Graph Laplacian and Lyapunov design of collective planar motions
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Abstract—In recent work, the authors have pro-
posed a Lyapunov design to stabilize isolated relative
equilibria in a kinematic model of identical all-to-all
coupled particles moving in the plane at unit speed.
This note presents an extension of these results to ar-
bitrary connected topologies by considering a general
family of quadratic Lyapunov functions induced by the
Laplacian matrix of the communication graph.

1. Introduction

Feedback control laws that stabilize collective mo-
tions of particle groups have a number of engineering
applications including unmanned sensor networks. For
example, autonomous underwater vehicles (AUVSs) are
used to collect oceanographic measurements in forma-
tions that maximize the information intake, see e.g.
[LPL*05] and the references therein.

In this paper, we consider a kinematic model of iden-
tical (pointwise) particles in the plane [JK03]. The
particles move at constant speed and are subject to
steering controls that change their orientation. In re-
cent work [SPLO05], see also [SPL04, PLS05], we pro-
posed a Lyapunov design to stabilize isolated relative
equilibria of the model. Isolated relative equilibria ei-
ther correspond to parallel motion of all particles with
fixed relative spacing or to circular motion of all parti-
cles about a common center with fixed relative phases.
The stabilizing feedbacks were derived from Lyapunov
functions that prove exponential stability and suggest
almost global convergence properties. The results in
[SPL05] assume an all-to-all communication topology,
that is, the feedback control applied to one given par-
ticle uses information about the (relative) heading and
position of all other particles.

In the present note, we indicate how the all-to-all
assumption can be relaxed to any bidirectional con-
nected communication topology. We provide a unified
interpretation of all the Lyapunov functions consid-
ered in earlier work as quadratic forms induced by the
Laplacian of the graph associated to the communica-
tion topology.

The model assumptions are recalled in Section 2.
Section 3 introduces the quadratic functions induced
by the communication topology. The main Lyapunov
functions considered in [SPLO05] are then reinterpreted
and generalized in Section 4. A short discussion con-
cludes the paper in Section 6.

2. Particle model and control design

We consider a continuous-time kinematic model of
N > 1 identical particles (of unit mass) moving in the
plane at unit speed [JKO03]:

’f“k = eiek
ak = Uk, (1)
where £k = 1,..., N. In complex notation, the vector

ry = xp+iy, € C ~ R? denotes the position of particle
k and the angle 0, € S' denotes the orientation of
its (unit) velocity vector e* = cosf + isinf. We
use the boldface variable without index to denote the
corresponding N-vector, e.g. 6 = (6y,...,0x)T. The
configuration space consists of N copies of the group
SE(2). In the absence of steering control (8, = 0),
each particle moves at unit speed in a fixed direction
and its motion is decoupled from the other particles.

We study the design problem of choosing feedback
controls that stabilize a prescribed collective motion.
The feedback controls are identical for all the particles
and only depend on relative orientation and relative
spacing, i.e., on the variables ; = 0 — 0; and r; =
ry — 14, j,k = 1,...,N. Consequently, the closed-
loop vector field is invariant under an action of the
symmetry group SE(2) and the closed-loop dynamics
evolve on a reduced quotient manifold (shape space).
Equilibria of the reduced dynamics are called relative
equilibria and can be only of two types [JK03]: parallel
motions, characterized by a common orientation for
all the particles (with arbitrary relative spacing), and
circular motions, characterized by circular orbits of the
particles around a fixed point.

The feedback control laws are further restricted by a
limited communication topology. The communication



topology is defined by a undirected graph G(V, E) with
N vertices in V = {1,..., N} and e edges (i,j) € E
whenever there exists a communication link between
particle ¢ and particle j. We note N'(k) = {j | (j,k) €
E} the set of neighbors of k, that is, the set of vertices
adjacent to vertex j. The control uy is allowed to
depend on ry; and 6, only if j € N(k).

3. Laplacian quadratic forms

Consider the (undirected) graph G = (V, F) and let
dy, be the degree of vertex k. The Laplacian L of the
graph G is the matrix defined by

Ly; = di, ifk=j
713 if (ka]) € Ea (2)
0, otherwise

The Laplacian matrix plays a fundamental role in
spectral graph theory [Chu97]. Only basic properties
of the Laplacian are used in this paper. First, L1 =0,
and the multiplicity of the zero eigenvalue is the num-
ber of connected components of the graph. As a con-
sequence, the Laplacian matrix of a connected graph
has one zero eigenvalue and N — 1 strictly positive
eigenvalues.

We denote by < -,- > the standard inner product in
CN. The quadratic form Q(z) =< z,L z > vanishes
only when z = 1zp. It defines a norm on the shape
space CV /C induced by the action of the group of rigid
displacements z — z + 1z.

Consider the valence matrix D = diag{dy} , the
adjacency matrix A, and the incidence matrix B €
RN*¢ associated to the graph G. One easily shows
that L = D — A = BBT. Using the property L =
BBT, an alternative expression for the quadratic form

Q(z) is
> a2l

(k,j)eE

Q(z) =

In words, Q(z) is thus the total length of the polyg-
onal line connecting communicating vertices zp. Two
examples of communication topology will be consid-
ered in this note. The SV topology corresponds
to all-to-all communication. Its Laplacian matrix is
L=1Iy- %11T. It is a projector, that is, L? = L.
The quadratic form @Q(z) then takes the expression

Q(z) =l Lz ||*

which is the sum of the (squared) distances of vertices
2k, 1 <k < N, to their centroid % Zjvzl 2.

The DY topology corresponds to a ring communica-
tion: each particle is connected to two other particles.

The Laplacian is in this case the matrix

4. Phase synchronization and phase balancing

We consider the quadratic form Q(7*) for the model
(1), that is, when the N points 7, = €% lie on the
unit circle. Its time-derivative along the solutions of
(1) is

N
Q=2 <itp, Ly > (4)
k=1
and the control

up = K <irg, Lpr >= K < iewk,LkeiG >, (5)

with K # 0, ensures that ) evolves monotonically
along the closed-loop solutions since

) oQ

=2K 2=2K || == |I? .

Q=2K ulP=2K | 55 |
Solutions of the closed-loop equation =K % must
converge to the critical set of Q). Note that the control
(5) only depends on the relative orientations of particle
k with its neighbors j € N'(k).

Using the equality L = D — A = BBT, one has

several equivalent expressions for Q:

Q) = <e® L > (6)
= trD— <9 Ael? > (7)

1
= §trD —1." cos(BT9) (8)

Likewise, one has the equivalent expressions for the
derivative
oQ

— : T
50 = 2Bsin(B" ) (9)
and 9
20 _, S sin(fi - 6)) (10)
00y, )
JEN (k)

The quadratic function Q(7*) reaches its minimum
when 7 = 1e' that is, when all phases synchro-
nize, which corresponds to a parallel motion. The
control u = —Bsin(BT8) is proposed in [JMB04] to
achieve synchronization in the phase model 6 =u. It
generalizes to arbitrary communication topologies the
all-to-all sinusoidal coupling encountered in Kuramoto
model [Kur84]. For the S% topology (all-to-all com-
munication), the quadratic function @ becomes

N
. ; 1 .
Q) =I| Le® 2= N*(1 — |- 37 e )
k=1

(11)



Up to a constant and a change of sign, it coincides
with the phase potential U(8) = |pg|? used in [SPLO05],
where py = % Zivzl e denotes the centroid of par-
ticles, or equivalently, its average linear momentum
R = %Z]kvzl 7. The parameter |pg| is a classi-
cal measure of synchrony of the phase variables 6
[Kur84, Str00]. It is maximal when all phases are syn-
chronized (identical). It is minimal when the phases
balance to result in a vanishing centroid. In the par-
ticle model (1), synchronization of the phases cor-
responds to a parallel formation: all particles move
in the same direction. In contrast, balancing of the
phases corresponds to collective motion around a fixed
center of mass.

For the DV topology (ring communication), the
structure of the critical points of @@ has been further
investigated in [JPLO5]. The matrix B is a square
N x N matrix in this case and kerB = 1. Because
critical points must satisfy Bsin(B78) = 0, one con-
cludes that all critical points of () satisfy the phase
locking condition

(k,j) € E=sin(0y —0;) =« (12)
for some constant «. Each critical point is thus char-
acterized by a fixed angle ¢g such that the phase dif-
ference between any two pair of connected particles is
either ¢y or m — ¢g. The Hessian of @ at a critical
point takes the simple expression

0%Q

202 = cos poBA. BT

(13)
where A, is a diagonal matrix. FEach diagonal ele-
ment is +1 when the corresponding edge connects two
points with phase difference ¢y and —1 when the cor-
responding edge connects two points with phase dif-
ference m — ¢y. As a consequence, all critical points of
Q are saddles except when A, = +I., in which case
the phase locking condition (12) becomes

(k,j)eE:>9k—9j:00 (14)
for a fixed angle 0y € [0, 7]. It shown in [JPLO05] that
extrema of @) correspond to generalized regular poly-
gons.

5. Stabilization of circular formations

Under the constant control uy = wg, wg # 0, the
particle k rotates on a circle of radius pg = 1/|wo|
centered at ¢, = r —ipoe’?. Achieving a circular for-
mation amounts to synchronize all the particle centers.
This prompts us to define s = iwgcr and to consider
the quadratic function Q(s) in analogy to what was
done in the previous section. Note that Q(s) = Q(r)
in the limit when wg = 0.

The time-derivative of Q(s) along the solutions of
(1) is
' N
Q :22 < ifk,LkS > (uk 7&)0)
k=1

(15)

and the control

ur =wo + K < irg, Lps >=wg + K < iewk,LkS >

(16)
ensures that () evolves monotonically along the closed-
loop solutions since Q = 2K || %—(‘g |2. Bounded solu-
tions of the closed-loop system must converge to the
critical set of ). Note that the control (5) only de-
pends on the relative orientations and relative posi-
tions of particle k with its neighbors j € N (k).

The phase control (5) and the spacing control (16)
can be combined as follows: the composite Lyapunov
function

V(r,0) = k1Q(s) — keQ(), k1 >0 (17)
is nonincreasing along the closed-loop solutions with
the control

ov

=wy)— —— 18
we= o — 2 (15)

It is of interest to rewrite the control (18) as

up = wo(l —ry(dy +1) < e 7 >)
+(k1— ko) Y sin(—6;)  (19)

JEN (k)
where L

szfk—dk+1(rk+ Z r5) (20)

JEN (k)

is the relative distance from particle k to the centroid
of particles connected to k. The first term in (19) is
a spacing control that stabilizes rotation of particle k
around this centroid. The second term in (19) is a
phase control that stabilizes synchronized orientations
when ko > k1 and balanced orientations when ko <
k1. In an all-to-all communication, ko > ki causes
an aggregated circular formation (all particles rotate
on a circle in synchrony), whereas ko < k1 stabilizes
a balanced circular formation around a fixed center of
mass.

The following result is proven in [SPLO05] for the
all-to-all communication topology, that is, when L =
I— %111". The same proof works if L is the Laplacian
of an arbitrary connected graph.

Theorem 1 Consider the particle model (1) with the
control (19). All solutions converge to a relative equi-
librium defined by a circular formation of radius py =
|wo| = with direction determined by the sign of wo. If
K1 # Ka, the asymptotic phase arrangement is a criti-

cal point of Q(e*).



6. Discussion

Several variations of the above control laws are dis-
cussed in [SPLO5] in order to stabilize isolated relative
equilibria of the model (1). They are presented for an
all-to-all communication topology but can be extended
to arbitrary connected topologies using the results of
this note. For instance, a particular phase arrange-
ment of the vectors 7, can be stabilized provided it
corresponds to a minimum of a phase potential U(6).
It is shown in [SPL05] that symmetric balanced pat-
terns (symmetric arrangement of N phases consisting
of M clusters uniformly spaced around the unit circle)
can be stabilized with phase potentials of the form

M 1
U]W,N _ Z KW|N Zezm0k|2
m=1 k=1
with K, >0form=1,...,M —1 and K); < 0. The
generalization of those phase potentials to arbitrary
connected topologies is

(21)

M
QYUY = = 3 K, Q(e™) (22)
m=1
In this sense, the quadratic Lyapunov functions pro-
posed in this paper can be combined in diverse ways
and provide a versatile tool to design planar collec-
tives.

An issue of interest is whether the results of the
present note extend to time-varying and to unidirec-
tional communication topologies. In a practical envi-
ronment, the communication between different agents
is typically limited by a given spatial range. Communi-
cation neighbors then coincide with spatial neighbors
and might change as agents move. Time-varying and
unidirectional topologies have been considered in the
recent papers [AJMO02, Mor05] for simplified models.
Extension of these results to the model of this paper
will be considered in a forthcoming publication.
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