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Abstract—In recent work, the authors have pro-
posed a Lyapunov design to stabilize isolated relative
equilibria in a kinematic model of identical all-to-all
coupled particles moving in the plane at unit speed.
This note presents an extension of these results to ar-
bitrary connected topologies by considering a general
family of quadratic Lyapunov functions induced by the
Laplacian matrix of the communication graph.

1. Introduction

Feedback control laws that stabilize collective mo-
tions of particle groups have a number of engineering
applications including unmanned sensor networks. For
example, autonomous underwater vehicles (AUVs) are
used to collect oceanographic measurements in forma-
tions that maximize the information intake, see e.g.
[LPL+05] and the references therein.

In this paper, we consider a kinematic model of iden-
tical (pointwise) particles in the plane [JK03]. The
particles move at constant speed and are subject to
steering controls that change their orientation. In re-
cent work [SPL05], see also [SPL04, PLS05], we pro-
posed a Lyapunov design to stabilize isolated relative
equilibria of the model. Isolated relative equilibria ei-
ther correspond to parallel motion of all particles with
fixed relative spacing or to circular motion of all parti-
cles about a common center with fixed relative phases.
The stabilizing feedbacks were derived from Lyapunov
functions that prove exponential stability and suggest
almost global convergence properties. The results in
[SPL05] assume an all-to-all communication topology,
that is, the feedback control applied to one given par-
ticle uses information about the (relative) heading and
position of all other particles.

In the present note, we indicate how the all-to-all
assumption can be relaxed to any bidirectional con-
nected communication topology. We provide a unified
interpretation of all the Lyapunov functions consid-
ered in earlier work as quadratic forms induced by the
Laplacian of the graph associated to the communica-
tion topology.

The model assumptions are recalled in Section 2.
Section 3 introduces the quadratic functions induced
by the communication topology. The main Lyapunov
functions considered in [SPL05] are then reinterpreted
and generalized in Section 4. A short discussion con-
cludes the paper in Section 6.

2. Particle model and control design

We consider a continuous-time kinematic model of
N > 1 identical particles (of unit mass) moving in the
plane at unit speed [JK03]:

ṙk = eiθk

θ̇k = uk, (1)

where k = 1, . . . , N . In complex notation, the vector
rk = xk+iyk ∈ C ≈ R2 denotes the position of particle
k and the angle θk ∈ S1 denotes the orientation of
its (unit) velocity vector eiθk = cos θk + i sin θk. We
use the boldface variable without index to denote the
corresponding N -vector, e.g. θ = (θ1, . . . , θN )T . The
configuration space consists of N copies of the group
SE(2). In the absence of steering control (θ̇k = 0),
each particle moves at unit speed in a fixed direction
and its motion is decoupled from the other particles.

We study the design problem of choosing feedback
controls that stabilize a prescribed collective motion.
The feedback controls are identical for all the particles
and only depend on relative orientation and relative
spacing, i.e., on the variables θkj = θk − θj and rkj =
rk − rj , j, k = 1, . . . , N . Consequently, the closed-
loop vector field is invariant under an action of the
symmetry group SE(2) and the closed-loop dynamics
evolve on a reduced quotient manifold (shape space).
Equilibria of the reduced dynamics are called relative
equilibria and can be only of two types [JK03]: parallel
motions, characterized by a common orientation for
all the particles (with arbitrary relative spacing), and
circular motions, characterized by circular orbits of the
particles around a fixed point.

The feedback control laws are further restricted by a
limited communication topology. The communication



topology is defined by a undirected graph G(V, E) with
N vertices in V = {1, . . . , N} and e edges (i, j) ∈ E
whenever there exists a communication link between
particle i and particle j. We note N (k) = {j | (j, k) ∈
E} the set of neighbors of k, that is, the set of vertices
adjacent to vertex j. The control uk is allowed to
depend on rkj and θkj only if j ∈ N (k).

3. Laplacian quadratic forms

Consider the (undirected) graph G = (V,E) and let
dk be the degree of vertex k. The Laplacian L of the
graph G is the matrix defined by

Lk,j = dk, if k = j
= −1, if (k, j) ∈ E,
= 0, otherwise

(2)

The Laplacian matrix plays a fundamental role in
spectral graph theory [Chu97]. Only basic properties
of the Laplacian are used in this paper. First, L1 = 0,
and the multiplicity of the zero eigenvalue is the num-
ber of connected components of the graph. As a con-
sequence, the Laplacian matrix of a connected graph
has one zero eigenvalue and N − 1 strictly positive
eigenvalues.

We denote by < ·, · > the standard inner product in
CN . The quadratic form Q(z) =< z, L z > vanishes
only when z = 1z0. It defines a norm on the shape
space CN/C induced by the action of the group of rigid
displacements z → z + 1z0.

Consider the valence matrix D = diag{dk} , the
adjacency matrix A, and the incidence matrix B ∈
RN×e associated to the graph G. One easily shows
that L = D − A = BBT . Using the property L =
BBT , an alternative expression for the quadratic form
Q(z) is

Q(z) =
∑

(k,j)∈E

|zk − zj |2

In words, Q(z) is thus the total length of the polyg-
onal line connecting communicating vertices zk. Two
examples of communication topology will be consid-
ered in this note. The SN topology corresponds
to all-to-all communication. Its Laplacian matrix is
L = IN − 1

N 11T . It is a projector, that is, L2 = L.
The quadratic form Q(z) then takes the expression

Q(z) =‖ Lz ‖2

which is the sum of the (squared) distances of vertices
zk, 1 ≤ k ≤ N , to their centroid 1

N

∑N
j=1 zj .

The DN topology corresponds to a ring communica-
tion: each particle is connected to two other particles.

The Laplacian is in this case the matrix

L =




2 −1 0 . . . −1
−1 2 −1 . . . 0

0
. . . . . . . . .

...
...

. . . . . .
...

−1 0 . . . −1 2




(3)

4. Phase synchronization and phase balancing

We consider the quadratic form Q(ṙ) for the model
(1), that is, when the N points ṙk = eiθk lie on the
unit circle. Its time-derivative along the solutions of
(1) is

Q̇ = 2
N∑

k=1

< iṙk, Lkṙ > uk (4)

and the control

uk = K < iṙk, Lkṙ >= K < ieiθk , Lkeiθ >, (5)

with K 6= 0, ensures that Q evolves monotonically
along the closed-loop solutions since

Q̇ = 2K ‖ u ‖2= 2K ‖ ∂Q

∂θ
‖2 .

Solutions of the closed-loop equation θ̇ = K ∂Q
∂θ must

converge to the critical set of Q. Note that the control
(5) only depends on the relative orientations of particle
k with its neighbors j ∈ N (k).

Using the equality L = D − A = BBT , one has
several equivalent expressions for Q:

Q(ṙ) = < eiθ, Leiθ > (6)
= trD− < eiθ, Aeiθ > (7)

=
1
2
trD− 1e

T cos(BTθ) (8)

Likewise, one has the equivalent expressions for the
derivative

∂Q

∂θ
= 2B sin(BT θ) (9)

and
∂Q

∂θk
= 2

∑

j∈N (k)

sin(θk − θj) (10)

The quadratic function Q(ṙ) reaches its minimum
when ṙ = 1eiθ0 , that is, when all phases synchro-
nize, which corresponds to a parallel motion. The
control u = −B sin(BT θ) is proposed in [JMB04] to
achieve synchronization in the phase model θ̇ = u. It
generalizes to arbitrary communication topologies the
all-to-all sinusoidal coupling encountered in Kuramoto
model [Kur84]. For the SN topology (all-to-all com-
munication), the quadratic function Q becomes

Q(ṙ) =‖ Leiθ ‖2= N2(1− | 1
N

N∑

k=1

eiθk |2) (11)



Up to a constant and a change of sign, it coincides
with the phase potential U(θ) = |pθ|2 used in [SPL05],
where pθ = 1

N

∑N
k=1 eiθk denotes the centroid of par-

ticles, or equivalently, its average linear momentum
Ṙ = 1

N

∑N
k=1 ṙk. The parameter |pθ| is a classi-

cal measure of synchrony of the phase variables θ
[Kur84, Str00]. It is maximal when all phases are syn-
chronized (identical). It is minimal when the phases
balance to result in a vanishing centroid. In the par-
ticle model (1), synchronization of the phases cor-
responds to a parallel formation: all particles move
in the same direction. In contrast, balancing of the
phases corresponds to collective motion around a fixed
center of mass.

For the DN topology (ring communication), the
structure of the critical points of Q has been further
investigated in [JPL05]. The matrix B is a square
N × N matrix in this case and kerB = 1. Because
critical points must satisfy B sin(BT θ) = 0, one con-
cludes that all critical points of Q satisfy the phase
locking condition

(k, j) ∈ E ⇒ sin(θk − θj) = α (12)

for some constant α. Each critical point is thus char-
acterized by a fixed angle φ0 such that the phase dif-
ference between any two pair of connected particles is
either φ0 or π − φ0. The Hessian of Q at a critical
point takes the simple expression

∂2Q

∂θ2
= cos φ0BΛeB

T (13)

where Λe is a diagonal matrix. Each diagonal ele-
ment is +1 when the corresponding edge connects two
points with phase difference φ0 and −1 when the cor-
responding edge connects two points with phase dif-
ference π−φ0. As a consequence, all critical points of
Q are saddles except when Λe = ±Ie, in which case
the phase locking condition (12) becomes

(k, j) ∈ E ⇒ θk − θj = θ0 (14)

for a fixed angle θ0 ∈ [0, π]. It shown in [JPL05] that
extrema of Q correspond to generalized regular poly-
gons.

5. Stabilization of circular formations

Under the constant control uk = ω0, ω0 6= 0, the
particle k rotates on a circle of radius ρ0 = 1/|ω0|
centered at ck = rk− iρ0e

iθk . Achieving a circular for-
mation amounts to synchronize all the particle centers.
This prompts us to define sk = iω0ck and to consider
the quadratic function Q(s) in analogy to what was
done in the previous section. Note that Q(s) = Q(ṙ)
in the limit when ω0 = 0.

The time-derivative of Q(s) along the solutions of
(1) is

Q̇ = 2
N∑

k=1

< iṙk, Lks > (uk − ω0) (15)

and the control

uk = ω0 + K < iṙk, Lks >= ω0 + K < ieiθk , Lks >
(16)

ensures that Q evolves monotonically along the closed-
loop solutions since Q̇ = 2K ‖ ∂Q

∂θ ‖2. Bounded solu-
tions of the closed-loop system must converge to the
critical set of Q. Note that the control (5) only de-
pends on the relative orientations and relative posi-
tions of particle k with its neighbors j ∈ N (k).

The phase control (5) and the spacing control (16)
can be combined as follows: the composite Lyapunov
function

V (r, θ) = κ1Q(s)− κ2Q(ṙ), κ1 > 0 (17)

is nonincreasing along the closed-loop solutions with
the control

uk = ω0 − ∂V

∂θk
(18)

It is of interest to rewrite the control (18) as

uk = ω0(1− κ1(dk + 1) < eiθk , r̃k >)

+(κ1 − κ2)
∑

j∈N (k)

sin(θk − θj) (19)

where
r̃k = rk − 1

dk + 1
(rk +

∑

j∈N (k)

rj) (20)

is the relative distance from particle k to the centroid
of particles connected to k. The first term in (19) is
a spacing control that stabilizes rotation of particle k
around this centroid. The second term in (19) is a
phase control that stabilizes synchronized orientations
when κ2 > κ1 and balanced orientations when κ2 <
κ1. In an all-to-all communication, κ2 > κ1 causes
an aggregated circular formation (all particles rotate
on a circle in synchrony), whereas κ2 < κ1 stabilizes
a balanced circular formation around a fixed center of
mass.

The following result is proven in [SPL05] for the
all-to-all communication topology, that is, when L =
I− 1

N 11T . The same proof works if L is the Laplacian
of an arbitrary connected graph.

Theorem 1 Consider the particle model (1) with the
control (19). All solutions converge to a relative equi-
librium defined by a circular formation of radius ρ0 =
|ω0|−1 with direction determined by the sign of ω0. If
κ1 6= κ2, the asymptotic phase arrangement is a criti-
cal point of Q(eiθ).



6. Discussion

Several variations of the above control laws are dis-
cussed in [SPL05] in order to stabilize isolated relative
equilibria of the model (1). They are presented for an
all-to-all communication topology but can be extended
to arbitrary connected topologies using the results of
this note. For instance, a particular phase arrange-
ment of the vectors ṙk can be stabilized provided it
corresponds to a minimum of a phase potential U(θ).
It is shown in [SPL05] that symmetric balanced pat-
terns (symmetric arrangement of N phases consisting
of M clusters uniformly spaced around the unit circle)
can be stabilized with phase potentials of the form

UM,N =
M∑

m=1

Km| 1
N

N∑

k=1

eimθk |2 (21)

with Km > 0 for m = 1, . . . ,M − 1 and KM < 0. The
generalization of those phase potentials to arbitrary
connected topologies is

QM,N = −
M∑

m=1

KmQ(eimθ) (22)

In this sense, the quadratic Lyapunov functions pro-
posed in this paper can be combined in diverse ways
and provide a versatile tool to design planar collec-
tives.

An issue of interest is whether the results of the
present note extend to time-varying and to unidirec-
tional communication topologies. In a practical envi-
ronment, the communication between different agents
is typically limited by a given spatial range. Communi-
cation neighbors then coincide with spatial neighbors
and might change as agents move. Time-varying and
unidirectional topologies have been considered in the
recent papers [AJM02, Mor05] for simplified models.
Extension of these results to the model of this paper
will be considered in a forthcoming publication.
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