motions ψM6,1 = (ψsync1, ψ3(0)) and ψM6,2 = (ψsync2, ψ3(0)).

The manifoldM6 is attractive near the equilibrium ψM6,1 if r, θ̄2 and ψ3(0) are chosen

such that

2r −
∣∣∣1 + eiθ̄2

∣∣∣ < 0∣∣∣1 + eiψ3(0)
∣∣∣− 2r < 0∣∣∣eiθ̄2 + eiψ3(0)
∣∣∣− 2r < 0.

If, on the other hand, r, θ̄2 and ψ3(0) are chosen such that

r −
√

1− α2 < 0∣∣∣∣eiψ3(0) − ei
“
θ̄2
2

+arcsinα
”∣∣∣∣− 2r < 0∣∣∣∣iei“ θ̄22 +arccosα

”
+ eiψ3(0)

∣∣∣∣− 2r < 0,

where α =
(
N sin

θ̄2
2

2N1K1

) 1
3

, then M6 is attractive near the equilibrium ψM6,2. In physical

terms, the conditions mean that the preferred directions of the informed subgroups are

“close enough” to allow these two subgroups to “see” each other and that the heading in

which the uninformed subgroup initially travels is “different enough” from both preferred

directions that this subgroup does not “see” the other two. “Different” and “close enough”

are quantified with the threshold r. The two sets of conditions are similar except for the
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fact that the uninformed subgroup has to initially head in a direction almost opposite to

the average of the two preferred directions for the first set of conditions and in a direction

close to the average of the two preferred directions for the second set of conditions.

For the stable motion ψM6,1, each informed subgroup compromises between its preferred

direction and the average of the two preferred directions, while the uninformed subgroup

travels in a direction “different enough” from that of either informed subgroup. For the

stable motion ψM6,2, the headings of two informed subgroups flank the heading opposite

the average of the preferred directions, while the uninformed subgroup travels in a direction

“different enough” from that of either informed subgroup.

The invariant manifoldM7 is attractive if and only if the parameters r and θ̄2 are chosen

such that
1√

1 + ν2
< r <

√
1
2

+
1

2
√

1 + ν2
,

where ν = N sin
θ̄2
2

N3K1+N cos
θ̄2
2

. On this manifold, the uninformed subgroup is connected to

both informed subgroups but the two informed subgroups are not connected to each other.

The equilibrium ψM7,6 =
(
θ̄2
2 + arctan ν, θ̄22 − arctan ν, θ̄22

)
is the only stable one on this

manifold. In the motion corresponding to this equilibrium, the direction of the uninformed

subgroup is the average of the preferred directions of the two informed subgroups; the

direction of two informed subgroups flank it. The headings of the two informed subgroups

are “different enough” so that they do not “see” each other (i.e., ρ12−r < 0). However, they

are not “too different” i.e., each informed subgroup is connected to the uninformed subgroup

which travels in a direction corresponding to the average of their preferred directions.

On the invariant manifold M8, the group is connected with an all-to-all connecting

topology and the analysis from Section 5.2 can be adapted to compute the equilibria of

the reduced dynamics on M8 and evaluate their stability. Depending on the values of

the parameters θ̄2 and K1, the reduced model (6.11) can have up to two stable motions,

ψM8,8 and ψM8,11. In the first, the informed subgroups compromise between their preferred

direction and the average of the two preferred directions while the uninformed subgroup

travels in the average of the preferred directions. The second is symmetrical to the first:
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the informed subgroups compromise between their preferred direction and the opposite of

the average of the two preferred directions while the uninformed subgroup travels in a

direction opposite to the average of the preferred directions. These results are similar to

the ones proven in Section 5.2. There is however a critical difference due to the presence

of uninformed individuals in the group. In the case where the number of uninformed

individuals exceeds a threshold given by N3 > 2N1

(
1−

(
2N1K1

N sin
θ̄2
2

) 2
3

) 3
2

, the symmetric

equilibrium with the group traveling towards the opposite of the average of the preferred

directions no longer exists. This observation is consistent with the analysis from Chapter

4. The manifold M8 is attractive near the equilibrium ψM8,8 if the parameters r, θ̄2 are

chosen such that

2r − |1 + eiθ̄2 | < 0.

In physical terms the condition means that the preferred directions of the informed sub-

groups are close enough to allow individuals traveling in such directions to “see” each other.

The stability of the equilibrium ψM8,11 is not proven in Section 6.3 so we are unable to

give conditions for the attractiveness of the manifold M8 near that equilibrium.

6.3 Attractiveness and Phase Space Dynamics of the Re-

duced Models

As we discussed in Section 6.1, the system (6.1) has several invariant manifolds, some of

which are attractive under certain conditions on the parameters of the system. In this

section we present the technical proof for the attractiveness of each invariant manifold. In

the case where a manifold is shown to be attractive, we describe the stable and unstable

equilibria of the reduced model.

6.3.1 Invariant manifolds M1 and M2, (A12, A13, A23) = (1, 0, 1) or (1, 1, 0)

The cases where (A12, A13, A23) = (1, 0, 1) and (A12, A13, A23) = (1, 1, 0) are symmetric,

each corresponding to the uninformed subgroup being connected to only one informed sub-
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group and the two informed subgroups being connected to each other. Given this symmetry

we investigate the stability of the manifold for (A12, A13, A23) = (1, 0, 1) as a representative

of both cases. In the case where (A12, A13, A23) = (1, 0, 1), the system (6.11) becomes

ψ̇1 = − sin (ψ1) +
N1

N
K1 sin (ψ2 − ψ1)

ψ̇2 = sin
(
θ̄2 − ψ2

)
+
N1

N
K1 sin (ψ1 − ψ2) +

N3

N
K1 sin (ψ3 − ψ2)

ψ̇3 =
N3

N
K1 sin (ψ2 − ψ3)

. (6.17)

The equilibria of this system have to lie on one of the ψ3-null-clines. The ψ3-null-clines

are given by ψ3 = ψ2 and ψ3 = ψ2 + π. We show that on either null-cline the invariant

manifold M1 cannot be attractive. The diagonal terms of the Jacobian of the boundary

layer dynamics J (6.12), (6.13) evaluated on the invariant manifold M1 are given by

Jjj =


− 1
N

(
1− 1

N1

)
(N1 +N1 cos(ψ2 − ψ1)) j ∈ N1, j 6= j(1,N1)

− 1
N

(
1− 1

N1

)
(N1 +N1 cos(ψ1 − ψ2) +N3) j ∈ N2, j 6= j(2,N2)

− 1
N

(
1− 1

N3

)
(N1 +N3) j ∈ N3, j 6= j(3,N3)

for j ∈ {1, . . . , N − 3} and

Jjj =
∂ȧlp
∂alp

∣∣∣∣
M1

l ∈ {1, . . . , N}, p ∈ {l + 1, N},

for j ∈ {N − 2, . . . , N − 3 + N(N−1)
2 } where

∂ȧlj
∂alj

∣∣∣∣
M1

=



r − 1 if l, j ∈ Nk, k = 1, 2, 3

−(ρ12 − r) if l ∈ N1, j ∈ N2

(ρ13 − r) if l ∈ N1, j ∈ N3

−(ρ23 − r) if l ∈ N2, j ∈ N3.

On the ψ3-null-cline given by ψ3 = ψ2, ρ12 = ρ13; hence it is not possible to have both

−(ρ12 − r) < 0 and (ρ13 − r) < 0. On the ψ3-null-cline given by ψ3 = ψ2 + π, ρ23 = 0,

implying that −(ρ23 − r) = r > 0. These invariant manifolds are thus unstable for all

r ∈ [0, 1], θ̄2 ∈ [0, π].
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6.3.2 Invariant Manifold M3, (A12, A13, A23) = (0, 0, 0)

In the case where (A12, A13, A23) = (0, 0, 0), the system (6.11) becomes

ψ̇1 = − sin (ψ1)

ψ̇2 = sin
(
θ̄2 − ψ2

)
ψ̇3 = 0

. (6.18)

We compute the equilibria of the system (6.18) and determine the stability of each. We note

that there are no dynamics for ψ3; therefore, ψ3(t) = ψ3(0) for all t > 0. The dynamics of

ψ1 and ψ2 are decoupled and it is possible to find closed form expressions for all equilibria.

Stability of each equilibrium is determined from the eigenvalues of the Jacobian. There are

a total of four equilibria, given by

1. ψM3,1 = (0, θ̄2, ψ3(0)), stable for θ̄2 ∈ [0, π].

2. ψM3,2 = (0, θ̄2 + π, ψ3(0)), unstable for θ̄2 ∈ [0, π].

3. ψM3,3 = (π, θ̄2, ψ3(0)), unstable for θ̄2 ∈ [0, π].

4. ψM3,4 = (π, θ̄2 + π, ψ3(0)), unstable for θ̄2 ∈ [0, π].

The only stable equilibrium being ψM3,1 = (0, θ̄2, ψ3(0)), we now determine the range

of parameter values for θ̄2 and r for which the invariant manifold M3 is attractive. The

Jacobian of the boundary layer dynamics J given by equation (6.12), (6.13) evaluated on

the invariant manifold M3 at the stable equilibrium ψM3,1 = (0, θ̄2, ψ3(0)) is given by

Jjj = −Nk

N

(
1− 1

Nk

)
j ∈ Nk, j 6= j(k,Nk), k = 1, 2, 3

for j ∈ {1, . . . , N − 3} and

Jjj =
∂ȧlp
∂alp

∣∣∣∣
M3,ψM3,1

l ∈ {1, . . . , N}, p ∈ {l + 1, N},
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for j ∈ {N − 2, . . . , N − 3 + N(N−1)
2 } where

∂ȧlj
∂alj

∣∣∣∣
M3,ψM3,1

=



r − 1 if l, j ∈ Nk, k = 1, 2, 3

(ρ12 − r)|ψM3,1
if l ∈ N1, j ∈ N2

(ρ13 − r)|ψM3,1
if l ∈ N1, j ∈ N3

(ρ23 − r)|ψM3,1
if l ∈ N2, j ∈ N3.

Substituting in for ρ12, ρ13, and ρ23, the invariant manifold M3 is attractive if and only if

r, θ̄2 and ψ3(0) are chosen such that ∣∣∣1 + eiθ̄2
∣∣∣− 2r < 0∣∣∣1 + eiψ3(0)
∣∣∣− 2r < 0∣∣∣eiψ3(0) + eiθ̄2
∣∣∣− 2r < 0.

(6.19)

Physically the conditions mean that the preferred directions of the informed subgroups are

“different enough” from each other and that the uninformed subgroup initially travels at a

heading “different enough” from both preferred directions. “Different enough” is quantified

with the threshold r.

6.3.3 Invariant Manifolds M4 and M5, (A12, A13, A23) = (0, 1, 0) or (0, 0, 1)

The cases where (A12, A13, A23) = (0, 1, 0) and (A12, A13, A23) = (0, 0, 1) are symmetri-

cal, each corresponding to the uninformed subgroup being connected to only one informed

subgroup and the two informed subgroups being disconnected. Given this symmetry, we

compute the equilibria and investigate stability only for (A12, A13, A23) = (0, 1, 0) as rep-

resentative of both cases. In the case where (A12, A13, A23) = (0, 1, 0), the system (6.11)

becomes
ψ̇1 = − sin (ψ1) +K1

N3

N
sin (ψ3 − ψ1)

ψ̇2 = sin
(
θ̄2 − ψ2

)
ψ̇3 = K1

N1

N
sin (ψ1 − ψ3) .

(6.20)

We compute the equilibria of the system (6.20) and determine the stability of each. It is

possible to find closed form expressions for all equilibria. The stability of each equilibrium
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is determined from the eigenvalues of the Jacobian. There are a total of eight equilibria

given by

1. ψM4,1 = (0, θ̄2, 0), stable for θ̄2 ∈ [0, π],K1 > 0.

2. ψM4,2 = (0, θ̄2, π), unstable for θ̄2 ∈ [0, π],K1 > 0.

3. ψM4,3 = (0, θ̄2 + π, 0), unstable for θ̄2 ∈ [0, π],K1 > 0.

4. ψM4,4 = (0, θ̄2 + π, π), unstable for θ̄2 ∈ [0, π],K1 > 0.

5. ψM4,5 = (π, θ̄2, π), unstable for θ̄2 ∈ [0, π],K1 > 0.

6. ψM4,6 = (π, θ̄2, 0), unstable for θ̄2 ∈ [0, π],K1 > 0.

7. ψM4,7 = (π, θ̄2 + π, π), unstable for θ̄2 ∈ [0, π],K1 > 0.

8. ψM4,8 = (π, θ̄2 + π, 0), unstable for θ̄2 ∈ [0, π],K1 > 0.

The only stable equilibrium being ψM4,1 = (0, θ̄2, 0), we now determine the range of param-

eter values for θ̄2 and r for which the invariant manifold M4 is attractive. The diagonal

terms of the Jacobian of the boundary layer dynamics J (6.12) evaluated on the invariant

manifold M4 at the stable equilibrium ψM4,1 is given by

Jjj =


− 1
N

(
1− 1

N1

)
(N1 +N3) j ∈ N1, j 6= j(1,N1)

−N1
N

(
1− 1

N1

)
j ∈ N2, j 6= j(2,N2)

− 1
N

(
1− 1

N3

)
(N1 +N3) j ∈ N3, j 6= j(3,N3)

for j ∈ {1, . . . , N − 3} and

Jjj =
∂ȧlj
∂alj

∣∣∣∣
M4,ψM4,1

l ∈ {1, . . . , N}, p ∈ {l + 1, N},

for j ∈ {N − 2, . . . , N − 3 + N(N−1)
2 } where

∂ȧlj
∂alj

∣∣∣∣
M4,ψM4,1

=



r − 1 if l, j ∈ Nk, k = 1, 2, 3

(ρ12 − r)|ψM4,1
if l ∈ N1, j ∈ N2

− (ρ13 − r)|ψM4,1
if l ∈ N1, j ∈ N3

(ρ23 − r)|ψM4,1
if l ∈ N2, j ∈ N3.
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The invariant manifold M4 is attractive if and only if r and θ̄2 are chosen such that∣∣∣1 + eiθ̄2
∣∣∣− 2r < 0. (6.21)

This means physically that the preferred directions of the informed subgroups are “different

enough”, given the threshold r.

6.3.4 Invariant Manifold M6, (A12, A13, A23) = (1, 0, 0)

In the case where (A12, A13, A23) = (1, 0, 0), the system (6.11) becomes

ψ̇1 = − sin (ψ1) +
K1N1

N
sin (ψ2 − ψ1)

ψ̇2 = sin
(
θ̄2 − ψ2

)
+
K1N1

N
sin (ψ1 − ψ2)

ψ̇3 = 0.

(6.22)

In this case the two informed subgroups behave according to the model (5.20) studied in

Section 5.2, and the naive group travels in its original heading (i.e., ψ3(t) = ψ3(0) for

t > 0). The dynamics of the two informed subgroups are decoupled from the dynamics

of the uninformed subgroup. We can hence write an equilibrium of the system (6.22) as

(ψ, ψ3(0)), where ψ is an equilibrium of the system (5.20) with the K in (5.20) defined

by K1 = KN
2N1

. From the analysis in Section 5.2 we know that, depending on the values of

the parameters θ̄2 and K1, the reduced model (6.11) can have up to two stable motions:

ψM6,1 = (ψsync1, ψ3(0)) and ψM6,2 = (ψsync2, ψ3(0)). From Lemmas 5.2.2 and 5.2.5,

using the re-parameterization defined above, the equilibrium ψM6,1 is stable for all θ̄2 ∈
[0, π], K1 > 0 whereas the equilibrium ψM6,2 is stable if and only if θ̄2 ∈ [π2 , π] and

K1 ∈
[

2N
N1

(
cos
(
θ̄2
2

) 2
3 + sin

(
θ̄2
2

) 2
3

) 3
2

, 4N
N1 sin θ̄2

]
.

We now determine the ranges of parameter values for θ̄2 and r for which the invariant

manifold M6 is stable near ψM6,1 and ψM6,2. The diagonal terms of the Jacobian of the

boundary layer dynamics J evaluated on M6 at ψM6,1 are given by

Jjj =


− 1
N

(
1− 1

N1

)
(N1 +N1 cos(ψ2 − ψ1))|ψM6,1

j ∈ N1, j 6= j(1,N1)

− 1
N

(
1− 1

N1

)
(N1 +N1 cos(ψ1 − ψ2))|ψM6,1

j ∈ N2, j 6= j(2,N2)

−N3
N

(
1− 1

N3

)
j ∈ N3, j 6= j(3,N3)

(6.23)
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for j ∈ {1, . . . , N − 3} and

Jjj =
∂ȧlj
∂alj

∣∣∣∣
M6,ψM6,1

l ∈ {1, . . . , N}, p ∈ {l + 1, N}, (6.24)

for j ∈ {N − 2, . . . , N − 3 + N(N−1)
2 } where

∂ȧlj
∂alj

∣∣∣∣
M6,ψM6,1

=



r − 1 if l, j ∈ Nk, k = 1, 2, 3

− (ρ12 − r)|ψM6,1
if l ∈ N1, j ∈ N2

(ρ13 − r)|ψM6,1
if l ∈ N1, j ∈ N3

(ρ23 − r)|ψM6,1
if l ∈ N2, j ∈ N3.

The Jacobian of the boundary layer dynamics on the manifold M6, at the equilibrium

ψM6,1 is Hurwitz if and only if all the terms given by equation (6.23), (6.24) are strictly

negative. From the analysis in Section 5.2.1 we know that for the equilibrium ψM6,1, the

principle value of the heading of the first and second informed subgroups are between 0 and

θ̄2
2 and between θ̄2

2 and θ̄2 respectively. Using these bounds for the heading of the informed

subgroups we obtain the following set of sufficient conditions to guarantee the attractiveness

of M6 near ψM6,1:

2r −
∣∣∣1 + eiθ̄2

∣∣∣ < 0∣∣∣1 + eiψ3(0)
∣∣∣− 2r < 0∣∣∣eiθ̄2 + eiψ3(0)
∣∣∣− 2r < 0.

In physical terms the conditions mean that the preferred directions of the informed sub-

groups are “close enough” and that the uninformed subgroup initially travels at a heading

“different enough” from both preferred directions. “Different” and “close enough” are quan-

tified with the threshold r.

For the attractiveness of M6 near ψM6,2 it is also possible to give sufficient conditions

that guarantee it. From Lemma 5.2.4, we have√
1− α2 < ρsync2 < 1,

where α2 =
(
N sin

θ̄2
2

2N1K1

) 2
3

. This means that the headings of the first and second informed

subgroups are between θ̄2
2 +π and θ̄2

2 +π+arcsinα and between θ̄2+π
2 +arccosα and θ̄2

2 +π,
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respectively. Using these bounds for the headings of the informed subgroups we obtain the

following set of sufficient conditions to guarantee the attractiveness of M6 near ψM6,2:

r −
√

1− α2 < 0∣∣∣∣eiψ3(0) − ei
“
θ̄2
2

+arcsinα
”∣∣∣∣− 2r < 0∣∣∣∣iei“ θ̄2+π

2
+arccosα

”
+ eiψ3(0)

∣∣∣∣− 2r < 0.

The uninformed subgroup is heading in a different enough direction from both informed

subgroups that informed individuals and uninformed individuals do not “see” each other

(i.e., ρ13 − r < 0 and ρ23 − r < 0).

6.3.5 Invariant Manifold M7, (A12, A13, A23) = (0, 1, 1)

In the case where (A12, A13, A23) = (0, 1, 1), the system (6.11) becomes

ψ̇1 = − sin (ψ1) +
K1N3

N
sin (ψ3 − ψ1)

ψ̇2 = sin
(
θ̄2 − ψ2

)
+
K1N3

N
sin (ψ3 − ψ2)

ψ̇3 =
K1N1

N
sin (ψ1 − ψ3) +

K1N1

N
sin (ψ2 − ψ3)

. (6.25)

We compute the equilibria of the system (6.11) and determine the stability of each equilibria.

It is possible for this system to find closed form expressions for all equilibria. The stability

of each equilibrium is determined using the Routh stability criterion. There are a total of

six equilibria given by

1. ψM7,1 =
(
π + arcsin γ, θ̄2 + arcsin γ, π+θ̄2

2 + arcsin γ
)

, where γ = N3K1
N cos θ̄22 . This

equilibrium is unstable for θ̄2 ∈ [0, π], K1 >
N
N3

.

2. ψM7,2 =
(
− arcsin γ, π + θ̄2 − arcsin γ, π+θ̄2

2 − arcsin γ
)

, unstable for θ̄2 ∈ [0, π], K1 >

0.

3. ψM7,3 =
(
π+θ̄2

2 , θ̄2−π2 , θ̄22 + arccos
(
− N
K1N3

cos θ̄22
))

, unstable for θ̄2 ∈ [0, π], K1 > 0.

4. ψM7,4 =
(
π+θ̄2

2 , θ̄2−π2 , θ̄22 − arccos
(
− N
K1N3

cos θ̄22
))

, unstable for θ̄2 ∈ [0, π], K1 > 0.
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5. ψM7,5 =
(
θ̄2
2 + π + arctan ν, θ̄22 + π − arctan ν, θ̄22

)
, where ν = N sin

θ̄2
2

N3K1+N cos
θ̄2
2

. This

equilibrium is unstable for θ̄2 ∈ [0, π], K1 >
N
N3

.

6. ψM7,6 =
(
θ̄2
2 + arctan ν, θ̄22 − arctan ν, θ̄22

)
, stable for θ̄2 ∈ [0, π], K1 >

N
N3

.

We now determine the ranges of parameter values for θ̄2 and r for which the invariant

manifold M7 is stable near ψM7,6. The diagonal terms of the Jacobian of the boundary

layer dynamics J evaluated on M7 at ψM7,6 are given by

Jjj =


− 1
N

(
1− 1

N1

)
(N1 +N3 cos(ψ3 − ψ1))|ψM7,6

j ∈ N1, j 6= j(1,N1)

− 1
N

(
1− 1

N1

)
(N1 +N3 cos(ψ3 − ψ2))|ψM7,6

j ∈ N2, j 6= j(2,N2)

− 1
N

(
1− 1

N3

)
(N3 +N1 cos(ψ1 − ψ3) +N1 cos(ψ2 − ψ3))|ψM7,6

j ∈ N3, j 6= j(3,N3)

for j ∈ {1, . . . , N − 3} and

Jjj =
∂ȧlj
∂alj

∣∣∣∣
M7,ψM7,6

l ∈ {1, . . . , N}, p ∈ {l + 1, N},

for j ∈ {N − 2, . . . , N − 3 + N(N−1)
2 } where

∂ȧlj
∂alj

∣∣∣∣
M7,ψM7,6

=



r − 1 if l, j ∈ Nk, k = 1, 2, 3

(ρ12 − r)|ψM7,6
if l ∈ N1, j ∈ N2

− (ρ13 − r)|ψM7,6
if l ∈ N1, j ∈ N3

− (ρ23 − r)|ψM7,6
if l ∈ N2, j ∈ N3.

Using the expressions of the phases ψ1, ψ2 and ψ3 at the equilibrium ψM7,6 we obtain the

following necessary and sufficient condition for the invariant manifold M7 to be attractive

near ψM7,6:

1√
1 + ν2

< r <

√
1
2

+
1

2
√

1 + ν2
. (6.26)

In this case, the uninformed subgroup is heading in a “close enough” direction from both

informed subgroup that informed individuals and uninformed individuals “see” each other.

The two informed subgroups, however, are heading in “different enough” directions that

they do not “see” each other, although they are indirectly interacting with each other

through the uninformed subgroup.
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6.3.6 Invariant Manifold M8, (A12, A13, A23) = (1, 1, 1)

In the case where (A12, A13, A23) = (1, 1, 1), the system (6.11) becomes

ψ̇1 = − sin (ψ1) +
K1N1

N
sin (ψ2 − ψ1) +

K1N3

N
sin (ψ3 − ψ1)

ψ̇2 = sin
(
θ̄2 − ψ2

)
+
K1N1

N
sin (ψ1 − ψ2) +

K1N3

N
sin (ψ3 − ψ2)

ψ̇3 =
K1N1

N
sin (ψ1 − ψ3) +

K1N1

N
sin (ψ2 − ψ3)

. (6.27)

We compute the equilibria of the system (6.27) but note that, except for specific values of

the parameters K1, θ̄2, we cannot find closed form expressions for all of them. For each

equilibrium we nevertheless describe how its value and stability changes as the bifurcation

parameters K, θ̄2 vary. The equilibria are given by

− sin (ψ1) +
K1N1

N
sin (ψ2 − ψ1) +

K1N3

N
sin (ψ3 − ψ1) = 0

sin
(
θ̄2 − ψ2

)
+
K1N1

N
sin (ψ1 − ψ2) +

K1N3

N
sin (ψ3 − ψ2) = 0

K1N1

N
sin (ψ1 − ψ3) +

K1N1

N
sin (ψ2 − ψ3) = 0.

There are three sets of solutions, the first set given by

ψ1 =
θ̄2 − π

2

ψ2 =
θ̄2 + π

2

cos
(
ψ3 − θ̄2

2

)
= − N

K1N3
cos

θ̄2

2
, (6.28)

the second set given by

ψ1 = π − θ̄2 + ψ2 (6.29)

sin
(
ψ2 − θ̄2

)
=
K1N1

N
sin θ̄2 +

K1N3

N
cos

θ̄2

2
(6.30)

ψ3 =
ψ1 + ψ2

2
, (6.31)
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and the third set given by

ψ1 = θ̄2 − ψ2 (6.32)

sin
(
θ̄2 − ψ2

)
+
K1N1

N
sin
(
θ̄2 − 2ψ2

)
=
K1N3

N
sin
(
θ̄2

2
− ψ2

)
(6.33)

ψ3 =
ψ1 + ψ2

2
. (6.34)

In the first set of solutions, we can find a closed form expression of each equilibrium.

Equation (6.28) has two solutions ψ3 = θ̄2
2 + π ± arccos

(
N

K1N3
cos θ̄22

)
. These two solutions

exist if and only if
∣∣∣ N
K1N3

cos θ̄22
∣∣∣ ≤ 1.

Lemma 6.3.1 If
∣∣∣ N
K1N3

cos θ̄22
∣∣∣ ≤ 1, then the two equilibria ψM8,1 and ψM8,2 satisfying

(6.28) and given by

ψM8,1 =
(
θ̄2 − π

2
,
θ̄2 + π

2
,
θ̄2

2
+ π + arccos

(
N

K1N3
cos

θ̄2

2

))
(6.35)

ψM8,2 =
(
θ̄2 − π

2
,
θ̄2 + π

2
,
θ̄2

2
+ π − arccos

(
N

K1N3
cos

θ̄2

2

))
, (6.36)

are unstable ∀K1 > min(N sin
θ̄2
2

N1
, NN3

√
1+cos θ̄2

2 ).

Proof: The proof of Lemma 6.3.1 can be found in Appendix B.

In the second set of solutions, it is also possible to find a closed form expression for each

equilibrium. Equation (6.30) has two solutions ψ2 = θ̄2 +arcsin
(
K1N1
N sin θ̄2 + K1N3

N cos θ̄22
)

or ψ2 = θ̄2 +π−arcsin
(
K1N1
N sin θ̄2 + K1N3

N cos θ̄22
)

yielding a total of four equilibria. These

four equilibria exist if and only if
∣∣∣K1N1

N sin θ̄2 + K1N3
N cos θ̄22

∣∣∣ ≤ 1. For each value of θ̄2,

there is a range of values for K1 for which these equilibria exist. As θ̄2 approaches π the

range of values of K1 for which these equilibria exist becomes larger. We consider here the

case where these equilibria do not exist i.e., K1 >
N

N1 sin θ̄2+N3 cos
θ̄2
2

. We note that for the

simulation presented in Figure 6.2, the choice of parameters we made satisfy the conditions

for these equilibria to exist, but with the chosen initial conditions, the system does not

converge to any of these four equilibria.
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For the equilibria in the third set of solutions given by (6.32) - (6.34) we make the same

change of variables as in Chapter 5, equation (5.26), (ψ1, ψ2) 7→
(
ρ̂, Ψ̂

)
where ρ̂ ∈ [0, 1] and

Ψ̂ ∈ S1 are defined by

ρ̂eiΨ̂ =
1
2

(
eiψ1 + eiψ2

)
= cos

(
ψ1 − ψ2

2

)
ei(ψ1+ψ2)/2 (6.37)

= cos
(
θ̄2

2
− ψ2

)(
cos

θ̄2

2
+ i sin

θ̄2

2

)
. (6.38)

Equation (6.38) is obtained by using equation (6.32) in (6.37). For θ̄2 ∈ (0, π], ψ1 = θ̄2−ψ2

implies that Ψ̂ = θ̄2
2 or Ψ̂ = θ̄2

2 + π. An equilibrium of the system (6.27) can hence be

written as (ρ̂, ψ̂, ψ∗3), where ψ∗3 is the solution obtained from equation (6.34). We further

rewrite (6.33) as(
sin

θ̄2

2
+

2K1N1

N
sin
(
θ̄2

2
− ψ2

))
cos
(
θ̄2

2
− ψ2

)
+
(

cos
θ̄2

2
+
K1N3

N

)
sin
(
θ̄2

2
− ψ2

)
= 0.

(6.39)

For Ψ̂ = θ̄2
2 , (6.38) implies that cos

(
θ̄2
2 − ψ2

)
= ρ̂ and sin

(
θ̄2
2 − ψ2

)
= ±

√
1− ρ̂2.

Accordingly, (6.39) implies that ρ̂ satisfies

ρ̂ sin
θ̄2

2
+
√

1− ρ̂2

(
cos

θ̄2

2
+
K1N3

N

)
+

2K1N1

N
ρ̂
√

1− ρ̂2 = 0 (6.40)

or

ρ̂ sin
θ̄2

2
−
√

1− ρ̂2

(
cos

θ̄2

2
+
K1N3

N

)
− 2K1N1

N
ρ̂
√

1− ρ̂2 = 0. (6.41)

For Ψ̂ = θ̄2
2 + π, (6.38) implies that cos

(
θ̄2
2 − ψ2

)
= −ρ̂ and sin

(
θ̄2
2 − ψ2

)
= ±

√
1− ρ̂2.

Accordingly, (6.39) implies that ρ̂ satisfies

−ρ̂ sin
θ̄2

2
+
√

1− ρ̂2

(
cos

θ̄2

2
+
K1N3

N

)
− 2K1N1

N
ρ̂
√

1− ρ̂2 = 0 (6.42)

or

−ρ̂ sin
θ̄2

2
−
√

1− ρ̂2

(
cos

θ̄2

2
+
K1N3

N

)
+

2K1N1

N
ρ̂
√

1− ρ̂2 = 0. (6.43)

We now consider equations (6.40)-(6.43) individually and determine the existence and na-

ture of the equilibria that they yield.
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Equation (6.40) does not have any solution for (ρ̂, θ̄2) ∈ [0, 1] × (0, π) since all of the

terms on the left hand side of the equation are strictly positive.

Equation (6.41) has one solution for (ρ̂, θ̄2) ∈ [0, 1]× (0, π); we call this solution ρ̂sync1.

It yields two equilibria ψM8,7 = (ρ̂sync1, θ̄22 ,
θ̄2
2 ) and ψM8,8 = (ρ̂sync1, θ̄22 ,

θ̄2
2 + π). For large

values of K1 in both equilibria, the two informed subgroups become synchronized, with

synchronization occurring at Ψ̂ = θ̄2
2 . The uninformed subgroup is heading in the average

of the preferred directions θ̄2
2 for the equilibrium ψM8,7 and in an opposite direction for

ψM8,8.

Lemma 6.3.2 The equilibrium ψM8,7 is stable for all
(
K, θ̄2

) ∈ [0,∞)× (0, π).

Proof: The proof of Lemma 6.3.2 can be found in Appendix B.

Lemma 6.3.3 The equilibrium ψM8,8 is unstable for all
(
K, θ̄2

) ∈ [0,∞)× (0, π).

Proof: The proof of Lemma 6.3.3 can be found in Appendix B.

Equation (6.42) has one solution for (ρ̂, θ̄2) ∈ [0, 1]×(0, π); we call this solution ρ̂antisync1.

It yields two equilibria ψM8,9 = (ρ̂antisync1, θ̄22 ,
θ̄2
2 ) and ψM8,10 = (ρ̂antisync1, θ̄22 ,

θ̄2
2 +π). For

large values of K1 in both equilibria, the two informed subgroups become anti-synchronized.

The uninformed subgroup is heading in the average of the preferred directions θ̄2
2 for the

equilibrium ψM8,9 and in an opposite direction for ψM8,10.

Lemma 6.3.4 The equilibria ψM8,9 and ψM8,10 are unstable for all
(
K, θ̄2

) ∈ [0,∞) ×
(0, π).

Proof: The proof of Lemma 6.3.4 can be found in Appendix B.

Equation (6.43) has between zero and two solutions for (ρ̂, θ̄2) ∈ [0, 1] × (0, π). The

two solutions, when they exist, are called ρ̂sync2 and ρ̂antisync2. They yield four equilibria

ψM8,11 = (ρ̂sync2, θ̄22 ,
θ̄2
2 ), ψM8,12 = (ρ̂sync2, θ̄22 ,

θ̄2
2 +π), ψM8,13 = (ρ̂antisync2, θ̄22 +π, θ̄22 ) and

ψM8,14 = (ρ̂antisync2, θ̄22 +π, θ̄22 +π). For large values of K1 in the two equilibria ψM8,11 and

ψM8,12, the two informed subgroups become synchronized, with synchronization occurring

at Ψ̂ = θ̄2
2 + π. The uninformed subgroup is heading in the average of the preferred
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directions θ̄2
2 for the equilibrium ψM8,11 and in an opposite direction for ψM8,12. For the

two equilibria ψM8,13 and ψM8,14, the two informed subgroups become anti-synchronized.

The uninformed subgroup is heading in the average of the preferred directions θ̄2
2 for the

equilibrium ψM8,13 and in an opposite direction for ψM8,14.

Lemma 6.3.5 Equation (6.43) has two solutions when (2N1K1)
2
3 −(N sin θ̄2

2 )
2
3 > (N3K1−

N cos θ̄22 )
2
3 . If N3 > 2N1

(
1−

(
2N1K1

N sin
θ̄2
2

) 2
3

) 3
2

, then equation (6.43) has no solutions ∀

K1, N1, θ̄2 ∈ [0,∞)2 × (0, π].

Proof: Let K ′ = 2N1K1

N sin
θ̄2
2

which is well defined for θ̄2 ∈ (0, π]. Equation (6.43) can be

rewritten as

ρ̂(
1√

1− ρ̂2
−K ′) +

N3

2N1
K ′ = − cot

θ̄2

2
. (6.44)

The solutions of (6.43) exist when the function h(ρ̂) = ρ̂( 1√
1−ρ̂2

−K ′) + N3
2N1

K ′ intersects

the constant y = − cot θ̄22 < 0. The function h(ρ̂) goes to N3K′

2N1
when ρ̂ 7→ 0, approaches

+∞ when ρ̂ 7→ 1, and reaches its minimum of −K ′(ρ̂∗)3 + N3K′

2N1
at ρ̂∗ =

√
1− 1

K′2/3
.

Equation (6.43) has two solutions (ρ̂1, ρ̂2) flanking ρ̂∗ if and only if h(ρ̂∗) < − cot θ̄22 ; this

last inequality is satisfied if and only if

(2N1K1)
2
3 − (N sin

θ̄2

2
)

2
3 > (N3K1 −N cos

θ̄2

2
)

2
3 . (6.45)

If N3 > 2N1

(
1−

(
2N1K1

N sin
θ̄2
2

) 2
3

) 3
2

, then h(ρ̂) > 0 ∀ρ̂ ∈ [0, 1] and equation (6.43) has no

solution ∀ K1, N1, θ̄2 ∈ [0,∞)2 × (0, π]. �

We do not prove here the stability of these equilibria but given the analyses from Chapter

5, it is natural to conjecture that the equilibria ψM8,12, ψM8,13 and ψM8,14 are always

unstable and that for large enough values of θ̄2 there exists a range of values for K1 such

that the equilibrium ψM8,11 is stable.

We now determine the ranges of parameter values for θ̄2 and r for which the invariant

manifoldM8 is attractive near ψM8,7. The diagonal terms of the Jacobian of the boundary
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layer dynamics J evaluated on M8 at ψM8,7 are given by

Jjj =


− 1
N

(
1− 1

N1

)
(N1 +N1 cos(ψ2 − ψ1) +N3 cos(ψ3 − ψ1))|ψM8,7

j ∈ N1, j 6= j(1,N1)

− 1
N

(
1− 1

N1

)
(N1 +N1 cos(ψ1 − ψ2) +N3 cos(ψ3 − ψ2))|ψM8,7

j ∈ N2, j 6= j(2,N2)

− 1
N

(
1− 1

N3

)
(N3 +N1 cos(ψ1 − ψ3) +N1 cos(ψ2 − ψ3))|ψM8,7

j ∈ N3, j 6= j(3,N3)

for j ∈ {1, . . . , N − 3} and

Jjj =
∂ȧlj
∂alj

∣∣∣∣
M8,ψM8,7

l ∈ {1, . . . , N}, p ∈ {l + 1, N},

for j ∈ {N − 2, . . . , N − 3 + N(N−1)
2 } where

∂ȧlj
∂alj

∣∣∣∣
M8,ψM8,7

=



r − 1 if l, j ∈ Nk, k = 1, 2, 3

− (ρ12 − r)|ψM8,7
if l ∈ N1, j ∈ N2

− (ρ13 − r)|ψM8,7
if l ∈ N1, j ∈ N3

− (ρ23 − r)|ψM8,7
if l ∈ N2, j ∈ N3.

From the analysis in Section 5.2, we know that for the equilibrium ψM7,6, the principal

values of the headings of the first and second informed subgroups are respectively, between

0 and θ̄2
2 and between θ̄2

2 and θ̄2. Given these bounds, the worst case scenario to satisfy the

stability criterium is when ψ1 = 0 and ψ2 = θ̄2, yielding the following sufficient condition

to guarantee the attractiveness of M8 near ψM8,7:

2r −
∣∣∣1 + eiθ̄2

∣∣∣ < 0.

In physical terms, the condition means that the preferred directions of the two informed

subgroups are “close enough” given the threshold r that the interaction gain between two

individuals, one heading in the preferred direction of the first informed subgroup and the

other heading in the preferred direction of the second informed subgroup, would increase

given the dynamics (6.2).
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6.4 Summary and Forgetting Factor Feedback Extension

6.4.1 Summary

In this chapter we have extended the model (5.1) of the dynamics of motion for a group

of N = N1 + N2 + N3 coupled individuals moving in the plane by relaxing the all-to-

all coupling assumption made in Chapter 5 and including uninformed individuals in the

analysis. We described eight invariant manifolds of the system and determined which ones

could be attractive and which ones could not. For each attractive manifold, we described

the stable and unstable equilibria of the corresponding reduced model and interpreted the

stable equilibria in the context of animal group motion. We proved that relaxing the all-to-

all connecting topology assumption yields a much richer behavior. Depending on the values

of the parameters θ̄2, r and K1, eight different group motions can occur.

We first observed an equilibrium similar to the persistent stable motion ψsync1 observed

in Chapter 5 where the two informed subgroups compromise between their preferred di-

rection and the average of the preferred direction. We proved in this present chapter that

the equilibrium ψM8,7 is stable for all values of the parameters K1, θ̄2. This equilibrium

is a K1-almost synchronized motion of the group in the direction θ̄2
2 . For moderate val-

ues of K1, the two informed subgroups compromise between their preferred direction and

the average of the preferred directions while the uninformed subgroup travels in a direc-

tion corresponding to the average of the preferred directions. For large values of K1, this

equilibrium corresponds to the whole group moving together in the average of the preferred

directions. We also showed that similar motion could be obtained in the invariant manifolds

M6 and M7. On the invariant manifold M6, the two informed subgroups behave exactly

according to the model (5.1) studied in Section 5.2. In this case, the two informed subgroups

compromise between their preferred direction and the average of the preferred directions

while the uninformed subgroup travels in its original heading. On the invariant manifold

M7, the two informed subgroups also compromise between their preferred direction and the

average of the preferred directions and the uninformed subgroup travels in the average of
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the preferred directions. In this case, however, the two informed subgroups are not directly

connected to each other (i.e., A12 = 0); rather they are connected indirectly through their

mutual connection to the uninformed subgroup.

In contrast to the model (5.1), where informed individuals always compromise on their

preferred directions, we showed that with the model (6.1) it is possible to have informed

individuals travel exactly in their preferred direction. We observed this for three invariant

manifolds,M3,M4 andM5. In each case, the two informed subgroups become disconnected

from each other and follow their respective preferred directions. On the manifold M3 the

stable motion corresponds to each informed subgroup traveling in its preferred direction

and the uninformed subgroup traveling in its initial heading. For the manifolds M4 and

M5, each informed subgroup travels in its preferred direction with the uninformed subgroup

following the first informed subgroup for M4 and the second informed subgroup for M5.

We also noted that when the number of uninformed individuals in the group exceeds

a certain threshold, the inefficient motion ψM8,11, where the group heads in a direction

as divergent as possible from both preferred directions, disappears. This observation is

consistent with the analysis from Chapter 4, where using the discrete-time model from

[19], we argued that under certain circumstances, informed individuals derive a benefit in

associating with uninformed individuals.

However, as with the continuous-time model presented in the previous chapter, the

continuous-time model presented here does not reproduce the behavior we observed both in

[19] and in Chapter 4, where the group collectively selects one of the preferred directions.

As we explained above, informed individuals can follow their preferred direction only if they

are not connected to individuals of the other informed subgroup (i.e., A12 = 0). Moreover,

full synchronization of the group cannot occur unless the coupling gain K1 is very large.

This means that, for relatively small weight on the coupling in the model, the individuals

in the population do not fully aggregate and the group splits - although in some cases we

showed that the uninformed individuals do become synchronized with one or the other of

the informed subgroups. This deviation indirectly reveals the importance of a remaining
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simplifying assumption, namely, that we consider only the dynamics of the phases and not

the complete spatial dynamics of the individuals in the group. For the simulations used

in [19] and in Chapter 4, we observed that in the case where the group collectively selects

one of the preferred directions, the leading informed subgroup travels in front, followed

by the uninformed subgroups, followed in turn by the other informed subgroup. With the

uninformed subgroup in between the two informed subgroups, the distance between the

informed individuals of the two subgroups could in some circumstances be large enough

that they would not interact with each other although travel in the same direction. As

we have mentioned earlier, our phase model requires that individuals traveling in the same

direction be connected.

With a model that only considers the phase dynamics, however, it is still possible to

reproduce the same behavior by introducing a forgetting factor feedback in the form of a

dynamic gain on the relative strength of the attraction to the preferred direction. This

feedback is analogous to the feedback on the weight ω in [19], which reinforces (diminishes)

the gain if individuals find themselves moving towards (away from) their preferred direction.

In the next section we present an extension of the model (6.1) where we implement such a

forgetting factor feedback.

6.4.2 Forgetting Factor Feedback

We now study an extension of the model (6.1), by considering a forgetting factor feedback

in the form of a dynamic gain on the relative strength of the attraction to the preferred

direction. Informed individuals are more or less influenced by their preferred directions

depending on how close they are to it. When informed individuals are heading in a direction

close to their preferred direction, their attraction to it increases; this influence fades as the

heading of an individual strays from its preferred direction. To add this effect, we multiply

the “preferred direction” term of equation (6.1) by a coupling gain ajθ̄k , quantifying the

level of interaction between an informed agent j and its preferred direction θ̄k, j ∈ Nk.
The coupling gain ajθ̄k is allowed to take any value between 0 and 1. In the case where
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ajθ̄k = 0, the informed agent j is not influenced by its preferred direction. In the case

where ajθ̄k = 1, the attention paid by agent j to its preferred direction is maximum. We

show through simulations that, with this feedback, the group can achieve consensus with

the group heading either in one of the preferred directions or else in a direction close to the

average of the preferred directions. We will later explain what we mean by “close to the

average of the preferred directions”.

This forgetting factor feedback is different from the static feedback considered in Section

5.3 in that it includes a memory effect. If an informed individual is traveling close to its

preferred direction for a significant amount of time but subsequently finds itself traveling in

a different direction, its attraction to the preferred direction will start decreasing but will

not vanish immediately. The attraction of informed individuals to their preferred directions

depends not only on their current direction of travel but also on their direction of travel in

the “recent” past, recent being quantified by the speed of the dynamics for the gain ajθ̄k

relative to the speed of the dynamic of the phase angle θj .

The dynamics of the interaction gains between the informed individuals and their pre-

ferred directions are modelled here with a saturated integrator dynamics identical to those

used previously in this chapter to model the interactions between individuals. The dynamics

of these interaction gains can be written as

η̇jθ̄k = K2(ρjθ̄k − r), j ∈ Nk, k = 1, 2

ajθ̄k =
1

1 + e
−ηjθ̄k

, j ∈ Nk, k = 1, 2,
(6.46)

where ηjθ̄k ∈ R is an integrated variable, ρjθ̄k = | eiθj+eiθ̄k
2 | gives a measure of the level of

synchrony between agent j and its preferred direction θ̄k, the parameter K2 > 0 quantifies

the speed at which the interaction gains evolve, and r ∈ [0, 1] is a threshold. If ρjθ̄k > r,

then ηjθ̄k increases and ajθ̄k eventually converges to 1; if ρjθ̄k < r, then ηjθ̄k decreases

and ajθ̄k eventually converges to 0. As we explained above, the use of such dynamics

for the interaction gains allows us to include the effect of memory on the interactions

between informed individuals and their preferred directions. As for the interaction between

individuals, the dynamics of ajθ̄k can be written in a simpler form, using the dynamics of
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ηjθ̄k , as

ȧjθ̄k = K2(1− ajθ̄k)ajθ̄k(ρjθ̄k − r), j ∈ Nk.

We use this formulation in the remainder of the analysis. The modified model for the

dynamics of the group can now be written as

θ̇j = ajθ̄1 sin
(
θ̄1 − θj

)
+
K1

N

N∑
l=1

ajl sin (θl − θj) , j ∈ N1

θ̇j = ajθ̄2 sin
(
θ̄2 − θj

)
+
K1

N

N∑
l=1

ajl sin (θl − θj) , j ∈ N2

θ̇j =
K1

N

N∑
l=1

ajl sin (θl − θj) , j ∈ N3

ȧlj = K2(1− alj)alj(ρlj − r), l ∈ {1, . . . , N}, j ∈ {l + 1, . . . , N}

ȧjθ̄k = K2(1− ajθ̄k)ajθ̄k(ρjθ̄k − r), j ∈ Nk.

(6.47)

Simulations of the model (6.47) shown in Figures 6.6 suggest that the time-scale sepa-

ration observed in model (6.1) still occurs. At first the heading angles of the individuals in

each subgroup synchronize, then the three average subgroup directions slowly drift to reach

their steady state. We note that, for the case plotted, all three subgroups are synchronized

at the steady state. This model is similar to the model (6.1). The similarity makes it easy,

given the knowledge on the invariant manifolds of (6.1), to identify the invariant manifolds

of (6.47). The invariant manifolds of the model (6.47) are each characterized by a set of

interaction gains between the different subgroups, as was the case with the model (6.1); here

the invariant manifolds are also characterized by the set of interaction gains between the

informed subgroups and their respective preferred directions. Consequently, each invariant

manifold of the model (6.1) yields four invariant manifolds of the model (6.47): one in which

each informed subgroup is connected to its preferred direction, one in which no informed

subgroup is connected to its preferred directions and two in which one informed subgroup

is connected to its preferred direction and the other is not. Although a rigorous analysis of

the attractiveness of each of these thirty-two invariant manifolds and the stability analysis

of the equilibria on each of these invariant manifolds could be carried out, as was done in
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Section 6.3 for the model (6.1), we limit ourselves here to presenting qualitative observations

on some interesting behaviors obtained with this model.

Figures 6.7 - 6.9 present simulations illustrating three different invariant manifolds each

exhibiting a biologically-relevant behavior. The simulations presented in Figures 6.7 and

6.8 were carried out with the following parameter values : K1 = 2, K2 = 7, N1 = N2 =

10, N3 = 30, r = .8, θ̄1 = 1 rad and θ̄2 = 3 rad. In these cases, the preferred directions are

different enough that two individuals each traveling in a different one of the two preferred

directions would not “see” each other and their coupling gain would decrease until reaching

zero. With the initial conditions used in the simulation presented in Figure 6.7, the inter-

action gains between every pair of individuals converge to 1; the interaction gains between

individuals in the first informed subgroup and their common preferred direction converge

to 1 while the interaction gains between individuals in the second informed subgroup and

their common preferred direction converge to 0. At the steady state, the group achieves

consensus with all three subgroups synchronized, traveling in the preferred direction of the

first informed subgroup. With the initial conditions used in Figure 6.8, we obtain a symmet-

rical scenario in which the group achieves consensus with all three subgroups synchronized,

traveling in the preferred direction of the second informed subgroup.

The simulation presented in Figure 6.9 was carried out with the following parameter

values: K1 = 5, K2 = 7, N1 = N2 = 10, N3 = 30, r = .9, θ̄1 = 0 rad and θ̄2 = π

rad. Compared to the simulations from Figures 6.7 and 6.8, the difference between the

preferred directions is greater and r is greater as well, meaning that individuals need to

be closer to each other to have increasing interaction gains and informed individuals need

to travel in a direction closer to their preferred direction to remain under its influence. In

this case, the initial conditions are such that the interaction gains between every pair of

individuals also converge to 1; however unlike in the other simulations, here the interaction

gain between each informed individual and its preferred directions converges to 0. On the
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reduced manifold, the system becomes

ψ̇1 =
K1N1

N
sin (ψ2 − ψ1) +

K1N3

N
sin (ψ3 − ψ1)

ψ̇2 =
K1N1

N
sin (ψ1 − ψ2) +

K1N3

N
sin (ψ3 − ψ2)

ψ̇3 =
K1N1

N
sin (ψ1 − ψ3) +

K1N1

N
sin (ψ2 − ψ3)

. (6.48)

We recognize here a variation of the Kuramoto model for coupled oscillator dynamics [60]

with zero natural frequency and non-identical coupling gains; the steady state solution is

thus one in which the three subgroups synchronize, traveling in the average of the initial

headings. In the simulation presented in Figure 6.9, it appears that the steady state value is

very close to the average of the preferred directions. This observation is not specific to the

initial conditions used here. Rather in the range of initial conditions in which this manifold

is attractive, the steady state value is near the average of the preferred directions. This

owes to the fact that the steady state value has to be “away” from both preferred direction

(otherwise the interaction gain between one informed subgroup and its preferred direction

would start increasing again and we would get one of the two solutions illustrated in Figures

6.7 and 6.8). We note however that, with the appropriate initial conditions, it is possible to

obtain a symmetric steady state solution with the group heading near the opposite of the

average of the preferred directions. This solution is interesting because the group acts as if

it is averaging the preferred directions, but when it is doing so, no individual is influenced

by its preferred direction.
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Figure 6.1: Simulations of the model (6.1) with K1 = 2, K2 = 20 and r = .8, N1 = 10
individuals with preferred direction 0 rad, N2 = 10 individuals with preferred direction 3
rad and N3 = 30 individuals with no preferred direction. (a), (d), (g) Phase angle of each
individual in the group versus time for each of the three sets of initial conditions. For these
simulations two time-scales can be observed in the dynamics can be observed. During a short
initial transient time, the heading angles of the individuals in each subgroup synchronize.
Then the three average subgroup directions change slowly to their steady states values. (b),
(e), (h) Interaction gains for each pair of individuals in different subgroup. The interaction
gains between individuals in different subgroups converge “quickly” to either 1 for the set
of parameter values and the set of initial conditions of the gains and phase angles used. (c),
(f), (i) Diagrams for the interconnection topology between the different subgroups after the
transient.
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Figure 6.2: Simulations of the model (6.1) for three distinct set of initial conditions with
K1 = 2, K2 = 5 and r = .8, N1 = 10 individuals with preferred direction 0 rad, N2 =
10 individuals with preferred direction 3 rad and N3 = 30 individuals with no preferred
direction. (a),(d),(g) Phase angle of each individual in the group versus time for each of
the three sets of initial conditions. For these simulations two time-scales can be observed in
the dynamics can be observed. During a short initial transient time, the heading angles of
the individuals in each subgroup synchronize. Then the three average subgroup directions
change slowly to their steady states values. (b), (e), (h) Interaction gains for each pair
of individuals in different subgroup. The interaction gains between individuals in different
subgroups converge to either 0 or 1 depending on the initial conditions of the gains and
phase angles. (c), (f), (i) Diagrams for the interconnection topology between the different
subgroups after the transient.



167

0 5 10 15
0

1

2

3

4

5

6

7

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K1N1
N

1 1

(c)

(b)

(a)

θ j
a

lj

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

l ∈ N1 j ∈ N2

l ∈ N1 j ∈ N3

l ∈ N2 j ∈ N3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

j ∈ N1

j ∈ N2

j ∈ N3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

l ∈ N1 j ∈ N2

l ∈ N1 j ∈ N3

l ∈ N2 j ∈ N3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

j ∈ N1

j ∈ N2

j ∈ N3

time

Figure 6.3: Simulation of the model (6.1) with K1 = 2, K2 = 5, N1 = N2 = 10, N3 =
30, r = .8, θ̄1 = 0 rad and θ̄2 = .5 rad. (a) Phase angle of each individual in the group versus
time. Two time-scales in the dynamics can be observed. During a short initial transient
time, the heading angles of the individuals in each subgroup synchronize. Then the three
average subgroup directions change slowly to their steady states values. (b) Interaction gains
for each pair of individuals in different subgroup. The interaction gains between individuals
in different subgroups converge to 1 for every pair of individuals between subgroups one
and two and to zero otherwise. (c) Diagrams for the interconnection topology between the
different subgroups after the fast time scale.
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Figure 6.4: Simulation of the model (6.1) with K1 = 2, K2 = 5, N1 = N2 = 10, N3 =
30, r = .95, θ̄1 = 1 rad and θ̄2 = 3.1 rad. (a) Phase angle of each individual in the
group versus time. Two time-scales in the dynamics can be observed. During a short
initial transient time, the heading angles of the individuals in each subgroup synchronize.
Then the three average subgroup directions change slowly to their steady states values.
(b) Interaction gains for each pair of individuals in different subgroup. The interaction
gains between individuals in different subgroups converge to 0 for every pair of individuals
between subgroups. (c) Diagrams for the interconnection topology between the different
subgroups after the fast time scale.
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Figure 6.5: Simulation of the model (6.1) with K1 = 2, K2 = 7, N1 = N2 = 10, N3 =
30, r = .85, θ̄1 = π

4 rad and θ̄2 = 5π
4 rad. (a) Phase angle of each individual in the

group versus time with. Two time-scales in the dynamics can be observed. During a short
initial transient time, the heading angles of the individuals in each subgroup synchronize.
Then the three average subgroup directions change slowly to their steady states values. (b)
Interaction gains for each pair of individuals in different subgroup. The interaction gains
between individuals in different subgroups converge to 0 for every pair of individuals between
the two informed subgroups and to one otherwise. (c) Diagrams for the interconnection
topology between the different subgroups after the fast time scale.
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Figure 6.6: Simulation of the model (6.47) with K1 = 2, K2 = 20, N1 = N2 = 10, N3 =
30, r = .8, θ̄1 = 1 rad and θ̄2 = 3 rad. (a) Phase angle of each individual in the group
versus time with. Two time-scales in the dynamics can be observed. During a short initial
transient time, the heading angles of the individuals in each subgroup synchronize. Then
the three average subgroup directions change slowly to their steady states values. We note
that at the steady state, the three subgroups are synchronized heading in the preferred
direction of the first informed subgroup. (b) Interaction gains for each pair of individuals
in different subgroup. The interaction gains between individuals in different subgroups
converge “quickly” (as fast as the individuals in the same subgroup synchronize) to 1 for
every pair of individuals between subgroups. (c) Interaction for each informed individuals
with its preferred direction. The interaction gains between informed individuals in the first
informed subgroup and their preferred direction all converge to 1 while the interaction gains
between individuals in the second informed subgroup and their preferred direction converge
to 0. (d) Diagrams for the interconnection topology between the different subgroups after
the fast time scale.
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Figure 6.7: Simulation of the model (6.47) with K1 = 2, K2 = 7, N1 = N2 = 10, N3 =
30, r = .8, θ̄1 = 1 rad and θ̄2 = 3 rad. (a) Phase angle of each individual in the group
versus time with. Two time-scales in the dynamics can be observed. During a short initial
transient time, the heading angles of the individuals in each subgroup synchronize. Then the
three average subgroup directions change slowly to their steady states values. We note that
at the steady state, the three subgroups are synchronized heading in the preferred direction
of the first informed subgroup. (b) Interaction gains for each pair of individuals in different
subgroup. The interaction gains between individuals in different subgroups converge to 1 for
every pair of individuals between subgroups. (c) Interaction for each informed individuals
with its preferred direction. The interaction gains between informed individuals in the first
informed subgroup and their preferred direction all converge to 1 while the interaction gains
between individuals in the second informed subgroup and their preferred direction converge
to 0. (d) Diagrams for the interconnection topology between the different subgroups after
the fast time scale.
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Figure 6.8: Simulation of the model (6.47) with K1 = 2, K2 = 7, N1 = N2 = 10, N3 =
30, r = .8, θ̄1 = 1 rad and θ̄2 = 3 rad. (a) Phase angle of each individual in the group versus
time. Two time-scales in the dynamics can be observed. During a short initial transient
time, the heading angles of the individuals in each subgroup synchronize. Then the three
average subgroup directions change slowly to their steady states values. We note that at
the steady state, the three subgroups are synchronized heading in the preferred direction of
the second informed subgroup. (b) Interaction gains for each pair of individuals in different
subgroup. The interaction gains between individuals in different subgroups converge to 1 for
every pair of individuals between subgroups. (c) Interaction for each informed individuals
with its preferred direction. The interaction gains between informed individuals in the first
informed subgroup and their preferred direction all converge to 0 while the interaction gains
between individuals in the second informed subgroup and their preferred direction converge
to 1. (d) Diagrams for the interconnection topology between the different subgroups after
the fast time scale.
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Figure 6.9: Simulation of the model (6.47) with K1 = 2, K2 = 7, N1 = N2 = 10, N3 =
30, r = .9, θ̄1 = 0 rad and θ̄2 = π rad.(a) Phase angle of each individual in the group versus
time. Two time-scales in the dynamics can be observed. During a short initial transient
time, the heading angles of the individuals in each subgroup synchronize. Then the three
average subgroup directions change slowly to their steady states values. We note that at
the steady state, the three subgroups are synchronized heading near the average of the
preferred directions of the two informed subgroups. (b) Interaction gains for each pair of
individuals in different subgroup. The interaction gains between individuals in different
subgroups converge to 1 for every pair of individuals between subgroups. (c) Interaction
for each informed individuals with its preferred direction. The interaction gains between
informed individuals in either informed subgroup and their preferred direction all converge
to 0. (d) Diagrams for the interconnection topology between the different subgroups after
the fast time scale.



Chapter 7

Conclusions and Future Directions

In this dissertation we present a study of the dynamics and control of multi-agent systems

in both the engineered and the natural setting. Focusing first on the engineered setting, in

Chapters 2 and 3, we derive provable, distributed control laws for stabilizing and changing

the shape of vehicle formations in the plane using dynamic models of tensegrity structures.

In Chapters 4, 5 and 6, where we turn our attention to the natural setting, we present and

study Lagrangian models to investigate the mechanisms of decision-making and leadership

in animal groups. This chapter gives a brief summary of the approaches, results and conclu-

sions presented in this dissertation and suggests possible future lines of research motivated

by the presented work.

7.1 Summary

In Chapter 2 we design a control law that drives vehicle formations into arbitrary shapes

with forces that can be represented as those internal to tensegrity structures. Tensegrity

structures offer important advantages that we seek to translate to vehicle formations, includ-

ing the ability to maintain shape even in the presence of external forces. It is such dynamics

properties of tensegrity structures that led us to choose the tensegrity-based approach as

an alternative to approaches based on artificial potentials and edge design. The control law

is designed by defining a smooth map that takes any arbitrary planar shape and provides a
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planar tensegrity with that shape. We prove stability of the desired shape for the dynamics

of the vehicle network that is represented as a tensegrity by using the linearization of the

yielded dynamical system. We illustrate the method with examples, one of which we use

to investigate how freedom in the choice of the parameter of the control law can be used

to affect the resulting interconnection topology of the vehicle network. The smoothness of

the mapping between shapes and tensegrities with respect to the shape parameters allows

us to extend the method to the transient problem of moving smoothly from one shape to

another, while maintaining stability along the way.

This transient problem is worked out formally in Chapter 3, where we use the smooth

map between vehicles in a formation and nodes in a tensegrity structure to derive a control

law that realizes well-behaved reconfiguration between arbitrary shapes. This control law

makes the nodes follow a smooth path in the space of stable tensegrities by smoothly

varying the parameters of the control law presented in Chapter 2 for stabilization of planar

shapes. Results from the nonlinear systems theory literature are utilized to derive sufficient

conditions that guarantee that the trajectory of the formation, in shape space, is close to

the prescribed path and that it converges to the desired final shape. Numerical simulations

are presented to illustrate the method. These illustrations hint at certain good performance

features of the method – specifically, the vehicles do not collide with each other and the

distance covered by all the vehicles is minimized during the reconfiguration.

In Chapter 4 we turn our attention to the natural setting and build on the decision-

making model of Couzin et al. [19]. We summarize the results from [19] and then focus

our attention on the role of naive individuals in the decision-making process. We show that

naive individuals help accelerate the process of consensus, unless they are too numerous. In

the case that they are too numerous, we show that this “overwhelming” number of naive

individuals causes the group to fragment and/or slows down the consensus process. Our

analysis, built primarily on simulations, reveals that the model from Couzin et al., although

very suggestive, is too complex to be analyzed mathematically. For this reason, proving

specific decision-making mechanisms requires the design of simplified, lower-dimensional
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models such as the continuous-time models presented in Chapters 5 and 6.

In Chapter 5 we present and analyze a model for the dynamics of leadership and decision-

making in animal group motion. The model takes the general form of the Kuramoto model

of coupled oscillators with individual preferences; where such preference exist, they are as-

sociated with a fixed heading angle. The model is simplified through a time-scale reduction

argument to a three-dimensional gradient system of which we study the full phase space

dynamics by computing equilibria and proving stability and bifurcations. This model dif-

fers from the complex model proposed by Couzin et al. in that it makes several simplifying

assumptions, the most important of which are that we assume an all-to-all inter-connecting

topology in the group and ignore for the purpose of the analysis the presence of naive indi-

viduals in the group. Despite these assumptions, the yielded model captures some important

behaviors exhibited in the model presented in Chapter 4, among them that informed indi-

viduals tend to compromise toward the average of their preferred directions. This model

does not however exhibit full synchronization (i.e., consensus) unless the coupling gain K

between individuals is very large, meaning that for small values of K, the group does not

fully aggregate and in fact splits. These deviations between the model in Chapter 4 and

the model in Chapter 5 motivate the model presented and analyzed in Chapter 6.

In Chapter 6, we derive and study a similar model to the one given in Chapter 5 but

relax the two critical simplifying assumption stated above. First we do not assume an all-to-

all fixed communication topology but consider instead a time-varying, possibly incomplete,

connecting topology. Second, whereas in Chapter 5 we ignore the presence of naive indi-

viduals, in Chapter 6 their influence is considered. With those assumptions relaxed, the

model yields a much richer behavior with many invariant manifolds; we investigate the at-

tractiveness of eight of these invariant manifolds and study the reduced dynamics on the

attractive ones. In contrast to the model from Chapter 5, in which informed individuals

always compromise on their preferred directions, we show that with this model it is possible

to have informed individuals travel exactly in their preferred direction, but only when the

two informed subgroups do not interact with each other. We concluded the chapter with an
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interesting extension in which we add a forgetting factor feedback in the form of a dynamic

gain on the strength of the attraction that informed individuals feel toward their preferred

direction. This extended model is highly suggestive in that it reproduces all the behavior

observed with the discrete-time model proposed by Couzin et al.

The work presented in this dissertation may be extended in several directions that

may make it possible to better understand how collective behavior emerges in the natural

setting and to develop more efficient control strategies for groups of robots emulating natural

systems. We list some possible future lines of research motivated by the presented work.

7.2 Future Lines of Research

Modeling collective behavior in animal groups As we noted, with both of the pro-

posed continuous time models from Chapters 5 and 6, the behavior observed both in [19]

and in Chapter 4, where the group collectively selects one of the preferred directions, cannot

be reproduced unless a forgetting feedback factor is introduced. Moreover, full synchroniza-

tion of the group cannot occur unless the coupling gain K1 is very large. This persistent

deviation indirectly reveals the importance of a remaining simplifying assumption, namely,

that we consider only the dynamics of the phases and not the complete spatial dynamics of

the individuals in the group. The lack of explicit consideration of spatial effects is rather

critical. For the simulations presented in [19] and in Chapter 4, in the case where the group

collectively selects one of the preferred direction, the three subgroups are consistently or-

dered with the “leading” informed subgroup in the front, the naive individuals just behind,

and the other subgroup far to the rear. The spacing between the two informed subgroups

created by the intervening presence of naive individuals is critical in that it allows the two

informed subgroups to travel in the same direction without directly interacting with each

other. This collective decision outcome cannot be reproduced by the phase models proposed

in Chapters 5 and 6 (or any other phase model), as interactions between two individuals

are solely determined by whether they are traveling in a similar direction or not. In order

to reproduce the collective decision-making outcome observed in [19], a challenging (and
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necessary) next step for the models proposed in Chapters 5 and 6 would be to define a

framework in which the spatial dynamics could be layered on top of the phase dynamics

proposed here. This layering of phase and spatial dynamics is not a new idea: Justh and

Krishnaprasad developed a motion model in which vehicles travel at constant speed and are

controlled by steering their direction of travel [49, 50]. This framework was successfully used

by Sepulchre et al. to stabilize circular and parallel collective motion [108]. The challenge

in applying such a framework to model animal group motion would be to incorporate a way

for individuals/vehicles to have preferences as some do in our models.

Control of a group of robots The work presented in Chapters 2 and 3 in which we

designed control laws to stabilize arbitrary shapes and reconfigure a vehicle network between

arbitrary shapes can be extended in several ways. We suggest three of them here. First, as

we have noted in the examples from Chapter 2, given an arbitrary shape, our mapping often

yields a tensegrity structure in which the number of interconnections exceeds the proven

lower limit. We showed by means of an example how to manipulate our method so as to

reduce the number of interconnections; future work should examine the possibility of making

such a modification systematic. Second, the stability results proven in both Chapters 2 and

3 are local; it is of interest to consider proving more global results and exploring the global

phase space in view of better leveraging tensegrity structure dynamics. Pais et al. proved

global results for one-dimensional tensegrity structures and used the results to prove global

stability of planar and three-dimensional structures made up of a set of orthogonal one-

dimensional tensegrity structures [89]. Future work extending the method of the present

dissertation to three dimensions would provide a compelling alternative for controlling the

shape of three-dimensional formations. Finally we have argued using simulations that the

control law we have designed for the reconfiguration shows good performance in that vehicles

do not collide and the distance covered by all the vehicles is minimized. It would be necessary

before implementing our control into any physical system to investigate this issue more

rigorously. As our method and simulations imply, the rate of change of the parameters

(characterized by τ in our work) plays a crucial role in the robustness issue. As τ gets
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larger (i.e., as the network is required to reconfigure at a slower pace), the network remains

closer to the prescribed trajectory. Given a path such as the one presented in Chapter 3

where trajectories of distinct vehicles do not collide and where the distance covered by the

vehicles is minimized, our control law has good performance. One should realize however

that enforcing the restriction of having no intersections in the planned trajectories of the

vehicles is more conservative than necessary. It would be sufficient to show that through

the path of the reconfiguration no two vehicles are required to be “too close” to each other

at any given time; two distinct vehicles could pass through the same location provided they

do so at different times.



Appendix A

Technical Proofs for Chapter 5

Proof of lemma 5.2.1: The linearization of (5.20) at each of the two equilibria ψS1 or

ψS2 gives the same symmetric Jacobian with eigenvalues λ1, λ2 ∈ R satisfying

λ1λ2 =
K2

4
sin2 θ̄2 − 1 < 0 for

∣∣∣∣K2 sin θ̄2

∣∣∣∣ < 1.

For θ̄2 ∈ [0, π] the eigenvalues are of opposite sign. This implies that ψS1 and ψS2 are

saddle points ∀K > 0 and ∀θ̄2 ∈ [0, π] if K
2 sin θ̄2 < 1. In the case |K2 sin θ̄2| = 1, ψS1 =

ψS2 =
(

3π
2 ,

π
2 + θ̄2

)
and the eigenvalues are λ1 = 0 and λ2 = K cos θ̄2 > 0. Therefore for

θ̄2 ∈
(
0, π2

) ∪ (π2 , π), the equilibria ψS1 = ψS2 =
(

3π
2 ,

π
2 + θ̄2

)
are unstable with one zero

eigenvalue and one strictly positive eigenvalue. In case θ̄2 = π/2 and K = 2, λ1 = λ2 = 0.

�

Proof of lemma 5.2.2: Using cos
(
θ̄2
2 − ψ2

)
= ρ and sin

(
θ̄2
2 − ψ2

)
= −

√
1− ρ2, the

Jacobian at the equilibrium is computed; it is symmetric and the corresponding eigenvalues

are

λ1,2 = −
(
ρ cos

θ̄2

2
+
√

1− ρ2 sin
θ̄2

2
+
K

2
(
2ρ2 − 1

))± K

2
(
2ρ2 − 1

)
.

We find using (5.30) for all
(
K, θ̄2

) ∈ [0,∞)× [0, π) that

−
√

1− ρ2 sin
θ̄2

2
−K (2ρ2 − 1

)
= −1

ρ

(
1− ρ2

)
cos

θ̄2

2
−Kρ2 < 0. (A.1)

Thus, for all
(
K, θ̄2

) ∈ [0,∞) × [0, π), using (A.1) both eigenvalues are real and negative.

Hence ψsync1 is a stable node for all
(
K, θ̄2

) ∈ [0,∞)× [0, π). �
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Proof of lemma 5.2.3: Using cos
(
θ̄2
2 − ψ2

)
= −ρ and sin

(
θ̄2
2 − ψ2

)
=
√

1− ρ2 the

Jacobian evaluated at this equilibrium has eigenvalues

λ1,2 = ρ cos
θ̄2

2
+
√

1− ρ2 sin
θ̄2

2
− K

2
(
2ρ2 − 1

)± K

2
(
2ρ2 − 1

)
.

One eigenvalue is equal to ρ cos θ̄22 +
√

1− ρ2 sin θ̄2
2 > 0 for all

(
K, θ̄2

) ∈ [0,∞) × [0, π).

Hence ψantisync1 is unstable for all
(
K, θ̄2

) ∈ [0,∞)× [0, π). �

Proof of lemma 5.2.5: We prove these results by looking at the eigenvalues of the

Jacobian. We first look at the case when θ̄2 <
π
2 and show that one eigenvalue is real and

positive. The eigenvalues of the Jacobian are given by

λ1,2 = ρ cos
θ̄2

2
−
√

1− ρ2 sin
θ̄2

2
− K

2
(2ρ2 − 1)± K

2
(2ρ2 − 1).

For all K > K1, the inequalities in (5.33) yield

λ1 >

√√√√ 1

1 + tan
(
θ̄2
2

) 2
3

cos
θ̄2

2
−
√√√√ 1

1 + cot
(
θ̄2
2

) 2
3

sin
θ̄2

2
> 0 if θ̄2 <

π

2
, (A.2)

proving that for (K, θ̄2) ∈ [K1,∞)× [0, π2 ) the equilibrium ψsync2 is unstable.

We now consider the case when θ̄2 >
π
2 and show that for K ∈ (K1,K0), both eigenvalues

λ1, λ2 are negative and that for K > K0 λ1 > 0. When K = K1, equation (5.32) has one

solution in [0, 1] ρ1 =

√√√√ cos
“
θ̄2
2

” 2
3

cos
“
θ̄2
2

” 2
3

+sin
“
θ̄2
2

” 2
3

. The eigenvalues λ1,2 evaluated at K = K1,

ρ = ρ1 are then given by

λ1|K1,ρ1
=
√√√√ 1

1 + tan
(
θ̄2
2

) 2
3

cos
θ̄2

2
− sin

θ̄2

2

√√√√ 1

1 + cot
(
θ̄2
2

) 2
3

< 0 if θ̄2 >
π

2

λ2|K1,ρ1
= 0.

The derivative of λ1,2 with respect to K are given by

∂λ1

∂K
=

(
cos

θ̄2

2
+

ρ√
1− ρ2

sin
θ̄2

2

)
∂ρ

∂K

∂λ2

∂K
=

(
cos

θ̄2

2
+

ρ√
1− ρ2

sin
θ̄2

2
− 4Kρ

)
∂ρ

∂K
− (2ρ2 − 1).
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As we noted in the proof of lemma 5.2.4, ρsync2 is an increasing function of K, implying

that ∂ρ
∂K

∣∣∣
ψsync2

> 0. Using in addition the inequalities (5.33) we get for θ̄2 >
π
2

∂λ1

∂K

∣∣∣∣
ψsync2

> 0

∂λ2

∂K

∣∣∣∣
ψsync2

< −2 cos
θ̄2

2
− 3 cos

(
θ̄2

2

) 1
3

sin
(
θ̄2

2

) 2
3

+
sin
(
θ̄2
2

) 2
3 − cos

(
θ̄2
2

) 2
3

sin
(
θ̄2
2

) 2
3 + cos

(
θ̄2
2

) 2
3

< 0.

∂λ2
∂K

∣∣∣
ψsync2

< 0 implies that λ2|ψsync2 < 0 ∀K > K1. ∂λ1
∂K

∣∣∣
ψsync2

> 0 implies that λ1|ψsync2 is

a strictly increasing function of K. Since λ1|K1,ρ1
< 0 it will cross zero only once. When

K = K0 the solution of equation (5.32) is ρ0 = sin θ̄2
2 . The eigenvalue λ1 at K = K0, ρ0 is

then λ1|K0,ρ0
= 0. Since λ1 is an increasing function of K, it will be negative for K < K0

and positive after.

This concludes the proof that The equilibrium ψsync2 is unstable for all (K, θ̄2) ∈
[K1,∞)× [0, π2 ) ∪ [K0,∞)× (π2 , π) and stable (K, θ̄2) ∈ [K1,K0)× (π2 , π). �

Proof of lemma 5.2.6: We prove this lemma by showing that λ2|ψantisync2 > 0. Since

on the branch of equilibria ψantisync2, equation (5.32) is satisfied, taking partial derivative

of both sides of (5.32) with respect to K yields

∂ρ

∂K

(
− sin

θ̄2

2
+

ρ√
1− ρ2

cos
θ̄2

2
+K

√
1− ρ2 − Kρ2√

1− ρ2

)
+ ρ
√

1− ρ2 = 0,

which can be rewritten as
∂ρ

∂K
=
ρ(ρ2 − 1)

λ2
. (A.3)

Plugging (A.3) in the expression of ∂λ2
∂K we get

∂λ2

∂K
=
−ρ3 cos θ̄22 +K − (1− ρ2)

3
2 sin θ̄2

2

λ2
. (A.4)

For all K > K1, ρ ∈ [0, 1], the numerator of (A.4) is strictly positive. This implies that

λ2 does not change sign as a function of K. On the branch of ψantisync2, when K = 2,

λ2 = cos θ̄2 > 0 implying that for all K > K1, λ2|ψantisync2 > 0. this concludes the proof

that The equilibrium ψantisync2 is unstable for all (K, θ̄2) ∈ [K1,∞)× [0, π).
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Technical Proofs for Chapter 6

Proof of lemma 6.3.1: We prove that the equilibria ψM8,1 and is unstable if K1 >

min(N sin
θ̄2
2

N1
, NN3

√
1+cos θ̄2

2 ) by showing that the showing that there is a change of sign be-

tween the coefficients of the characteristic polynomial of the Jacobian of the system (6.27)

evaluated at ψM8,1. The characteristic polynomial of the Jacobian of the system (6.27)

evaluated at ψM8,1 is given by

− λ3

+ 2λ2 (K1N1 −N sin θ̄2
2 )

N

+ λ
(−N2N3 +K2

1N
3
3 −N1(N2(1 + cos θ̄2)− 2K1N3(N sin θ̄2

2 +K1N3)))
N2N3

− sin θ̄2
2 N1(N2(1 + cos θ̄2)− 2K2

1N
2
3 )

N2N3
.

The coefficient of the cubic term of the characteristic polynomial is equal to -1 always

strictly negative. If K1 >
N sin

θ̄2
2

N1
(respectively K1 >

N
N3

√
1+cos θ̄2

2 ) the coefficient of the

quadratic term (respectively the constant term) of the characteristic polynomial is strictly

positive. In either cases (whether one or both inequalities are satisfied) there is at least one

change of sign of the coefficient of the characteristic polynomial and Routh stability criterion

guarantees that there is at least one unstable eigenvalue. This concludes the proof that the

equilibrium ψM8,1 and is unstable if K1 > min(N sin
θ̄2
2

N1
, NN3

√
1+cos θ̄2

2 ). The instability of
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the equilibrium ψM8,2 can be shown in an identical way, and the condition to have change

of signs in the coefficient of the characteristic polynomial of the Jacobian remain identical.

�

Proof of lemma 6.3.2: The linearization of (6.27) evaluated at the equilibrium ψM8,7

can be written as follow:

J |ψM8,7
=


α β δ

β α δ

γ γ −2γ

 , (B.1)

where α, β, γ and δ are given by

α = −ρ̂
(

cos
θ̄2

2
+
K1N3

N

)
−
√

1− ρ̂2 sin
θ̄2

2
− K1N1

N
(2ρ̂2 − 1)

β =
K1N1

N
(2ρ̂2 − 1)

γ = ρ̂
K1N1

N

δ = ρ̂
K1N3

N
.

The eigenvalues of the Jacobian can be calculated as

λ1 = α− β

λ2 =
1
2

(
α+ β − 2γ −

√
(α+ β + 2γ)2 + 8γδ

)
λ3 =

1
2

(
α+ β − 2γ +

√
(α+ β + 2γ)2 + 8γδ

)
.

We prove that the equilibrium ψM8,7 is stable by showing that all three eigenvalues are

strictly negative. Using the expression for α and β we rewrite λ1 as

λ1 = −N(ρ̂ cos θ̄22 +
√

1− ρ̂2 sin θ̄2
2 ) +K1(N1(4ρ̂2 − 2) + ρ̂N3)
N

< 0.

Also using the expression of α, β and γ we have

α+ β − 2γ = −ρ̂
(

cos
θ̄2

2
+
K1N3

N

)
−
√

1− ρ̂2 sin
θ̄2

2
− 2ρ̂

K1N1

N
< 0,

implying that λ2 < 0. Finally we compute the product of λ2 and λ3 as

λ2λ3 =
2ρ̂
(
ρ cos θ̄22 +

√
1− ρ̂2 sin θ̄2

2

)
K1N1

N
> 0,
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implying that λ3 < 0. This concludes the proof that all the eigenvalues of J are strictly

negative and that the equilibrium ψM8,7 is locally exponentially stable. �

Proof of lemma 6.3.3: The linearization of (6.27) evaluated at the equilibrium ψM8,8

can be also written as follow:

J |ψM8,8
=


α β δ

β α δ

γ γ −2γ

 , (B.2)

where α, β, γ and δ are now given by

α = −ρ̂
(

cos
θ̄2

2
− K1N3

N

)
−
√

1− ρ̂2 sin
θ̄2

2
− K1N1

N
(2ρ̂2 − 1)

β =
K1N1

N
(2ρ̂2 − 1)

γ = ρ̂
K1N1

N

δ = ρ̂
K1N3

N
.

The eigenvalues of the Jacobian can be calculated as

λ1 = α− β

λ2 =
1
2

(
α+ β + 2γ −

√
(α+ β − 2γ)2 + 8γδ

)
λ3 =

1
2

(
α+ β − 2γ +

√
(α+ β − 2γ)2 + 8γδ

)
.

We prove that the equilibrium ψM8,8 is unstable by showing that one of the eigenvalues is

strictly positive. The product of the eigenvalues λ2 and λ3 is given by

λ2λ3 = −
2ρ̂
(
ρ cos θ̄22 +

√
1− ρ̂2 sin θ̄2

2

)
K1N1

N
< 0,

implying that the two eigenvalues are of opposite sign and that the equilibrium ψM8,8 is

unstable. �

Proof of lemma 6.3.4: We prove the lemma in two steps showing separately that the

equilibria ψM8,9 and ψM8,10 are both unstable.
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The linearization of (6.27) evaluated at the equilibrium ψM8,9 can be also written as

follow:

J |ψM8,9
=


α β δ

β α δ

γ γ −2γ

 , (B.3)

where α, β, γ and δ are now given by

α = ρ̂

(
cos

θ̄2

2
+
K1N3

N

)
+
√

1− ρ̂2 sin
θ̄2

2
− K1N1

N
(2ρ̂2 − 1)

β =
K1N1

N
(2ρ̂2 − 1)

γ = −ρ̂K1N1

N

δ = −ρ̂K1N3

N
.

The eigenvalues of the Jacobian can be calculated as

λ1 = α− β

λ2 =
1
2

(
α+ β − 2γ −

√
(α+ β + 2γ)2 + 8γδ

)
λ3 =

1
2

(
α+ β − 2γ +

√
(α+ β + 2γ)2 + 8γδ

)
.

We prove that the equilibrium ψM8,8 is unstable by showing that at least one of the eigen-

values is strictly positive. The sum of the eigenvalues λ2 and λ3 is given by

λ2 + λ3 = ρ̂

(
cos

θ̄2

2
+
K1N3

N

)
+
√

1− ρ̂2 sin
θ̄2

2
+ 2ρ̂

K1N1

N
> 0,

implying that one or both these eigenvalues are strictly positive and that the equilibrium

ψM8,9 is unstable.

The linearization of (6.27) evaluated at the equilibrium ψM8,10 can be also written as

follow:

J |ψM8,10
=


α β δ

β α δ

γ γ −2γ

 , (B.4)
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where α, β, γ and δ are now given by

α = ρ̂

(
cos

θ̄2

2
− K1N3

N

)
+
√

1− ρ̂2 sin
θ̄2

2
− K1N1

N
(2ρ̂2 − 1)

β =
K1N1

N
(2ρ̂2 − 1)

γ = ρ̂
K1N1

N

δ = ρ̂
K1N3

N
.

The eigenvalues of the Jacobian can be calculated as

λ1 = α− β

λ2 =
1
2

(
α+ β − 2γ −

√
(α+ β + 2γ)2 + 8γδ

)
λ3 =

1
2

(
α+ β − 2γ +

√
(α+ β + 2γ)2 + 8γδ

)
.

We prove that the equilibrium ψM8,8 is unstable by showing that one of the eigenvalues is

strictly positive. The product of the eigenvalues λ2 and λ3 is given by

λ2λ3 = −
2ρ̂
(
ρ cos θ̄22 +

√
1− ρ̂2 sin θ̄2

2

)
K1N1

N
< 0,

implying that the two eigenvalues are of opposite sign and that the equilibrium ψM8,10 is

unstable. �
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